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Product-form queueing networks have proved to
be useful for predicting the performance of
computer systems. In practice, these networks
are analyzed using approximate methods
because exact methods are computationally too
expensive. Schweitzer’s approximation is one of
the most commonly used. However, there is no
method for estimating the error in the solution.
This paper proposes a new approach for
estimating the error in Schweitzer’'s
approximation for fixed-rate product-form
networks. It is based on detecting the extent to

which the approximation assumptions used hold.

Empirical evidence is presented to show that
this approach can be used to accurately predict
the error in the approximation.
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Introduction

Closed queueing networks have proved to be very useful in
analyzing the performance of computer systems. Their use
grew after the discovery of fast analysis methods [1, 2] for
product-form networks. Hence product-form networks have
been used in modeling tools such as VMPPF [3] and RESQ
[4].

However, the analysis of large product-form networks or
networks with a large number of customer classes by exact
methods is still too siow to be usable in practice. Such
networks frequently arise in models of computer systems.
Hence, a number of approximate methods have been
developed. The most widely used methods for closed
queueing networks are Schweitzer’s approximation [5] and
its refinements and extensions [6-8]. These approximation
methods are used, for example, in [3, 4].

In spite of the popularity of Schweitzer’s approximation,
few analytical results about its behavior are available. It has
been shown in [9] that there is always a physically
meaningful solution which could be returned by the
approximation. The convergence of the approximation to
this solution and its uniqueness have been shown only for
single-class networks in [10]. The approximation is also
known to be asymptotically accurate as the population
increases to infinity. From experience with the method, it is
known that it is generally accurate, and normally has errors 475
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of less than 20%. However, there is no systematic method
for estimating the error in the solution.

This paper proposes a method for estimating the errors of
Schweitzer’s algorithm. The proposed method differs from
the conventional method of comparing the approximate
solution to the exact solution. Instead it relies on the fact
that Schweitzer’s approximation, like many other
approximations, uses “approximation assumptions” to
reduce the cost of analysis. Since the approximation
assumptions do not hold in general, they are inconsistent
with the set of equations defining the exact solution. The
proposed method tries to detect the extent of the
inconsistency and to use this to predict the error in the
solution.

To this end, this paper defines an index for each class at
each center, called the inconsistency index. The
inconsistency indexes will all be zero if the approximation
assumptions are exactly true and the error in the
approximate solution is zero. The value of the inconsistency
indexes can be computed from the solution returned by the

‘approximation.

The error in Schweitzer’s approximation can be predicted
from the inconsistency indexes by the use of equations called
error equations. It is shown that there are different error
equations for different classes of networks, and that the error
equation for any class can be found empirically from a
sample of networks belonging to that class.

The proposed method also does not require a great deal of
extra computation. The computational effort required is
O(SK), where S is the number of service centers and K is the
number of classes. The inconsistency indexes can be
computed without any iterations in one loop over all the
centers and classes.

The rest of the paper contains an outline of the proposed
method and empirical results to verify its accuracy. First, the
notion of an inconsistency index is discussed in general.
Then the error measures used in this paper are defined. The
proposed method is then described. First, inconsistency
indexes for Schweitzer’s approximation are derived. Then
error equations for various classes of networks are derived
and empirical results are presented to show that these
equations accurately predict the error in Schweitzer’s
approximation.

In the sections on Schweitzer’s approximation, closed
product-form networks are considered since these are widely
used in performance modeling. Furthermore, only fixed-rate
product-form centers (infinite-server, processor-sharing, or
first-come-first-served) are considered. Work is required to
see if the method can be generalized to variable-rate centers
and other approximate methods.

Inconsistency indexes
Before a formal definition of inconsistency indexes is given,
the notion of an inconsistency index is first discussed
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informally. The discussion does not refer in particular to
Schweitzer’s approximation. This is because it is applicable
to all approximations; i.e., it should be possible to define
inconsistency indexes for any approximation. However,
further work is necessary to determine if these indexes are
useful in predicting the errors of other approximations.

Consider any queueing network where the exact solution
is described by a set of “exact equations” Q,. In order to
reduce the complexity of the analysis, a set of
“approximation assumptions” Q, may be used to derive an
approximate solution. Typically, in these approximation
assumptions the existence of certain relationships among
certain quantities in the exact equations is assumed. In
general, the approximation assumptions will not hold and
will also be inconsistent with the exact equations. On
intuitive grounds, it seems that the error in the approximate
solution should be related to the extent to which the
approximation assumptions do not hold. It also secems
reasonable that it should be possible to estimate the error
from the lack of fit of the approximation assumptions.

A measure of the lack of fit of the approximation
assumptions can be derived in the following manner. Let Y
be some quantity in the queueing network, such as the mean
queue length. Using some subset of the exact equations and
the approximation assumptions, it may be possible to show
that Y = f, where f, is some expression involving quantities
in the queueing network. Since the exact equations and the
approximation assumptions are inconsistent, it may be
possible to find a different subset of equations that implies
that Y = f,, where in general f, # f,. Therefore, in general
f=1, — £, will not be zero. However, f will be zero if the
network parameters are such that the approximation
assumptions hold exactly. Furthermore, in many cases, it
may be reasonable to assume that if f'is close to zero, the
approximation assumptions almost hold.

Thus, if an expression fas above can be found, in a sense
it measures the extent to which the approximation
assumptions hold. It may also be useful in estimating the
error in the approximate solution.

In estimating the error, it may be appropriate to
normalize / by dividing it by some factor. Such a normalized
index will be referred to as an inconsistency index.

The following is a formal definition of inconsistency
indexes motivated by the above discussions.

Inconsistent expression  Consider any queueing network
with an exact solution defined by a set of equations Q, and
analyzed using approximation assumptions Q,. Let Y be
some quantity in the network or some expression involving
quantities in the network, and let f, /|, f, be expressions such
that

1. Some subset of the equations Q, and Q, implies that
Y=f.
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2. Some subset of the equations Q, and Q, also implies that
Y=/,
3. The equations £, by themselves imply that in general

f=1,-h#o0.

fwill be called an inconsistent expression (asangata stutra)*
for the equations Q, and Q, associated with the quantity or
expression Y.

Inconsistency index  Let f be any inconsistent expression
for the equations Q, and @, associated with Y, and M(f) be
any normalizing factor for f. Then f/M( f) will be called an
inconsistency index (asangati sanketaka) for the equations
Q. and Q, associated with Y,

It is to be noted that the above definitions do not furnish
any method of finding an inconsistency index. Also, it can
be seen that there may be many inconsistency indexes for a
given set of equations. In general, experimentation and
empirical studies will be required to find useful inconsistency
indexes.

Error measures
The error measures studied are the “tolerance” for each class
and the maximum tolerance as defined in [11]. This is
because the tolerance is a useful measure of the accuracy of
an approximation that scales each error in proportion to its
importance and does not exaggerate the importance of errors
in insignificant quantities. It is found by first normalizing the
errors in important performance measures in the network.
Queue-length errors are normalized by dividing the queue-
length error by the network population. Wait-time errors are
normalized by dividing the wait-time error by the total delay
for one trip around the network. Thus each error is scaled in
proportion to its importance, and large errors in insignificant
quantities are not magnified. The tolerance is defined as the
largest normalized error.

Mathematically, the queue-length tolerance error for any
class ¢ at any center s is

(ex) (ap)
LS(’ - LS(‘
N,

c

EL..\'(' =

’

where L” and L are the exact and approximate values for
the queue length. The wait-time tolerance error is
(ex) (ap)

E _ Wsc - Wsc

Wse S
3 W
s=1
where W ” and W & are the exact and approximate values
for the mean wait time per trip around the network. The
tolerance error for class ¢, E_, is given by

EL‘ = maX(EL.xC’ EW.xc)'

The maximum tolerance error is
E = maxE,.

*“Here and in a few other instances, we introduce some technical terms into Sanskrit.
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indexes for Schweitzer’s approximation

© Approximation assumptions

For clarity, the approximation assumptions used in
Schweitzer’s approximation are reviewed before the
inconsistency indexes are derived. Consider a closed
product-form queueing network containing S fixed-rate
centers and X classes. Let the population vector in the
network be N, with the population in class k being denoted
by N,. Let D, be the loading of class k at center s (the
product of the visit ratio and mean service time for class k at
center s). Let the mean queue length, wait time, and
utilization when the population vector is # be denoted by
L,(n), W (n), p,(n), respectively. Let ¢, be a K-component
vector whose kth component is 1 and whose other
components are 0. Schweitzer’s approximation sets

L(N) if ¢k,
LSC(N ot ek) = Nk -1 (1)
L(N) if c=k
Nk

The traditional motivation for this assumption is that it is
equivalent to assuming that the change in queue lengths
caused by removing one customer from the network is
distributed over the centers in proportion to their queue
lengths. However, as pointed out in [10), there is an
alternative motivation for this assumption. For networks
with infinite-server centers, relation (1) is equivalent to
assuming that the mean wait time at each center at
population level N — | is the same as the mean wait time at
population level N, i.c., that

W (N - ¢) = W_(N). 2)

For networks with no infinite-server centers, relation (2) is
a sufficient but not necessary condition for relation (1). In
the following, the assumptions behind Schweitzer’s
approximation will be strengthened somewhat by assuming
that the approximation uses relation (2) even when there are
no infinite-server centers. As shown later, relation (2) is
necessary to compute the inconsistency indexes. Relations
(1) and (2) then form the approximation assumptions used
in Schweitzer’s approximation and will be referred to in
what follows as “the approximation assumptions.”

& Derivation of inconsistency indexes

The inconsistency indexes for Schweitzer’s approximation
are defined by noting that the approximation assumptions
together with the mean value analysis equations imply that
there are two distinct ways of computing L (N — ¢,) at the
noninfinite-server centers. There is thus an inconsistency
index associated with the queue length for Schweitzer’s
approximation. First, from approximation assumption (1),

LON = e) = L{N) = = L(N). 3
s (N =€) = L(N) = 5 Ly(N) ©) ar?
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Second,

N —
3 k

where

u(N - e,) = >’§ (N —e)n N —¢e) 5

S N=-¢) +p(N—¢)

The detailed derivation of these equations is given in the
appendix. For large N, it can be seen that u_ tends to p,, the
utilization of server s. It can be seen that in general

LN - e)# LPN —e¢,). LN = ¢) — L2(N — ¢,) is thus
an inconsistent expression. The queue-length inconsistency
index is defined as

LN - e) = LN - ¢)

K
XN,
=1

1, (N) = 6)

Because the average wait time is given by W (N) =
D, (1 + L{N — ¢,)) and there are two ways of computing
L (N — ¢,), it can be seen that there are two distinct ways of
computing W (N). These are

WAN) = D, (1 + LN = ¢) )
and
WQAN) = Dy(1 + LN — ¢)). ®)

The wait-time inconsistency index is defined as

W) = W)

I, (N)= s 9
o (V) W ©)
where

S
Wi(N) = ; W, (N) (10)

is the total delay for class k for one trip around the network.

In order to compute L‘f’(N — ¢,) from Equation (4), it is
necessary to compute p_(N — e,). Approximation
assumption (2) implies that

2, (N) if c#k,

pN—e)=< N -1 (1D
p(N) if c=k
Nk

The following equations can be used to more efficiently
compute the inconsistency indexes. Let

_ 8 Ncpsc(N)
W= LY o .
Then
N, N
u(N - e) = u(N) - #p((])v)
k sk

(Nk — I)P;k(N - (_’k)
N, =1+ p,(N—¢)

13)
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The algorithm for computing the inconsistency indexes thus
is

1. Run Schweitzer’s approximation to get estimates of the
performance measures.

2. Repeat steps 3 and 4 for all processor-sharing or FCFS
centers S.

3. Compute u(N) from Equation (12).

4. For all classes k compute u (N — ¢,) from Equations (13)
and (11); compute L(S')(N - ¢,) from Equation (3) and
LP(N - ¢,) from Equation (4); compute W'"(N) from
Equation (7) and Wf)(N ) from Equation (8); compute
the inconsistency indexes I, (V) and I, (V) from
Equations (5) and (9).

Error equations
The tolerance error in Schweitzer’s approximation can be
predicted from the inconsistency indexes by the use of error
equations (bheda sittra). Error equations are developed
below for two classes of networks. The characteristics of
these networks are described in greater detail later. The first
class is a class of unsaturated networks. The second class is a
class of saturated networks with high errors found in [12].
Similar error equations can be found for other classes of
networks.

The following quantities have been found to be useful for
developing error equations. They are

a

I, =max|[,|,
5

Iy, =max|l,,|,
s

the maximum value of the queue-length and wait-time
inconsistency indexes,

S
I, =2XIy,
s=1
_ S
L= 2 Ly,
s=1
the sum of the inconsistency indexes over all the servers, and

Iy = b Ika’

s=1

Ly = gl Tows

the root sum of the squares of the inconsistency indexes.

o Unsaturated networks

The first class of networks for which an error equation is
developed is a class of unsaturated networks. The number of
centers in the networks was uniformly distributed between 2
and 30. The total population in the network was allowed to
vary uniformly from 2 to twice the number of centers. The
restriction on the population was imposed as otherwise the

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987




WWYHVLIS dVINIQ

[enide 3yl pue SSB[d YoBd I0j JOLI3 paloipald Yl usamiaq
14 311 s;yensnyq 1o[d 1SIy 3y I ‘syIomiau ssepo-ajdinw
J0J SIOLI3 [en1O® pue paloIpald ay) uaamidq 1y ayl jo
1U31X3 Y1 dAensn((r Jeyl s1o[d rejiuis are ¢ pue 7 samsdif
*766°0 29 0] PUNOJ Sem SI0LIDd
[enyoe pue pa1dIpaid 3yl U2ImIdQ UOTIB[ALIOD JO JUIIIIPI0D
3y "JOLId [BNJOB Y] 01 35O AIdA ST JOLID pajorpaxd
ay) ‘syurod ay3 Jo 1sow e 1Byl UIIS 3q UED }] "IOLID [en)oe
Ay ueyl 1918318 Sem 1013 pajorpald ay) ‘dur] ay) Jopun
syurod oY) 1y “IOLID [ENJOR 3Y) UBY] SSI] Sem IOLId pajoipaid
Y1 ‘g = 4 duy ay3 daoqe FulA] syutod 3yl 1y F = 4 dUI] Y}
uo 21f pinom sputod Yy} [[B ‘SIOLId [enidoe Jyl 0) [enba d1om
S10113 padIpad ay) [[e i “1oa1s pajdrpad ay) isurede papofd
SBM YIOMIIU [OBJ JOJ JOLD [eNnidR dY] F = J duI| 3y}
S1 9uI JYS1exns ay I, "SHI0m1aU Ssejo-3[3urs 10§ 77 JOLId [enjoe
Y1 01 4 Joa1d pardrpaid ay1 jo 14 Yyl sajensnyr | dam3ng
‘SYI0MIAU Y] JO SIOLID 2DURIIO] 2y} 01 1y poo3T e sapraoid

6LV

(20

WErse T = T ITL0 — PIvlo0 - Tive0 =4

uonenba 2y 1eY1 punoj sem 3 'y pue 7y

ST P Ty sommuenb ay) 1suteSe sYI0mIdU SSe-I[3uls
10J JoL12 3y} 3ulssasdal AQ punoj sem uonenbs 10110 3y,

£861 ATNL ¥ 'ON 1€ "TOA 'dOTIAIQ 'STA 1 WEI

‘syI0MIU
sse[o-o[dnnw 9y} JO JOLIS DUBID[O} WINWIXBW Y] pue
JOL13 3dURIS0] sse[d-13d 2y Y1oq [[dm Aldrej 1otpard 03 punoj
Sem UONENDI JO1I3 3] "SHIOMISU SSB[I-INOJ PUB ‘SSB[I-331V)
‘SSB[D-0M] PIJRIdUIF A[WOPUEI JO 135 B UT SIOLIR 3Y) 101paxd
01 31 SuIsn AQ PayuIaA uay) sem uonenbd 10119 SIYT ‘SYI0MIdU
SSe[0-213uls Yons (3¢ 1 JO 198 Wopuel B yum Sunudswiadxd

AQ punoj sem syIom13u 3saYy) 10j uonenbs 1011 uy
‘uonnjos Y1 Surdueyd oYM SIUD Sulleys
-10s53001d Aq paoejdal 9q ued SINUD §IDg Y} JIomldu
w10J-1onpold & ur 92urs ‘S131udd Juueys-10ss3201d dxam
SISIUAD JAYI0 Y] “JIIUAD JIAIIS-LUYUI UB SABM[E SEM I21UD
151y 9y ‘I91uad Jffurs © ojul paredardde aq ued YI0MmIaU ULIOJ
-1onpoad Aue Ul SI9UID IIAIIS-IJIUYUL Y] [[B dUIS "0 pue |

Ud3M13q AIBA 0] PIMO[TE d1dm SI3JUdD 3Y) B sSuIpeo] 3y |
"paredo[[e
uddq pey uonerndod [101 Y} [IUN SISSB[D O SINUD
JO IdquInu [B10] 37} PUE § U3IM]3Q SISWOISND JO IdquInu
wopuel & uneso[e A[paneadal Aq JUOp sem SIY ] "Sasse[o
J13WoISNd Jo Jaquinu e ojul dn papialp sem uonendod [e10)
Y} ‘SyIomIdu ssep-s[dnnur 104 ‘pajeInies A[IABIY Sem UIIgm
19]U3) U0 ISBI] JB PAUTBIUOI A[JUaNDaL) sNI0M19U Bun)nsax

R

*SYIOMIDU $SB[D-[FUS JOJ JOLID [ENIOE SA JOLID PAIIIPaI]

L0°0 90°0 §0°0

10113 pajaIpald

£0°0

1 N { M ! N

w00

JOLI3 [eNOY

SO0

90°0

L0°0




£861 ATNL ¥ 'ON 1€ 7TOA 'dOTIAIA SIY T WHI

uonenbas ay) Aq paloIpald sem 7 sse[d 10J 10112 3U) 1By} pUe
My =TI+ 7' =y

uonenba ay1 Aq paroipaid sem | SSepO 10J I0LIS 3Y) JeY) pUnoj
sem 11 ‘sisATeue uoIssaIdar gursn) "1°( Jo sdas ui ¢'0 01 1°Q
WOJ1J paLlea sem 2 ()] JO sdals Ul )6 01 )] WOLJ PILIBA Sem
¢ ssep w1 uonendod Y] ‘syI0mI2U [§ JO 13s € uneroudd Aq
puNoOjJ SBAM SYIOMIIU JO SSBD SIY) 10] UOTIENDI JOLId UY ‘[[euws
AIB | SSBIO J0J SIOLID DUBIIOL YL "%001 O) SPUd) JOLId
0UBIIO) Y] ‘() «— 2 s ‘xemnonaed uj (2 + 1)/ seyoeoidde
[ SB[ 10j JOLId 3DURIIO] dwn-lem dy1 ‘Ajuyur sayoeordde
SIQWOISND ¢ SSB[D JO Iaquinu 3y} Se jeyj [Z[] U1 umoys st i
*9[qELIBA ST 7 SSB[O UI SISWOISND JO Iaquinu 3y}
$1 SSB[O JO JOWOISND AUO ST DY | PUB () U2am1dq Suthrea
JUBISUOD JWOS SI 2 A1YM (2 + 7)/(3 + [) ST I9IUID pUuOoIs 3y}
1B 7 sse[d 10 Surpeo| 3yl «(2 + ¢)/1 pue [ ale 19U 18Iy YY)
1e $3UIpRO] SSB[O 9Y I ‘T SSB[O AQ AJUO PAJISIA SI IS1UID PUOIIS
a3 ‘12)UID ISIY YT MSIA SISSE[D [10g 'SISSB[O JOWOISND 0m]
pue s191u3d SuLreys-10ss3001d om} sey ylomiau yoeq [z1]
WOIJ $HI0MIAU JOLIR-YSIY PIleInIes Jo SSed © SI pado[aadp
St uonenba J0LI3 Ue YOIym J0J SYI0M]OU JO SSB[D PUOIS 3y
SHIOMIOU LO4LI-YB1Y PIIDINIDS ®

“syIomIau sse[d-a[dinu 10 J0113 [enioe sse[d-13d sa Jowro pajoIpald ssed-19d

WVAVLIS dVIINIAd

L66°0 000°1 ¥66'0 0001 14
9660 8960 £66°0 096'0 3
8660 6101 L66°0 S00°1 4
440D 20D 0D /el
SassD}
WNWIXD SSDJo-424 Jo uaquiny

"SHI0MI0U $SBIO-]dINNW 10 SIOLA [ENIDE SA PIVIPAId | J|qel

‘[19M AITR) JOLID WNWIXBW JY) PUe SSB[O YOBd JOJ JOLID
Y y1oq s1o1pard uonenbs 1013 oY "£66°0 ST SHIOMIU SSB[D
-0M] I0J 4 PUB 7 U39M13q UOTIB[ALIOI JO 1UIIDIPI0I 3y} 1ey)
PUB 600 T = 7 AQ USAIS SI SYI10M]OU SSB[D-0M] JOJ JOLII Y}
JO a1ewnsd (sarenbs-1sed)) 359q Y1 1yl ‘9[duwexa 10§ ‘Smoys
31qe1 Ay 1 ‘sylomiau sse-spdnmuw ay) I0j SI0L [BnoR

pue paidIpald Y] UdIM1dq UOTIB[ALIOD Y} SMOUS | J[qe]
‘T 3qeL ul
B1ED dY] AQ 1IN0 UIOq ST SIY] ‘2qeysInSunISIpul e sYIomiau
SSE[O-1NOJ pue ‘-aaIy) ‘-0m1 dY) 10J s1y Y3 jey) Jjussedde st 1]
*SISSBIO [[B J9A0 JOLIJ [BNIOB WINWIXBW Y] PUR SISSB[D |[B
IJA0 JOLID PADIPAId WnWIXBW Y} UaMIdq 1Y Yl sajensnyt
101d pu0d3s oy I "SHI0MIAU Y] UI SSB[D YoBd 10J 10113

JOLID PAIpald
L00 900 SO0 Y00

€00 w00 100 00°0

r Y T T T =T T T

T T T r T - 00°0

10°0

wo

Jo112 [enoy

SO0

90°0

osy




WVYVLIS d4VIINIA

L8 ‘zIe[3op [ quey) 01 A OS[e pom [ 'suonsaddns pue
SJUAWO) urdesnodud AuewW s1y J0j pue 3uoim Sem XIpur

AJUDISISUOOUT JWITI-ITEM JY) JO UONIUYIP [BUISLIO AW JBY)

no unuiod 1oy 198eq T " Jueyl 01 1] A[renonted pinom

[ ‘studwwod [nyd[ay Iyl 10J $3913Ja1 SNOWAUOUER Y} pue

pieq X pue ‘1aded oy} jJo uoneziuesIo ay) INoge S)UdW U0

aandaoiad siy 10j juedlg " Y Jueyl 03 31| pinom |
sjuawbpajmoudoy

‘suonewrxoidde

1910 PUB SIOAIIS JJeI-J[qRLIBA O] PIPUIIXD 9q UBD
yoeroidde S1y) JI 39S 01 AIBSSIOU ST JIOM [RUOTNIPPY "SIIAIIS
91eI-paxy yuim uonewrxordde s I9Z11omyog I0J A[LIOIOR)SIIES
syIom yoeoddde s1yl 1By} moys 01 pajuasaxd usaq

Sey UPIAY [BOUIdWT '$IIUIISISUOIUL Y] JO SIUIIXI Y}
01 IOLId 23 d1e[al Jey) punoj Ajfeoduwd udyl sse suonenbo
Jouq ruonewxoidde ay) utauap ut apew suonduinsse
uonewrxoidde ay) ut sa10UdISISUOOUT FUNOIIP UO

paseq st yoeoidde oy ] ‘uonewnxoidde s 19z)1omydg JO SI0LID
a1 Sunewnss 01 yoreoxdde mou e pasodoid sey saded sy,
suoIsnpuo)

L861 ATNf ¥ 'ON [£ "TTOA 'dOTIAIA 'STA [ WAl

‘uonewxoidde s 197110mYd§ Aq parmbai uonendwods ay)
0] paredwod Jjews sI poylow dy) 4q panmnbar uoneinduiod
dy) ‘AIessadou dIe SUONBIAI OU DUIS “(YS)O S poylaw

a3 Jo ANxaiduwiod [[BISA0 Y] SNy ] ‘SaXapul AoUd)IsIsuodul
a1 jo uoneindwod ay) Jo ¢ dais ojul pajesdajur

3q ued uonendwod 3y) 108y U dwn (YS ) saInbax

OS[E JO.I9 2y )BWINSS O) PASN 21k Jey) J pue ‘[ saunuenb
ay3 Jo uonendwod 3y} AJIe3[D) 'SIXIPUT AOUIISISUOIUI

Y1 andwods 01 wn uoneindwod (Y§)O smba 1 sny |
*S3SSBO AY] [[B 19A0 dpew 3q 0] aAey sdoo] om] ‘ssed yoed
1V 'SI91U30 Y} [[B J3A0 ssed duo ul pagndwod aq ued saxapul
A2UdISISUOOUT JY) JBY) UIIS 3 UBD I ‘SAXIPUI AJUIISISUODUT
a1 Jo uonendu1od Y} SUIQLIISIP UONIIS ) WO
Auxajdwos jeuoneindwo)

*SIOLID [eN1dR pue pajdipaid
9y} u2aM19q 1y POOS B SI AIAY) JBY) UIIS 3q Ued 1] 'SIOLD
[en3oe 3y 01 uonenba s1y) Jo 1y oY) sajexsn([l p 31|

'Mg_1161'§ + 7515?2 _Mil +lefl'€ _ 7289'2 =g

“SYI0MIaU sse[d-dpdnnur 0§ JOLID [EN}OR WNWIXEW SA JOLIS P)OIpaid wnuwixepy

0113 PAjoIpaId

L0'0 90°0 00 70°0 €00 00 100 000
r T T T I T T T T T T Y T — 000
rd
3 .
Y — 100
SSBD)p 09— e N -1
sse[)-¢ — . Y gt}
SeDT  — . e ’ — w00
. . =1 ¢00 >
~ - (2}
g
-1 B2
“ ) g
Q
.. ~ o
\ =1 €00
. g ' =19%°%¢C




482

Actual error

Predicted error

Predicted error vs actual error for saturated high-error networks.

T. Deuser, A. Lipton, and C. Lipton for their help in
producing this paper.

Appendix
This appendix derives some of the formulae assumed in the
paper. Relation (3),

1
LN = €)= L(N) = 7~ Ly(N),
k

clearly follows directly from approximation assumption (1):

L. (N) if c#k,
L(N=-e)=3 N -1 ’
Tk L;c(N) if c=k

It is now shown that

Lmy = (A1)
s 1 - ufn)y
where

=1 N, + pﬂ,(n)’

DINKAR SITARAM

which implies relation (4). First, from relation (1),

LS(n - ek) = Lx(n) - ni Lsc(n)'

fa

Substituting this into the mva equation for wait time gives
1
W.(n) =D, (1 + L(n) — o LS((n)>.

Multiplying both sides by the throughput X ,(7) and using
Little’s rule gives

L(n) = p(n) <1 + L(n) - nl Lxc(n)>.

Rearranging the above equation gives

ncp :z'( n)

L (n) = ot o)

(1 + L(n)).

Summing the above equation over all classes and noting that
the left-hand-side sum 2(';1 L (n) reduces to L (n) gives

d nc'pxc(n)
L(n)= 21 m (1 + L(n)).
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Rearranging the above equation gives relations (A1) and
(A2). For the case where there is only one class, this reduces
to the equation

_ o)
L =1"G- D)/np (n)’
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