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Product-form  queueing  networks  have  proved to 
be useful  for  predicting  the  performance  of 
computer  systems. In practice,  these  networks 
are  analyzed  using  approximate  methods 
because  exact  methods  are  computationally  too 
expensive.  Schweitzer’s  approximation is one  of 
the  most  commonly  used.  However,  there is no 
method  for  estimating  the  error in the  solution. 
This  paper  proposes  a  new  approach  for 
estimating  the  error  in  Schweitzer’s 
approximation  for  fixed-rate  product-form 
networks. It is based  on  detecting  the  extent  to 
which  the  approximation  assumptions  used  hold. 
Empirical  evidence is presented to show  that 
this approach  can  be  used to accurately  predict 
the  error in the  approximation. 
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Introduction 
Closed queueing networks have proved to be very useful in 
analyzing the performance  of computer systems. Their use 
grew after the discovery of fast analysis methods [ 1, 21 for 
product-form networks. Hence product-form  networks have 
been used in modeling  tools  such  as VMPPF [3] and RESQ 

However, the analysis of large product-form  networks or 
networks with a large number of customer classes by exact 
methods is still too slow to be usable in practice. Such 
networks  frequently  arise  in  models of computer systems. 
Hence, a number of approximate  methods have  been 
developed. The most widely used methods for closed 
queueing networks are Schweitzer’s approximation [5] and 
its  refinements and extensions [6-81. These approximation 
methods  are used, for example, in [3, 41. 

In spite of the popularity of Schweitzer’s approximation, 
few analytical results about its  behavior are available. It has 
been shown in [9] that  there is always a physically 
meaningful  solution which could be returned by the 
approximation.  The convergence  of the  approximation  to 
this  solution and its  uniqueness  have  been  shown  only  for 
single-class networks  in [ 101. The  approximation is also 
known to  be asymptotically accurate  as  the  population 
increases to infinity. From experience with the  method, it  is 
known that it is generally accurate, and normally has errors 
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of less than 20%. However, there is no systematic method 
for  estimating the  error in the solution. 

Schweitzer’s algorithm. The proposed method differs from 
the  conventional  method of comparing  the  approximate 
solution to  the exact solution. Instead  it relies on  the fact 
that Schweitzer’s approximation, like many  other 
approximations, uses “approximation  assumptions”  to 
reduce the cost  of analysis. Since the  approximation 
assumptions do  not hold  in  general,  they are inconsistent 
with the set of equations defining the exact  solution. The 
proposed method tries to detect the  extent of the 
inconsistency and  to use this to predict the  error  in  the 
solution. 

This paper  proposes  a method for  estimating the  errors of 

To this end,  this paper defines an index  for  each class at 
each  center, called the inconsistency  index. The 
inconsistency  indexes will all be zero if the  approximation 
assumptions  are exactly true  and  the  error  in  the 
approximate solution is zero. The value of the inconsistency 
indexes can be computed  from  the solution returned by the 
approximation. 

The  error  in Schweitzer’s approximation  can  be predicted 
from  the inconsistency  indexes by the use of equations called 
error equations. It is  shown that  there  are different error 
equations for different classes of networks, and  that  the  error 
equation for any class can be found empirically from a 
sample  of  networks belonging to  that class. 

The proposed method also does  not require  a  great  deal  of 
extra computation.  The  computational effort required is 
O(SK), where S is the  number of service centers  and K is the 
number of classes. The inconsistency  indexes can be 
computed  without  any iterations in  one  loop over all the 
centers and classes. 

The rest of the  paper  contains  an  outline of the proposed 
method  and empirical results to verify its  accuracy. First, the 
notion of an inconsistency  index  is discussed in  general. 
Then  the  error measures used in this paper are defined. The 
proposed method is then described. First, inconsistency 
indexes  for Schweitzer’s approximation  are derived. Then 
error  equations for  various classes of  networks are derived 
and empirical results are presented to show that these 
equations accurately  predict the  error in Schweitzer’s 
approximation. 

product-form  networks are considered  since  these are widely 
used in  performance modeling. Furthermore,  only fixed-rate 
product-form  centers (infinite-server, processor-sharing, or 
first-come-first-served) are considered. Work is required to 
see if the  method  can be generalized to variable-rate  centers 
and  other  approximate methods. 

In  the sections on Schweitzer’s approximation, closed 

inconsistency  indexes 
Before a formal definition  of  inconsistency  indexes is given, 
the  notion of an inconsistency  index is first discussed 476 
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informally. The discussion does  not refer in particular to 
Schweitzer’s approximation.  This is because it is applicable 
to all approximations; i.e., it  should be possible to define 
inconsistency  indexes  for any  approximation. However, 
further work  is necessary to  determine if these  indexes are 
useful in predicting the  errors of other approximations. 

is described by a set of “exact equations” Q,. In  order  to 
reduce the complexity  of the analysis, a set of 
“approximation  assumptions” Qa may be used to derive an 
approximate solution. Typically, in  these approximation 
assumptions  the existence of  certain  relationships among 
certain quantities in the exact equations is assumed. In 
general, the  approximation  assumptions will not hold and 
will also be inconsistent with the exact equations. On 
intuitive  grounds,  it  seems that  the  error  in  the  approximate 
solution  should be related to  the extent to which the 
approximation  assumptions do not hold. It also seems 
reasonable that it  should be possible to  estimate  the  error 
from the lack of fit of the  approximation assumptions. 

A measure of the lack of fit of the  approximation 
assumptions  can be derived  in the following manner. Let Y 
be some  quantity  in  the  queueing network,  such as  the  mean 
queue length.  Using some subset of the exact equations  and 
the  approximation assumptions, it may be possible to show 
that Y =A, wheref, is some expression involving quantities 
in  the  queueing network.  Since the exact equations  and  the 
approximation  assumptions  are inconsistent,  it may be 
possible to find a different subset of equations  that implies 
that Y =f,, where in generalf; Zf,. Therefore, in general 
f= f, - f, will not be zero. However, fwill be zero if the 
network parameters  are such that  the  approximation 
assumptions hold exactly. Furthermore, in many cases, it 
may be reasonable to  assume  that  iffis close to zero, the 
approximation  assumptions  almost hold. 

Consider any queueing  network where the exact solution 

Thus, if an  expressionfas above can be found, in  a sense 
it  measures the extent to which the  approximation 
assumptions hold. It may  also be useful in estimating the 
error in  the  approximate solution. 

In estimating the error,  it may be appropriate  to 
normalizef by dividing it by some factor.  Such  a  normalized 
index will be referred to as an inconsistency  index. 

indexes  motivated by the above discussions. 
The following is  a formal definition of inconsistency 

Inconsistent expression Consider any  queueing network 
with an exact solution defined by a set of equations Q, and 
analyzed using approximation  assumptions Q,. Let Y be 
some  quantity  in  the network or some expression involving 
quantities  in  the network, and  letf;f;, f, be expressions such 
that 

1. Some subset of the  equations Q, and Qa implies that 
Y = A .  
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2.  Some subset of the  equations Q, and Q, also  implies that 

3. The  equations Q, by themselves imply that  in general 
Y = A .  

f = A  “f, # 0. 

fwill be called an inconsistent  expression (asangata slitra)* 
for the  equations Qe and Qa associated with the  quantity or 
expression Y. 

Inconsistency index Let f be  any inconsistent expression 
for the  equations Q, and Q, associated with Y, and M ( f )  be 
any normalizing  factor  forf: Then f lM(  f) will be called an 
inconsistency  index (asangati sanketaka) for the  equations 
Q, and Q, associated with Y. 

It is to be noted that  the above  definitions do  not furnish 
any  method of finding an inconsistency  index. Also, it can 
be seen that  there  may be many inconsistency  indexes for a 
given set of equations. In general, experimentation  and 
empirical  studies will be required to find useful inconsistency 
indexes. 

Error measures 
The  error measures  studied are  the “tolerance” for each class 
and  the  maximum tolerance  as  defined  in [ 1 I]. This is 
because the tolerance is a useful measure  of the accuracy  of 
an  approximation  that scales each error in proportion  to its 
importance  and  does  not exaggerate the  importance of errors 
in insignificant quantities.  It is found by first normalizing the 
errors  in  important  performance measures in  the network. 
Queue-length errors  are normalized by dividing the  queue- 
length error by the network population. Wait-time errors  are 
normalized by dividing the wait-time error by the total delay 
for one  trip  around  the network. Thus each error is scaled in 
proportion  to its importance,  and large errors in insignificant 
quantities  are  not magnified. The tolerance is defined as  the 
largest normalized  error. 

Mathematically, the queue-length  tolerance error for any 
class c at  any  center s is 

where L y ’  and L F  are  the exact and  approximate values for 
the  queue length. The wait-time  tolerance error is 

w y - WT’  
Ew.s. = 1 $ we) 1 .  

s= I 

where WE? and Ws”p‘ are the exact and  approximate values 
for the mean wait time per trip  around  the network. The 
tolerance error for class c, Ec, is given by 

E, = max(EL.sc, E , J  
S 

The  maximum tolerance error is 
E = maxE<. 

Here and In a few other Instances, we introduce some technical terms into Sanskrit. 
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Indexes for Schweitzer’s  approximation 

Approximation  assumptions 
For clarity, the  approximation  assumptions used in 
Schweitzer’s approximation  are reviewed before the 
inconsistency  indexes are derived. Consider  a closed 
product-form queueing network containing S fixed-rate 
centers and K classes. Let the  population vector in  the 
network be N, with the  population  in class k being denoted 
by N,. Let D, be the loading  of class k at  center s (the 
product of the visit ratio  and  mean service time for class k at 
center s). Let the  mean  queue length, wait time,  and 
utilization when the  population vector is n be denoted by 
L,(n), Wsk(n), p , (n) ,  respectively. Let e, be a  K-component 
vector whose kth  component is 1 and whose other 
components  are 0. Schweitzer’s approximation sets 

The traditional  motivation for this  assumption is that it  is 
equivalent to assuming that  the change in  queue lengths 
caused by removing one  customer  from  the network is 
distributed  over the centers in  proportion  to their queue 
lengths. However, as pointed out  in [IO], there is an 
alternative motivation for  this  assumption. For networks 
with infinite-server centers,  relation ( I )  is equivalent to 
assuming that  the  mean wait time  at each center  at 
population level N - I is the  same as the  mean wait time  at 
population level N, i.e., that 

For networks with no infinite-server centers,  relation (2) is 
a sufficient but  not necessary condition for relation (1). In 
the following, the  assumptions behind Schweitzer’s 
approximation will be strengthened  somewhat by assuming 
that  the  approximation uses relation (2) even when there  are 
no infinite-server centers. As shown  later,  relation (2) is 
necessary to  compute  the inconsistency indexes. Relations 
( I )  and (2) then form the  approximation  assumptions used 
in Schweitzer’s approximation  and will be referred to  in 
what follows as “the  approximation assumptions.” 

Derivation of inconsistency indexes 
The inconsistency  indexes  for Schweitzer’s approximation 
are defined by noting  that  the  approximation  assumptions 
together with the  mean value analysis equations imply that 
there  are two  distinct ways of computing Ls(N - e,) at  the 
noninfinite-server  centers. There is thus  an inconsistency 
index associated with the  queue length  for Schweitzer’s 
approximation. First, from  approximation  assumption ( I ) ,  
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Second, 

where 

The detailed  derivation  of  these equations is given in  the 
appendix. For large N,  it can  be seen that u, tends  to p s ,  the 
utilization  of server s. It can be seen that  in general 
LY’(N - e,) # LY’(N - e,). LI1’(N - e,) - LY’(N - e,) is thus 
an inconsistent  expression. The queue-length  inconsistency 
index is defined  as 

Because the average wait time is given by W J N )  = 

Dlk( 1 + L,( N - e,)) and  there  are  two ways of computing 
Ls( N - e,), it  can  be seen that  there  are two  distinct ways of 
computing Wsk( N ) .  These are 

and 

The wait-time  inconsistency  index is defined  as 

is the total delay for class k for one  trip  around  the network. 
In order  to  compute LY’(N - e,) from  Equation (4), it is 

necessary to  compute P,~.(N - e,). Approximation 
assumption ( 2 )  implies that 

if c # k,  

p J N )  if c = k.  
(1  1) 

The following equations  can be used to  more efficiently 
compute  the inconsistency indexes. Let 

Then 
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The algorithm  for computing  the inconsistency  indexes thus 
is 

1. Run Schweitzer’s approximation  to get estimates of the 

2. Repeat  steps 3 and 4 for all processor-sharing or FCFS 

3. Compute u,(N) from  Equation ( 12). 
4. For all classes k compute u,(N - e,) from Equations (13) 

and ( 1 I ) ;  compute L‘,”(N - e,) from  Equation (3) and 
Lr’(N - ek) from  Equation (4); compute C ’ ( N )  from 
Equation (7 )  and p s 2 ’ ( N )  from  Equation (8); compute 
the inconsistency  indexes IXkL(N) and Iskw(N) from 
Equations ( 5 )  and (9). 

performance measures. 

centers s. 

Error equations 
The tolerance error  in Schweitzer’s approximation  can be 
predicted from  the inconsistency  indexes by the use of error 
equations (bheda satra). Error  equations  are developed 
below for  two classes of networks. The characteristics of 
these  networks are described in  greater  detail  later. The first 
class is a class of unsaturated networks. The second class is a 
class of saturated networks with high errors  found  in [ 121. 
Similar error  equations  can be found for other classes of 
networks. 

The following quantities have been found  to be useful for 
developing error equations.  They are 

IkL = max I I,, 1 9  

I,, = max I I,,,l> 
s 

the  maximum value of the queue-length and wait-time 
inconsistency indexes, 

S 

T,L = c Is,L 3 

S=l 

S 

T,w = c Isk,c.’ 
s= I 

the  sum of the inconsistency  indexes  over all the servers, and 

the  root  sum of the squares  of the inconsistency indexes. 

Unsaturated  networks 
The first class of  networks  for which an  error  equation is 
developed is a class of unsaturated networks. The  number of 
centers in  the networks was uniformly  distributed between 2 
and 30. The  total  population  in  the network was allowed to 
vary uniformly from 2 to twice the  number of centers. The 
restriction on  the  population was imposed as otherwise the 
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Predicted error 

4 Predicted error vs actual error for saturated high-error networks 

T. Deuser, A. Lipton,  and C. Lipton for their help in 
producing this paper. 

Appendix 
This  appendix derives some of the  formulae assumed  in the 
paper.  Relation (3), 

clearly follows directly from  approximation  assumption (1): 

where 
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which implies  relation (4). First,  from  relation ( I ) ,  

Substituting this  into  the mva equation for wait time gives 

Multiplying  both sides by the  throughput Ask( n) and using 
Little's rule gives 

Rearranging the above equation gives 

Summing  the above equation over all classes and  noting  that 
the left-hand-side sum I Lsc( n) reduces to L,( n) gives 
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