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A multi-queue,  cyclic-service  model  with  a 
single-message  buffer  is  considered.  Each 
message  consists of a number of characters, 
and  one  character  is  served  at  the  server’s  each 
visit.  Exact  and  explicit  expressions  are  derived 
for performance  measures, such as mean  cycle 
time,  mean  message  response  time,  and  mean 
response  time  conditioned  on  the  message 
length.  The  same  model  was  previously  solved 
by  approximation  by  Wu  and  Chen [IBM J. Res. 
Develop. 19, No. 5,486-493 (September 1975)l. 

Introduction 
Some time ago,  Wu and Chen [I] proposed and analyzed a 
multi-queue, cyclic-service  model  for a loop transmission 
system.  Specifically, their model  consists  of N queues 
distributed around a loop, and the queues are served in 
cyclic order by a traveling server. The amvals at the queues 
occur as  messages,  where the number of characters in a 
message  varies according to a geometric distribution with 
mean I/u. (We use different notations from [ 11 .  
Correspondence between our notation and  that in [ 1 1  is 
summarized in Table 1 .) The server  walks from one queue 
to the next, servicing  exactly one character for each visit to a 
queue. (Thus,  due to the memoryless property of a geometric 
distribution, at the completion of  each character service, the 
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message  service  also completes with probability u, and does 
not with probability 1 - u.) The service time per character, 
b, and  the walking time between adjacent queues, r, are both 
assumed to be constants. At each queue, at most one 
message can be stored, and the time interval from the 
completion of  service of one message to the amval of the 
next  message  is exponentially distributed with mean 1/X.  For 
this model, an approximate analysis is given in [ 11 to 
compute system performance measures such as mean cycle 
time, mean message  response time, and mean response time 
conditioned on message length. They are compared with 
simulation results. 

In the light of recent developments in the analysis of 
cyclic queueing (or polling) models,  however,  it  is  possible to 
provide an exact, explicit, and much simpler solution to the 
above-mentioned problem. Such a solution is  given in this 
paper as an extension of a series  of studies on “symmetric 
polling  systems  with  single  message  buffers.” Works in this 
category include Mack, Murphy, and Webb [2], Mack [3], 
Runnenberg [4], Bharucha-Reid [ 5 ] ,  Kaye [6], Scholl and 
Potier [7], Hashida and Kawashima [8], Takagi [9], and 
Takine, Takahashi, and Hasegawa [lo]. These all analyze the 
case  where the whole  message is served at each visit. (As 
pointed out in [9], there are errors in [4], [5], and [8] for the 
analysis  of the variable-length  message  case. The analysis in 
[3] is very complicated to follow.)  Below, we  follow the 
approach presented in Takagi [ 1 1 1  to derive  exactly the 
mean cycle time E[C], mean message  response time E [  TI, 
and mean response time E [  TI L] conditioned on message 
length of L characters. Note that Prob[L = n] = a( 1 - o)’”, 
n = I ,  2, . . ., and E[L] = I/u. Our model is slightly more 
general than in [I] in the sense that we only assume a 
constant R for the total walking time (the individual walking 
times can be different constants). 
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Table 1 Notations of Wu and  Chen [I]  and this paper. 

Number of queues 
Mean  message interanival time 
Character  service time 
Server's  walking time 
Mean  number of characters per  

Mean cycle time 
Mean  message  response time 
Mean  walking time between 

successive service quanta 
Mean  waiting time until  the 

server  first visits the queue 
Mean cycle time after  departure 

from  a nonempty queue 
Mean  response time conditioned 

on message  length  L 
Intervisit time, type 1 
Intervisit time, type 2 

message 

Performance  measures 
Let us start by quoting  some results from [ 1 I]. We define a 
polling cycle C as  the  time interval  beginning with a visit to 
a  certain queue by the server and  ending with the next visit 
to  the  same  queue. Let Q be the  number of characters served 
during a polling cycle. Then we have 

E [ C ]  = R + bE[Q]. (1 )  

The  throughput y of the system is measured by the average 
number of messages served in  a unit time. This is given by 

from which we have 

E [ T ]  = E(L + b) - x. 1 
0 E[Q1 

Solution 
Let us assign indices 1, 2, . . . , N to  the N queues in cyclic 
order. In order  to derive the probability distribution for Q, 
we define the state u, of queue i as 

0 if queue i does  not have  a message, 

1 if queue i has  a message, i = I ,  . . ., N. (4) 

Note  that e-" is the probability  of no  amval  at  an  empty 
queue  during a time interval 7. Let P,( u I ,  . . . , uN) be  the 
steady-state  probability that  the server observes a  sequence  of 
states { u , + ~ ,  u , + ~ ,  . . ., uN,  uI ,  . . ., u , - ~ ,  u,) before visiting 
queue i. This is the probability that,  at a point in time when 
queue i is polled, the server has  experienced  a history of 
states { u , + ~ ,  u,+*, . . . , u,, uI ,  . . . , u , - ~ ,  u,) when  it visited 
queues i + I ,  i + 2, . . ., N,  I ,  . . ., i(now)  in  the last round 
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of polling. Note  that uJ is the state of queue j when  it was 
polled. Considering  events that  occur  during  this cycle, we 
have the steady-state equation 

These equations  are  concerned with two time points: One is 
the  instant when queue i is polled (on the left-hand side), 
and  the  other is the  instant when queue i - 1 is polled (on 
the right-hand side). Since { u , + ~ ,   u , + ~ ,  . . . , u,, u,, . . ., u , - ~ )  is 
a history, they do not change between the  two  time points. 
Equations (5) and (6) are satisfied by 

(note  that  the right-hand  side is independent of i), where K is 
a  normalization constant  to be determined shortly.  Since 

we obtain 
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From ( 12) all performance  measures  in ( 1 )-( 3) can be 
computed. 

Comparison with Wu and Chen 
Besides E[C]  and E [  TI,  Wu  and  Chen [ 11 evaluate  (in  their 
notation) E[ T,], the  mean walking time between successive 
service quanta, E [  TWait], the  mean waiting time  from  the 
amval of a message until  the server reaches that  queue for 
the first time,  and E [  T,,], the  mean cycle time beginning 
with the server's departure from  a nonempty  queue.  Then it 
is shown that  the  mean response time  conditioned  on a 
message length  of L characters  is given by 

E [  TIL] = E[ T,,,] + b + ( L  - 1)E[ Tcl].  (13) 

Let us  derive Wu  and Chen's  measures E[ T,,,], E [  T,,,,,], 
and E [  T,,] based on  the  above solution.  First, E [  T,] is 
simply given by 

To evaluate E [  T,,,] and E [  T,,], we introduce  an intervisit 
time as  the  time interval which begins with the server's 
departure  from a  certain queue  and  ends with the next visit 
to  the  same  queue. Consider  two  types of intervisit  time. 
Type 1, whose duration is denoted by I , ,  is one  in which a 
message can  amve. Such  a case occurs either when the 
server leaves without service because there was no message at 
the visit, or when the server completes the service of the last 
character of a message. Type 2, whose duration is denoted 
by 12, is one  in which a new message cannot  amve because 
the  queue is full. This case occurs  when the server completes 
a  character service and  there still remain some characters in 
a message. These  two  types  of  intervisit time  occur with 

Prob[type I ]  = 1 - 01 + CUU; 

Prob[type 21 = a( 1 - u), (15) 

where 

01 P Prob[u, = I ]  = - E[Ql 
N (16) 

is the probability that a message is found  at  the server's visit 
486 to a  certain queue.  The probability that  the server observes a 
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sequence  of  states { u , + ~ ,   u , + ~ ,  . . ., u,, u,, . . . , u,-,) during 
each type  of  intervisit time is given by 

P,(u,, ..., ui-1, 0, % + I ,  ..., u,) 

It follows that  the LST (Laplace-Stieltjes transform) of the 
DF (distribution function) for the intervisit  time, I , ( s )  and 
12(s) for  types I and 2, respectively, is given by 

K 
l - a + a u  Ids) = 

The corresponding means  are given by 

K E[IJ = 
1 - a + 

from which we can readily compute 

The LST of DF for TWait, denoted by W(s),  is given by [see 
Equation (2.56b) of [ 1 I]  or  Equation (37) of [8] for 
derivation] 

from which we obtain 

Using (23) and (25), we can  compute  the  conditional 
response time E [  T I L ]  by ( 1  3). Unconditioning ( I  3) on L, 
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Table 2 Comparison of results in Wu and  Chen [ 1 1  and this 
paper. In each triplet,  the first value is the  approximate result of [ I ] ,  
the  second value is the  simulation result of [ I ]  (using 2000 
messages), and  the  third value is the  exact result of this  paper.  It is 
assumed  that l/a = I O  and R/(Nb) = 0.05. 

Cases N = 5 N =  7 N = 5   N =  7 
Ab = 0.0066 Ab = 0.0046 Xb = 0.0505 Xb = 0.0316 

XE [ T,] 0. I046 0.08045 1.805 1.457 
0. IO32 0.08 I8 1 1.749 1.505 

XE [q 0. IO448 0.080363 1.7999 1.4514 

XE [T,] 0.01549 0.01083 0.005592 0.003497 
0.01575 0.01015 0.005555 0.003479 
0,015490 0.010834 0.0054982 0.0034194 

XE [T,] 0.002353 0.002294 0.1266 0.1 110 
0.002336 0.002337 0.1273 0.1 115 

XE [C] 0.0023531 0.0022936 0.12858 0.1 1327 

XE [T,,] 0.01065 0.008219 0.1866 0.1511 
0.01061 0.008243 0.1844 0. I504 
0.010650 0.0082 170 0.18662 0. I5097 

we have  a  relationship 

E[TI  = E[T,,,,I + b + (! - I)E[TCl1.  (26) 

which can also be proved algebraically using the above 
equations. 

In  our Table 2, we compare  our exact results with the 
approximation  and simulation results given in  Table 1 of 
[ I ] .  We see that  the  approximation results of [I]  and  our 
exact results are very close. However, our solution is much 
simpler than  that of [ 11. 

Remarks 
The model we have solved can also be viewed as  a polling 
system with feedback. Namely,  a message departs with 
probability u and  does  not with  probability 1 - u after 
service completion.  Such a case occurs in  the error-prone 
transmission channel, as  pointed out in Kuehn [ 121. The 
model  is also applicable to a time-sharing system with N 
multiprogramming levels where  a processor gives service 
quanta  in a round-robin fashion. In  another paper [ 131, we 
have  analyzed  a  similar polling system with feedback, where 
there is infinite queueing capacity at each queue. An 
application suggested in [ 131 is one  to  the token-ring local- 
area network where a  long message (e.g., a file or program) is 
transmitted by segments. The user’s interest  is his mean  time 
until the whole message is transmitted. We finally note  an 

I application to a  model of a  crossbar switching machine in 
~ 

I ~ 4 1 .  
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