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Exact analysis
of round-robin
scheduling
of services

by Hideaki Takagi

A multi-queue, cyclic-service model with a
single-message buffer is considered. Each
message consists of a number of characters,
and one character is served at the server’s each
visit. Exact and explicit expressions are derived
for performance measures, such as mean cycle
time, mean message response time, and mean
response time conditioned on the message
length. The same model was previously solved
by approximation by Wu and Chen [IBM J. Res.
Develop. 19, No. 5, 486-493 (September 1975)].

Introduction

Some time ago, Wu and Chen [1] proposed and analyzed a
multi-queue, cyclic-service model for a loop transmission
system. Specifically, their model consists of N queues
distributed around a loop, and the queues are served in
cyclic order by a traveling server. The arrivals at the queues
occur as messages, where the number of characters in a
message varies according to a geometric distribution with
mean l/q. (We use different notations from [1].
Correspondence between our notation and that in [1] is
summarized in Table 1.) The server walks from one queue
to the next, servicing exactly one character for each visit to a
queue. (Thus, due to the memoryless property of a geometric
distribution, at the completion of each character service, the
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message service also completes with probability o, and does
not with probability 1 — ¢.) The service time per character,
b, and the walking time between adjacent queues, r, are both
assumed to be constants. At each queue, at most one
message can be stored, and the time interval from the
completion of service of one message to the arrival of the
next message is exponentially distributed with mean 1/A. For
this model, an approximate analysis is given in [1] to
compute system performance measures such as mean cycle
time, mean message response time, and mean response time
conditioned on message length. They are compared with
simulation results.

In the light of recent developments in the analysis of
cyclic queueing (or polling) models, however, it is possible to
provide an exact, explicit, and much simpler solution to the
above-mentioned problem. Such a solution is given in this
paper as an extension of a series of studies on “symmetric
polling systems with single message buffers.” Works in this
category include Mack, Murphy, and Webb [2], Mack [3],
Runnenberg [4], Bharucha-Reid [5], Kaye [6], Scholl and
Potier [7], Hashida and Kawashima {8), Takagi [9], and
Takine, Takahashi, and Hasegawa [10]. These all analyze the
case where the whole message is served at each visit. (As
pointed out in [9], there are errors in [4], [5], and [8] for the
analysis of the variable-length message case. The analysis in
[3] is very complicated to follow.) Below, we follow the
approach presented in Takagi [11] to derive exactly the
mean cycle time E[C], mean message response time E{T],
and mean response time E[T'| L] conditioned on message
length of L characters. Note that Prob[L = n] = (1 — o)™,
n=1,2, ..., and E[L] = /6. Our model is slightly more
general than in [1] in the sense that we only assume a
constant R for the total walking time (the individual walking
times can be different constants).
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Table 1 Notations of Wu and Chen [1] and this paper.

Wu and Chen This paper

Number of queues N N
Mean message interarrival time 1/ 1/x
Character service time I b
Server’s walking time L, R/N
Mean number of characters per

message R 1/o
Mean cycle time E[T] E[C]
Mean message response time E(T,] E[T]
Mean walking time between

successive service quanta E[T,] E[T,]
Mean waiting time until the

server first visits the queue E[T,,] E[T,.]
Mean cycle time after departure

from a nonempty queue E[T,] E[T,]
Mean response time conditioned

on message length L E[T,|L] E[T|L)
Intervisit time, type | Not used 1,
Intervisit time, type 2 Not used I,

Performance measures

Let us start by quoting some results from [11]. We define a
polling cycle C as the time interval beginning with a visit to
a certain queue by the server and ending with the next visit
to the same queue. Let @ be the number of characters served
during a polling cycle. Then we have

E[C] = R + bE[Q]. (1

The throughput v of the system is measured by the average
number of messages served in a unit time. This is given by

N _ oE[Q]

YT ET + 1x . EC]’ 2)
from which we have

N R |
an =g+ 0) -5 ®
Solution

Let us assign indices 1, 2, ---, N to the N queues in cyclic
order. In order to derive the probability distribution for Q,
we define the state «, of queue / as

u =

i

{0 if queue i does not have a message,

1 if queue / has a message, i=1,---, N. 4)

Note that e is the probability of no arrival at an empty
queue during a time interval 7. Let P{u,, - - -, u,) be the
steady-state probability that the server observes a sequence of
states {u,, ,, U, -+, Uy, Uy, - - -, U,_,, u;} before visiting
queue . This is the probability that, at a point in time when
queue i is polled, the server has experienced a history of
states {u,,, U,,, -+, Uy, U, -, U,_,, 4;} when it visited
queuesi+ 1,i+2,---,N, 1, ..., i (now) in the last round
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of polling. Note that u; is the state of queue j when it was
polled. Considering events that occur during this cycle, we
have the steady-state equation

Pi(un s Uy 0’ Ups =00 uN)

N

=exp|-A\R+b ¥ u

k=1

(ki)
' Pi—l(ul’ Ty Uiy 0, Uipps * uN)
N
+oexp| -ANR+H Y
k=1
(ki)
‘ P,‘_l(up Y u,‘-p l’ u,‘+|a STty u]v)’ (5)
Pi(ul’ T Uy 1’ Ui 77 uN)
N

=71—exp|-A\R+b Y u
k=1
et

Py w00 e Uy)

N

+ 31l —cexp| -A\R+b 3 u
k=1
(ki)

) P,_l(up Tt u,'_p 1, u,‘+|’ tr s uN)' (6)

These equations are concerned with two time points: One is
the instant when queue i is polled (on the left-hand side),
and the other is the instant when queue i — 1 is polled (on
the right-hand side). Since {u,, , t,, 5, -+, Uy, Uy, -+, U_,} is
a history, they do not change between the two time points.
Equations (5) and (6) are satisfied by

K, ul=...=uN=0,
N
):uk—l
P’(ul, e uN) = fe=1 o )
K Il o {exp[MR + bj)] — 1},
Jj=0

N
Yu>0 (7
k=1

(note that the right-hand side is independent of i), where K is
a normalization constant to be determined shortly. Since

Q4 7% u, (®)
k=1

we obtain

K, n=0,

P(n) & Prob[Q = n] = K<N> o ﬁ @ - 1),
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where

AR+jb,  j=0,1,.-, (10)
N n—1

K'=1+73 <N> P | NG WY (11)
n=1 n =0

and so

E[Q]= X nP(n)

n=1

N—-1 n

= KNS <N = 1) T (@ - 1), (12)
n=0 n J=0

From (12) all performance measures in (1)-(3) can be

computed.

Comparison with Wu and Chen

Besides E{C] and E[T], Wu and Chen [1] evaluate (in their
notation) E[T, ], the mean walking time between successive
service quanta, E[T, ], the mean waiting time from the
arrival of a message until the server reaches that queue for
the first time, and E[T,], the mean cycle time beginning
with the server’s departure from a nonempty queue. Then it
is shown that the mean response time conditioned on a
message length of L characters is given by

E[T|L) = E[T.

wait

1+ b+ (L-1DE[T,] (13)

Let us derive Wu and Chen’s measures E[T,], E[T,,,],
and E[T,] based on the above solution. First, E[T ] is
simply given by

- R
E[Q]
To evaluate E[7,,,] and E[T_,], we introduce an intervisit
time as the time interval which begins with the server’s
departure from a certain queue and ends with the next visit
to the same queue. Consider two types of intervisit time.
Type 1, whose duration is denoted by /,, is one in which a
message can arrive. Such a case occurs either when the
server leaves without service because there was no message at
the visit, or when the server completes the service of the last
character of a message. Type 2, whose duration is denoted
by I,, is one in which a new message cannot arrive because
the queue is full. This case occurs when the server completes

a character service and there still remain some characters in
a message. These two types of intervisit time occur with

E[T, (14)

Probftype 1] =1 — « + ao;
Prob[type 2] = a(l — o), (15)
where

£10]

a & Probly, = 1] = N

(16)

is the probability that a message is found at the server’s visit
to a certain queue. The probability that the server observes a
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sequence of states {1, ,, U,y - > Uy, Uy, *++, U,_,} during
each type of intervisit time is given by
Pi(ula ey Uiy 0, Upprs =% uN)
+ oo Pluy, o Uy LUy e W)
Type 1: R o
K N
B —exp[x (R +b 3 uk>]
1 - a + ao 2
) (k#£i)
Y w1
P
ol ~1, Ar;
0 67 = 1) -
=0
Type 2: (1 - U)Pi(ul, B ui—l’ 1, ui+19 cee, uN)
a(l = o)
N
2 Uy
kw1
{lowti}
=21 @ -0, (18)
% j=o

It follows that the LST (Laplace-Stieltjes transform) of the
DF (distribution function) for the intervisit time, /,(s) and
L(s) for types 1 and 2, respectively, is given by

K

1(s)=—"—
i(5) l —a+ as

N-1 n-l
' l:e(,‘_S)R + 3 (N;l- l) ™ T (€ = 1)], (19)

n=1 Jj=0

<N; 1> e—ST”a—(n+l)H (e)\rj - (20)

J=0

N—1
=2 %

n=0

The corresponding means are given by

K
E[Il]_l—a+au
N—-1 n—1
. [Re”‘ +3 (N; 1) AN | NG 1)], @n
n=1 =0
N—1 n
E[L] = K (N n ‘>Tna'<"*” " -1, (22)
a0 h Jj=0

from which we can readily compute
E[T,] = E[L] + . (23)

The LST of DF for T, denoted by W(s), is given by [see

Equation (2.56b) of [11] or Equation (37) of [8] for

derivation]
_ >‘[I|(S) - 11(>‘)]
W = o = Lo @4
from which we obtain
__EL 1
E[Toil = 12 Ve (25)

Using (23) and (25), we can compute the conditional
response time E[T | L] by (13). Unconditioning (13) on L,
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Table 2 Comparison of results in Wu and Chen [1] and this
paper. In each triplet, the first value is the approximate result of [1],
the second value is the simulation result of [1] (using 2000
messages), and the third value is the exact result of this paper. It is
assumed that 1/¢ = 10 and R/(Nb) = 0.05.

Cases N=35 N=7 N=3§ N=7
Ao = 0.0066 \b=0.0046 Xb=0.0505 Ib=0.0316
AE[T,] 0.1046 0.08045 1.805 1.457
0.1032 0.08181 1.749 1.505
AE[T] 0.10448 0.080363 1.7999 1.4514
AE[T,] 0.01549 0.01083 0.005592 0.003497
0.01575 0.01015 0.005555 0.003479
0.015490 0.010834 0.0054982  0.0034194
AE[T] 0.002353 0.002294 0.1266 0.1110
0.002336 0.002337 0.1273 0.1115
AE[C) 0.0023531 0.0022936  0.12858 0.11327
AE[T,] 0.01065 0.008219 0.1866 0.1511
0.01061 0.008243 0.1844 0.1504
0.010650 0.0082170  0.18662 0.15097

we have a relationship
E[T] = E[T,, ]+ b+ <l - 1>E[Tcl], (26)
g

which can also be proved algebraically using the above
equations.

In our Table 2, we compare our exact results with the
approximation and simulation results given in Table 1 of
[1]. We see that the approximation results of [1] and our
exact results are very close. However, our solution is much
simpler than that of [1].

Remarks

The model we have solved can also be viewed as a polling
system with feedback. Namely, a message departs with
probability ¢ and does not with probability 1 — o after
service completion. Such a case occurs in the error-prone
transmission channel, as pointed out in Kuehn [12]. The
model is also applicable to a time-sharing system with N
multiprogramming levels where a processor gives service
quanta in a round-robin fashion. In another paper [13], we
have analyzed a similar polling system with feedback, where
there is infinite queueing capacity at each queue. An
application suggested in [13] is one to the token-ring local-
area network where a long message (e.g., a file or program) is
transmitted by segments. The user’s interest is his mean time
until the whole message is transmitted. We finally note an
application to a model of a crossbar switching machine in
[14].
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