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Direct semantics
of concurrent
languages

in the SMoLCS
approach

by Egidio Astesiano
Gianna Reggio

For years providing syntax-directed methods for
the formal definition of concurrent languages
has proved to be a challenging task. Problems
are even more difficult if a language has some
of the typical Ada features, such as strong
interference between sequential and concurrent
aspects, parameterized semantics, complex
data structure, and finally an extremely large
size. We have developed an approach, the
SMoLCS approach, which extends the
denotational method to handie concurrent
languages and also provides a solution to the
above problems. Indeed, our method has been
adopted for the formal definition of full Ada
within the related EEC project. Here we illustrate
the basic principles of the approach, following
the so-called direct semantics style used for
Ada with the help of a toy language as a running
example.

1. Motivation and content

Considerable effort on the formal modeling of concurrency
has now given us the possibility of devising nice semantics,
at least for simple, well-structured concurrent languages.
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However, languages such as Ada® pose a number of
problems which cannot be solved just by relying on a simple
model for concurrency. Indeed, its large size requires
modular specification techniques; the strong interference
between concurrent and sequential aspects, hidden by a
syntax which is mainly aimed at static checks, must be
resolved by defining a precise and possibly abstract
underlying concurrent model and then by connecting the
syntax to that model; moreover, the overall semantics of a
program or of a fragment of it not only can vary depending
on some parameters, which can be complex specifications,
but is not at all fixed under any commonly accepted
meaning (it is fixed in a rather sophisticated sense). Most of
the problems have been brought to light and confirmed in
practice by some early attempts to formalize the semantics
of Ada (see [1] for problems and references).

Within this context, and motivated by a concrete large
project (see [1-3]), the European Community Project on the
Draft Formal Definition of Ada, we have developed a formal
method for solving the problems mentioned above. For a
long time it has been recognized that syntax-directed (or
compositional) semantics is a first step toward modular
definition; moreover, the denotational style advocated by
Strachey and Scott (see [4, 5]), and also supported by the
VDM work [6], has now become quite well understood and
accepted. Hence, we have tried to extend the denotational
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approach from sequential to concurrent languages. In a first
attempt we used the so-called continuation style; a short
outline of this approach is given in [7]. Then we succeeded
in extending our approach to the so-called direct-style
semantics, which was then used in the project for the formal
definition of full Ada.

In this paper we present our approach to direct
denotational semantics for concurrent languages, which has
now become known as the SMoLCS approach. There are a
few basic ideas underlying our approach, which we now
briefly outline.

Our method involves two steps. First, a syntax-directed
translation is performed, producing an intermediate
language which is suitable for representing processes and
their concurrent interactions. In this step the interference
between concurrent and sequential aspects is resolved by
making explicit what is truly a sequential activity and what
is concurrent. Then the semantics of the intermediate
language is provided.

One of the major novelties of SMoL.CS is that we have the
possibility of defining the intermediate language and its
semantics following a parameterized schema, which can
accommodate user-defined language constructs and their
semantics. Indeed, the specification of the intermediate
language and of its semantics is just the specification,
following a predefined schema, of a concurrent system
corresponding to the underlying concurrent structure of the
source language. This is a most important feature, because it
allows us to keep, as high as permitted by the language, the
level of the primitives for handling concurrency, without
translating them into a low-level fixed language.

A second important novelty consists in considering a
concurrent process or system to be just a data type defined
by a particular abstract algebraic specification called an
algebraic transition system. The advantage of this technique
is that it makes possible the handling of data types and
processes in a uniform framework, using classical methods
for guaranteeing abstraction, modularity, and
parameterization,

Moreover, we can adopt some well-known techniques for
defining different kinds of semantics and even parameterized
semantics; this is an essential capability for handling
languages such as Ada, where the semantics is not yet fixed
and is parameterized on various data types. We outline in
the paper why it is significant and how it is possible to define
within a coherent schema various semantics ranging from an
initial algebraic semantics to a variety of semantics
depending on the observations we want to make of a system.

Combining the chosen semantics of the intermediate
language with the first step (formally this corresponds to the
composition of two homomorphisms) results in an overall
denotational semantics for the source language.

The purpose of this paper is twofold: to provide a readable
introduction to the basic ideas of a compositional and
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denotational treatment of concurrent languages and to
outline the overall technical structure of the SMoLCS
approach using a direct semantics style. Hence the paper has
two parts, the first more introductory and the second more
technical.

For illustrating the technical treatment we use a toy
language CL as a running example. We emphasize that CL
has been chosen following the usual paradigm for illustrating
a methodology: It contains all and only the essential
constructs for explaining most of the relevant technical
features. Hence, CL should not be considered more than a
paradigm.

There is unfortunately one important capability of our
method which cannot be exemplified by CL, just because of
its simplicity. Our approach is highly modular and
parameterized, so that it can handle languages and systems
of any complexity, with modules and even with parts which
are not completely specified. For these aspects we can only
illustrate the technical approach, showing its application to
CL, without pretending that the example shows their
importance. However, we are confident that the reader will
understand from our presentation the generality of the
approach. Nonetheless, if there is any doubt, it should be
enough to recall that the same methodology has been used
for the full formal definition of Ada [8], which is by far the
largest formal spectfication of a language ever written and
the first to be proved adequate to handle such a complex
language as Ada.

The plan of the paper is the following. In the second
section we recall, to help the reader, the main features of
denotational semantics for the sequential case. In the third
we discuss informally the problems posed by the presence of
concurrent constructs, we present the main concepts for
modeling processes, and we introduce, rather informally, the
basic ideas of our approach. In the fourth section we present
both an informal introduction and a completely formal
specification of the intermediate language using the
techniques of partial algebraic specifications. Finally, in the
fifth section the denotational semantics of the example
language is given. In an appendix we collect the basic
terminology for understanding the algebraic aspects. The
importance attached to the intermediate language is justified
by the fact that it differs only in size from the one used for
the formal definition of full Ada, and hence it can be taken
as a basis for the definition of a wide range of concurrent
systems and languages. This is a point emphasized in a
further work [9], where we have proposed a language (with
its semantics) based on an extension of the intermediate
language proposed here.

2. Denotational semantics for sequential
languages

e The example language CL

In this subsection we introduce the simple concurrent 513
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programming language CL., which is used as an example for
describing our methodology.
The abstract syntax of CL is given in the usual BNF style:

[y

send(CHID,EXP)| rec(CHID,VID})|
create task BLOCK |STAT or STAT

1 PROG ::= program BLOCK {|| BLOCK}

2 BLOCK := DECS begin STAT HANDLERS end
3 DECS ::= A|var VID DECS

4 HANDLERS ::= A|when EID do STAT HANDLERS
5 EXP = CONST | VID | BOP(EXP,EXP)

6 STAT ::= VID := EXP|{STAT; STAT|BLOCK|
7 if EXP then STAT else STAT fi|

8 while EXP do STAT od|

9 raise EID|

0

1

—

Identifiers of variables (VID), exceptions (EID), channels
(CHID), symbols of constants (CONST), and binary
operators (BOP) are nonterminal symbols which are not
further specified.

CL is a block-structured language (2) and blocks can be
nested (6); moreover, it has the usual sequential statements
(6, 7, 8). To simplify the paper we have not completely
defined CL expressions; note, however, that they include
Boolean expressions,

CL has an (Ada-like) exception mechanism (2, 4, 9); every
block has a handlers part, and when an exception ei is raised
in a block by a raise statement, the execution of the block is
abandoned and, if for some statement s¢, when e/ do st
appears in the handlers part of that block, then the statement
st is executed; otherwise, the exception ei is propagated
outside the block.

A CL program consists of a set of tasks in parallel, and
tasks are just blocks (1); moreover, in CL there is the
possibility of creating new tasks by means of the statement
create task (11); all tasks are executed in parallel, and there is
no constraint on the duration of the execution of their
statements.

The variables declared in a block (2) are shared by the
block itself and by the tasks created within the block.
Clearly, two tasks cannot update the same variable
simultaneously.

Tasks can also exchange messages through channels, by a
handshaking-like mechanism; i.e., a task can execute a
statement rec(ci,x) only if some other task can execute
simultaneously a statement send(ci,e) and vice versa; as a
result of the execution of the two statements, the value of the
expression e will be received by the first task and assigned to
the variable x.

Moreover, there is also a statement for nondeterministic
choice; a task executing sz, or sz, could choose
nondeterministically to execute either the statement st,

(if possible) or the statement sz, (if possible); the choice in
CL corresponds neither to global nondeterminism nor to
local nondeterminism; it depends on the form of the
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statements s¢, and s, [e.g., it is local in the case of
create task b/, or create task bl,; it is global in the case of
rec(ci,,x) or rec(ciyx)].

Note that in CL there are no mechanisms for declaring
exceptions and channel identifiers; only variable identifiers
must be declared before being used.

If we drop the concurrent structure from CL (the
statements of lines 10 and 11 and the construct ||}, we obtain
a classical sequential language, called the purely sequential
subset of CL, with the usual well-known semantics. But note
that, in general, CL statements such as assignment,
conditional, and while are not sequential statements because
now, due to the presence of shared variables, their
executions require concurrent interactions with other tasks.
For example, given two shared variables x and y, the
execution of the statement x := 0 could be delayed forever
because other tasks continue updating x forever (CL does
not require fairness in getting access to the shared variables);
moreover, the value assigned to x by the execution of x :=y
depends on the moment when the statement is executed,
because in the meantime other tasks could have updated y.

o Principles of denotational semantics

Consider a sequential language consisting of declarations,
expressions, and statements as the purely sequential subset of
CL. Then the denotational semantics consists in associating

a denoted value (the meaning) with each declaration,
expression, and statement. This is done by defining three
functions, called semantic functions:

D: DECS — DEC-VAL
E: EXP — EXP-VAL
S: STAT — STAT-VAL

where DECS, EXP, and STAT are the sets of syntactic
objects representing declarations, expressions, and
statements, called syntactic domains, and DEC-VAL,
EXP-VAL, and STAT-VAL are the corresponding sets of
denoted values, called semantic domains.

Now, in order to define, in accordance with our intended
informal meaning, the semantic domains, we need some
auxiliary structures, called auxiliary domains. For standard
denotational semantics these are the domains ENV and
STORE. ENV is the domain of environments, which are
(partial) functions from identifiers to the values denoted by
such identifiers (DEN):

ENV = (ID — DEN).

STORE is the domain of stores (or memori¢s), which are
functions from locations (LOC) to storable values (VAL):

STORE = (LOC — VAL).

The value denoted by a CL variable identifier is a location in
the store.

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987




Then it is natural to define, at least for a simple language
(e.g., the purely sequential subset of CL without the
exception mechanism),

DEC-VAL = (ENV — ENYV)
EXP-VAL = ((ENV X STORE) — VAL)
STAT-VAL = ((ENV X STORE) — STORE).

Indeed, for example, a statement, given an environment and
a store, may produce a change in the store, hence another
store (consider, e.g., an assignment).

It is convenient and has become common to write, for
example, (ENV — (STORE — STORE)) instead of
((ENV X STORE) — STORE); this use corresponds to the
so-called “currying” technique, which reduces functions of
many arguments to a nested chain of functions of one
argument. In the example above, the value of a statement
will be a function which, given an environment, produces
another function, which, given a store, produces a store.

Thus, for example, the value of an assignment can be
expressed by the clause

i) S[x := e]pa = o[E[e]pa/p(x)]

which says that the value of the statement x := ¢, given an
environment p and a store ¢, 1S a new store obtained from ¢
by updating the location p(x) with the value of e, which in
turn is obtained as the result of the function E applied to e,
p, and o, i.e., the value of e with respect to the environment
p and the store o.

Here we adopt the usual notation: Square parentheses are
used, instead of round ones, around elements of the
syntactic domains, and we do not put parentheses around
curried arguments (for example, S[x := €)oo stands for
((S(x := e))(p)s)) and, given a function f, f[a/b] stands for
Ax. if x=>b then a else f(x) (here and in the following we use
the well-known A-notation for expressing functions: e.g., a
function f: x — X" is indicated by Ax.x’).

Clearly, clause i) can be written equivalently as

it) S[x := €] = Ap,0.0[E[€]pa/o(x)]

which gives explicitly the value of the statement x := e.

Moreover, the semantic functions are defined by
compositionality. Informally, compositionality means that
every well-formed syntactic construct is given a meaning
depending only on the meaning of its subconstructs and on
the meaning of the syntactic operator building that construct
out of its subconstructs. We make precise the idea using
again the assignment statement.

An assignment statement x := ¢ is built using the
assignment operator := and the two subconstructs x, which
is a variable identifier, and e, which is an expression. Then,
giving the semantics of x := ¢ by compositionality amounts
to saying that the meaning of x := e is the result of the
meaning of the operator :=, say M(:=), applied to the

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

meaning of its arguments M(x) and M(e); formally we
should write

iii) S[x = e] = M(:=)M(x),M(e)).

Now M(x) is a function which, given an environment p,
produces the value of the identifier p(x) (i.e., a location), and
M(e) is just a function which, given an environment p and a
store o, gives as result E[¢]po. Formally we can write

iv) M(x) = Ap.p(x), M(e) = Efe] = Ap,0.E[€]po.

Hence, clause i) is equivalent to saying that M(:=) isa
function which, given an element M(x) € (ENV — LOC)
and an element M(e) = E[e] € (ENV X STORE) — VAL),
gives as result a function, specificalty S[x := e], which, given
p and o, has result o[E[e]pa/p(x)] = o[M(e)pa/M(x)p]. In
other words, assuming iv), the clauses ii) and iii) are two
equivalent ways of defining the semantics of assignment by
compositionality.

A last but most important point here is to understand that
the overall set of semantic clauses, defining the functions E,
D, and S, is given by induction on the syntactic structure of
the constructs, or equivalently, that we have one clause for
each syntactic construct, where the meaning of the
subconstructs is given in turn using the same semantic
functions E, D, and S (together with other known functions,
of course).

As another example, consider the clause for the
concatenation of two statements:

Slst,; st,]lpe = S[st,]o(S[st,)po).

That is equivalent to the two following clauses:
M(st; st,) = MY M(st,),M(st,))
M() = Mg.(\p,0.8(p, f(p,0))).

Summarizing, at a rather informal level denotational
semantics consists in defining a denoted value for each well-
formed construct in a compositional way. At a bit more
technical level, a denotational semantics is given by defining,
inductively on the syntactic structure of constructs, a set of
semantic functions, one for each type or sort of construct,
after having defined the appropriate semantic domains.

Until now, we have seen that in simple cases it is possible
to give a nice denotational semantics following a direct style,
i.e., where every construct has a straightforward meaning
which is associated directly with the construct. Problems
arise when defining constructs that change the normal flow
of execution, for example, the exception mechanisms of CL,
subprogram returns, goto’s, and so on. To handle them two
methods have been developed:

¢ Use of continuations by the Oxford school (Strachey and
Wadsworth; see, ¢.g., [4, 5]).
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o Use of an exit-trap mechanism by the VDM school
(Bjgrner and Jones [6]).

In the Oxford style the semantic function for statements
takes another argument, the so-called continuation, which
represents the meaning of what follows a statement and is a
store transformation; i.e., we have

S: STAT — (ENV — (CONT — CONT)),

where CONT = (STORE — STORE). Thus, the meaning of
a statement is given indirectly depending on the context of
what follows it.

The clause for statement concatenation will have the form

Slst,; st,]p0 = S[st,1p(S[st,]00).

The VDM school tries instead to keep a direct style,
changing the meaning of a statement, which clearly cannot
be a store transformation anymore. The basic idea is to have

S: STAT — (ENV — STAT-VAL)

where STAT-VAL = (STORE — (STORE X FOLLOWY)
and FOLLOW = EID U {next}. (EID is the set of the
exception identifiers and next is a special identifier not
belonging to EID.)

If S[st)pc = (¢’, /), then findicates the next point in the
execution flow after the execution of st; specifically, we have
/= next when the execution follows the normal flow and
[= ei when the exception i is raised.

For readability reasons the VDM school has defined some
operators on STAT-VAL:

e exit ¢f corresponding to Ao.{o,ei);
o st-val ; st-val, corresponding to
Nolet (¢’,f ) = st-val (o) in
if /= next then st-val(c’) else (o', f );
e trap emap in st-val, where emap is a map from exception
identifiers into statement values, corresponding to
Aa.let (o', f ) = st-val(s) in
if f€ Dom(emap) then emap( f)o’ else (o', f ).

Now statement concatenation and exceptions can be
handled as follows:

Slst,; st,)p = S[st,1p;S[st,lp

S[raise ef}p = exit ei

Sibegin st when e/, do st, --- when ei, do st, endlp =
trap [ei, — S[s¢,]p,- - - ,el, — S[st,]p] in S[st]p.

Similarly, we can handle the semantics of expressions and
declarations, whenever they have side effects. In order to
show the basic idea, let us briefly illustrate the case of
expressions.
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In the Oxford style the semantics of expressions is handled
by using a class of continuations, specifically the expression
continuations, which represent the meaning of what follows
an expression; formally they are functions which, given a
value (the value of that expression), produce some store
transformation (i.e., a statement continuation)

ECONT = (VAL — CONT)

Consequently, the semantic function for expressions now has
functionality

E: EXP - (ENV - (ECONT — CONTY))
and the clause for the assignment has form
S[x := €)pd = E[e]o(Av,0.0(a[v/p(x)]))

where Av,0.0(c[v/p(x)]) is an expression continuation.
Following the direct semantics style, the meaning of an
expression is an element of (STORE — (STORE X VAL)),
and for readability purposes, some special operators are
defined for handling these expression meanings; let us now
recall some of them.
Let f€ (STORE — (STORE X VAL)),

8E€ (VAL — STAT-VAL):

e def fin g corresponds to
Ao.let (¢',v) = f(o) in (g(M)(c') € STAT-VAL,
e return v, where v € VAL, corresponds to Ao.{a,v).

In this framework we have that the semantic function for
expressions has functionality

E: EXP — (ENV — (STORE — (STORE x VAL)))
and the clause for the assignment has form
S[x := e]p = def E[e]p in Av,0.(a[v/x],next).

The semantic style using continuation is illustrated in
[4, 5] and a semantics of a language in the SMoLCS
approach using continuation is presented in [7]. In the
following we consider only the direct semantics style with
VDM-like combinators, since that is the style used in the
formal definition of Ada.

3. Handling concurrency in a denotational
framework

e Problems

Several problems arise when we try to extend the
denotational approach to concurrent languages. Indeed, the
semantics of a language construct can no longer be a
function representing a state transformation; consider, for
example, the CL statement x:=1 or x:=2; what is its
semantics in the environment p? Perhaps it could be the
nondeterministic function Ae.{c[1/0(x)],6[2/0(x)]}. However,

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987




the semantics of (x:=1 or x:=2) || :=3 must be obtained in
a compositional way from the semantics of the component
tasks; i.¢., we want to have

M((x:=1 or x:=2)|| y:=3) = M(|)(M(x:=1 or x:=2),M(y:=3)).

In the simple case above, a solution can be found: M(]|) is
an operator which composes two functions in the two
possible orders, but there are no solutions for the case of
tk, || tk,, where th, = x:=y; st, and tk, = y:= 1; y:== y+1; st,.
The value of y during the execution of tk, depends on the
part of ¢k, which has been already executed. That means that
the execution of tk, can have several effects on the store
depending on the (unknown) value of y at that time; hence
the semantics of tk, must express this kind of
nondeterminism,

In general it can be easily understood from the kind of
arguments above that we have to model the fact that the
execution of a statement depends on the interaction with an
outside context, i.e., a context which contains no more
“private information” than the store for the sequential case,
but is influenced by the execution of other parts of the
program,. It follows, therefore, that we have to model in
some sense which are the “potential” executions of a
statement (we will speak of capabilities of performing
actions), which will or will not become actual executions
depending on the context.

Another illustrative example is the following. Assume that
st, = rec(ci,x) and st, = send(ci,e). It is clear that in this case
the execution of ¢k, is influenced by the execution of ¢k,
(and conversely) in a stronger way. We can say that tk, has
the capability of performing the action corresponding to the
execution of the rec statement and that this capability
becomes effective only if rk, performs simultaneously the
action corresponding to the execution of the send statement.
But what is a precise formalization of “performing
simultaneously”?

It should be clear that it is rather complicated (and indeed
it has been shown to be impossible) to model all these
aspects of concurrency by using just functions. In the
following subsections we present an approach which can
resolve elegantly these problems and allows us to maintain a
compositional style in modeling concurrent languages. We
need a formal model which can play for concurrency the
role of functions, so that we can assign a denoted value to
each well-formed fragment of a concurrent language.

In our approach, inspired by CCS [10] and SOS [11], this
model is a labeled transition system, which will be in the
following the formal counterpart of an informal or purely
syntactic notion of concurrent process.

o Modeling processes as labeled trees

Labeled transition systems and labeled trees A labeled
transition system is a set of triples (s, f,s); a triple is also
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written s %> s’ and means that the system has the capability

of passing from the state s to the state s’ under an
interaction with the external environment represented by the
label (or flag) /. In the simplest case, when the transition is
purely internal to the system and there is no relationship
with the environment, the label can be dropped or better
represented by a special label, which is usually written TAU
as in CCS.

For example, the capabilities associated with a rec(ci,x)
statement could be represented by a set of labeled transitions
of the form s = ¢/ (one for each v in the set of values
which can be received), which means that the process
representing rec(ci,x) can pass from the state s
[corresponding to the situation immediately before the
execution of rec(ci,x)] to a state s’ (a state in which, for
example, it is recorded that the value v has been received
and must be assigned to the shared variable x) performing an
action of receiving v from the outside on the channel ci;
obviously, in the state s there is one capability for each value
v, and that expresses exactly the fact that v is received from
the outside.

The capability associated with a send(ci,v) statement could
be represented by the labeled transition s SEnpen, s, which
means that the process representing send(ci,v) can pass from
the state s [corresponding to the situation immediately
before the execution of send(ci,v)] to the state s’ performing
the action of sending the value v outside on the channel ci.

Given a transition system, with each state s is associated a
labeled tree, in which we do not care about permutation of
branches, and two equal subtrees with the same root are
considered once (in the following, when speaking of labeled
trees, we will always consider them up to this equivalence).

On labeled trees branching represents nondeterminism. As
a classical example of a nondeterministic process, consider a
memory register which can either be written or read; i.e., it
can either receive a value from outside or send out its
content (see [10]):

Reg(v) = (choose ., ,, IN(u) A Reg(u)) + OUT(v) A Reg(v)

Here we have introduced a simple syntax for expressing
processes: + represents nondeterministic choice, choose .,
means a choice between the elements in VAL, A means
“followed by,” and IN(- - -), OUT(- - -) correspond to the
two capabilities of the register of being, respectively, written
or read. The corresponding tree is in Figure 1.

Note that the definition of Reg(v) is recursive, and hence a
process parameterized on a value such as IN(u) A Reg(u) is
represented by an infinite branching tree, with one branch
for each value.

Composing labeled trees  We need also to model groups of
interacting processes; in these cases we use a particular class
of transition system: concurrent systems.
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Reg (u)

% Labeled tree associated with Reg (v).

psy 4 sy
TAU TAU
Py ¢ sy
TAU TAU
P5; 4 sy
I
1
I
TAU TAU
e bt

A concurrent system is a labeled transition system built
from some component subsystems; each subsystem is in turn
modeled as a labeled transition system.

A state of a concurrent system is modeled as a set of states
corresponding to the subsystems plus some global
information; the transitions are inferred from the transitions
of the component subsystems.

For example, the parallel composition of two processes
p, and p, (which can interact by means of a shared store
and exchanging messages through channels) could be
represented by the following state of concurrent system
¢s = ({ps,,ps,},sh), where ps, and ps, represent the initial
states of the processes p,,p, and the global information part
sh represents the state of the shared store.

Let us assume that ps, SEND, ps,’ and
DS, e ps,’ are two transitions of p, and p,. Starting
from these transitions of the subcomponents, the following
transition of ¢s corresponds to the synchronized exchange of
a message between p, and p,:

COMM(ci)
——s

{(ps,.ps,},sh) ({ps,’.ps,’'}.sh).

Note that the state of the shared store has not been changed
by the message exchange.

To give an example of a transition of the concurrent
system where the global information is changed, let us
consider the case when the process p, has also the capability

WRITE(x.») ” .
ps, —— ps,” (due, for example, to the execution of an
assignment to the shared variable x):
(1PS,.p3,},5hy ~0, ({ps,” ps,).shlv/x])
(here the process p, has not taken part in the action).

Nondeterminism can also come from parallelism, for

example, when a process can perform some actions with at
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least two other processes. Consider a process which has the

ability of receiving a message (e.g., p, above) and there are in

parallel two other processes able to send it (e.g., p, above and
. i SEND(ci,v) ,

P, having the capability ps, Ds,’); clearly, there are

at least two exclusive possible transitions of the system in

that situation. Specifically,

COMM(ci)
_—

(1D$,,D5,DS,},5h) ({ps,’.ps,’ .pss}.sh)

and

COMM(ci) , ,
——— ({ps,’.ps,psy’},sh).

(1ps,,DSpPS3},5h)
Labeled trees and their semantics  Representing processes
or groups of processes in parallel as labeled trees is already a
step toward giving a semantics to concurrency. However, the
difficult problem in semantics is abstraction; i.e., to give a
semantics sufficiently abstract with respect to linguistic
details. In this respect, while labeled trees are much more
abstract than pieces of code, it is nevertheless clear that in
many cases there are different trees with the same semantics.
One of the simplest cases is when we consider processes
corresponding to purely sequential commands; their models
as labeled trees are unary trees with all the arcs labeled by
the symbol of internal action TAU, as in Figure 2.

Then, if we are interested in an input-output semantics,
we would say that the two trees (here sequences) are
equivalent iff ps; and ps,” are input-equivalent and ps. and
ps;’ are output-equivalent, irrespective of differences in
other aspects, such as the intermediate states.
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From this simple example we can understand that a
semantics 1s then given by an appropriate equivalence on
labeled trees. The case we have just discussed informally
shows that the functional semantics for sequential languages
can be obtained as a special case of semantics for concurrent
languages, just by considering two trees (now just unary trees
like those seen in Figure 2) semantically equal whenever they
are input-output equivalent.

Thus, it is easily understood that other interesting
equivalences on trees can arise, depending in general on
what we want to observe of a system. For example, two well-
known equivalences are strong equivalence (see [10]) and
stream (trace) equivalence. For the first, we consider two
trees equivalent iff they are the same tree by forgetting the
states (always modulo the equivalence defined in the
beginning). For the second, two trees are equivalent iff the
two corresponding sets of label sequences starting from the
two roots are the same.

o General structure of SMoLCS

The principles and basic ideas sketched above for handling
concurrency in a compositional way are formally expressed
within the SMoLCS methodology, whose overall structure is
now outlined.

SMOoLCS is an integrated methodology for the
specification of concurrent systems and languages developed
mainly at the University of Genoa (Department of
Mathematics) by the authors (see [7, 12, 13]), and relying for
the algebraic setting on cooperation with M. Wirsing
(Passau-Fakultit fiir Informatik) (see [14, 15]). The typical
fields of application of SMoLCS are large systems, multilevel
architectures built from systems with different granularity,
and complex concurrent languages with modules and
interference between sequential and concurrent features.

SMOoLCS consists of four parts: specification of concurrent
systems, semantics of concurrent languages, metalanguage,
and 1ools. Its main features are the following.

Specification of concurrent systems A concurrent system is
a labeled transition system built from some component
subsystems; each subsystem is in turn modeled as a labeled
transition system.

A state of a concurrent system is modeled as a set of states
corresponding to the subsystems plus some global
information; the transitions are inferred from the transitions
of the subsystems in three steps—synchronization,
parallelism, and monitoring:

o Synchronization defines the transitions representing
synchronized actions of sets of subsystems and their effects
on global information.

o Parallelism defines the transitions representing admissible
parallel executions of sets of synchronized actions and the
compound transformations of the global information
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(mutual exclusion problems, for example, are handled
here).

e Monitoring defines the transitions of the overall system
respecting some abstract global constraints (such as
interleaving, free parallelism, priorities, etc.).

Now we can explain what SMoLCS means: SMoLCS
stands for Structured Monitored Linear Concurrent Systems;
linear means that the actions of a SMoLCS concurrent
system consist in performing in parallel groups of actions of
the component subsystems.

This SMoLCS schema is expressed in an algebraic way so
that the transition system corresponding to the component
subsystems, the global information, and the whole
concurrent system are abstract data types, and also the three
steps are specified by giving appropriate abstract data types.
Moreover, the overall SMoLCS schema is formalized as a
parameterized abstract data type, where the parameters
define the systems to be composed and their interactions.
Thus every SMoLCS definition of a specific system will be
an instantiation of that parameterized specification.

Clearly, since a concurrent system is the specification of a
labeled transition system, it can be taken as a basic transition
system for another SMoLCS specification; that means that
the SMoLCS construction can be iterated. Moreover, it is
possible to give a SMoLCS schema corresponding to an
inductive definition.

Since a SMoLCS specification is the specification of an
abstract data type, we can consider, as usual, some well-
known classes of semantics, which in the case of concurrent
systems have a special meaning. For example, we can
consider an initial algebra semantics, from which an
operational semantics can easily be derived. Moreover, the
SMoLCS approach supports the definition of an
observational semantics via a parameterized abstract data
type specification, where the parameters correspond to a
formalization of the observations. Every instantiation of
such a schema admits a terminal model, the concurrent
algebra, in which two states of the concurrent system are
equivalent if and only if they satisfy the same observations;
moreover, every subpart of the state gets an observational
semantics by closure with respect to state contexts (see [15]
for foundations). The above schema permits us to formalize
observationally various semantics, such as input/output,
strong equivalence, classes of bisimulation equivalences (see
[16]), and stream semantics.

Semantics of concurrent languages The SMoLCS
methodology is based on a two-step approach.

Essentially the first step connects the abstract syntax of the
source language to an underlying model for concurrency,
formalized in a language suitable for describing processes
and their mutual interactions in a concurrent system. This is

done by a set of denotational clauses, where in a typical 519
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denotational style a term in an intermediate language is
associated with each well-formed construct of the source
language. For example, a function such as

P: PROG — STATE

will associate with a program a term representing a state of a
concurrent system corresponding to the executions of
programs.

A function such as

S : STAT — (ENV — PROC)

will associate with a statement, given an environment, a
term representing a process, i.€., a state of a transition
system corresponding to the activity of the process to which
the statement belongs. The states of the system
corresponding to the processes (the subcomponents of the
concurrent system mentioned before) are given as a part of
an algebraic specification which formalizes a labeled
transition system. Declarations and expressions are handled
analogously.

Altogether the denotational clauses can be seen as
defining, inductively on the structure of the abstract syntax,
a syntax-directed translation into an intermediate language
for representing processes and concurrent systems.

The semantics of the intermediate language is given,
following the SMoLCS technique for the specification of
concurrent systems, by the algebraic specification of a
concurrent algebra (the second step), representing a
concurrent system modeling program executions. As we
have seen before, the specification of the concurrent algebra
consists essentially in

e The specification of an abstract data type formalizing a
concurrent system as a labeled transition system.

e An observational semantics associated with that abstract
data type.

Thus the terms of the intermediate language, obtained by the
denotational clauses in the first step, can be interpreted in
the concurrent algebra. In this way the denotational clauses
define a homomorphism from the algebra of the abstract
syntax into a semantic algebra, some carriers of which are
the carriers of the corresponding sorts in the concurrent
algebra.

Metalanguage The metalanguage consists of two kernels,
one applicative and one algebraic, with a simple semantics
consisting of a simple connection between the semantics of
the two kernels, which are given following classical methods.
Actually, with SMoLCS is associated a metalanguage
schema, which has to be filled depending on the SMoLCS
parameters. An example of such metalanguages is the
metalanguage M used in the formal definition of Ada [8].
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Tools  So far a specific rapid prototyping tool has been
realized for SMoLCS ([17]) which is an extension of the
RAP system [18], specially tailored to the structure of
SMOoLCS. It consists of a concurrent symbolic interpreter,
which can derive transitions for a specified concurrent
system, and of an interpreter for denotational clauses.

4. The intermediate language

As we have outlined, in our approach the definition of the
semantics of a language consists of a set of denotational
clauses, which can be seen as a translation into an
intermediate language.

In this section we give both an informal description and a
formal definition of the intermediate language called SYST,
which is used in the following section for defining the
semantics of concurrent languages following a direct style.
The emphasis we put on SYST is justified by the fact that it
can be used for defining the semantics of languages of any
complexity, just by specifying some parameters in more
detail. For example, in essence it is the intermediate
language used for the definition of Ada.

o Introducing the intermediate language

We first introduce the syntax of the intermediate language,
with some informal comments on its semantics, to prepare
the reader to understand the full formal specification given
later.

The concepts needed for understanding this section have
been given in Section 3.

The intermediate language is designed for representing
concurrent systems; thus SYST describes the states of a
concurrent transition system indicated by SYST. A state of a
concurrent system is described by giving the states of its
subcomponent processes and its global information part;
thus, first we give the language constructs for expressing the
global information parts and the process states and then the
construct for composing them into states of the concurrent
systems. The states of the subcomponent processes of SYST
are called behaviors and are represented by elements of type
behavior.

The syntax of the operators is as follows:

Op: elem, X --- X elem, — elem

which says that the operator Op, given the objectso, --- o
of type elem, - - - elem, respectively, returns an object of
type elem, represented by the expression Op(o,, - - -, 0,).

n

Global information

In the case of SYST the global information corresponds to a
store shared between the subcomponent processes; its states
(elements of type store) are represented as finite mappings of
locations into values. Here we do not give a complete
definition of the values (elements of type val); note only that
they include Boolean values.

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987




e True, False: — val

are the operators for expressing truth values.

Also, the locations of the shared store (elements of type
loc) are not further specified.
The operators for expressing store states are as follows:

o[k — store
This represents the empty store, i.e., the map with empty
domain.

o [J(Ch): store X loc
Given a store state s# and a location /, sh(/) represents the
content of the location / in sh, i.e., the value associated
with / by the map sh.

o OJ[00/0J]: store X val X loc —s store
Given a store state s/, a value v, and a location /, sh[v//]
represents the store state in which the content of / is v and
the content of a location /’#/ is the same as in sh.

e Dom: store — set(loc)

Given a store state sh, Dom(s/) represents the set of the
locations used in s, i.e., the domain of the map sh.

— val

Behaviors

First we give the operators for expressing the atomic actions

of the component processes of SYST (elements of type act).
Processes can perform internal actions, i.e., actions which

do not require interactions either with other processes or

with the shared store; these actions are represented by

Al) TAU: — act.

Processes can allocate new cells of the shared store:
A2) ALLOC: loc — act.

The action ALLOC(/) can be performed only if the location /
is still unused in the actual state of the store.

Processes can write and read the contents of the cells of
the shared store:

A3) WRITE, READ: loc x val — act.

Clearly, a cell can be written or read only if it has been
previously allocated, and an action READ(/,v) can be
performed only if the actual content of the cell individuated
by the location / is equal to v.

Processes can exchange messages (values) through
channels (individuated by elements of type chid):

A4) SEND, REC: chid X val — act.

This kind of communication 1s handshaking; thus, a process
can perform an action SEND(c/,v) only together with
another process which performs REC(ci,v) and vice versa.

A process can create some new process:
A5) CREAT: behavior — act

After a process p has performed an action CREAT(b#), the
process individuated by bh will perform its actions in parallel
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with p and with the other processes which were in parallel

with p.
Then we list the operators for expressing behaviors:
BO) skip: — behavior

skip represents the null process, i.¢., the process unable to
perform any action.

B1) O A [ act X behavior — behavior

a A bh represents the process which performs the action a
and then behaves as specified by bh.

The A combinator is the basic tool for expressing the
activity of a process as a sequence of atomic actions; it
corresponds to the CCS dot.

In what follows, given a type arg, funct(arg,behavior)
indicates the type of the functions from arg into behaviors,
and we have the following operators:

F1) AO.0: arg-var X behavior — funct(arg,behavior)
(abstraction)

The elements of type arg-var represent in some way the
“variables of type arg.” There is also an operator which
embeds these “variables” into the elements of type arg

F2) Arg-Var: arg-var — arg

and various operators for expressing the elements of type
arg-var.

For every ¢lement of type arg-var v, Arg-Var(v) is simply
written v; moreover, every string of lowercase letters
corresponds to an element of type arg-var.

F3) OO): funct(arg,behavior) X arg  — behavior
(application)
B2) For arg = val, loc, bool (bool is the type of the Boolean

values)
choose,,, [ funct(arg,behavior) — behavior

choose,, bhfunct represents the process which can
nondeterministically behave as specified by bAfunct(a) for
every element of type arg a.

The importance and relevance of these combinators for
representing subcomponent processes of concurrent systems
should be clear (see, e.g., [10, 16]). Following Milner’s
notations (see, e.g., [16]) we would write these combinators
as ¥ carg Dh(a), where ARG is a set and bA(a) is a behavior
expression parameterized on a (i.e., an expression of type
behavior with a free variable a of type ARG). Here, we have
chosen to consider a combinator choose,, applied to
functions from elements of type arg into behaviors; thus, the
parameterized dependence of bha(a) on a is formally
expressed by means of an element of type
funct(arg,behavior); hence ¥ . ,rg O#{a) will be written
choose, \a.bA(a). Our nondeterministic choice is neither
local nor global; that depends on the nature of the

alternatives of the choice. For example, 521
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o If for every element a of type arg, the first-step actions of
bh(a) correspond to interactions with other processes or
the global information, then we have global non-
determinism (e.g., for b4 = choose  A\v.REC(ci,v) A bh,,
if a process can send the value v, along the channel ci,
then bh will choose the alternative REC(ci,v,} A bh,).

If for every element a of type arg, the first-step

actions of bh(a) are all internal actions,

then we have local nondeterminism (e.g.,

if bh = choose ,Av.TAU A SEND(ci,v) A bh,,

then bk can choose one of the alternatives
independently from the external context).

B3) if O] then O else OI:
val X behavior X behavior — behavior

The usual conditional operator: if bv then bh, else bh, is
equal to bh, when bv is equal to True and it is equal to bh,
when bv is equal to False.

In what follows we write bh, + bh, instead of
choose,_, A b. if b then bh, else bh, (see subsection on the
construct properties for the + properties).
B4) fix O funct(behavior,behavior) — behavior
fix bhfunct represents a process whose activity is the same as
bhfunct(fix bhfunct). This operator allows one to represent
processes with nonterminating activities. For example, fix
AX. a A x represents the process which goes on forever
performing the action 4. It is important to note that
the fix operator is total and that the above operational
characterization allows one to define completely the
processes represented by it. For example, fix Ax. x is defined
and represents the process unable to perform any activity,
which is also indicated by stop.

B5) [OJ; 3 behavior X behavior — behavior

Sequential composition of behaviors: The activity of bk ; bh,
consists of the activity of bA, until it terminates, followed by
the activity of bh,, if bh, has terminated correctly (i.e., in the
state represented by skip). skip is a left identity for ;, while
stop is a kind of zero for ; (stop ; bh is a behavior unable to
perform any activity).

B6) trap OJ in O0: map(eid,behavior) — behavior

B7) exit Ceid — behavior
where map(eid,behavior) is the type of the finite mappings
from the CL exception identifiers into behaviors.

The activity of trap emap in bh consists of the activity of
bh; moreover, if bh terminates performing an exit to an
exception ei and ei belongs to the domain of emap, then the
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activity goes on as specified by emap(ei); otherwise, the exit
is propagated to some outer trap operator.

We also need another kind of sequential composition for
behaviors—more precisely, the possibility of composing a
behavior which terminates its executions returning a value of
a certain type, with another behavior waiting for a value of
the same type. The behaviors returning a value of type arg
are elements of type arg-behavior, while the behaviors
waiting for a value of type arg are represented by functions
from arg into behaviors [elements of type funct(arg,behavior)].

For arg = val, env;

B8) def Oin[X
arg-behavior X funct(arg,behavior) — behavior

B9) return, [Clarg - arg-behavior

The activity of def, b4 in bhfunct consists of the activity of
bh until it terminates, followed by the activity of bhfunct(a)
if bh terminates returning the element of type arg a;
return, _a represents the final state of a process which has
terminated its activity returning a.

The elements of type env = map(vid,loc) (for
environment) are just finite mappings from CL variable
identifiers into locations of the shared storage; for the type
env there are the same operators as for the type store,
introduced in the global information part.

For the elements of type arg-behavior, SYST has the
operators A, choose, if (1 then [J else [J, def, similar to those
for the elements of type behavior.

Parallel operator
The elements of type state represent the states of the
concurrent system SYST:

e (O,0): mset(behavior) X store — state

The elements of type mset(behavior) are finite multisets of
behaviors and we choose to represent a multiset, whose
elements are bh, --- bh,, as bh,|- - -| bh, to suggest that the
processes represented by the various behaviors are in
parallel.

In a state having form (bh, |- - - | bh,,sh) the processes
represented by bk, - - - bh_ can perform their actions freely;
i.e., either they can act (if possible) or can stay lazy. The
only restriction is on the access to the shared store: Two
contemporaneous updatings of the same cell are not allowed.

Semantics of the intermediate language  The semantics of
the intermediate language is given, specifying the abstract
data types labeled transition systems associated with
behaviors and with the concurrent system of behaviors in
parallel, and then defining an observational semantics (i.e., a
semantic equivalence on the labeled trees). All this is made
precise in the following section.
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o Formal definition of the intermediate language

The intermediate language SYST is formally defined by
describing the concurrent system SYST as an abstract data
type and giving it an observational semantics; to do this we
use some classic algebraic techniques. In the appendix we

collect the basic notions needed for understanding the paper.

As pointed out in the introduction, the use of algebraic
techniques has a variety of motivations: First, data types of
any complexity can be specified modularly within the same
abstract framework; second, various kinds of semantics can
be expressed using powerful classical methods (initial and
terminal algebra semantics); third, rapid prototyping tools
can be developed for symbolic execution (indeed, we have a
SMoLCS interpreter).

Overall structure

As said before, the programs of SYST represent the states of
a concurrent labeled transition system SYST; here we define
this system, following the SMoLCS methodology (see
[12-14]), as an abstract data type by an algebraic
specification (see, e.g., [19]). This specification is based on
the specifications STATE with sort state (the states of the
system) and FLAG with sort flag [the flags (labels) of the
system], and has a ternary Boolean operation symbol (the
transition relation)

05 0 state x flag X state — bool,

which is defined by a set of positive conditional axioms
having form

f
cond D s — s’ = True.

In what follows we will write s —> s’ instead of
s —> s’ = True.

Formally this can be presented as the following
specification schema:

enrich STATE + FLAG + BOOL by
opns [ 50 state X flag % state — bool
axioms “axioms defining —”

(BOOL is a specification of truth values).

Above we have used the operator “+,” which builds the
sum of two specifications T+T’. Formally the signature of
T+T’ is the union of the signatures of T and T, and the set
of axioms of T+T’ is the union of the sets of axioms of T
and T'. The other operator

enrich T by sorts S opns O axioms A,

roughly similar to the enrich-operation of CLEAR (see {20]),
can be derived by using “+.” It corresponds to

T + (sorts (S U Sorts(T)) opns (O U Opns(T)) axioms A);

whenever the parts sorts and/or opns and/or axioms are
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lacking, S and/or O and/or A are considered to be equal to
2.

The specification SYST can be seen as an instantiation of
a schema shown elsewhere [12-14]; here for simplicity we
define it directly.

The system SYST is specified in four steps, each one
consisting of the algebraic specification of a labeled
transition system: BH-SYST, S-SYST, P-SYST, and finally
SYST.

BH-SYST (behavior system) is a labeled transition system
where states (terms of sort behavior) and transitions
correspond to the states and the basic capabilities of actions
of the subcomponent processes of SYST.

The states of S-SYST (S stands for synchronization) are
parallel compositions of states of subcomponent processes
(multisets of), plus some global information (states of the
shared store). The transitions are the results of synchronized
cooperation among subcomponent processes. Note that, for
technical convenience, single process transitions are
embedded into the new ones; moreover, creation of a new
process is seen as synchronization of the creating process
with a process represented by seed evolving into the created
one performing an action START(- - -) [seed is a special
behavior, whose only actions have form START(---), and a
state of S-SYST can include any number of seed].

The transitions of P-SYST (P stands for parallelism)
correspond to contemporaneous (parallel) executions of
several synchronous actions. Here the states are the same as
for S-SYST, and we take care of the mutually exclusive
access to the shared store.

In the general SMoLCS schema SYST corresponds to the
monitoring step, where the states are the same as those of
P-SYST. Here the global constraints imposed by the
monitoring say only that the duration of a task action can be
anything.

Formal specification

In what follows, VAL, EID, LOC, and CHID are algebraic
specifications which are not further specified (VAL also
includes the Boolean values).

The behavior system BH-SYST The actions of the
behaviors are defined by the following specification:
ACT = enrich VAL + LOC + CHID by
sorts  act, behavior
opns START: behavior — act
A A

A, --- Aj are the operators for expressing behavior actions
introduced in the previous subsection, and START
represents the actions of seed. 523
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For giving a semantics following the direct style, we need
to define behaviors returning values and environments; so
we need to define algebraically the environments:

ENV = MAP(VID,LOC)[env/map(vid,loc)]

The notation A[srz,/srt,} means that in the specification 4
the sort sz, is renamed sr¢,. The states of BH-SYST are
defined by the following specification:

BEHAVIOR =

enrich ACT + MAP(EID,BEHAVIOR (behavior)) +
FUNCT(BEHAVIOR (behavior}),
BEHAVIOR (behavior)) +
ARG-FUNCT by

sorts behavior, val-behavior, env-behavior

opns seed: — behavior
B,--- B
where ARG-FUNCT =
+ FUNCT(S,BEHAVIOR(bh))

S=VAL,ENV,LOC,BOOL

bh=behavior,val-behavior,env-behavior

and B, - - - B, are the SYST operators for expressing
behaviors introduced in the previous subsection. Given a
specification A and one of its sort srt, A(srt) means that sr¢
is chosen as the main sort of 4. MAP is the parametric
algebraic specification of finite maps (for a complete
definition, see, e.g., [14]). Given two algebraic specifications
A and B with main sorts a and b, respectively, FUNCT(4,B)
indicates the specification, with sort funct(a,b), of the
functions from elements of sort a into elements of sort b;
FUNCT(4,B) has the operators F1, F2, F3 introduced in the
previous section (see [8,21]).

Note that BEHAVIOR is defined in a recursive way.
Indicating by BH the transformation implicitly defined by
the right-hand side of the definition, we can write
BEHAVIOR = BH(BEHAVIOR). It is easy to check that,
defining BEHAVIOR?® as the specification with just the sorts
behavior and t-behavior for t = val, env, and neither
operations nor axioms, and BEHAVIOR" =
BH(BEHAVIOR" ™), for n=3, we get the fixpoint
specification BEHAVIOR.

BH-SYST is defined by enriching BEHAVIOR with the
operations

W= [J: behavior X act X behavior — bool,
and for t = val, env

O 2 t> O t-behavior X act X t-behavior —> bool
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(—t> represents the transition relation for the behaviors
returning elements of sort t) defined by the following axioms,
which formally reflect the semantics of the SYST operators
informally introduced in the previous subsection.

e Creation of a new behavior

bh

START(bh)
seed

e Usual operational definition of fix operator
fix bhfunct = bhfunct(fix bhfunct)

e The following axioms define the trap/exit operators. The
activity of trap emap in bh consists of the activity of bk
(1, 2); moreover, if b terminates performing an exit to an
exception ¢f and ei belongs to the domain of emap, then
the activity goes on as specified by emap(ei) (3); otherwise,
the exit is propagated to some outer trap operator (4).

(1) bh > bh’ D trap emap in bh —> trap emap in bh’
(2) trap emap in skip = skip
(3) ei € Dom(emap) = True D
trap emap in exit ei = emap(ei)
(4) ei € Dom(emap) = False D
trap emap in exit ei = exit ei
¢ Conditional
if True then bh, else bh, = bh,
if False then bh, else bh, = bh,
® Action prefixing
a A bh <> bh
e Sequential composition
bh > bh’ D bh;bh, —> bh’;bh,
skip;bh = bh
exit ei;bh = exit ei

e choose operators
For arg = val, loc, bool;

arg-funct(x-arg) — bh’ D choose,, arg-funct = bh’

Isfree(v-arg,emap) = False D

trap emap in choose, Av-arg.bh =

choose, Av-arg.trap emap in bh

Isfree(v-arg,emap) = False D
(choose, \v-arg.bh); bh, = choose, Av-arg.(bh;bh,)

For argl = val,env;
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Isfree(v-arg,argl-funct) = False D
def,  (choose, \v-arg.argl-bh) in argl -funct =
choose,, \v-arg.(def, argl-bh in argl-funct)

o def/return operators
For arg = val, env;

arg-bh  arg> arg-bh’ D

def,  arg-bh in arg-funct
def,  arg-bh’ in arg-funct

def

arg

return,, x-arg in arg-funct = arg-funct(x-arg)

Here we have chosen the names of the variables appearing in
the axioms in a way which recalls their sorts; e.g., bh is a
variable of sort behavior, arg-bh of sort arg-behavior, x-arg of
sort arg, arg-funct of sort funct(arg,behavior), bhfunct of sort
funct(behavior,behavior), and so on.

Isfree is a total operation of the parametric specification
FUNCT such that Isfree(v,x) is equal to True iff the
“variable” v appears in x not enclosed by an operator
AV, -

For lack of room we have not reported here the axioms
relative to the operators A, choose, if [1 then [J else U, def,
for the elements of val-behavior and env-behavior; they are
analogous to the ones for the elements of sort behavior
defined above (e.g., the axioms for A are

a A arg-bh Z-arg> arg-bh and a A env-bh “—env> env-bh).

The synchronous system S-SYST  The states of S-SYST are
couples whose components are a multiset of behaviors (states
of the component processes) and a state of the shared store;
they are defined by the following specification:

STATE = enrich PROD(MSET(BEHAVIOR),STORE)
[state/prod(mset(behavior),store)] by
axioms (seed|bms,sh) = (bms,sh)
STORE = MAP(LOC,VAL)[store/map(loc,val)]

PROD and MSET indicate the parametric algebraic
specifications of Cartesian product and finite multiset, where
(O,0) is the couples constructor, | indicates multiset union,
and the singleton multiset {e} is simply written e.

The added axiom formalizes the fact that a state of
S-SYST includes whatever number of instances of seed and
then allows one to handle dynamic creation of new
processes.

As flags of the synchronous actions we simply choose the
same flags as the behavior system (elements of sort act).

S-SYST is given by enriching STATE + BH-SYST with
the operation (0 = (O => [I: state X act X state — bool,
defined by the following axioms:
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o Process internal action
TAU ’
bh — bh’ D (bh,sh)=TAU=> (bh’,sh)
o Allocation of an unused cell of the shared store (Undef is a

zero-ary operation of VAL)

ALLOC(1)

bh ———— bh’ A 1 € Dom(sh) = False D
(bh,sh) = WRITE(1,Undef)=> (bh’,sh[Undef/1])

o Reading and writing a cell of the shared store

READ(,v)
_—

bh bh’ A 1€ Dom(sh) = True A sh(l) =v D

{bh,sh) = TAU=> (bh’,sh)
WRITE(Lv)

bh ———— bh’ Al € Dom(sh) = True D
(bh,sh) = WRITE(l,v) => (bh’,sh[v/1])

o Handshaking communication

SEND(cid,v) REC(cid,v)

bh,’ A bh,
(bh, [bh,,shy =TAU=> (bh,’| bh,’,sh)

bh, bh,’ D

o Creation of a new process

CREAT(bh,)

bh —————— bh’ A seed

START(bh))

bh, D

(bh|seed,sh) =TAU=> (bh’|bh,,sh)

The parallel system P-SYST The flags of P-SYST are
defined by the following specification:
PFLAG = enrich ACT by
opns [J//CT act X act —» act
Writing: loc X act — bool
axiomsa, // a,=a, // 3,
(a,//a) /] a;= 2, [/ (a, /] a,)
Writing(l, TAU) = False
Writing(l,, WRITE(L,v)) = Equal(l, 1)
Writing(La, // a,) =
Writing(l,a,) V Writing(l,a,)
The operation // defines the flags of the parallel actions
corresponding to the contemporaneous execution of several
synchronous actions; Writing(/,a) is True iff a is the flag of a
parallel action in which the location / is written. [Note that
there are no synchronous actions labeled by READ(/,v) or
ALLOC())).
The states of P-SYST are the same as S-SYST and the

transition relation of P-SYST is an extension of the one for

S-SYST: 525
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P-SYST =
enrich S-SYST + PFLAG by
axioms
{bms,sh) =a=> (bms,’,sh’) A
(bms,,sh) =TAU=> (bms,’sh) D
{bms, |bms,,sh) =a//TAU=> (bms,’|bms,’,sh’)
(bms ,sh) =a=> (bms,’,sh’) A
(bms,,sh)=WRITE(l,v)=>(bms,’ ,sh[v/l]) A
Writing(l,a) = False D

(bms, |bms,,sh) =a//WRITE(l,v)=>

(bms,’|bms,’ sh’{v/1]).

Note how the above axioms formalize the constraint,
informally introduced in the previous subsection, that two
contemporaneous updatings of a single cell of the shared
store are not allowed. Note that the final state of the shared
store does not depend on the order in which the
synchronous actions are composed.

The overall system SYST  As the whole system is closed,
i.e., there are no interactions with the external world, the
flags of the system SYST are simply defined by FLAG =
sorts flag opns TAU:— flag. The states of SYST are the same
as P-SYST, and the transition relation of SYST is indicated
by ===>.

SYST = enrich P-SYST + FLAG by
opns O=={==>[7: state X flag X state — bool
axioms (bms,sh) =a=> (bms’,sh’) D
(bms|bms,,shy==TAU==>(bms’|bms,,sh’}.

The axiom says that any group of processes (bms,) can
always wait, formalizing the fact that the duration of the
process actions can be anything, and moreover that any
action allowed in P-SYST (the premise of the axiom) is
allowed to happen in an overall transition.

Semantics

"Operational semantics It is interesting to show that

choosing an initial algebra approach for the semantics of the
algebraic specification of a labeled transition system allows
one to define an operational semantics. Indeed, we have the
following result.

Consider the following equivalence on the terms built on
the signature of SYST for which the definedness can be
proved:
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t, =4 iffSYSTHt =1¢,.

It can be shown that the equivalence =, is a congruence; i.e.,
it is compatible with the operations, hence we can define a
partial algebra I, where the objects are the equivalence
classes.

Proposition I  The algebra Ig 4 is initial in the class of
partial models of SYST and is such that

Il Liysr F D() iff SYST - D(z);
12SYST + D(z,) A D(z,) implies
(ISYST = tl = 12 iff SYST tl = t2)

(see the appendix for the definition of D).

Proof Initiality follows, e.g., from [15,22]; properties 11
and 12 are shown easily by the definition of I O

It is clear that the definition of Iy, allows one to define
labeled trees associated with equivalence classes of states.
Then it is possible to apply to I ¢, the usual techniques for
defining various kinds of operational semantics; for example,
we can consider two states (classes) equivalent iff their
associated trees are the same.

However, operational semantics is not sufficient for
expressing the real meaning, since it discriminates too much.
For example, neither (TAU A TAU A skip,sh),

(TAU A skip,sh) nor {(WRITE(/,v) A skip,sh),
(WRITE(/,v) A WRITE(/,v) A skip,sh) are couples of
operationally equivalent states of SYST, contrary to our
intuition of their intended meaning.

Hence, as we have already discussed in Section 3, we need
to consider two objects equivalent up to some observations.
Formally we will define classes of observational semantics.

Observational semantics  As already emphasized, we are
able to accommodate various kinds of observational
semantics. Let us assume, just for the sake of example, that
in the case of SYST we are interested in a result semantics;
i.e., two states are considered equivalent iff they produce the
same results, where the results of a state s are the final states
of the shared store of the correctly terminating executions of
s (i.e., where in the final state all behaviors have form skip);
note that here we do not care about incorrect and
nonterminating executions.

The paradigm under which an observational semantics is
defined for a concurrent system (here applied to SYST)
consists essentially of

o Giving a specification, defining the observations on the
system (here SYST-PLUS), by means of Boolean relations
(here Isres) stating that some observation values (here
states of the shared store, defined by the specification
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STORE) are true of some system states. Here we can
define

SYST-PLUS = enrich SYST by
opns Isres: state X store — bool
axioms
Isres({skip| - - - |skip,sh),sh) = True
s ==TAU==>s" A
Isres(s’,sh) = True D

Isres(s,sh) = True.

o Defining a class of observationally equivalent algebras,
each one containing the objects to be observed together
with the relations and moreover preserving, as a subtype, a
fixed model of the observed values (here the initial model
of STORE).

& Defining the observational semantics as represented by a
special algebra in the above class; formally it is the
minimally defined and term-generated algebra terminal in
that class (here CALG); a basic general theorem (in {15])
shows that this algebra has indeed the propert\ies required
of an observational semantics. Formally we get the
following result.

Proposition 2 There exists an algebra CALG with the
following properties.

For any srt € Sorts(STATE)-Sorts(STORE) and for any
ground terms of sort srt £,¢’ built on the signature of STATE,

Ol CALGED()iff SYSTH D(r)
02 CALGE:t=¢iff

for any ground term s# of sort store,
for any context s{x] built on the signature of STATE of
sort state with a hole of sort srt

[SYST-PLUS + Isres(s[t],sh) = True iff
SYST-PLUS F Isres(s{¢’],sh) = True}.

Proof Application of the main theorem in [15]. O

As before, for I, 4, the elements of the algebra CALG are,
up to isomorphism, congruence classes of terms, whose
definedness can be proven in SYST.

Property O1 says that all the interesting objects of STATE
are defined in CALG; by property O2 two terms of sort srt
are equivalent if and only if in every context of sort state
they satisfy the same observations. It is most important to
note that in this way every subcomponent of a state gets an
observational semantics: In SYST this is true, for example,
of a behavior.
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An important point to be understood here is why we need
our observational semantics to be represented by an algebra,
which is the same as requiring the equivalence induced by
the observations to be a congruence. The semantic model of
an abstract data type always has to be an algebra, in order
for the operations to be interpreted on that model; in other
words that means that the semantics is a homomorphism,
which is nothing but the mathematical formal counterpart of
the informal phrase “compositional semantics.” It will be
seen later that by using that homomorphism and composing
it with the homomorphic translation of the first step, we can
define the overall semantics of a language as a homomorphic
mapping of the algebra of the syntax into a semantic algebra,
which is the exact mathematical formalization of the phrase
“denotational semantics.”

o Properties of the language constructs

In this section we show some properties of the constructs of
SYST, which are the basis for proving properties of the
system specifications.

These properties state the strong bisimulation (indicated
by ~) in the sense of Milner (see [16]) of the processes
represented by various behaviors. Roughly speaking, two
behaviors (processes) are equivalent iff the associated labeled
trees, where we observe only the arc labels and disregard the
intermediate states (node labels), are the same. We are
interested in properties of this kind because, given two states
of a concurrent system specified following the SMoLCS
methodology, s, and s,, if s, and s, have the same
information part and their component subsystems are
pairwise equivalent with respect to ~, then s, and s, are
observationally equivalent for all observational semantics
which do not observe the states of the component
subsystems, but at most their action capabilities. Thus, given
two behaviors of SYST, bh, and bh,, bh, ~ bh, implies
CALG & bh, = bh,.

Now, we formally define the strong bisimulation relation
between behaviors.

In what follows we use b and a to range over the
behaviors and the actions of SYST:

o bh, ~ bh, iff

i) SYST - bh, 2 bh,’ implies there exist a,,bh,’
such that

SYST & bh, =5 bhy' N a, ~ a, A bh," ~ bh,’.

ii) SYST F bh, = bh,’ implies there exist a,, bh,’
such that

SYST - bh, 25 bh," A a, ~ a, A bh," ~ bh,’.

g ~aiff

(a,#CREATY(- - -),a,#CREAT(: - -),a,#START(: - -), 527
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a,#START(---)and SYST+a, = a,)
or (@, = CREAT(bh)), a, = CREAT(bh,) and bh, ~ bh,)
or (@, = START(bh,), a, = START(bh,) and bh, ~ bh,).

def]return properties

For arg, argl = val, env;

o def, (a A bh) in arg-funct ~ a A (def,, bh in arg-funct)

o If x is not free in arg-funct, then
def, (def, , b/ in Ax.bh’) in arg-funct ~

def, ., bh in Mx.(def, bk’ in arg-funct)

o If x is not free in bA”, then
(def, , bhin \x.bh');bh" ~ def,,, bhin Ax.(bh';0h").

fix property

A behavior of bh is said to be ~-image finite iff for all
actions a

{bh’ |SYST + bh At bh', a ~ a’} is finite module =
(the provable equality in SYST).
o If fix Ax.bh, and fix Mx.bh, are ~-image finite, then

[for all n = 0 (Ax.bh,)" (stop) ~ (Ax.bh,)"(stop)] implies
fix Ax.bh, ~ fix Mx.bh,

(@ =af"" @)= @)
This property gives a very useful tool for proving the strong

equivalence of behaviors expressed by means of the fix
operator.

trap/exit properties
In the following we use emap to range over the elements of
sort map(eid,behavior).

o trap emap in (a A bh) ~ a A (trap emap in bh).
o For arg = val, env; if x is not free in emap, then
trap emap in (def, , bh in Ax.bh,) ~
def,  bh in \x.(trap emap in bh,).

o If emap does not include an exit to an exception ei, with
ei € Dom(emap), then

trap emap in (bh,;bh,) ~

trap emap in (bh,;trap emap in bh,).

Let emap; bh indicate the element of sort map(eid,behavior)
such that
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Dom(emap;bh) = Dom(emap) and
(emap 5 bh)(ei) = emap(ei); bh,

o If bh, does not include an exit to an exception ei, with
ei € Dom(emap), then

(trap emap in bh) ; bh, ~ trap (emap ; bh,) in (bh;bh,).
if then else properties

o (if bv then bh, else bh,); bh ~
if bv then (bh,; bh) else (bh,;bh).
e trap emap in (if bv then bh, else bh,) ~

if by then (trap emap in bh,) else (trap emap in bh,).

; properties

® bh,;(bh,;bh,) ~ (bh ;bh,);bh,.
o (a A bh);bh, ~ a A (bh;bh).

e stop;bh ~ stop skip;bh ~ bh.

+ properties
b bhl + (bhz + bh3) ~ (bhl+bh2)+bh3.
o bh,+bh, ~ bh,+bh,.

5. Formal semantics of concurrent languages

o Semantic domains and functions

Following the paradigm of denotational semantics, semantics
is given as a many-sorted homomorphism from (abstract)
syntax into a semantic algebra. In our approach some
domains of the semantic algebra are defined as carriers of
another algebra, the concurrent algebra CALG, which, as we
have seen, is a model of an algebraic specification of a
concurrent system whose states represent the execution states
of the programs. Note that CALG is nothing but the
semantics of the intermediate language, a semantics which
varies depending on the observations we want to make.

Let us assume in the following, for the example language
CL, that CALG is the concurrent algebra defined in the
preceding section (and corresponding to a result semantics).

The semantic functions, i.e., the functions constituting the
homomorphism, are

P: PROG — ANSWER

S: STAT — (ENV —>BH)

E: EXP — (ENV —>VAL-BH)
D: DECS — (ENV —ENV-BH)
H: HANDLERS — (ENV —HND)
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C: CONST
B: BOP

— VAL
— (VAL X VAL) — VAL)

The semantic domains above are defined as follows. If st is
a sort of a specification A4, then A, indicates the carrier of
sort st in A.

From the definition of CALG it follows that a CL program
has as value an element in CALG,,, representing the
observational semantics of the program, i.e., an equivalence
class of programs such that two programs are equivalent iff
they produce the same observational results. Thus, we define

ANSWER = CALG

state®

Using the direct semantics, the meanings of statements will
be elements of sort behavior in CALG, i.e., equivalence
classes of behaviors, which are syntactic objects representing
processes. Indeed, due to the presence of concurrency,
statements are now modeled by processes:

BH = CA LGbehavior

Also, the environment is defined as a subalgebra of CALG,
because there are behaviors which terminate producing
environments:

ENV = CALG,,,

The meanings of expressions and declarations are still
behaviors, but particular behaviors; the elements of VAL-BH
are indeed behaviors, representing processes whose activities
terminate returning a value, while the elements of ENV-BH
are behaviors whose activities terminate returning an
environment:

VAL-BH = CALG

val-behavior

ENV-BH = CALG

env-behavior

The storable values are defined by means of a
subspecification (VAL with a sort val) of the concurrent
systems representing program executions (SYST):

VAL = CALG,,

Moreover, from the definition of CALG (see the subsection
“Formal specification”) we have that VAL = (I, ),,, Where
I, . indicates the initial model of VAL (because VAL is a
subspecification of STORE); thus we have that the values are
abstractly specified.

The semantic value of a handler part of a block is a map
from exception identifiers into statement values (behaviors):

HND = CALGmap(eid.behavmr)

Note that there is a correspondence between the semantic
domains used for sequential languages and those used for
concurrent languages: The domain used in the sequential
case (STORE — STORE) corresponds to behaviors, while
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domains having form (STORE — (STORE x ABC))
correspond to behaviors terminating producing elements of
ABC.

o Semantic clauses

The definition of the semantic functions is by structural
induction on the syntactic structure, It is important to note
that we consider only statically correct programs; moreover,
for simplicity we do not make provision for run-time error
checks; i.e., error messages are just values in the appropriate
domains.

Notice that, as we have often emphasized, the clauses can
be seen as defining a syntax-directed translation into the
intermediate language. The overall semantics is then
obtained by interpreting in CALG the terms corresponding
to language constructs (programs, statements, declarations,
and expressions). The full clauses are given in Figure 3; here
we provide some comments.

Clause 1 defines the semantics of a CL program
consisting of the tasks &/, - - - b/_ as the value in
the concurrent algebra CALG of the term
(S[bl1p,)- - - 1S[b] ]n,,sh, ), that is, the syntactic
representation of a state of the labeled transition system
SYST (defined in the subsection “The overall system SYST”
as an algebraic specification) representing the executions of
the CL programs. Formally (S[b/,]p,| - - - |S[b/,]p,,sh,) is a
term of sort state in the specification STATE,
subspecification of SYST; its semantic value, as already
mentioned, is an equivalence class corresponding to an
observational semantics on SYST. For ease of notation here
and in the following we simply indicate by ¢ the semantic
value (interpretation) {” of a term 7 in an algebra A.

A state of SYST has two components: The first is a
multiset of behaviors (corresponding to CL tasks), while the
second represents some information global to all behaviors
(the state of the shared store). In clause 1 p, represents the
initial environment and sh, the initial state of the shared
store, and in clause 2 p is a generic element in ENV.

The behavior associated by E with an expression has in
some way the possibility of returning a value, while the
behavior operator def ...in... composes a behavior returning
a value with a behavior waiting for a value, producing
another behavior. The behavior waiting for a value is
defined by the term of sort funct(val,behavior)

Av. WRITE(p(x),v) A skip, which represents a function from
values to behaviors. Note that here \(J.(J is an operation of
the specification STATE (see the subsection on the formal
definition of SYST) and it does not mean A-notation, as in
Section 2.

Clause 3 significantly looks the same as in the purely
sequential case, as does clause 5. Note in clause 5 that ; is an
operation on behaviors and in clauses 3 and 4 note also that
if...then...else... is an operation on behaviors, and most
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1 P{program b, | --- [161,] = (S[bl,]p,| -~ IS[BLJo,sh,)

2 S[x == e]p = def,, E[e]p in \v. WRITE( p(x),v) A skip

3 S [if be then st, else st, filp = def,,, E[be]p in Abv.if bv then S[st,]p else S[sz,]p

4 S{while be do st od]p = fix Abh.def,, E[be]p in Abv.if bv then (S[s¢]o;bh) else skip

5 S[st,; st,)p = S[st ]e;S[st,lp
6 Sfraise eilp = TAU A exit e/

7 S[dcs begin st ind end]p = def,_, D[dcs]p in X p’.trap H{And]p’ in S[st]p’
8 S[send(ci,e)]p = def,,, E[e]p in A\v.SEND(ci,v) A skip

9 S[rec(ci,x)]p = choose

val

Av.REC(ci,v) A WRITE( p(x),v) A skip

10 S[create task bl]p = CREAT(S[b/]p) A skip

11 8[st, or st,]p = S[st,1p + S[st,1p
12 E[c]p = TAU A return_, C|c]
13 E[bop(e,,e,)lp = def,

val

val

14 E[x]p = choose
15 D{A]p = return,

val

env P

E[e,lp in v, .def,, E[e,]p in Av,.TAU A return , B{bop](v,,v,)
Av.READ( p(x),v) A return,, v

16 D[var x dcslp = choose,,, A LALLOC(1) A D[dcs)( pll/x])

17 H[A]p = hnd,
hnd, = [] ([] indicates the empty map)

18 H[when ei do st hndlp = (H[hnd]p)[Sst]p/ei]

importantly in clause 4 note how fixpoints are handled. The
actions of the behavior fix Abh. . .. are defined in the
algebraic specification BH-SYST (subspecification of SYST)
in a way corresponding to the usual rewriting rule for the
operational semantics of fixpoint operators (see [10, 16]).

Clauses 6, 7, 17, and 18 explain how exceptions are
handled. Thus, in handling exceptions our approach is also
similar to that of the classical VDM denotational semantics,
but now statement values are process (behavior) elements of
BH. H{hnd)p’, the meaning of the handlers part of the
block, represents a map from exception identifiers into
behaviors [a term of sort map(eid,behavior) in the
specification STATE]; trap...in... and exit... are operators on
behaviors.

Clause 14 makes explicit some hidden concurrency related
to the evaluation of a variable. The idea behind the
definition of the meaning of the expression x as a
nondeterministic behavior is that the content of the location
p(x) will depend on the moment when the task within which
the evaluation of x is performed gets access to the shared
store; if v, is the value in p(x) at that moment, then the
action READ(p(x),v,) will be performed and the value v, will

EGIDIO ASTESIANO AND GIANNA REGGIO

be returned. Analogously this is so for clauses 9 and 16.

Clause 12 (and 13) shows a typical situation: It would be
as in the purely sequential case, but in the concurrent case
an action is performed, consisting in evaluating the constant;
this action is internal, i.e., does not involve either other
processes or the shared store, and hence it is indicated by
TAU. Representing that action is not necessary whenever
the observational semantics on SYST only takes care of the
action results and not of their ordering. On the other hand,
in clauses 15 and 17 there is no TAU action, because A just
means absence of, respectively, declarative part and handlers
part.

Clauses 8, 9, 10, and 11 are the usual clauses for
concurrent statements; the meaning of the behavior actions
SEND, REC, CREAT is given by the definition of the
synchronization, parallelism, and monitoring steps of SYST
(see the subsection on the formal definition of SYST).

The consistency of denotational clauses can be checked in
two steps: first, by proving that the semantic functions are
total on statically correct programs; i.e., they associate with
every correct CL program a term on the signature of the
specification STATE; second, by showing that all the terms

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987




associated with such programs have a defined interpretation
in the concurrent algebra CALG.

Proposition 3 For every correct pr € PROG
P[pr] € { s|s term of sort state built on Sig(STATE) } and
CALG = D(P[pr]).

Proof By analogous properties of the semantic functions S,
E, D, H, C, B proved by induction on the syntactic structure
of CL.O
Here we show by an example how our definition works.
Let | be an element of CONST and plus be an element of
BOP, whose intuitive meanings are clear. In what follows we
report the semantics of the CL statement x := plus(x,]):

S[x := plus(x,})]p =
def,, E[plus(x,))]p
in Av. WRITE(p(x),v) A skip = (¥)

1) E[plus(x.D]p = def,, E[x]p
in Av,. def,, E[l}o
in Av,.TAU A
return ,, B[plus}(v,,v,)

i) E[x]p = choose , A\v.READ(p(x),v) A return_, v

val

iii) E[l]p = TAU A return_1

val

From 1), ii), and i11) we have

(*) = def,, (def,_(choose , \v.READ(p(x),v) A

val

return,, v)
in Av,. def (TAU A return,, 1)
in Av, TAU A return,, v,+v,)
in Av. WRITE(p(x),v) A skip.

By the properties of the SYST constructs listed at the end of
the previous section, we can reduce the above behavior to a
simpler form; then

S[x := plus(x.D)]p =

choose_, A v. READ(p(x),v) A TAU A TAU A

val

WRITE(p(x),v+1) A skip.

Conclusion

We have shown how the denotational approach to semantics
using a direct (VDM-like) style can be extended to handle
concurrent languages. Together with demonstrating this
possibility, there are some other major novelties in our
approach, namely the possibility of keeping an applicative
style (denotational clauses) in an overall algebraic setting; the
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specification of concurrent processes as abstract data types;
and finally the use of a highly modular and parameterized
schema for expressing the semantics of concurrent systems.

There are scme points we would like to emphasize,
perhaps once more.

It should be clear first of all that the approach we have
shown here on a toy example language can be applied to
languages of any scale (and indeed it has been applied to
giving the dynamic semantics of full Ada).

A most important point to bear in mind is that the overall
apparatus consisting of the language of behaviors and of
their parallel composition can be fixed once (see especially
[9] on this point). Thus we can obtain a metalanguage for
defining semantics, and if we adopt this metalanguage, for
example, the semantics of CL becomes remarkably concise,
reducing to denotational clauses. Clearly, in order to use
with confidence such a metalanguage, more work has to be
done to reach a kind of standardization, endowed with a set
of derived properties of its operators, such as those presented
in the section on the intermediate language, and some work
is going on in that direction (see, e.g., [9]).

Moreover, we need automatic tools for ensuring
correctness of the definition, if the scale of the language is
rather large. To this end a system has been developed [17]
which, starting from the denotational clauses, translates a
program into the intermediate language and then can give
the transitions of a state of a concurrent system specified in
the SMoL.CS style. This system is the analog for concurrent
languages of a typical rapid prototyping interpreter for
sequential languages.

Finally, we would like to mention that our approach
permits proofs of interesting properties of semantic
specifications, using properties such as those of behaviors
presented in the section on the intermediate language.
Indeed we can prove (see for an abstract of the results [23])
that the direct semantics style shown here and the
continuation style used in [7] are equivalent in a very deep
sense, since, for example, the two behaviors corresponding in
the two styles to a statement are strongly equivalent in the
sense we have seen. Moreover, it will be shown in a
forthcoming paper that our semantics reduces to classical
functional semantics on the purely sequential subset of a
concurrent language; because of the result on the
equivalence of direct and continuation semantics, this result
applies to both styles.

Appendix: Basic notions on partial abstract data
types

We give here a rather informal presentation of the key
concepts, mainly in order to introduce the notational
conventions for a reader not acquainted with algebraic
specifications; a reader interested in formal aspects can refer
to [22]. The basic idea is that a data type is not defined

directly in a constructive way, but some properties are 531
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indicated that the related operations must satisfy. The
advantage of that approach is that we obtain an abstract
description of a data type (a family of domains together with
a set of functions which have arguments and results in these
domains), i.e., what is called an abstract data type. Assume,
for example, that we want to specify formally the well-
known data type “stack.” A concrete way of defining that
data type is to see it, for example, as composed by the three
sets

ELEM (the set of the elements which are put in the stack)
STACK = ELEM* (strings of elements)
BOOL = {true, false}

and by the functions

e Empty: — STACK e Pop: STACK — STACK

Empty = A Pop(eds) = s
e Isempty: STACK —- BOOL e Top: STACK — ELEM
Isempty(A) = true Top(eds) =e

Isempty(eds) = false
e Push: ELEM X STACK — STACK
Push(e,s) = eds

where & and A indicate, respectively, string concatenation
and empty string.

Note that Top and Pop are partial functions since Top(A)
and Pop(A) are not defined.

That definition of stack corresponds to our intuition but
seems in some sense too concrete in the sense that a
particular model of the stack is chosen.

The following is a rather standard way of giving an
“abstract” definition of stack, with a minor modification (the
axioms with D are explained later) since here we use a
partial algebra approach:

STACK = sorts elem, stack, bool
opns True, False: — bool

Empty: — stack

Pop: stack — stack

Push: elem X stack — stack

Pop: stack — elem

Isempty: stack — bool
D(Empty) D(Push(e,s))
Top(Push(e,s)) = ¢
Pop(Push(e,s)) = s
Isempty(A) = True
Isempty(Push(e,s)) = False
“axioms expressing properties of

booleans and stack elements”

axioms

The above definition is an example of algebraic specification,
1.e., a couple consisting of a signature and a set of axioms.

A signature is a couple consisting of a set of symbols
called sorts and a set of symbols called operations. Each

EGIDIO ASTESIANO AND GIANNA REGGIO

operation has an associated functionality (a couple consisting
of a string of sorts and a sort) and we write
Op: st X ... X sn — s to say that Op has functionality
(sl ---sn,s).

For each signature we can consider the set of the
expressions, usually called terms over the signature,
inductively constructed by the operations, as follows:

1) For each zero-ary operation Op: — s, Op is a term of sort
85

i) Foreach Op:sl X .- X sn—s,if¢, .- ¢ are terms of
sort, respectively, s1 - - - sn, then Op(¢,,- - -, 1,) is a term
of sort s.

The intuitive meaning is that each term of sort s is a
syntactic representation for an element in the set of values
associated with s; for example, the term Pop(Push(e, Empty))
represents an element in the set associated with the sort
stack, assuming that e is a term of sort element.

An axiom, as shown in the STACK specification, is a
positive conditional formula between terms containing
variables; i.e., its general form is

NeDe,
i

where e, is either D(1;) A ¢, = ¢/ or D(t,) and e is either D(z) or
{ =1 and t,t',1,t] are terms.

It should be clear that, because of the axioms, in general
an element can be represented by many different terms; for
example, Pop(Push(e,Empty)) and Empty represent the same
element.

More precisely, we can consider equivalent all the terms
t,, 1, whose equality can be proved using the axioms and the
first-order logic; we write STACK ¢, = 1, to indicate that
t,, t, can be proved equal in STACK.

For a given signature, fixing the set associated with each
sort and interpreting each operation as a function (with the
suitable domain and codomain accordingly with the
functionality) gives a concrete data type (family of sets and
functions) called an algebra on the signature. The value of a
term obtained by assigning values to the variables and
interpreting each operation as the corresponding function in
the algebra is called the interpretation of the term in the
algebra. We say that a data type is a model of the given
algebraic specification iff with the given interpretation all the
axioms hold; usually we write ALG F ax to indicate that the
axiom ax holds in ALG.

As we have seen in the example of the stack, the
interpretation of an operation can be a partial function; i.e.,
for some values of the arguments the result can be
undefined, e.g., the interpretation of Pop is not defined on
the empty stack.

Hence, in general, a model of a specification is a partial
data type (or a partial algebra), i.e., a model where the
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interpretation of an operation can be a partial function.
Partiality has some important consequences:

1. The interpretation of the equality symbol = has to be
defined with some care: In our approach ¢, = ¢, is satisfied
in a model for some assignment of values to the variables
iff the interpretations of ¢, and ¢, are either both defined
and equal or both undefined.

. We can speak of definedness of terms for some values of
the variables in a model, but note that it is meaningless to
speak of undefined values in a model. Hence an
assignment of values to the variables can only be an
assignment of defined values, and moreover the
interpretation of the operations is strict; i.e., the
interpretation of a term Op(,,- - -,2,) is undefined
whenever the interpretation of ¢, for some i is undefined.

. It is useful to specify the terms that we want to be defined
in every model; that corresponds to requiring that some
functions be defined in correspondence with certain
argument values. Hence we use an overloaded symbol D
to indicate the definedness predicates on terms, one for
each sort; D is total in every model.

For example, in the specification of stack we have
D(Empty) and D(Push(e,s)) to express that in every model
Push is a total operation and Empty is defined.

In general, among all the models of an algebraic
specification we can choose a particular model as “the data
type defined by the algebraic specification.” A choice which
is usually made is the model in which only the
identifications which are forced by the axioms hold (i.e., the
values of two terms are equal only if the two terms can be
proved equal) and in which a term is defined iff its
definedness can be proved from the axioms. That model is
called the initial model. For algebraic specifications of
transition systems also a different kind of model may be
chosen, as is discussed at the end of the subsection on the
formal definition of the intermediate language.
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