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For  years  providing  syntax-directed  methods  for 
the  formal  definition  of  concurrent  languages 
has  proved to be  a  challenging  task.  Problems 
are  even  more  difficult if a  language  has  some 
of the  typical  Ada  features,  such as strong 
interference  between  sequential  and concurrent 
aspects,  parameterized semantics,  complex 
data structure,  and  finally  an  extremely  large 
size.  We  have  developed  an  approach,  the 
SMoLCS  approach,  which  extends  the 
denotational  method  to  handle  concurrent 
languages  and  also  provides  a  solution  to  the 
above  problems.  Indeed,  our  method  has been 
adopted  for  the  formal  definition of  full  Ada 
within  the related EEC  project.  Here  we  illustrate 
the  basic  principles  of  the  approach,  following 
the  so-called  direct  semantics  style  used  for 
Ada  with  the  help of a toy language as a running 
example. 

1. Motivation  and  content 
Considerable effort on  the  formal modeling  of  concurrency 
has now given us the possibility of devising nice  semantics, 
at least for  simple, well-structured concurrent languages. 
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However, languages such as Ada@ pose a number of 
problems which cannot be solved just by relying on a simple 
model for concurrency.  Indeed,  its large size requires 
modular specification techniques; the strong  interference 
between concurrent  and sequential aspects, hidden by a 
syntax which is mainly aimed  at static  checks, must be 
resolved by defining a precise and possibly abstract 
underlying concurrent model and  then by connecting the 
syntax to  that model;  moreover, the overall semantics of a 
program or of a fragment  of  it not  only  can vary depending 
on  some parameters, which can be complex specifications, 
but is not  at all fixed under  any  commonly accepted 
meaning (it is fixed in a rather sophisticated sense). Most of 
the problems  have been brought to light and confirmed in 
practice by some early attempts  to formalize the  semantics 
of Ada (see [ I ]  for  problems and references). 

Within this context, and motivated by a concrete large 
project (see [ 1-31), the  European  Community Project on  the 
Draft Formal Definition  of Ada, we have  developed a formal 
method for solving the problems mentioned above. For a 
long time it  has been recognized that syntax-directed (or 
compositional)  semantics  is a first step  toward  modular 
definition;  moreover, the  denotational style advocated by 
Strachey and Scott (see [4, SI), and also supported by the 
VDM work [6 ] ,  has now  become quite well understood and 
accepted.  Hence, we have  tried to  extend  the  denotational 
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approach from  sequential to  concurrent languages. In a first 
attempt we used the so-called continuation style; a short 
outline of this approach is given in [7 ] .  Then we succeeded 
in extending our approach to  the so-called direct-style 
semantics, which was then used in the project for the formal 
definition of full Ada. 

In this paper we present our  approach  to direct 
denotational  semantics for concurrent languages, which has 
now become known as the  SMoLCS approach. There are  a 
few basic ideas underlying our  approach, which we now 
briefly outline. 

translation is performed,  producing an  intermediate 
language which is suitable  for  representing processes and 
their concurrent interactions. In  this step the interference 
between concurrent  and sequential aspects is resolved by 
making explicit what is truly  a  sequential  activity and what 
is concurrent.  Then  the semantics  of the  intermediate 
language is provided. 

possibility of defining the intermediate language and its 
semantics following a  parameterized  schema, which can 
accommodate user-defined language constructs and their 
semantics.  Indeed, the specification of the  intermediate 
language and of its semantics is just  the specification, 
following a predefined schema, of a concurrent system 
corresponding to  the underlying concurrent  structure of the 
source language. This is a  most important feature, because it 
allows us to keep, as high as  permitted by the language, the 
level of the primitives  for  handling  concurrency,  without 
translating them  into a low-level fixed language. 

A second important novelty consists  in  considering  a 
concurrent process or system to be just a data type defined 
by a  particular  abstract algebraic specification called an 
algebraic transition system. The advantage  of this  technique 
is that it  makes possible the handling of data types and 
processes in  a uniform framework, using classical methods 
for guaranteeing abstraction, modularity, and 
parameterization. 

Moreover, we can  adopt  some well-known techniques  for 
defining different kinds of semantics and even parameterized 
semantics;  this is an essential capability  for  handling 
languages such as Ada, where the semantics is not yet fixed 
and is parameterized on various data types. We outline in 
the paper why it is significant and how  it is possible to define 
within a  coherent schema various  semantics ranging from  an 
initial algebraic semantics  to a variety of  semantics 
depending on  the observations we want to  make of  a system. 

Combining  the chosen  semantics  of the  intermediate 
language with the first step  (formally  this  corresponds to  the 
composition  of  two homomorphisms) results in  an overall 
denotational  semantics for the source language. 

introduction  to  the basic ideas of  a  compositional and 

Our  method involves  two steps. First, a  syntax-directed 

One of the  major novelties of  SMoLCS is that we have the 

The purpose  of  this paper is twofold: to provide  a  readable 

denotational  treatment of concurrent languages and  to 
outline  the overall technical structure of the SMoLCS 
approach using a  direct semantics style. Hence  the paper  has 
two  parts, the first more  introductory  and  the second more 
technical. 

For illustrating the technical treatment we use a  toy 
language CL  as a running example. We emphasize that  CL 
has been chosen following the usual  paradigm  for  illustrating 
a  methodology: It  contains all and only the essential 
constructs  for  explaining  most  of the relevant  technical 
features. Hence, CL should not be considered more  than a 
paradigm. 

There is unfortunately one  important capability of our 
method which cannot be exemplified by CL, just because of 
its  simplicity. Our  approach is highly modular  and 
parameterized, so that it can  handle languages and systems 
of any complexity, with modules  and even with parts which 
are  not completely specified. For these  aspects we can  only 
illustrate the technical approach, showing  its  application to 
CL,  without  pretending that  the example  shows  their 
importance.  However, we are confident that  the reader will 
understand  from  our presentation the generality  of the 
approach. Nonetheless, if there is any  doubt, it  should be 
enough to recall that  the  same methodology has been used 
for the full formal  definition of Ada [8], which is by far the 
largest formal specification of a language ever  written and 
the first to be proved adequate  to handle  such  a  complex 
language as Ada. 

The plan of the  paper is the following. In  the second 
section we recall, to help the reader, the  main features  of 
denotational  semantics for the sequential case. In  the  third 
we discuss informally the problems posed by the presence of 
concurrent constructs, we present the  main  concepts for 
modeling processes, and we introduce,  rather informally, the 
basic ideas of our approach. In  the fourth  section we present 
both an  informal  introduction  and a completely  formal 
specification of the  intermediate language using the 
techniques  of  partial algebraic specifications. Finally, in  the 
fifth section the  denotational semantics of the example 
language is given. In an  appendix we collect the basic 
terminology  for understanding  the algebraic aspects. The 
importance attached to  the  intermediate language is justified 
by the fact that it differs only in size from the  one used for 
the formal  definition  of full Ada, and hence  it can be taken 
as a basis for the definition  of  a wide range of concurrent 
systems and languages. This is a point emphasized  in  a 
further work [9], where we have  proposed a language  (with 
its semantics) based on  an extension of the  intermediate 
language proposed here. 

2. Denotational  semantics for sequential 
languages 
e The example language CL 
In this  subsection we introduce  the simple concurrent 513 
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programming language  CL,  which is used  as an example for 
describing our methodology. 

The abstract syntax of CL is given in the usual BNF style: 

1 PROG ::= program BLOCK { 11 BLOCK) 
2 BLOCK ::= DECS STAT HANDLERS 
3 DECS ::= A I E r  VID DECS 
4 HANDLERS ::= A I when EID & STAT HANDLERS 
5 EXP ::= CONST I VID I BOP(EXP,EXP) 
6 STAT ::= VID := EXP I STAT; STAT I BLOCK I 
7 if EXP then STAT STAT fi I 

9 raise EID I 
10 &(CHID,EXP) I “(CHID,VID) I 
1 1  create task  BLOCK I STAT 9 STAT 

8 
- 
while EXP & STAT 4 I 

Identifiers of variables (VID), exceptions (EID), channels 
(CHID), symbols of constants (CONST), and binary 
operators (BOP) are nonterminal symbols which are  not 
further specified. 

CL  is a block-structured language (2) and blocks can be 
nested (6); moreover, it has the usual sequential statements 
(6, 7, 8). To simplify the paper we have not completely 
defined CL expressions; note, however, that they include 
Boolean  expressions. 

CL has an (Ada-like) exception mechanism (2,4, 9); every 
block  has a handlers part, and when an exception ei is  raised 
in a block by a statement, the execution of the block  is 
abandoned and, if for some statement st, when ei & st 
appears in the handlers part of that block, then  the statement 
st is executed; otherwise, the exception ei is propagated 
outside the block. 

A CL program consists of a set of tasks in parallel, and 
tasks are  just blocks (1); moreover, in CL there is the 
possibility  of creating new tasks by means of the statement 
create task ( 1  1); all  tasks are executed in parallel, and there is 
no constraint on  the  duration of the execution of their 
statements. 

block  itself and by the tasks created within the block. 
Clearly, two tasks cannot update the same variable 
simultaneously. 

handshaking-like mechanism; Le., a task can execute a 
statement E ( c i , x )  only if some other task can execute 
simultaneously a statement &(ci,e) and vice  versa;  as a 
result  of the execution of the two statements, the value  of the 
expression e will be  received  by the first  task and assigned to 
the variable x. 

Moreover, there is also a statement for nondeterministic 
choice; a task executing st, st, could choose 
nondeterministically to execute either the statement st, 
(if possible) or  the statement st, (if  possible); the choice in 
CL corresponds neither to global nondeterminism nor to 
local nondeterminism; it depends on  the form of the 

The variables  declared in a block (2) are shared by the 

Tasks can also exchange messages through channels, by a 
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statements st, and st, [e.g., it is local in the case  of 
create task bl, g create task bl,; it  is  global in the case  of 

Note that in CL there are  no mechanisms for declaring 
exceptions and channel identifiers; only variable identifiers 
must be declared before  being  used. 

statements of  lines 10 and 1 1 and the construct I[), we obtain 
a classical sequential language,  called the purely sequential 
subset of CL, with the usual  well-known semantics. But note 
that, in general, CL statements such as assignment, 
conditional, and while are not sequential statements because 
now, due  to the presence  of shared variables, their 
executions require concurrent interactions with other tasks. 
For example, given  two shared variables x and y,  the 
execution of the statement x := 0 could be delayed  forever 
because other tasks continue updating x forever (CL does 
not require fairness in getting access to the shared variables); 
moreover, the value  assigned to x by the execution of x := y 
depends on  the moment when the statement is executed, 
because  in the meantime other tasks could have updated y. 

- rec(ci,,x) g ~ ( c i , , ~ ) ] .  

If  we drop the concurrent structure from CL  (the 

Principles of denotational semantics 
Consider a sequentkl language consisting of declarations, 
expressions, and statements as the purely sequential subset  of 
CL. Then the denotational semantics consists in associating 
a denoted value (the meaning) with  each declaration, 
expression, and statement. This is done by defining three 
functions, called semantic  functions: 

D: DECS + DEC-VAL 

E: EXP + EXP-VAL 

S: STAT + STAT-VAL 

where  DECS, EXP, and STAT are the sets of syntactic 
objects representing declarations, expressions, and 
statements, called syntactic domains, and DEC- VAL, 
EXP- VAL, and STAT-  VAL are the corresponding sets  of 
denoted values,  called semantic domains. 

Now, in order to define, in accordance with our intended 
informal meaning, the semantic domains, we  need some 
auxiliary structures, called auxiliary  domains. For standard 
denotational semantics these are the domains ENV and 
STORE. ENV is the domain of environments, which are 
(partial) functions from identifiers to the values denoted by 
such identifiers (DEN): 

ENV = (ID DEN). 

STORE is the  domain of stores (or memories), which are 
functions from locations (LOC) to storable values (VAL): 

STORE = (LOC + VAL). 

The value denoted by a CL  variable identifier is a location in 
the store. 
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Then it is natural  to define, at least for a simple language 
(e.g., the purely sequential  subset  of CL without the 
exception  mechanism), 

DEC-VAL = (ENV + ENV) 

EXP-VAL = ((ENV X STORE) + VAL) 

STAT-VAL = ((ENV X STORE) + STORE). 

Indeed, for example,  a statement, given an  environment  and 
a  store,  may produce a  change  in the store,  hence another 
store  (consider, e.g., an assignment). 

It is convenient  and has  become common  to write,  for 
example, (ENV+  (STORE + STORE)) instead  of 
((ENV X STORE) + STORE); this use corresponds to  the 
so-called “currying”  technique, which reduces functions of 
many  arguments  to a nested chain of functions of one 
argument. In the  example above, the value of  a statement 
will be a function which, given an  environment, produces 
another  function, which, given a store,  produces  a  store. 

Thus, for example, the value of an assignment can be 
expressed by the clause 

i) S[x := e]pu = u[E[e]pa/p(x)] 

which says that  the value of the  statement x := e, given an 
environment p and a  store u, is a new store obtained  from u 

by updating  the location p(x) with the value of e, which in 
turn is obtained as  the result of the  function E applied to e, 
p, and U,  i.e., the value of e with respect to  the  environment 
p and  the store U. 

Here we adopt  the usual notation:  Square parentheses are 
used, instead  of round ones, around  elements of the 
syntactic domains,  and we do  not  put parentheses around 
cumed  arguments (for  example, S[x := e]pu stands for 
((S(x := e))(p))(u)) and, given a functionJ; f[a/b] stands for 
XX. if x=b then a elsef(x)  (here  and  in  the following we use 
the well-known X-notation for expressing functions: e.g., a 
function f: x x’ is indicated by XX.x’). 

Clearly, clause i) can be written  equivalently as 

ii) S[x := e] = Xp,u.u[E[e]pu/p(x)] 

which gives explicitly the value of the  statement x := e. 

compositionality.  Informally,  compositionality means  that 
every well-formed syntactic construct is given a meaning 
depending  only on  the meaning of its  subconstructs and  on 
the  meaning of the syntactic operator building that  construct 
out of its subconstructs. We make precise the idea using 
again the assignment statement. 

assignment operator := and  the two subconstructs x, which 
is a variable identifier, and e, which is an expression. Then, 
giving the  semantics of x := e by compositionality amounts 
to saying that  the  meaning of x := e is the result of the 
meaning of the  operator :=, say M(:=), applied to  the 

Moreover, the  semantic  functions  are defined by 

An assignment statement x := e is built using the 

meaning of  its arguments M(x) and M(e); formally we 
should write 

iii) S[x := e] = M(:=)(M(x),M(e)). 

Now M(x) is a function which, given an  environment p, 

produces the value  of the identifier p(x )  (i.e., a location), and 
M(e) is just a function which, given an  environment p and a 
store U,  gives as result E[e]pu. Formally we can write 

iv) M(x) = Xp.p(x), M(e) = E[e] = Xp,u.E[e]pu. 

Hence,  clause i) is  equivalent to saying that M(:=) is a 
function which, given an  element M(x) E (ENV+  LOC) 
and  an  element M(e) = E[e] E ((ENV x STORE) + VAL), 
gives as result a function, specifically S[x := e], which, given 
p and U ,  has result u[E[e]pu/p(x)] = u[M(e)pu/M(x)p]. In 
other words, assuming iv), the clauses ii) and iii) are two 
equivalent ways of  defining the  semantics of  assignment by 
compositionality. 

A last but most important  point here  is to  understand  that 
the overall set of semantic clauses, defining the  functions E, 
D, and S, is given by induction  on  the syntactic structure of 
the constructs, or equivalently, that we have one clause  for 
each  syntactic construct, where the  meaning of the 
subconstructs  is given in  turn using the  same  semantic 
functions E, D, and S (together  with other  known functions, 
of course). 

concatenation of  two  statements: 
As another example,  consider the clause  for the 

S[s t , ;  S t , b  = S[st*l~(S[st,Ipu). 

That is equivalent to  the  two following clauses: 

M(st1; st,) = M(;)(M(st,),M(st,J) 

M(;) = XJ;s.(Xp,..g(p,f(p,.))). 

Summarizing,  at a rather  informal level denotational 
semantics consists in  defining  a denoted value  for each well- 
formed construct in  a compositional way. At a bit more 
technical level, a denotational semantics is given by defining, 
inductively on  the syntactic structure of  constructs,  a set of 
semantic functions, one for  each  type or sort of construct, 
after  having  defined the  appropriate  semantic  domains. 

Until now, we have seen that  in simple cases it is possible 
to give a nice denotational semantics following a  direct style, 
i.e., where every construct has a straightforward meaning 
which is associated directly with the  construct.  Problems 
arise  when  defining  constructs that change the  normal flow 
of execution,  for  example, the exception mechanisms of  CL, 
subprogram  returns, goto’s, and so on. To handle  them two 
methods have been developed: 

/ 

Use of continuations by the Oxford  school  (Strachey and 
Wadsworth; see, e.g., [4, 51). 515 
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Use of an exit-trap mechanism by the  VDM school 
(Bj~rner  and Jones (61). 

In the Oxford style the  semantic  function for statements 
takes another  argument,  the so-called continuation, which 
represents the  meaning of what follows a statement  and is a 
store transformation; i.e.,  we have 

S STAT + (ENV + (CONT + CONT)), 

where CONT = (STORE + STORE). Thus,  the  meaning of 
a statement is given indirectly  depending on  the  context of 
what follows it. 

The clause for statement  concatenation will have the  form 

Sbt , ;  st,IpO = s[st,lP(s[sf,lP~). 

The  VDM school  tries  instead to keep a  direct style, 
changing the  meaning of a statement, which clearly cannot 
be a  store transformation  anymore.  The basic idea is to have 

S STAT + (ENV + STAT-VAL) 

where STAT-  VAL = (STORE + (STORE X FOLLOW)) 
and FOLLOW = EID U {next).  (EID is the set of the 
exception identifiers and next is a special identifier not 
belonging to EID.) 

If S[st]pu = ( u ’ , f ) ,  thenfindicates  the next point  in  the 
execution flow after the execution of st; specifically, we have 
f =  next  when the execution follows the  normal flow and 
f = ei when the exception ei is raised. 

operators on STAT- VAL: 
For readability reasons the  VDM school  has  defined some 

exit e; corresponding to Xu.( u,ei); 
st-Val, ; st-Val, corresponding to 
Xu.let ( u ’ , f )  = st-val,(u) in 

i f f= next then st-val,(u’) else ( u ’ , f ) ;  

trap emap in st-val, where emap is a map  from exception 
identifiers into  statement values, corresponding to 
Xa.let ( u ’ , f )  = st-val(u) in 

iff€ Dom(emap) then emap(f)u’ else ( u ’ , f ) .  

Now statement  concatenation  and exceptions can be 
handled as follows: 

Similarly, we can  handle  the  semantics of expressions and 
declarations,  whenever  they  have side effects. In  order  to 
show the basic idea, let us briefly illustrate the case of 

516 expressions. 
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In the Oxford style the semantics of expressions is handled 
by using a class of continuations, specifically the expression 
continuations, which represent the  meaning of  what follows 
an expression; formally they are  functions which, given a 
value (the value of that expression),  produce some store 
transformation (i.e., a statement  continuation) 

ECONT = (VAL + CONT) 

Consequently, the  semantic  function for expressions now  has 
functionality 

E: EXP + (ENV + (ECONT + CONT)) 

and  the clause  for the assignment  has form 

S[x := e]pO = E[e]p(Xv,u.O(u[v/p(x)])) 

where X v , ~ . O ( ~ [ v / p ( x ) ] )  is an expression continuation. 
Following the direct semantics style, the  meaning of an 

expression is an  element of (STORE + (STORE X VAL)), 
and for readability purposes, some special operators are 
defined for  handling  these expression meanings; let us now 
recall some of them. 

Let f E (STORE + (STORE X VAL)), 

g E (VAL + STA T- VAL): 

deff in g corresponds to 

Xu.let (u’,v) = f ( u )  in (g(v))(u’) E STAT-VAL; 

return v, where v E VAL, corresponds to Xu.(u,v). 

In this  framework we have that  the  semantic  function for 
expressions has  functionality 

E: EXP 4 (ENV+  (STORE -+ (STORE X VAL))) 

and  the clause for the assignment has form 

S[x := e]p = def E[& in Xv,u.(u[v/x],next). 

The  semantic style using continuation is illustrated in 
[4, 51 and a semantics of  a language in the SMoLCS 
approach using continuation is presented  in  [7]. In the 
following we consider only  the direct semantics style with 
VDM-like combinators, since that is the style used in the 
formal  definition of Ada. 

3. Handling  concurrency  in  a  denotational 
framework 

Problems 
Several problems arise when we try to  extend  the 
denotational  approach  to  concurrent languages. Indeed, the 
semantics  of  a language construct  can  no longer be a 
function representing  a  state transformation; consider,  for 
example, the CL statement x:= 1 x:=2; what is its 
semantics in  the  environment p? Perhaps  it  could be  the 
nondeterministic function Xu.{ U [  l/p(x)],~[2/p(x)]). However, 
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the semantics  of (x:= 1 g x:=2) 11 y:=3 must be obtained in 
a  compositional way from  the  semantics of the  component 
tasks; i.e.,  we want to have 

M((x:= 1 x:=2) 11 y=3) = M( II)(M(x:=l g x:=2),M(y:=3)). 

In the simple case above,  a  solution can be found: M( 11) is 
an  operator which composes  two functions in the  two 
possible orders, but  there  are  no solutions  for the case of 
tk ,  11 tk,, where tk, = x:=y; st, and tk, = y= 1; y:= y+l; st,. 
The value of y during  the execution  of tk, depends  on  the 
part of tk2 which has been already  executed. That  means  that 
the execution of tk ,  can have several effects on  the store 
depending on  the  (unknown) value of y at  that  time; hence 
the  semantics of tk ,  must express this  kind  of 
nondeterminism. 

In general it can be easily understood from  the kind  of 
arguments above that we have to model the fact that  the 
execution  of a statement  depends  on  the  interaction with an 
outside  context, Le., a  context which contains  no  more 
“private information”  than  the store  for the sequential case, 
but is influenced by the execution  of other  parts of the 
program. It follows, therefore, that we have to model in 
some sense which are  the  “potential” executions of a 
statement (we will speak of capabilities  of  performing 
actions), which will or will not become  actual  executions 
depending on  the context. 

Another illustrative  example is the following. Assume that 
st, = E ( c i , x )  and st, = &(ci,e). It is clear that  in this case 
the execution  of tk, is influenced by the execution  of tk2 
(and conversely) in  a  stronger way. We  can say that tk, has 
the capability  of  performing the action  corresponding to  the 
execution  of the E statement  and  that  this capability 
becomes effective only if tk, performs  simultaneously the 
action  corresponding to  the execution of the  statement. 
But what is a precise formalization of “performing 
simultaneously”? 

it  has been shown to be impossible) to model all these 
aspects  of  concurrency by using just functions. In  the 
following subsections we present an  approach which can 
resolve elegantly these  problems and allows us to  maintain a 
compositional style in  modeling concurrent languages. We 
need a  formal model which can play for  concurrency the 
role of  functions, so that we can assign a denoted value to 
each well-formed fragment  of  a concurrent language. 

model is a labeled transition  system, which will be in  the 
following the  formal  counterpart of an informal or purely 
syntactic notion of concurrent process. 

It should be clear that it is rather complicated (and indeed 

In our  approach, inspired by CCS [ 101 and SOS [ 1 I ] ,  this 

Modeling processes as labeled trees 

Labeled transition systems and labeled trees A labeled 
transition system is a set of triples (s,J;s’); a  triple  is also 

written s 1, s’ and  means  that  the system has  the capability 
of passing from  the state s to  the state s’ under  an 
interaction with the external environment represented by the 
label (or flag)f: In  the simplest case, when the transition is 
purely internal  to  the system and  there is no relationship 
with the  environment,  the label can be dropped or better 
represented by a special label, which is usually written TAU 
as  in CCS. 

For example, the capabilities associated with a E ( c i , x )  
statement could be represented by a set of labeled transitions 
of the  form s 4 s’ (one for  each v in the set of values 
which can be received), which means  that  the process 
representing E(@) can pass from  the state s 
[corresponding to  the  situation immediately before the 
execution  of ~ ( c i , x ) ]  to a  state s’ (a state in  which,  for 
example,  it is recorded that  the value v has  been received 
and  must be assigned to  the shared variable x) performing an 
action  of receiving v from the outside on  the  channel ci; 
obviously, in the state s there is one capability  for each value 
v, and  that expresses exactly the fact that v is received from 
the outside. 

REC(c, v )  

The capability  associated with a &(ci,v) statement could 
be represented by the labeled transition s - s’, which 
means  that  the process representing =d(ci,v) can pass from 
the state s [corresponding to  the  situation immediately 
before the execution of &(ci,v)] to  the  state s’ performing 
the action of sending the value v outside on  the  channel ci. 

Given  a  transition system, with  each  state s is associated a 
labeled tree, in which we do  not  care  about  permutation of 
branches, and two  equal  subtrees with the  same root are 
considered  once  (in the following, when  speaking of labeled 
trees, we  will always consider them  up  to  this equivalence). 

On labeled trees branching represents nondeterminism. As 
a classical example  of  a nondeterministic process, consider a 
memory register which can  either be written or read Le., it 
can either receive a value from  outside or send out its 
content (see [lo]): 

SEND(cr.v) 

Reg(v) = (chooseuEVAL IN(u) A Reg(u)) + OUT(v) A Reg(v) 

Here we have introduced a  simple  syntax  for expressing 
processes: + represents  nondeterministic  choice, chooseuEVAL 
means a  choice between the  elements  in VAL, A means 
“followed by,” and IN(. . . ), OUT(. . . ) correspond to  the 
two  capabilities  of the register of being, respectively, written 
or read. The corresponding  tree is in Figure 1. 

process parameterized on a value such as  IN(u) A Reg(u) is 
represented by an infinite  branching  tree, with one  branch 
for each value. 

Note that  the definition of Reg(v) is recursive, and hence a 

Composing labeled trees We need also to  model groups  of 
interacting processes; in  these cases we use a  particular class 
of transition system: concurrent systems. 517 
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Labeled tree associated with Reg ( v ) .  

A concurrent system is a labeled transition system built 
from some component subsystems; each  subsystem  is  in turn 
modeled  as a labeled transition system. 

A state of a concurrent system  is modeled as a set of states 
corresponding to the subsystems plus some global 
information; the transitions are inferred from the transitions 
of the component subsystems. 

For example, the parallel composition of two processes 
p ,  and p2 (which can interact by means of a shared store 
and exchanging  messages through channels) could be 
represented by the following state of concurrent system 
cs = ((ps,,ps2J,sh), where ps, and ps, represent the initial 
states of the processes pI ,p2  and the global information part 
sh represents the state of the shared store. 

ps, - ps2’ are two transitions of p ,  and p2.  Starting 
from these transitions of the subcomponents, the following 
transition of cs corresponds to the synchronized exchange of 
a message  between p ,  and p2: 

(Ips,,~s,),sh) - (b,’,ps,’J,sh). 

Note that the state of the shared store has not been changed 
by the message  exchange. 

To give an example of a transition of the concurrent 
system  where the global information is changed, let us 
consider the case  when the process p ,  has also the capability 
ps ,  - ps,” (due, for example, to  the execution of an 
assignment to the shared variable x): 

(Ips,,ps,J,sh) - ( (~s ,” ,~s , ) , sh[v lx l )  

(here the process p2 has not taken part in the action). 
Nondeterminism can also come from parallelism, for 

example, when a process can perform some actions with at 

Let us assume that ps,  - ps,’ and SEND(<;.”) 

REC(cr,v) 

COMM(cr) 

WRITE(x.v) 

WRITE(x.v) 

1 Labeled trees associated with sequential processes 

least two other processes. Consider a process  which has the 
ability of receiving a message  (e.g., p ,  above) and there are in 
parallel two other processes able to send it (e.g., p ,  above and 
p3 having the capability ps, A ps,’); clearly, there are 
at least  two  exclusive  possible transitions of the system  in 
that situation. Specifically, 

SENWci v )  

and 

Labeled trees and their semantics Representing processes 
or groups of  processes in parallel as labeled trees is already a 
step toward giving a semantics to concurrency. However, the 
difficult problem in semantics is abstraction; Le., to give a 
semantics sufficiently abstract with  respect to linguistic 
details.  In this respect,  while  labeled trees are much more 
abstract than pieces  of code, it is  nevertheless clear that in 
many cases there are different trees with the same semantics. 
One of the simplest  cases  is  when we consider processes 
corresponding to purely sequential commands; their models 
as labeled trees are unary trees with  all the arcs labeled by 
the symbol  of internal action TAU, as in Figure 2. 

Then, if  we are interested in an input-output semantics, 
we  would  say that the two trees (here sequences) are 
equivalent iff ps, and ps,’ are input-equivalent and ps, and 
ps,’ are output-equivalent, irrespective  of  differences  in 
other aspects, such as the intermediate states. 
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From this  simple  example we can  understand  that a 
semantics is then given by an  appropriate equivalence on 
labeled trees. The case we have just discussed informally 
shows that  the  functional  semantics for  sequential languages 
can be obtained as a special case of  semantics  for concurrent 
languages, just by considering two trees (now  just  unary trees 
like those seen in  Figure 2 )  semantically equal whenever  they 
are  input-output equivalent. 

Thus, it is easily understood that  other interesting 
equivalences on trees can arise, depending  in general on 
what we want to observe of a system. For example, two well- 
known  equivalences are strong  equivalence (see [ IO]) and 
stream  (trace)  equivalence. For  the first, we consider  two 
trees  equivalent iff they  are  the  same tree by forgetting the 
states (always modulo  the equivalence  defined in  the 
beginning). For the second, two trees are equivalent iff the 
two  corresponding  sets of label sequences  starting from  the 
two roots  are  the same. 

General structure of SMoLCS 
The principles and basic ideas  sketched above for  handling 
concurrency  in a compositional way are formally expressed 
within the  SMoLCS methodology, whose overall structure is 
now  outlined. 

SMoLCS is an integrated  methodology for the 
specification of concurrent systems and languages developed 
mainly at  the University of Genoa  (Department of 
Mathematics) by the  authors (see [7,12,13]), and relying for 
the algebraic setting on cooperation with M. Wirsing 
(Passau-Fakultat fur  Informatik) (see [ 14,151). The typical 
fields of  application  of  SMoLCS are large systems, multilevel 
architectures  built from systems with different granularity, 
and complex concurrent languages with modules  and 
interference between sequential and  concurrent features. 

systems, semantics of concurrent languages, metalanguage, 
and tools. Its main features are  the following. 

Specification ofconcurrent systems A concurrent system is 
a labeled transition system built  from some  component 
subsystems; each  subsystem is in  turn modeled as a labeled 
transition system. 

A state of a concurrent system is modeled as a set of states 
corresponding to  the subsystems  plus some global 
information;  the transitions are inferred from  the  transitions 
of the subsystems  in three steps-synchronization, 
parallelism, and monitoring: 

Synchronization defines the transitions  representing 

SMoLCS  consists  of four parts: specification of concurrent 

synchronized actions of sets of subsystems and  their effects 
on global information. 
Parallelism defines the transitions  representing  admissible 
parallel executions  of sets of synchronized actions  and  the 
compound  transformations of the global information 

(mutual exclusion  problems, for example, are handled 
here). 
Monitoring defines the  transitions of the overall system 
respecting some  abstract global constraints (such as 
interleaving, free parallelism,  priorities, etc.). 

Now we can explain  what  SMoLCS  means: SMoLCS 
stands  for  structured  Monitored  Linear  Concurrent  systems; 
linear means  that  the  actions of a SMoLCS concurrent 
system consist in performing in parallel groups of actions of 
the  component subsystems. 

This  SMoLCS  schema is expressed in  an algebraic way so 
that  the transition system corresponding to  the  component 
subsystems, the global information,  and  the whole 
concurrent system are abstract data types, and also the  three 
steps are specified by giving appropriate abstract data types. 
Moreover, the overall SMoLCS schema is formalized as a 
parameterized  abstract data type, where the  parameters 
define the systems to be composed  and  their interactions. 
Thus every SMoLCS definition  of a specific system will be 
an  instantiation of that parameterized specification. 

Clearly, since a concurrent system is the specification of a 
labeled transition system, it can be taken  as a basic transition 
system for another  SMoLCS specification; that  means  that 
the SMoLCS construction  can be iterated.  Moreover, it is 
possible to give a SMoLCS  schema corresponding to  an 
inductive  definition. 

Since a SMoLCS specification is the specification of an 
abstract data type, we can consider,  as usual, some well- 
known classes of  semantics, which in  the case of concurrent 
systems have a special meaning. For example, we can 
consider an initial algebra semantics, from which an 
operational semantics  can easily be derived.  Moreover, the 
SMoLCS approach  supports  the definition  of an 
observational semantics via a parameterized  abstract data 
type specification, where the  parameters correspond to a 
formalization  of the observations. Every instantiation of 
such a schema admits a terminal model, the concurrent 
algebra, in which two  states  of the  concurrent system are 
equivalent if and only if they satisfy the  same observations; 
moreover, every subpart of the state gets an observational 
semantics by closure with respect to state contexts (see [ 151 
for  foundations). The  above  schema  permits us to formalize 
observationally  various  semantics,  such  as input/output, 
strong  equivalence, classes of bisimulation  equivalences (see 
[ 16]), and  stream semantics. 

Semantics of concurrent languages The  SMoLCS 
methodology is based on a two-step approach. 

source  language to  an underlying  model  for  concurrency, 
formalized in a language suitable  for  describing processes 
and their mutual  interactions  in a concurrent system. This is 
done by a set of denotational clauses, where in a typical 519 

Essentially the first step connects  the abstract  syntax  of the 
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denotational style a term  in  an  intermediate language is 
associated with each well-formed construct of the source 
language. For example, a function such  as 

P : PROG + STATE 

will associate with a program a term representing a state  of a 
concurrent system corresponding to  the executions  of 
programs. 

A function such as 

S 1 STAT + (ENV+ PROC) 

will associate with a statement, given an  environment, a 
term representing a process, i.e., a state  of a transition 
system corresponding to  the activity  of the process to which 
the  statement belongs. The states of the system 
corresponding to  the processes (the  subcomponents of the 
concurrent system mentioned before) are given as a part of 
an algebraic specification which formalizes a labeled 
transition  system.  Declarations and expressions are handled 
analogously. 

defining, inductively on  the  structure of the abstract  syntax, 
a syntax-directed  translation into  an  intermediate language 
for representing processes and  concurrent systems. 

The semantics  of the  intermediate language is given, 
following the SMoLCS technique for the specification of 
concurrent systems, by the algebraic specification of a 
concurrent  algebra (the second step), representing a 
concurrent system modeling  program  executions. As we 
have seen before, the specification of the  concurrent algebra 
consists essentially in 

Altogether the  denotational clauses can be seen as 

The specification of an  abstract  data type  formalizing a 

An observational semantics associated with that abstract 
concurrent system as a labeled transition system. 

data type. 

Thus  the  terms of the  intermediate language, obtained by the 
denotational clauses in  the first step, can  be  interpreted  in 
the  concurrent algebra. In  this way the  denotational clauses 
define a homomorphism  from  the algebra of the abstract 
syntax into a semantic algebra, some  camers of which are 
the carriers  of the corresponding  sorts in  the  concurrent 
algebra. 

Metalanguage The metalanguage  consists  of two kernels, 
one applicative and  one algebraic, with a simple semantics 
consisting of a simple connection between the  semantics of 
the  two kernels, which are given following classical methods. 
Actually, with SMoLCS is associated a metalanguage 
schema, which has to be filled depending on the SMoLCS 
parameters. An example  of  such  metalanguages is the 
metalanguage M used in  the  formal definition  of Ada [8]. 

Tools So far a specific rapid  prototyping  tool  has  been 
realized for SMoLCS ([ 171) which is an extension  of the 
RAP system [ 181, specially tailored to  the  structure of 
SMoLCS. It consists  of a concurrent symbolic  interpreter, 
which can derive  transitions  for a specified concurrent 
system, and of an  interpreter for denotational clauses. 

4. The  intermediate  language 
As we have outlined,  in  our approach the definition of the 
semantics  of a language consists of a set of denotational 
clauses, which can be seen as a translation into  an 
intermediate language. 

In this section we give both  an informal  description and a 
formal  definition  of the  intermediate language called SYST, 
which is used in the following section  for  defining the 
semantics  of concurrent languages following a direct style. 
The emphasis we put  on SYST is justified by the fact that it 
can  be used for  defining the semantics  of languages of any 
complexity, just by specifying some  parameters in more 
detail. For example, in essence it is the  intermediate 
language used for the definition of Ada. 

Introducing the intermediate language 
We first introduce  the syntax  of the  intermediate language, 
with some  informal  comments  on its  semantics, to prepare 
the reader to  understand  the full formal specification given 
later. 

The  concepts needed for  understanding this section  have 
been given in  Section 3. 

The  intermediate language is designed for  representing 
concurrent systems; thus SYST describes the states  of a 
concurrent transition system indicated by SYST. A state  of a 
concurrent system is described by giving the states  of  its 
subcomponent processes and its global information  part; 
thus, first we give the language  constructs  for expressing the 
global information  parts  and  the process states and  then  the 
construct  for  composing them  into states of the  concurrent 
systems. The states  of the  subcomponent processes of  SYST 
are called behaviors and  are represented by elements of type 
behavior. 

The syntax  of the  operators is as follows: 

Op: elem, X . . . X elem, + elem 

which says that  the  operator  Op, given the objects 0, . . . 0, 
of type elem, . . . elem,, respectively, returns  an object  of 
type elem,  represented by the expression Op(o,, . . ., on). 

Global information 
In the case of SYST the global information corresponds to a 
store  shared between the  subcomponent processes; its  states 
(elements  of  type  store) are represented  as finite mappings of 
locations into values. Here we do  not give a complete 
definition of the values (elements of type Val); note only that 
they include Boolean values. 
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0 True, False: + val 
are  the operators for expressing truth values. 

Also, the locations  of the shared  store (elements of type 

The operators for expressing store  states are as follows: 
loc) are not further specified. 

[ I :  -+ store 
This represents the  empty store, i.e., the  map with empty 
domain. 
O(0): store X loc + Val 
Given  a  store state sh and a  location 1, sh(i) represents the 
content of the location 1 in sh, i.e., the value associated 
with 1 by the  map sh. 

Given  a  store  state sh, a value v, and a  location I ,  sh[v/l] 
represents the store  state  in which the  content of 1 is v and 
the  content of a  location [‘#I is the  same  as in sh. 

Given a  store state sh, Dom(sh) represents the set of the 
locations used in sh, i.e., the  domain of the  map sh. 

0 O[O/O]: store X Val X loc + store 

Dom: store ”-f set(1oc) 

Behaviors 
First we give the operators  for expressing the  atomic  actions 
of the  component processes of  SYST  (elements of type act). 

Processes can  perform  internal  actions, i.e., actions which 
do  not require  interactions  either with other processes or 
with the shared  store; these actions  are represented by 

A l )  TAU: -+ act. 

Processes can  allocate new cells of the shared  store: 

A2) ALLOC: loc ”+ act. 

The action ALLOC(1) can be performed  only if the location i 
is still unused  in the actual  state  of the store. 

Processes can write and read the  contents of the cells of 
the shared store: 

A3) WRITE, READ: loc x Val -+ act. 

Clearly, a cell can be written or read only if it  has been 
previously allocated, and  an action READ(1,v) can be 
performed  only if the actual content of the cell individuated 
by the location 1 is equal  to v. 

channels (individuated by elements of type chid): 

A4) SEND, REC:  chid X Val + act. 

Processes can exchange messages (values) through 

This kind of communication is handshaking;  thus,  a process 
can perform an action SEND(ci,v) only  together with 
another process which performs REC(ci,v) and vice versa. 

A process can create some new process: 

A5) CREAT: behavior -+ act 

After a process p has  performed an action  CREAT(bh), the 
process individuated by bh will perform  its actions in parallel 

with p and with the  other processes which were in parallel 
with p. 

Then we list the operators for expressing behaviors: 

BO) skip: +behavior 

skip represents the null process, Le., the process unable to 
perform any  action. 

B1) 0 A 0: act X behavior -+ behavior 

a A bh represents the process which performs the action a 
and  then behaves as specified by bh. 

The A combinator is the basic tool  for expressing the 
activity of a process as  a  sequence of atomic actions;  it 
corresponds to  the CCS dot. 

In what follows, given a  type arg, funct(arg,behavior) 
indicates the type of the  functions from arg into behaviors, 
and we have the following operators: 

FI) xcl.0: arg-var X behavior + funct(arg,behavior) 
(abstraction) 

The  elements of type arg-var represent in  some way the 
“variables of type arg.” There is also an  operator which 
embeds these  “variables” into  the  elements of  type  arg 

F2) Arg-Var: arg-var + arg 

and various  operators  for expressing the  elements of type 
arg-var. 

written v; moreover, every string  of lowercase letters 
corresponds to  an  element of type arg-var. 

F3) O(0): funct(arg,behavior) X arg + behavior 

For every element of type arg-var v ,  Arg-Var(v) is simply 

(application) 

B2) For arg = Val, loc, boo1  (boo1 is the type of the Boolean 
values) 

choose,, 0: funct(arg,behavior) -+ behavior 

choose,, bhfunct represents the process which can 
nondeterministically  behave  as specified by bhfunct(a) for 
every element of  type arg a. 

The  importance  and relevance of  these combinators for 
representing subcomponent processes of concurrent systems 
should be clear (see, e.g., [ 10,161). Following Milner’s 
notations (see, e.g., [ 161) we would write these combinators 
as C,,,,, bh(a), where ARG is a set and bh(a) is a  behavior 
expression parameterized on a (Le., an expression of type 
behavior with a free variable a of type ARC). Here, we have 
chosen to consider  a combinator choose,, applied to 
functions from elements of type arg  into behaviors;  thus, the 
parameterized  dependence of bh(a) on a is formally 
expressed by means of an  element of type 
funct(arg,behavior);  hence CUE,,, bh(a) will be written 
choose,,)\a.bh(a). Our nondeterministic  choice is neither 
local nor global; that  depends  on  the  nature of the 
alternatives of the choice. For example, 52 1 
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If for every element a of type arg, the first-step actions of 
bh(a) correspond to  interactions with other processes or 
the global information,  then we have global non- 
determinism (e.g., for bh = choose,,,Av.REC(ci,v) A bh,, 
if a process can  send  the value v, along the  channel ci, 
then bh will choose the alternative REC(ci,v,) A bh,). 

actions of bh(a) are all internal actions, 
then we have local nondeterminism (e& 
if bh = choose,,,Av.TAU A SEND(ci,v) A bh,, 
then bh can choose one of the alternatives 
independently from  the external  context). 

If for every element a of type arg, the first-step 

activity goes on  as specified by emap(ei); otherwise, the exit 
is propagated to  some  outer trap operator. 

We also  need another  kind of  sequential composition for 
behaviors-more precisely, the possibility of  composing a 
behavior which terminates its  executions returning a value of 
a certain  type, with another behavior  waiting  for a value of 
the  same type. The behaviors returning a value of type  arg 
are  elements of type arg-behavior, while the behaviors 
waiting for a value of type arg are represented by functions 
from  arg  into behaviors  [elements  of type funct(arg,behavior)]. 

For  arg = Val, env; 

B8) def,, 0 in 0: 

B3) if 0 then 0 else 0: arg-behavior X funct(arg,behavior) + behavior 
val X behavior X behavior -+ behavior 

B9) returna, Uarg -+ arg-behavior 

The usual conditional operator: if bv then bh, else bh, is 
equal to bh, when bv is equal  to  True  and  it is equal  to bh, 
when bv is equal  to False. 

choose-, A b. if b then bh, else bh, (see subsection on  the 
construct properties for the + properties). 

In what follows we write bh, + bh, instead  of 

B4) fix 0: funct(behavior,behavior) -+ behavior 

fix bhfunct represents a process whose activity is the  same as 
bhfunct(fix bhfunct). This  operator allows one  to represent 
processes with nonterminating activities. For example, fix 
Ax. a A x represents the process which goes on forever 
performing the  action a. It is important  to  note  that 

The activity  of def,,bh  in bhfunct consists  of the activity  of 
bh until it terminates, followed by the activity of bhfunct(a) 
if bh terminates  returning  the  element of type  arg a; 
return,,a represents the final state of a process which has 
terminated its activity returning a. 

environment)  are  just finite mappings from CL variable 
identifiers into locations  of the shared storage; for the  type 
env  there  are  the  same  operators as for the type  store, 
introduced in the global information part. 

operators A, choose,  if 0 then 0 else 0, def, similar to those 
for the  elements of  type  behavior. 

The  elements of  type env = map(vid,loc) (for 

For  the  elements of  type arg-behavior, SYST has the 

the fix operator is total  and  that  the  above operational 
characterization allows one  to define  completely the 
processes represented by it. For example, fix Ax. x is defined concurrent system SYST: 
and represents the process unable  to perform any activity, 
which is  also  indicated by stop. (0,O): mset(behavior) X store + state 

Parallel  operator 
The  elements of type state  represent the states of the 

B5) 0 ; 0: behavior X behavior + behavior 

Sequential composition of behaviors: The activity  of bh,; bh, 
consists of the activity  of bh, until  it terminates, followed by 
the activity  of bh,, if bh, has terminated correctly (i.e., in  the 
state  represented by skip).  skip is a left identity for ;, while 
stop is a kind  of  zero  for ; (stop ; bh is a behavior unable  to 
perform any activity). 

B6) trap 0 in 0: map(eid,behavior) + behavior 

The  elements of type  mset(behavior) are finite multisets  of 
behaviors and we choose to represent a multiset, whose 
elements  are bh, . . . bh,, as bh, 1 . .  . I bh, to suggest that  the 
processes represented by the various  behaviors are  in 
parallel. 

In a state having form (bh, I . . . I bh,,sh) the processes 
represented by bh, . . . bh, can perform  their actions freely; 
i.e., either they can  act (if possible) or  can stay lazy. The 
only  restriction is on  the access to  the shared store: Two 
contemporaneous updatings  of the  same cell are  not allowed. 

B7) exit O:eid + behavior Semantics of the  intermediate  language The  semantics  of 
the  intermediate language  is given, specifying the abstract 

where map(eid,behavior) is the  type of the finite mappings data types labeled transition systems associated  with 
from  the CL exception identifiers into behaviors. behaviors and with the  concurrent system of  behaviors  in 

bh; moreover, if bh terminates performing an exit to  an semantic equivalence on  the labeled trees). All this is made 
exception ei and ei belongs to  the  domain of emap, then  the precise in  the following section. 

The activity of trap  emap in bh consists of the activity  of parallel, and  then defining an observational semantics (i.e., a 
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Formal definition of the intermediate language 
The  intermediate language SYST is formally  defined by 
describing the  concurrent system SYST as  an abstract data 
type and giving it an observational  semantics; to  do  this we 
use some classic algebraic techniques. In the  appendix we 
collect the basic notions needed for understanding  the paper. 

As pointed out in the  introduction,  the use of algebraic 
techniques has a variety of motivations: First, data types of 
any complexity can be specified modularly  within the  same 
abstract  framework;  second,  various  kinds  of semantics  can 
be expressed using powerful classical methods (initial and 
terminal algebra semantics); third, rapid  prototyping  tools 
can be developed  for  symbolic  execution  (indeed, we have  a 
SMoLCS interpreter). 

Overall structure 
As said before, the programs  of SYST represent the states of 
a concurrent labeled transition system SYST;  here we define 
this  system, following the SMoLCS  methodology (see 
[ 12- 14]), as an  abstract  data type by an algebraic 
specification (see, e&, [ 191). This specification is based on 
the specifications STATE with sort  state (the states of the 
system) and  FLAG with sort flag [the flags (labels) of the 
system], and has  a  ternary Boolean operation symbol (the 
transition  relation) 

0 5 0: state X flag X state + bool, 

which is defined by a set of positive conditional  axioms 
having form 

cond 2 s 5 s’ = True. 

In what follows we  will write s A s’ instead  of 
s A s’ = True. 

Formally this  can be presented  as the following 
specification schema: 

enrich  STATE + FLAG + BOOL by 

opns 5 0: state X flag X state + bool 

axioms  “axioms defining +” 

(BOOL is a specification of truth values). 
Above we have used the  operator “+,” which builds the 

sum of  two specifications T+T’. Formally the signature of 
T+T’ is the  union of the signatures of T and T’, and  the set 
of axioms of T+T’ is the  union of the sets of axioms of T 
and  T’.  The  other  operator 

enrich T by sorts S opns 0 axioms A, 

roughly similar to  the enrich-operation of CLEAR (see [20]), 
can be derived by using “+.” It corresponds to 

T + (m (S U Sorts(T)) opns (0 U Opns(T))  axioms A); 

whenever the parts g s  and/or opns and/or  axioms  are 
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lacking, S and/or 0 and/or A are considered to be equal  to 
0. 

The specification SYST can be seen as an  instantiation of 
a  schema  shown elsewhere [ 12-  141; here for  simplicity we 
define it directly. 

The system SYST is specified in four steps, each one 
consisting of the algebraic specification of a labeled 
transition system: BH-SYST, S-SYST, P-SYST, and finally 
SYST. 

BH-SYST (behavior  system)  is  a labeled transition system 
where states (terms of  sort  behavior) and  transitions 
correspond to  the states and  the basic capabilities of actions 
of the  subcomponent processes of SYST. 

The states of S-SYST (S stands for  synchronization) are 
parallel compositions of states  of subcomponent processes 
(multisets of), plus some global information (states  of the 
shared store). The transitions are  the results of synchronized 
cooperation among  subcomponent processes. Note  that, for 
technical  convenience, single process transitions are 
embedded  into  the new ones;  moreover,  creation  of  a new 
process is seen as  synchronization  of the creating process 
with a process represented by seed evolving into  the created 
one performing an action START(. . .) [seed is a special 
behavior, whose only  actions  have  form START(. . .), and a 
state of S-SYST can  include  any  number of seed]. 

The transitions of P-SYST (P stands for parallelism) 
correspond to  contemporaneous (parallel) executions of 
several synchronous actions. Here  the states are  the  same as 
for S-SYST, and we take  care of the mutually exclusive 
access to  the shared  store. 

In the general SMoLCS schema SYST corresponds to  the 
monitoring step, where the states are  the  same  as those  of 
P-SYST. Here the global constraints imposed by the 
monitoring say only that  the  duration of a task action  can be 
anything. 

Formal specijication 
In what follows, VAL, EID, LOC, and  CHID  are algebraic 
specifications which are  not  further specified (VAL also 
includes the Boolean values). 

The behavior system BH-SYST The  actions of the 
behaviors are defined by the following specification: 

ACT = enrich VAL + LOC + CHID by 

sorts act, behavior 

opns START: behavior + act 

A ,  . . .  A, 

A ,  . . . A, are  the operators  for expressing behavior actions 
introduced  in the previous  subsection, and  START 
represents the actions of seed. 
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For giving a semantics following the direct style, we need 
to define behaviors returning values and environments; so 
we need to define  algebraically the environments: 

ENV = MAP(VID,LOC)[env/map(vid,loc)] 

The notation A[srt,/srt,] means that in the specification A 
the sort srt, is renamed srt,. The states of  BH-SYST are 
defined by the following  specification: 

BEHAVIOR = 

ACT + MAP(EID,BEHAVIOR(behavior)) + 
FUNCT(BEHAVIOR(behavior), 

BEHAVIOR(behavior)) + 
ARG-FUNCT b~ 

sorts behavior, Val-behavior, env-behavior 

opns seed: + behavior 

Bo . . . B, 

where ARG-FUNCT = 

+ FUNCT(S,BEHAVIOR(bh)) 

S=VAL,ENV,LOC,BOOL 

bh=behavior,val-behavior,env-behavior 

and Bo . . . B, are the SYST operators for  expressing 
behaviors introduced in the previous subsection. Given a 
specification A and one of its sort srt, A (sr t )  means that srt 
is chosen as the main sort of A.  MAP is the parametric 
algebraic  specification  of  finite maps (for a complete 
definition, see, e.g., [ 141). Given two algebraic  specifications 
A and B with main sorts u and 6, respectively,  FUNCT(A,B) 
indicates the specification,  with sort funct(a,b), of the 
functions from elements of sort u into elements of sort b; 
FUNCT(A,B) has the operators F1, F2, F3 introduced in the 
previous section (see [ 8,2 11). 

Note that BEHAVIOR  is defined in a recursive way. 
Indicating by BH the transformation implicitly defined by 
the right-hand side  of the definition, we can write 
BEHAVIOR = BH(BEHAVI0R). It is  easy to check that, 
defining  BEHAVIOR" as the specification  with just  the sorts 
behavior and t-behavior for t = Val, env, and neither 
operations nor axioms, and BEHAVIOR" = 
BH(BEHAVIOR""),  for n=3, we  get the fixpoint 
specification  BEHAVIOR. 

operations 

0 0: behavior X act X behavior + bool, 

BH-SYST  is  defined  by enriching BEHAVIOR  with the 

and for t = Val, env 

0 0 t> 0: t-behavior X act X t-behavior + bool 524 

EGlDlO P 

(-t> represents the transition relation for the behaviors 
returning elements of sort t) defined by the following axioms, 
which formally reflect the semantics of the SYST operators 
informally introduced in the previous subsection. 

Creation of a new behavior 

seed - bh START(bh) 

Usual operational definition of fix operator 

fix bhfunct = bhfunct(fix bhfunct) 

The following axioms define the  trap/exit operators. The 
activity of trap emup in bh consists  of the activity of bh 
(1,2); moreover, if bh terminates performing an exit to an 
exception ei and ei belongs to the domain of emup, then 
the activity goes on as specified  by emup(ei) (3); otherwise, 
the exit is propagated to some outer trap operator (4). 

(1)  bh A bh' 3 trap emap in bh 5 trap emap in bh' 

(2) trap emap in skip = skip 

(3) ei E Dom(emap) = True 3 

trap  emap in exit ei = emap(ei) 

(4) ei E Dom(emap) = False 3 

trap  emap in exit ei = exit ei 

Conditional 

if True then bh, else bh, = bh, 

if  False then bh, else bh, = bh, 

0 Action prefixing 

a A bh A bh 

Sequential composition 

bh 2 bh' 3 bh;bh, 5 bh';bh, 

skip;bh = bh 

exit ei;bh = exit ei 

choose operators 
For arg = Val, loc, bool; 

arg-funct(x-arg) 5 bh' 3 choose,, arg-funct 5 bh' 

Isfree(v-argemap) = False 3 

trap  emap in choose,,hv-arg.bh = 

choose,Xv-arg.trap emap in bh 

Isfree(v-arg,emap) = False 3 

(choose,,Xv-arg.bh); bh, = choose,,Xv-arg.(bh; bh,) 

For argl = va1,env; 
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Isfree(v-arg,arg I -funct) = False 3 

def,,,(choose,,Xv-arg.argI-bh) in argl-funct = 

choose,,hv-arg.(def,,,argl-bh in argl-funct) 

def/return operators 
For arg = Val, env; 

arg-bh a r e  arg-bh’ 3 

def,, arg-bh in arg-funct 

def,, arg-bh’ in arg-funct 

def,,  return,, x-arg in arg-funct = arg-funct(x-arg) 

Here we  have chosen the names of the variables appearing in 
the axioms in a way  which recalls their sorts; e.g., bh is a 
variable  of sort behavior, arg-bh of sort arg-behavior, x-arg  of 
sort arg, arg-funct of sort funct(arg,behavior), bhfunct of sort 
funct(behavior,behavior), and so on. 

Isfree is a total operation of the parametric specification 
FUNCT such that Isfree(v,x)  is equal to True iff the 
“variable” v appears in x not enclosed by an operator 
xv. . ’ .  . 

For lack  of room we  have not reported here the axioms 
relative to the operators A, choose, if 0 then 0 else 0, def,, 
for the elements of  Val-behavior and env-behavior; they are 
analogous to  the ones for the elements of sort behavior 
defined above (e.g., the axioms for A are 

a A arg-bh L a r p  arg-bh and a A env-bh “em> env-bh). 

The synchronous  system S-SYST The states of  S-SYST are 
couples whose components are a multiset of behaviors (states 
of the  component processes) and a state of the shared store; 
they are defined by the following  specification: 

STATE = enrich PROD(MSET(BEHAVIOR),STORE) 

[state/prod(mset(behavior),store)] b~ 

axioms (seedl bms,sh) = (bms,sh) 

STORE = MAP(LOC,VAL)[store/map(loc,val)] 

PROD and MSET indicate the parametric algebraic 
specifications  of Cartesian product and finite multiset, where 
(0,O) is the couples constructor, I indicates multiset union, 
and the singleton multiset le) is simply written e. 

S-SYST includes whatever number of instances of seed and 
then allows one to handle dynamic creation of  new 
processes. 

same flags as the behavior system (elements of sort act). 

the operation 0 = 0 => 0: state X act X state + bool, 
defined by the following axioms: 

The added axiom formalizes the fact that a state of 

As flags of the synchronous actions we simply choose the 

S-SYST  is  given  by enriching STATE + BH-SYST  with 
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Process internal action 

bh bh’ 3 (bh,sh)=TAU=> (bh’,sh) 

Allocation of an unused cell  of the shared store (Undef is a 
zero-ary operation of  VAL) 

bh bh‘ A 1 E Dom(sh) = False 3 A L L O W  

(bh,sh) = WRITE(l,Undef)=> (bh’,sh[Undef/l]) 

Reading and writing a cell  of the shared store 

READ(, v) bh - bh‘ A 1 E Dom(sh) = True A sh(1) = v 3 

(bh,sh) = TAU=>  (bh’,sh) 

bh bh’ A 1 E Dom(sh) = True 3 
WRITE(I v) 

(bh,sh) = WRITE(1,v) => (bh’,sh[v/l]) 

Handshaking communication 

bh, - bh,’ A bh, - bh,’ 3 
SEND(cid v) REC(cid,v) 

(bh,lbh,,sh)  =TAU=> (bh,’l bh,’,sh) 

Creation of a new process 

bh - bh‘ A seed - bh, 3 
CREAT(bh,)  START(bh,) 

(bhlseed,sh) =TAU=> (bh’lbh,,sh) 

The parallel  system P-SYST The flags  of  P-SYST are 
defined by the following  specification: 

PFLAG = enrich ACT 

opns O / P :  act X act ”+ act 

Writing:  loc X act ”+ bool 

axiomsa, // a, = a, // a, 

(a, // a,) // a3 = a, /I (a2 // a,) 

Writing(1,TAU) = False 

Writing(l,,WRITE(l,,v)) = Equal(l,,l,) 

Writing(l,a, // a,) = 
Writing(l,a,) V Writing(l,a,) 

The operation // defines the flags  of the parallel actions 
corresponding to the contemporaneous execution of  several 
synchronous actions; Writing(/,a) is True iff a is the flag  of a 
parallel action in which the location 1 is written. [Note that 
there are no synchronous actions labeled by  READ(1,v) or 
ALLOC(/)]. 

The states of  P-SYST are the same as  S-SYST and  the 
transition relation of  P-SYST is  an extension of the one for 
S-SYST: 
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P-SYST = t ,  =I  t, iff SYST I- t ,  = t,. 
S-SYST + PFLAG bJ 

axioms 

(bms,,sh)  =a=>  (bms,’,sh’) A 

It can  be shown that the equivalence is a congruence; i.e., 
it  is compatible with the operations, hence we can define a 
partial algebra I,,,, where the objects are  the equivalence 
classes. 

(bms,,sh) =TAU=> (bms,’,sh) 3 
Proposition 1 The algebra ISYST is initial in the class  of 

(bms, I bms,,sh) =a//TAU=> (bms, ’ I bms,’,sh’) partial models of  SYST and is such that 

(bms,,sh) =a=> (bms,’,sh’) A I1 I,,,, D(t) iff SYST I- D(t); 

(brns,,sh)=WRITE(l,v)=>(bms,’,sh[v/l]) A I2 SYST I- D(t,) A D(t,) implies 

Writing(1,a) = False 3 (I,,,, k t ,  = t, iff SYST ‘r t ,  = t,) 
(bms, I bms,,sh) =a//WRITE(I,v)=> (see the appendix for the definition of D). 

(bms,’Ibms,’,sh’[v/l]). 

Note how the above axioms formalize the constraint, 
informally introduced in the previous subsection, that two 
contemporaneous updatings of a single  cell  of the shared 
store are not allowed. Note that  the final state of the shared 
store does not depend on  the order in  which the 
synchronous actions are composed. 

The overall system SYST As the whole  system  is  closed, 
i.e., there are no interactions with the external world, the 
flags  of the system  SYST are simply  defined by FLAG = 
- sorts flag opns TAU:+  flag. The states of SYST are the same 
as P-SYST, and  the transition relation of  SYST  is indicated 
by ===>, 

SYST = enrich P-SYST + FLAG bJ 

Proof Initiality follows,  e.g., from [ 15,221; properties I1 
and 12 are shown  easily by the definition of I,,,,. 
It  is clear that  the definition of IsYsT allows one to define 
labeled trees associated  with equivalence classes  of states. 
Then it is possible to apply to I,,,, the usual techniques for 
defining various kinds of operational semantics; for example, 
we can consider two states (classes) equivalent iff their 
associated trees are the same. 

However, operational semantics is not sufficient  for 
expressing the real meaning, since it discriminates too much. 
For example, neither (TAU A TAU A skip,sh), 
(TAU A skip,sh) nor (WRITE(1,v) A skip,sh), 
(WRITE(/,v) A WRITE(1,v) A skip,sh) are couples of 
operationally equivalent states of SYST, contrary to our 
intuition of their intended meaning. 

to consider two objects equivalent up to some observations. 
Hence, as we have already discussed in Section 3, we need 

Observational semantics As already emphasized, we are 
able to accommodate various kinds of observational (bmslbrns,,sh)==TAU==>(bms’Ibms,,sh’). 

The axiom says that any group of processes (bms,) can 
always  wait, formalizing the fact that  the duration of the 
process actions can be anything, and moreover that any 
action allowed  in  P-SYST (the premise  of the axiom) is 
allowed to happen in an overall transition. 

Semantics 

Operational semantics It is interesting to show that 
choosing an initial algebra approach for the semantics of the 
algebraic  specification  of a labeled transition system  allows 
one to define an operational semantics. Indeed, we have the 
following  result. 

Consider the following equivalence on  the terms built on 
the signature of SYST  for  which the definedness can be 

526 proved: 

semantics. Let us assume, just for the sake of example, that 
in the case of SYST we are interested in a result semantics; 
i.e., two states are considered equivalent iff they produce the 
same results, where the results of a state s are  the final states 
of the shared store of the correctly terminating executions of 
s (i.e.,  where in the final state all behaviors have form skip); 
note that here we do not care about incorrect and 
nonterminating executions. 

defined  for a concurrent system (here applied to SYST) 
consists  essentially of 

The paradigm under which an observational semantics is 

Giving a specification,  defining the observations on the 
system (here SYST-PLUS), by means of  Boolean relations 
(here Isres) stating that some observation values (here 
states of the shared store, defined by the specification 
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STORE)  are  true of some system states. Here we can 
define 

SYST-PLUS = enrich SYST b~ 

opns Isres: state X store + boo1 

axioms 

Isres( (skip I . . . I skip,sh) ,sh) = True 

s ==TAU==>s’ A 

Isres(s’,sh) = True 3 

Isres(s,sh) = True. 

Defining a class of  observationally  equivalent algebras, 
each one  containing  the objects to be observed together 
with the relations and moreover preserving, as a subtype, a 
fixed model  of the observed values (here the initial  model 
of STORE). 

special algebra in the above class; formally  it is the 
minimally  defined and term-generated algebra terminal in 
that class (here  CALG); a basic general theorem (in [ 151) 
shows that this  algebra  has indeed  the propertjes  required 
of an observational  semantics.  Formally we get the 
following result. 

Defining the observational semantics  as represented by a 

Proposition 2 There exists an algebra CALG with the 
following properties. 

For any srt E Sorts(STATE)-Sorts(ST0RE) and for any 
ground  terms of sort srt t,t’ built on  the signature  of  STATE, 

01 CALG E D(t) iff SYST I- D(t) 

0 2  CALG != t = t’ iff 

for any  ground  term sh of  sort  store, 
for  any  context s[x] built on  the signature  of  STATE of 

sort state with a hole of  sort srt 

[SYST-PLUS I- Isres(s[t],sh) = True  iff 

SYST-PLUS I- Isres(s[t’],sh) = True]. 

Proof Application  of the  main  theorem  in [ 151.0 

up  to isomorphism,  congruence classes of  terms, whose 
definedness can  be proven  in  SYST. 

are defined in  CALG; by property 0 2  two terms of  sort  srt 
are equivalent if and  only if in every context of  sort  state 
they satisfy the  same observations. It is most important  to 
note  that in this way every subcomponent of a state gets an 
observational  semantics: In SYST this is true,  for example, 
of a behavior. 

As before, for I,,,,, the  elements of the algebra CALG are, 

Property 0 I says that all the interesting  objects  of STATE 

An important  point  to be understood here is why we need 
our observational semantics  to be represented by an algebra, 
which is the  same  as requiring the equivalence induced by 
the observations to be a congruence. The  semantic model  of 
an abstract data type always has to be an algebra, in  order 
for the  operations  to be interpreted  on  that model;  in other 
words that  means  that  the  semantics is a homomorphism, 
which is nothing  but  the  mathematical  formal  counterpart of 
the  informal phrase  “compositional  semantics.” It will be 
seen later that by using that  homomorphism  and composing 
it with the  homomorphic translation  of the first step, we can 
define the overall semantics of a language as a homomorphic 
mapping of the algebra of the syntax into a semantic algebra, 
which is the exact mathematical formalization  of the phrase 
“denotational semantics.” 

Properties of the language constructs 
In this section we show some properties  of the constructs  of 
SYST, which are  the basis for  proving  properties  of the 
system specifications. 

by -) in the sense of  Milner (see [ 161) of the processes 
represented by various behaviors. Roughly  speaking, two 
behaviors (processes) are equivalent iff the associated labeled 
trees, where we observe  only the  arc labels and disregard the 
intermediate states (node labels), are  the same. We are 
interested  in  properties  of  this  kind because, given two  states 
of a concurrent system specified following the SMoLCS 
methodology, s, and s,, if s, and s2 have the  same 
information part and their component subsystems are 
pairwise equivalent with respect to -, then s, and s, are 
observationally  equivalent  for all observational semantics 
which do  not observe the states  of the  component 
subsystems, but  at most  their action capabilities. Thus, given 
two  behaviors  of  SYST, bh, and bh,, bh, - bh, implies 
CALG E bh, = bh,. 

between behaviors. 

These  properties  state the strong  bisimulation  (indicated 

Now, we formally  define the strong  bisimulation  relation 

In what follows we use bh and a to range  over the 
behaviors and  the  actions of SYST 

bh, - bh, iff 

i) SYST I- bh, 2 bh, ‘ implies  there exist a,,bh,’ 
such that 

SYST I- bh, 2 bh,’ A a, - a, A bh,’ - bh,’. 

ii) SYST I- bh, 2 bh,’ implies there exist a,, bh,’ 
such that 

SYST + bh, 2 bh,’ A a, - a, A bh,’ - bh,’. 

a, - a, iff 
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a,#START(. . .) and SYST t- a, = a,) Dom(emap;bh) = Dom(emup) and 

or (a ,  = CREAT(bh,),  a, = CREAT(bh,) and bh, - bh,) (emap ; bh)(ei) = emudei); bh; 

Or = = and bhl - bh2)’ Ifbh, does not include an exit to an exception ei, with 

deflreturn properties 
For arg, argl = Val, env; (trap emap in bh) ; bh, - trap (emap ; bh,) in (bkbh,). 

ei E Dom(emap), then 

def,, (a  A bh) in argjiunct - a A (def,, bh in argjiunct) 

If x is not free in argjiunct, then 

def,,(def,,, bh in Ax.bh’) in argjiunct - 
def,,, bh in  Ax.(def,,bh’ in arg-funct) 

If x is not free in bh”, then 

(def,, bh in Ax.bh’);bh” - def,, bh in Ax.(bh’;bh”). 

fix property 
A behavior of bh is said to be “imagejinite iff for  all 
actions a 

(bh’ I SYST t- bh % bh’, a - a’] is  finite module = 
(the provable equality in SYST). 

If fix Ax.bh, and fix Ax.bh, are --imagejnite, then 

[for all n 2 O (Ax.bh,)”(stop) - (~x.bh,)”(stop)] implies 
fix Ax.bh, - fix Ax.bh, 

( f o ( a )  = a,f”+l(a) = f ( f ” ( a ) ) ) .  

This property gives a very  useful tool for proving the strong 
equivalence of behaviors expressed by means of the fix 
operator. 

traplexit properties 
In the following we use emap to range over the elements of 
sort map(eid,behavior). 

trap emap in (a  A bh) - a A (trap emap in bh). 

For arg = Val, env; if x is not free  in emap, then 

trap emap in  (def,, bh in Ax.bh,) - 
def,,bh  in  Ax.(trap emap in bh,). 

If emap does not include an exit to an exception ei, with 
ei E Dom(emap), then 

trap emap in (bh, ; bh,) - 
trap emap in (bh,;trap emap in bh,). 

Let emap;bh indicate the element of sort map(eid,behavior) 
528 such that 

if then else properties 

(if bv then bh, else bh,);bh - 
if bv then (bh,;bh) else (bh,;bh). 

trap emup in (if bv then bh, else bh,) - 
if bv then (trap emap in bh,) else (trap emap in bh,). 

; properties 

bh,;(bh,;bh,) - (bh,;bh,);bh,. 
(a  A bh);bh, - a A (bh;bh,). 

stop;bh - stop skip;bh - bh. 

+ properties 

bh, + (bh, + bh,) - (bh,+bh,)+bh, 

bh,+bh, - bh,+bh,. 

5. Formal  semantics of concurrent  languages 

Semantic  domains and functions 
Following the paradigm of denotational semantics, semantics 
is given as a many-sorted homomorphism from (abstract) 
syntax into a semantic algebra. In our approach some 
domains of the semantic algebra are defined as carriers of 
another algebra, the concurrent algebra CALG, which, as we 
have seen, is a model of an algebraic  specification of a 
concurrent system  whose states represent the execution states 
of the programs. Note that CALG is nothing but  the 
semantics of the intermediate language, a semantics which 
vanes depending on  the observations we want to make. 

Let us assume in the following, for the example language 
CL, that CALG is the concurrent algebra  defined in the 
preceding section (and corresponding to a result semantics). 

The semantic functionb,  i.e., the functions constituting the 
homomorphism, are 

P PROG + ANSWER 
S: STAT + (ENV  +BH) 
E: E X P  + (ENV  +VAL-BH) 
D: DECS + (ENV  +ENV-BH) 
H: HANDLERS + (ENV  +HND) 
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C: CONST + VAL 
B: BOP -+ ((VAL X VAL) + VAL) 

The  semantic  domains above are defined as follows. If srt is 
a  sort of a specification A, then A\r, indicates the  camer of 
sort srt in A. 

From  the definition of CALG  it follows that a CL program 
has as value an  element in CALG,,,,, representing the 
observational semantics of the program, i.e., an equivalence 
class of programs  such that two  programs  are  equivalent iff 
they produce the  same observational results. Thus, we define 

ANSWER = CALGSra,,. 

Using the direct  semantics, the meanings of statements will 
be elements of sort behavior  in  CALG, i.e., equivalence 
classes of  behaviors, which are syntactic  objects  representing 
processes. Indeed, due  to  the presence of  concurrency, 
statements are now modeled by processes: 

Also, the  environment is defined as  a subalgebra of CALG, 
because there  are behaviors which terminate producing 
environments: 

ENV = CALG,,, 

The meanings of expressions and declarations are still 
behaviors,  but  particular behaviors; the  elements of VAL-BH 
are indeed behaviors, representing processes whose activities 
terminate  returning a value, while the elements of ENV-BH 
are behaviors whose activities terminate  returning  an 
environment: 

VAL-BH = CALG,,,.,,,"l,, 

ENV-BH = CALG,,,.,,,,,,, 

The storable values are defined by means of a 
subspecification (VAL with a sort Val) of the  concurrent 
systems representing  program  executions (SYST): 

VAL = CALG,,, 

Moreover,  from the definition of CALG (see the subsection 
"Formal specification") we have that VAL = (IVAJVal, where 
I,,, indicates the initial  model  of VAL (because VAL is a 
subspecification of STORE);  thus we have that  the values are 
abstractly specified. 

The  semantic value of a  handler  part  of  a block is a map 
from  exception identifiers into  statement values (behaviors): 

HND = CAL~rnap(eld.behavlor) 

Note that there is a  correspondence between the  semantic 
domains used for  sequential languages and those used for 
concurrent languages: The  domain used in the sequential 
case (STORE + STORE) corresponds to behaviors, while 

domains having form (STORE -+ (STORE X ABC)) 
correspond to behaviors terminating producing elements of 
A BC. 

Semantic claz4ses 
The definition of the  semantic  functions is by structural 
induction on the syntactic  structure. It  is important  to  note 
that we consider  only statically correct  programs;  moreover, 
for simplicity we do  not  make provision for run-time  error 
checks: Le., error messages are just values in the  appropriate 
domains. 

Notice that, as we have  often  emphasized, the clauses can 
be seen as  defining  a  syntax-directed  translation into  the 
intermediate language. The overall semantics is then 
obtained by interpreting  in  CALG the  terms corresponding 
to language constructs (programs,  statements,  declarations, 
and expressions). The full clauses are given in Figure 3; here 
we provide some  comments. 

Clause 1 defines the semantics  of  a CL program 
consisting of the tasks bl, . . . bl, as  the value in 
the concurrent algebra CALG of the  term 
(S[bl,]p,l. . . IS[bln]po,sh,), that is, the syntactic 
representation of a  state of the labeled transition system 
SYST (defined in the subsection  "The overall system SYST" 
as an algebraic specification) representing the executions  of 
the  CL programs.  Formally (S[bl,]p,l.. . IS[bln]pO,sh,) is a 
term of sort  state  in the specification STATE, 
subspecification of SYST; its semantic value, as already 
mentioned, is an equivalence class corresponding to  an 
observational  semantics on SYST. For ease of notation here 
and in the following we simply  indicate by t the  semantic 
value (interpretation) t A  of a term t in an algebra A. 

A  state of SYST  has two components:  The first is a 
multiset  of  behaviors  (corresponding to  CL tasks), while the 
second  represents some  information global to all behaviors 
(the state  of the shared store). In clause 1 p ,  represents the 
initial environment  and sh, the initial  state  of the shared 
store, and  in clause 2 p is a generic element in ENV. 

The behavior associated by E with an expression has  in 
some way the possibility of returning a value, while the 
behavior operator defVa, ... in ... composes  a  behavior returning 
a value with a  behavior waiting for  a value, producing 
another behavior. The behavior waiting for a value is 
defined by the  term of sort funct(va1,behavior) 
Xv. WRITE(p(x),v) A skip, which represents  a  function from 
values to behaviors. Note that here XO.0 is an operation  of 
the specification STATE (see the subsection on  the formal 
definition of SYST) and it  does not mean X-notation, as in 
Section 2. 

Clause 3 significantly looks the  same  as in the purely 
sequential case, as  does  clause 5. Note in clause 5 that ; is an 
operation on behaviors and in clauses 3 and 4 note also that 
if ... then ... else ... is an operation on behaviors, and most 529 
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I P[PrWam bl, I1 ... Ilbl,] = (S[bl,l~,l ... I~[b~,lp,,sh,) 
2 S[x := e]p = def,,,  E[& in Xv.WRITE( p(x),v) A skip 
3 S [if be then st, st, fi]p = def,,  E[be]p in Xbv.if  bv  then S[st,]p else  S[st2]p 
4.54- be& st o d ] p  = fix  Xbh.def,,,  E[be]p in Xbv.if  bv  then  (S[st]p;bh) else skip 
5 S[st,; st,lp = S[st,l~;S[st,lp 
6 S[- ei]p = TAU A exit ei 

7 S[dcs begin st hnd&]p = def,,,  D[dcs]p in X p’.trap H[hnd]p’ in S[st]p’ 
8 S[&(ci,e)]p = def,, E[e]p in Xv.SEND(ci,v) A skip 
9 S[~(ci,x)]p = choose,,Xv.REC(ci,v) A WRITE( p(x),v) A skip 

10 S[create task  bl]p = CREAT(S[bl]p) A skip 
11  S[st, st,]p = S[st,lp + S[st,lp 
12 E[c]p = TAU A return,,  C[c] 
13 E[bop(e,,e,)]p = def,, E[e,]p in Xv,.def,,, E[e,]p in Xv,.TAU A return,  B[bop](v,,v,) 
14 E[x]p = choose,,,  Xv.READ( p(x),v) A return”,, v 

15 D[A]p = return,,, p 

16 D [ s r  x dcslp = choose,, X I.ALLOC( 1) A D[dcs](  p[l/x]) 
17 H[A]p = hnd, 

hnd, = [I ([I  indicates  the  empty  map) 
18 H[- ei @ st hndlp = (H[hnd]p)[S[st]p/ei] 

importantly  in clause 4 note how  fixpoints are handled. The 
actions of the behavior fix Xbh. . . . are defined in the 
algebraic specification BH-SYST (subspecification of SYST) 
in a way corresponding to  the usual rewriting rule  for the 
operational  semantics  of  fixpoint  operators (see [ IO,  161). 

Clauses 6, 7, 17, and 18 explain how exceptions are 
handled. Thus,  in handling  exceptions our approach is also 
similar to  that of the classical VDM  denotational semantics, 
but now statement values are process (behavior) elements of 
BH. H[hnd]p ’ ,  the  meaning of the handlers part of the 
block, represents  a map  from exception identifiers into 
behaviors [a  term of  sort  map(eid,behavior)  in the 
specification STATE]; trap ... in ... and exit ... are  operators  on 
behaviors. 

Clause 14 makes explicit some hidden  concurrency related 
to  the evaluation  of  a variable. The idea  behind the 
definition  of the  meaning of the expression x as a 
nondeterministic  behavior is that  the  content of the location 
p(x) will depend  on  the  moment when the task within which 
the evaluation of x is performed gets access to  the shared 
store; if vo is the value in p(x) at  that  moment,  then  the 

530 action READ(p(x),v,J  will be performed and  the value vu will 

be returned. Analogously this is so for clauses 9 and 16. 
Clause 12 (and 13) shows  a typical situation: It would be 

as  in the purely sequential case, but in the  concurrent case 
an action is performed,  consisting in evaluating the  constant; 
this  action is internal, i.e., does  not involve  either other 
processes or the shared  store, and hence  it is indicated by 
TAU. Representing that action is not necessary whenever 
the  observational  semantics on SYST only takes  care  of the 
action results and  not of their ordering. On  the  other  hand, 
in clauses 15 and 17 there is no  TAU  action, because A just 
means absence of, respectively, declarative part  and handlers 
part. 

Clauses 8, 9, IO, and 1 1 are  the usual clauses for 
concurrent statements; the  meaning of the behavior actions 
SEND,  REC, CREAT is given by the definition  of the 
synchronization, parallelism, and  monitoring steps of SYST 
(see the subsection on  the  formal definition of SYST). 

The consistency of denotational clauses can be checked  in 
two steps: first, by proving that  the  semantic  functions  are 
total on statically correct  programs; i.e., they associate with 
every correct CL program  a term on the signature  of the 
specification STATE; second, by showing that all the  terms 
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associated with such  programs  have  a  defined interpretation 
in the  concurrent algebra  CALG. 

Proposition 3 For every correct pr E PROG 

P[pr] E { s I s term of  sort  state  built on Sig(STATE) ) and 

CALG E D(Pbr]). 

Proof By analogous  properties of the  semantic  functions S, 
E, D, H, C, B proved by induction  on  the syntactic structure 
of CL. 0 

Here we show by an example how our definition works. 
Let 1 be  an  element of CONST  and plus be an  element of 

BOP, whose intuitive  meanings are clear. In what follows we 
report the  semantics of the  CL  statement x := plussx,!): 

S[x := plus(x,!)]p = 

def,,, E[plus(x,!)lp 

in Xv. WRITE(p(x),v) A skip = (*) 

i) E[Mx,!) lp = defy,, Eblp 

in Xv,. def,,, E[!]p 

in Xv,.TAU A 

returnva, B[plusl(v,,v,) 

ii) E[x]p = choose,,, Xv.READ(p(x),v) A returnva, v 

iii) E[!]p = TAU A return,,, 1 

From i), ii), and iii) we have 

(*) = def,,,, (def,,,(choose,,, Xv.READ(p(x),v) A 

return,,, v) 

in Xv,. def,,,(TAU A return,,,,l) 

in Xv,.TAU A return,,, v,+v,) 

in Xv. WRITE(p(x),v) A skip. 

By the properties of the SYST constructs listed at  the  end of 
the previous  section, we can  reduce the above  behavior to a 
simpler  form; then 

S[x := plus(x,!)]p = 

choose,,, X v. READ(p(x),v) A TAU A TAU A 

WRITE(p(x),v+l) A skip. 

Conclusion 
We have  shown how the  denotational  approach  to semantics 
using a  direct  (VDM-like) style can be extended to  handle 
concurrent languages. Together with demonstrating  this 
possibility, there  are  some  other  major novelties in our 
approach, namely the possibility of keeping an applicative 
style (denotational clauses) in  an overall algebraic setting; the 

specification of concurrent processes as  abstract data types; 
and finally the use of  a highly modular  and parameterized 
schema  for expressing the  semantics of concurrent systems. 

There  are  some  points we would like to emphasize, 
perhaps once more. 

It should be clear first of all that  the  approach we have 
shown  here on a  toy  example  language can  be applied to 
languages of any scale (and  indeed it has been applied to 
giving the  dynamic  semantics of full Ada). 

apparatus consisting  of the language of behaviors and of 
their parallel composition can be fixed once (see especially 
[9] on this  point). Thus we can  obtain a  metalanguage  for 
defining  semantics, and if  we adopt  this metalanguage, for 
example, the  semantics of CL becomes  remarkably concise, 
reducing to  denotational clauses. Clearly, in order  to use 
with confidence  such  a  metalanguage, more work  has to be 
done  to reach a  kind of standardization, endowed with a set 
of derived  properties of its  operators,  such as those  presented 
in the section on  the  intermediate language, and  some work 
is going on in that direction (see, e.g., [9]). 

correctness of the definition, if the scale of the language is 
rather large. To  this  end a system has  been  developed [ 171 
which, starting  from the  denotational clauses, translates  a 
program into  the  intermediate language and  then  can give 
the transitions of a  state  of  a concurrent system specified in 
the SMoLCS style. This system is the  analog for concurrent 
languages of  a  typical  rapid  prototyping interpreter for 
sequential languages. 

Finally, we would like to  mention  that  our  approach 
permits  proofs  of  interesting  properties  of semantic 
specifications, using properties  such  as  those of behaviors 
presented  in the section on  the  intermediate language. 
Indeed we can  prove (see for an abstract  of the results [23]) 
that  the direct semantics style shown  here and  the 
continuation style used in [7] are equivalent  in  a very deep 
sense, since, for  example, the  two behaviors  corresponding in 
the two styles to a statement  are strongly equivalent in  the 
sense we have seen.  Moreover,  it will be shown  in  a 
forthcoming  paper that  our semantics  reduces to classical 
functional  semantics on  the purely sequential  subset of a 
concurrent language; because of the result on  the 
equivalence  of  direct and  continuation semantics,  this result 
applies to both styles. 

A  most important  point  to bear in  mind is that  the overall 

Moreover, we need automatic tools  for  ensuring 

Appendix:  Basic  notions  on partial abstract data 
tY Pes 
We give here a rather informal  presentation of the key 
concepts,  mainly  in order  to  introduce  the  notational 
conventions for  a  reader not  acquainted with algebraic 
specifications; a  reader  interested  in  formal  aspects  can refer 
to [22]. The basic idea is that a data type is not defined 
directly in  a  constructive way, but  some properties are 53 1 
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indicated that  the related operations  must satisfy. The 
advantage of that  approach is that we obtain  an abstract 
description  of  a data type (a family of domains together with 
a set of functions which have arguments  and results in these 
domains), i.e., what is called an abstract data type. Assume, 
for example, that we want to specify formally the well- 
known data  type “stack.”  A  concrete way of defining that 
data type is to see it,  for  example,  as composed by the  three 
sets 

ELEM (the set of the  elements which are  put  in  the stack) 
STACK = ELEM* (strings of elements) 
BOOL = {true, false} 

and by the  functions 

Empty: + STACK Pop: STACK + STACK 
Empty = A Pop(e&s) = s 

0 Isempty: STACK + BOOL Top:  STACK + ELEM 
Isempty(A) = true Top(e&s) =e 
Isempty(e&s) = false 

Push(e,s) = e&s 
0 Push: ELEM X STACK + STACK 

where & and A indicate, respectively, string concatenation 
and  empty string. 

and Pop(A) are  not defined. 

seems  in some sense too concrete in  the sense that a 
particular  model  of the stack is chosen. 

The following is a rather  standard way of giving an 
“abstract”  definition of stack, with a minor modification (the 
axioms with D are explained  later)  since  here we use a 
partial algebra approach: 

STACK = elem,  stack, bool 
opns True, False: + bool 

Empty: + stack 
Pop:  stack + stack 
Push:  elem X stack + stack 
Pop:  stack + elem 
Isempty:  stack + bool 

axioms  D(Empty) D(Push(e,s)) 
Top(Push(e,s)) = e 
Pop(Push(e,s)) = s 
Isempty(A) = True 
Isempty(Push(e,s)) = False 
“axioms expressing properties  of 

booleans and stack  elements” 

Note  that  Top  and  Pop  are partial functions since Top(A) 

That definition of stack corresponds to  our  intuition  but 

The above  definition is an example of algebraic specijication, 
i.e., a  couple  consisting of a signature and a set of axioms. 

A signature is a  couple  consisting of a set of symbols 
532 called sorts and a set of symbols called operations. Each 

operation has  an associated functionality (a  couple consisting 
of a  string  of  sorts and a  sort) and we write 
Op: sl X . . . X sn + s to say that  Op has  functionality 
( S I  . . . sn,s). 

For each signature we can consider the set of the 
expressions, usually called terms over the signature, 
inductively  constructed by the operations, as follows: 

i) For each zero-ary operation Op: + s, Op is a term of sort 

ii) For each  Op: sl X . . . X sn + s, if t ,  . . . t ,  are  terms of 
sort, respectively, sl . . . sn,  then Op(t,,. . ., t,) is a term 
of sort s. 

s; 

The intuitive meaning is that each term of  sort s is a 
syntactic  representation  for an  element  in  the set of values 
associated with s; for example, the  term Pop(Push(e,Empty)) 
represents an  element in the set associated with the sort 
stack,  assuming that e is a term of  sort element. 

An axiom, as  shown  in the STACK specification, is a 
positive conditional formula between terms  containing 
variables; i.e., its general form is 

A e, 3 e, 
I 

where e, is either D(t,) A ti = tl‘ or D(t,) and e is either D(t) or 
t = t’ and t,t’,ti,t,’ are  terms. 

It should be clear that, because of the axioms,  in general 
an  element  can be represented by many different terms; for 
example, Pop(Push(e,Empty))  and  Empty represent the  same 
element. 

More precisely, we can consider  equivalent all the  terms 
t , ,  t, whose equality can  be proved using the  axioms  and  the 
first-order logic; we write STACK k t ,  = t, to indicate that 
t , ,   t ,  can be proved equal  in  STACK. 

For a given signature, fixing the set associated with each 
sort and interpreting  each operation  as a function (with the 
suitable domain  and  codomain accordingly with the 
functionality) gives a  concrete data  type (family of sets and 
functions) called an algebra on  the signature. The value of  a 
term  obtained by assigning values to  the variables and 
interpreting  each operation as the corresponding function in 
the algebra is called the interpretation of the  term  in  the 
algebra. We say that a data type is a model of the given 
algebraic specification iff with the given interpretation all the 
axioms hold; usually we write ALG I= ax to indicate that  the 
axiom ax holds in ALG. 

As  we have  seen in  the example  of the stack, the 
interpretation of an  operation  can be a partial function; i.e., 
for some values of the  arguments  the result can be 
undefined, e.g., the  interpretation of Pop is not defined on 
the  empty stack. 

Hence,  in general, a  model of a specification is  a partial 
data type (or a partial algebra), i.e., a model where the 
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interpretation of an operation can be a  partial function. 
Partiality has some  important consequences: 

The  interpretation of the equality  symbol = has to be 
defined with some care: In  our  approach ti  = t, is satisfied 
in  a  model  for some assignment  of values to  the variables 
iff the  interpretations of t i  and t, are either  both defined 
and equal or both undefined. 
We can speak  of definedness of terms for some values of 
the variables in  a  model, but  note  that  it is meaningless to 
speak of undefined values in  a  model. Hence  an 
assignment  of values to  the variables can only be an 
assignment  of  defined values, and moreover the 
interpretation  of the operations is strict; i.e., the 
interpretation  of  a term Op(t,,. . .,t,) is undefined 
whenever the  interpretation of t ,  for some i is undefined. 
It is useful to specify the  terms  that we want to be defined 
in every model; that corresponds to requiring that  some 
functions be defined  in  correspondence with certain 
argument values. Hence we use an overloaded  symbol  D 
to indicate the definedness predicates on terms, one for 
each  sort;  D  is  total in every model. 

For example,  in the specification of stack we have 
D(Empty) and D(Push(e,s)) to express that in every model 
Push is a  total  operation and  Empty is defined. 

specification we can choose  a  particular  model as “the data 
type defined by  the algebraic  speclfication.” A  choice which 
is usually made is the model  in which only the 
identifications which are forced by the  axioms hold (i.e., the 
values of  two terms  are equal  only if the two terms  can be 
proved equal)  and  in which a term is defined iff its 
definedness can  be proved from  the axioms. That model is 
called the initial model. For algebraic specifications of 
transition  systems also a different kind of model  may be 
chosen,  as is discussed at  the  end of the subsection on  the 
formal  definition  of the  intermediate language. 

In general, among all the models  of an algebraic 
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