
Efficient search
techniques-An
empirical study
of the N-Queens
Problem

by Harold S. Stone
Janice M. Stone

This paper investigates the cost of finding the
first solution to the N-Queens Problem using
various backtrack search strategies. Among the
empirical results obtained are the following:
1) To find the first solution to the N-Queens
Problem using lexicographic backtracking
requires a time that grows exponentially with
increasing values of N. 2) For most even values
of N e 30, search time can be reduced by a
factor from 2 to 70 by searching
lexicographically for a solution to the N + 1-
Queens Problem. 3) By reordering the search so
that the queen placed next is the queen with the
fewest possible moves to make, it is possible to
find solutions very quickly for all N c 97,
improving running time by dozens of orders of
magnitude over lexicographic backtrack search.
To estimate the improvement, we present an
algorithm that is a variant of algorithms of Knuth
and Purdom for estimating the size of the
unvisited portion of a tree from the statistics of
the visited portion.

OCopyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

1. Introduction
In a recent paper, Stone and Sipala [11 showed a
mathematical model of search that yields a surprising result.
The average complexity of the search depends only linearly
on the depth of the search tree, not exponentially, which is
the complexity predicted by worst-case analysis. The key
assumptions in that model are that search halts when it first
reaches a fixed depth N, and that all internal search nodes
behave identically and independently with regard to the
probability that the search cuts off on either of the successor
paths from each node.

Although the model appears to be highly constrained and
unrealistic, small variations in the model do not affect the
result. Hence, the probability of cutoff does not have to be
identical at all nodes in order to achieve this behavior.
Nevertheless, the results are limited to two types of search
trees. Nicol [2] proved that the Stone-Sipala results hold
either if the search tree is everywhere expanding, so that at
every node the average number of live successors of a node
is greater than one, or if the tree is everywhere contracting,
so that the average number of live successors of a node is less
than one.

Since the Stone-Sipala model predicts low complexity, and
we know that there exist some searches that seem to take an
exponentially long time to find the first solution, we seek a
more general model that explains the exponential behavior
observed in practice. One model that has been studied
extensively is a probabilistic model for finding solutions to a
Boolean predicate by discovering combinations of variables
that set the predicate true. A practical instance of this
problem is Roth’s D-Algorithm [3]. Brown and Purdom [4]

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987 HAROLD S STONE AND JANICE M. STONE

analyzed a lexicographic backtrack search and found that,
although it has exponential average complexity, the
exponent grows less than linearly in the number of variables,
whereas the exponent is linear for exhaustive search.

predicate problem is a backtrack search with a
nonlexicographic ordering of solutions in which more tightly
constrained variables are explored before less tightly
constrained variables. Purdom and Brown [5] and Purdom
[6] examine such a strategy, in which Boolean variables that
are forced to a specific Boolean value are treated before
variables that can take either Boolean value. Purdom and
Brown [5] show that the effect of this strategy is equivalent
to solving a simpler problem with one fewer variable. This
changes the complexity by reducing the exponent of an
exponent, which yields a dramatic improvement in running
time. Purdom [6] found that search rearrangement can
reduce average complexity to subexponential complexity in
some circumstances in which lexicographical backtracking
has exponential average complexity. Empirical studies of this
algorithm and a multilevel variant appear in Brown and
Purdom [7] and Purdom, Brown, and Robertson [8],
respectively. The empirical studies show that one-level
rearrangement yields great improvements over standard
lexicographic search (as predicted by the search models) and
that two-level rearranging gives a small improvement over
one-level rearranging.

The results cited there are intriguing, but the question
remains for that model, as it does for the Stone-Sipala
model, whether the model accurately reflects any real-world
problem. Moreover, the rearrangements considered in the
literature are somewhat artificial, because the one-level
algorithm simply considers the variables whose choices
become forced ahead of variables for which a binary choice
exists. Clearly, for a one-level rearrangement, the only
sensible policy is to treat forced variables before treating
variables for which a binary choice exists. What is more
interesting is a situation in which several choices, in general,
are available for each variable. It is not clear that the two-
level policy studied in the papers cited is the most effective
means for generalizing the one-level policy, and it is different
from the “most-constrained” policy explored in this paper.
Moreover, the analytical methods in the literature do not
carry over to specific problems, because basic assumptions
such as identical and independent probabilities do not
generally hold for real problems.

This paper explores the average cost of search for a model
problem that is currently a popular testbed for investigating
the search complexity of Artificial Intelligence techniques.
The problem is known as the N-Queens Problem, in which
the objective is to place N queens on a chessboard so that no
two queens attack each other. Although it is possible to
construct solutions for some values of N without conducting
a search, we limit the algorithms used in this paper to

Another strategy that proves effective for the Boolean-

IBM J. RES. DEVELOP. \. ‘OL. 31 NO. 4 JULY 1987

backtrack search in order to use the problem as a model for
other problems in which techniques for directly constructing
a solthion without searching are unknown.

We have several findings of interest. First, a probability
analysis does indeed show that the search tree expands for
approximately N/2 levels, then contracts. From the Stone-
Sipala model, we find that the lexicographic search algorithm
is drawn rapidly down to the N/2 level, but below this level
the probability of failure climbs quite rapidly. Consequently,
a lexicographic search may explore a substantial portion of
the central part of the search tree, which grows exponentially
in the depth of the tree. Our experiments confirm that
lexicographic search appears to take a time that grows
exponentially before producing the first solution.

Because of statistical variations that depend on N, we
show empirically that solutions for some values of N are
harder to find than for larger values of N. Specifically, for N
even and less than 30, it is generally preferable to solve a
problem of size N + 1 and to throw away a queen to get a
solution of size N, rather than to solve a problem of size N.
We call this an “odd” solution to the N-Queens Problem.

rearrangement under the rule “for the next placement, place
a queen in the row that has the fewest placement choices.”
This rule enabled us to solve quickly all N-Queens Problems
up to N = 96 using only a personal computer. The
lexicographic strategy failed to produce a solution in
reasonable time for N = 30. Bitner and Reingold [9]
suggested that this rule be used to solve the N-Queens
problem, but they proposed the rule with a few others
without attempting to give a relative evaluation of the rules.
We show here that an early cutoff rule proposed by Bitner
and Reingold yields only a small improvement, whereas the
fewest-choices policy appears to yield literally dozens of
orders of magnitude improvement for large problems.

To help estimate the size of these enormous search trees,
we modified an algorithm originally due to Knuth [101 and
improved by Purdom [1 11 for estimating the size of
backtrack trees. They rely on statistical sampling of many
paths in a backtrack tree. Rather than sample at random, we
propose an algorithm that produces an estimate of total tree
size at any point during a search. The algorithm keeps track
of average statistics at each level of the tree as it scans nodes
of the search tree. It estimates total tree size by assuming
that the unscanned portion of the search tree has the same
statistics as the portion already visited. The advantage of this
algorithm over the Knuth-Purdom techniques is that cost
estimates of the remainder of a search are available to our

The paper demonstrates the effectiveness of search

algorithm without requiring any special searches to be
conducted. But the estimates may not have the same
accuracy as the Knuth-Purdom estimates. Our algorithm
may produce biased estimates, because the nodes visited lie
in a limited region of the search tree rather than being
distributed throughout it. 465

HAROLD S. STONE AND JANICE M. STONE

0 4 8 12 16 20 24 ?X

Search-tree depth

Section 2 of the paper presents the exponential complexity
of the lexicographical search for one solution and compares
the results to the results predicted by Stone and Sipala. In
Section 3 we present the “odd” solution and the search-
rearrangement method for discovering solutions. The
algorithm for estimating the size of the search and the
number of solutions appears in Section 4, together with an
analysis of the data collected for the N-Queens Problem. The
final section summarizes the results of this research.

2. Lexicographic search
This section presents basic empirical data for lexicographic
searches that solve the N-Queens Problem. We also show
that the results are consistent with the Stone-Sipala results,
even though the average complexity discovered grows
exponentially with the tree depth.

Nicol [2] defines a terse search to be one that terminates
when the first solution is discovered. A full search is one that
produces all solutions. Most of the results in this paper relate
to terse search.

A lexicographic search is one that produces solutions
ordered lexicographically by some natural sorting key. For
the N-Queens Problem, the natural way to represent
solutions is by an N-tuple whose ith component is the
column number of the queen in Row i. For four queens, the
solutions are (2, 4, I , 3) and (3, I , 4, 2). The natural sorting
key for solutions to the N-Queens Problem is to sort
N-tuples in ascending order so that (2, 4, I , 3) comes before

466 (3, 1, 4, 2) because it is lexicographically less than (3, 1, 4, 2).

Stone and Sipala [11 showed that under certain conditions
a terse search has an average complexity that depends only
linearly on the depth of the search tree. Those conditions
include uniform probability of cutoff on the interior of the
tree, but the results presented were not sensitive to small
variations in cutoff probability. However, they do depend
strongly on whether the tree is expanding or contracting. A
search tree is said to be expanding at a given node if the
expected number of successors of that node exceeds unity.
The tree is contracting at a node if the expected number of
successors is less than unity. Nicol [2] proves that if a tree is
everywhere expanding or everywhere contracting, then the
average terse-search complexity depends only linearly on the
depth of the tree. (The search complexity depends as well on
the work per node visited, so that total complexity may be
much greater than a linear function of the tree depth.)

Given that expanding trees and contracting trees
apparently lead to very efficient terse search, what trees
remain that can lead to very lengthy terse search? If a tree
first contracts, then expands, the contracting portion of the
tree (if sufficiently large) determines the search complexity
and the terse search is efficient. If the contracting portion is
very small, then the expanding portion of the tree
determines the search complexity, and again terse search is
very efficient. So trees that contract, then expand, are
relatively efficient for terse search.

The interesting case is a tree that first expands, then
contracts. In the expansion portion of the tree, the tree grows
exponentially. At some critical depth in the tree, the tree
reaches its maximum breadth, then contracts exponentially
at depths below the critical depth. The Stone-Sipala analysis
predicts that a terse search will quickly reach the critical
depth, but because most searches that reach the critical
depth fail, a terse search may well have to visit a large
number of nodes at the critical depth before it discovers one
that leads to a solution. In fact, the number of nodes
explored can grow exponentially in the depth of the search
tree. An expansion-contraction tree is clearly a tree that can
be exponentially difficult to search.

contraction tree when it is solved by a terse lexicographic
search. The reason that this is true is illustrated in Figure 1,
which shows the average branching factor in the search tree
as a function of search depth for the 29-Queens Problem.
The branching factor is given both for lexicographic search
(LEX) and for most-constrained search (MIN), which is
discussed later. Lexicographic search terminated after three
million backtracks, having found its first solution. The
average branching factor at each level of the tree is
computed by counting each node at that level equally. Only
a minuscule fraction of the search tree had actually been
visited at the time the search terminated, so the data shown
may differ somewhat from the true average branching factor
for the whole tree.

The N-Queens Problem produces an expansion-

HAROLD S. STONE AND JANICE M. STONE IBM J . RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

3NOIS ‘W 331NVI a N V 3 N O l S ‘S a l O N V H

6

5

4

3

2

I

0
0 2 4 6 X 1 0 1 2 1 4

Number of queens

0 4 8 12 16 20 24 28

Number ofqueens

I assume that the branching factor diminishes by two for each
of N/2 levels. Then the tree breadth at level N/2 is given by

breadth (N/2) = n (N - 2i),

which can be reduced to

N/2

I = I

468
breadth (N/2) = 2N/2 (f)!. (1)

Figure 4 compares Equation (I) to the number of nodes
visited during a full lexicographic search for N up to 13, and
we see that Equation (I) behaves something like the
complexity of full lexicographic search, but lies strictly below
that curve. Note that Equation (1) counts only the nodes at
the widest part of the tree, and fails to count the nodes above
or below this level.

How good is a terse lexicographic search? The statistical
analysis of terse lexicographic search for the N-Queens
Problem is rather complicated, and we have not been able to
produce an analysis that yields accurate predictions. The
number of backtracks for terse lexicographic search grows
exponentially in N, as shown in Figure 5 for N up to 29.
This graph shows the number of backtracks to obtain the
first solution. Although the data curve is rather jagged, the
trend is exponential because the points lie along a linear
slope on a logarithmic scale. The curve stops at N = 29,
because we were not able to obtain solutions beyond the
29th in a reasonable time on the IBM PC/AT computer on
which the computations were performed.

exponential because the search is dragged down quickly to
the widest portion of the search tree from where successful
paths are very rare and difficult to discover. The number of
ways of placing N/2 nonattacking queens on an N-by-N
board grows much faster than exponentially in N/2, as
indicated in Equation (1). These partial solutions form the
search space. But the full solutions are very sparse in the
search space, so even with the efficiency of backtracking, a
terse search appears to take an amount of time that grows
exponentially in N .

As we pointed out above, terse search in this case is

3. Two speedup techniques
This section treats an interesting technique that solves a
problem of size 2N by attacking a larger problem 2 N + 1
that produces the solution more quickly. The section closes
with an empirical study of an extremely powerful technique
based on search rearrangement that leads to speed
improvements measured in dozens of orders of magnitude
over lexicographical search.

0 An odd solution to the N-Queens Problem
Consider the data shown in Figure 5, and notice the jagged
nature of the curves through N = 29. Finding the first
lexicographic solution turns out to be much easier for odd N
than for even N. The speed increase is obtained because a
solution for size 2N + I requires anywhere from 2 to 70
times fewer backtracks than a solution for size 2N for
2N < 30 except for 2N = 26. If there is a solution with a
queen in the corner, then the first solution found by
lexicographic search has a queen in the corner, so we can
take any such solution for size 2N + 1 and turn it into a
solution for size 2N by removing the queen in the corner,
and the row and column occupied by that queen. The

HAROLD S STONE AND JANICE M STONE IBM J . RES DEVELOP. VOL. 31 NO. 4 JULY 1987

solution technique is rather odd because it proposes to solve
a problem faster by solving a bigger problem.

What is happening is that the solution for a board of size
2N + 1 contains a solution for a board of size 2 N that has
no queen on the major diagonal. Consequently, we can add
to the 2 N solution a bordering row and column with a queen
placed at the intersection, and the new solution is correct for
2N + 1 queens. The data indicate that it appears to be much
easier to discover solutions that have no queens on the
major diagonal when N is even than when N is odd. Hence,
we are speeding up the computation by adding a special
constraint to focus the search to a particular region of the
search space. We are not actually increasing the size of the
problem being solved. When we attempt to solve the
2N-Queens Problem directly, we seek a solution with a
queen in the corner. When we solve the 2N-Queens Problem
by solving the 2N + I-Queens Problem, what we are really
doing is seeking a solution to the 2N-Queens Problem in
which no queen lies on the major diagonal. For N even,
solutions are apparently easier to find when queens are
forbidden to lie on a diagonal than when the solution must
have a queen in the corner.

Although we cannot explain this particular characteristic,
clearly the solution density is not uniform throughout the
search space. We must expect that there exist search regions
where solution density is many times above or below average
solution density. Figure 6 shows the solution density for a
full lexicographic search for the 12-Queens Problem. The
plot shows solutions per backtrack at each solution,
normalized to a rate of 1 .O, which is the overall average
solution rate. The vertical divisions show the point at which
the queen in Row 1 moves to a new column. Note that the
solution rate is a few times higher than average for a queen
placed near the center of Row 1 and a few times less than
average for a queen placed at either end of Row 1. Also note
that the solution density tends to be highest in midsearch for
any given placement in Row 1, which corresponds to a
placement of the second queen near the center of the board.

Most-constrained search
Bitner and Reingold [9] proposed a search technique that
advances the search along the most constrained path. That is,
at any point in the search when seeking to place a new
queen, place the queen that has the fewest possible choices of
moves. (Break ties arbitrarily.) They proposed other
techniques as well, such as sharpening the cutoff criteria, and
branch-and-bound when a bound exists. It so happens that
most-constrained search alone solves terse search for the
N-Queens Problem for N up to 96. While all of their
suggestions generally produce reductions in computation
time, the results obtained from most-constrained search are
spectacular compared with their other suggestions. For
example, it is relatively easy to initiate a backtrack when any
remaining row has no choices for a placement. When this

IBM J . RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

4

I I I

0 250,000 500,000 750,000

Cumulative backtracks

rule is used and compared to the rule that forces a backtrack
when only the next row has no choices, we discover that the
search does indeed visit fewer nodes in the search tree. But
the reduction in the search effort is a small factor, and in
part is balanced by a small increase in computation time due
to the extra testing. The sharper cutoff criterion is
worthwhile but does not alter the computation time
dramatically. This observation is consistent with the
Stone-Sipala model, which shows that small changes in
cutoff probability have a small effect on effort expended.

reductions in complexity. Figure 7 compares the average
number of backtracks for LEX (lexicographic) and MIN
(most-constrained) search. The figure compares the average
number of backtracks per solution for one and ten solutions.
Note that the logarithmic scale tends to deflate the
differences. But careful inspection shows that MIN is three
orders of magnitude more efficient than LEX for N in the
high 20s. Figure 8 shows MIN plotted for N up to 96. This
evidence shows a rather horizontal trend for the bulk of the
points, although the upper envelope might be viewed as
following an exponential rise. However, at N = 97, MIN did
not terminate after a reasonable running time, and we
suspect that N = 97 may be a fairly difficult case to solve. If
so, this may be a point where exponential behavior of MIN
begins to be observable. The running time for most points
on the curve was a few seconds of time on the IBM PC/AT.

Figures 7 and 8 together suggest that LEX running time
increases exponentially and MIN running time increases
only polynomially over the range of N studied. The relative
improvement of MIN over LEX is virtually impossible to

But the most-constrained rule leads to enormous

HAROLD S. STONE AND JANICE M. STONE

L861 Alnf P 'ON IE '1OA 'd013A3Ci 'S38 'f cV81 3NOlS 'Pi 331NVC ClNV 3NOlS ' S alO8VH

OE sz

suaanb 30 IaqlunN

oz SI 01 S

J /

NINOI V

NIN I 0

x3701 +
x37 I 0

3NOLS 'W 331NVf a N V 3 N O L S 'S a 1 0 1 I V H LE61 A X l f !J 'ON I E ,1012 'd013A3a ' S 3 X '1 W 9 I

L

068'P19'P 000'088'E 000'00E'E 086'OEZ'Z 000'0 1 5' 1 000'OEO'I El
681'ES8 000'699 000'5 1 1 EOI 'ZEP 000'POE 000'EPZ Z I
926'991 000'0S 1 OOO'ZS 1 OL9'68 OOP'ZL OOZ'E9 I I
6ES'SE 001'LE OOS'ZE E 98'02 006'02 001 'EZ 01
P6E% 061'8 OE0'8 019'5 OPS'9 OSZ'P 6
LSO'Z 086'1 018'1 SIP'I 00E'I 012'1 8
ZSS 69s 060' 1 91P LSP 895 L

08 09 Ob oz
I

01 S

ZLP

shown grows slightly faster than exponentially in N. The
estimated size for N = 96 is nodes, yet a MIN search
produced a solution in less than five seconds. The most
costly MIN search took 1 100 seconds to find a solution for
N = 93, whose estimated search tree has nodes.

Why is MIN so efficient? There are at least two different
possible reasons, both of which definitely contribute to its
efficiency. The first reason is that MIN tends to produce a
narrower backtrack tree than LEX because MIN tends to
have a narrower branching factor in the first several levels of
the search tree. This holds in Figure 1, but the difference in
the average is not dramatic. Since average branching factor
impacts the estimated tree size, we can compare the effects
of branching factor reduction by comparing the estimated
tree sizes produced by MIN and LEX searches. For N = 29,
the estimates are 1.15. 10’’ and 2.87. 10’’ for LEX and
MIN searches, respectively, which are not terribly different.

The more dramatic effect of MIN over LEX is that it
produces a much higher success rate in the contracting
portion of the search tree than does LEX, because MIN
quickly discards paths that do not lead to solutions. How
does this happen? Consider, for example, the difference in
two strategies. Suppose that Row i has nine choices and Row
j has three choices left. LEX places a queen in Row i, then
places several more queens, then places a queen in Row j .
MIN places the queen in Row j , then several more queens,
then the queen in Row i. In this case, since there are only
three choices for Row j , we have to seek some combination
of choices for Row i and intervening choices that satisfy
Row j . If, for example, some placement in Row i is
incompatible with any placement in Row j , LEX will not
discover this fact until it has explored a potentially large
search tree. On the other hand, MIN will not explore that
tree at all because, by choosing Row j first, it does not
generate choices incompatible with Row j . Since Row J has
fewer choices, it is the more difficult constraint to satisfy.
Satisfying the most difficult constraints first reduces the effort
expended on rejecting paths that do not lead to solutions.

We conjecture that the power of MIN is felt mostly at
levels near the middle of the search tree. At early levels,
selection is not critical because most arrangements of the
first few queens lead to solutions. In the middle levels, many
queen placements lead to eventual search failure, but
potentially large searches are required to discover this fact.
At these levels, MIN is far more effective than LEX at
finding placements that eventually lead to solutions, and it
does so by ensuring that the queens most difficult to place
are placed first, and the remaining queens are filled in
around them.

One surprise uncovered by the studies is that MIN was
not dramatically better then LEX in a full search in spite of
its excellent performance on terse search. But full search was
conducted only up to N = 13, and MIN’s performance may
be relatively better for larger N. Data for terse searches

Table 2 Terse search: Number of backtracks per solution.

N I MIN 10 MIN I LEX 10 LEX

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

0 I O
68 26
14 16
20 35
54 57

125 I07
157 82
109 I I9

19 81
28 137
42 103
31 1 I8
25 16

I30 73
22 63
12 46
14 58
14 111

220 I16
227 145

72 31
0 28

313 101

2
105
32
92
41

249
98

1,885
1,344

10,036
5,357

41,281
2,526

199,6 15
834 I

1,737,166
25,406

4 I 1,584
48,658

397,673
454,186

3,006,270
I ,532,2 10

12
40
25
65

120
235
213
385
859

2,546

I I , I 14
3,197

6,353
215,652

1 1,029
165,661
23,06 1

111,125
61,343

30 1,220
453,699

1,628

28,088

comparing MIN to LEX appear in Table 2. The data show
that MIN is several orders of magnitude more efficient than
LEX for N between 20 and 30. We conjecture that the cost
of terse LEX search climbs exponentially for N 2 30, and
consequently, MIN could easily be 50 to 100 orders of
magnitude faster than LEX for N > 90.

5. Conclusions
The conclusions of Stone and Sipala, confirmed by Nicol,
indicate that the average complexity of search can be very
low in spite of an exponential upper bound on complexity.
But those conclusions were for a theoretical model, and not
based on actual statistics for a real problem. This paper
extends that research by showing the following results:

1. The N-Queens Problem has an exponentially increasing

2. The N-Queens Problem does not fit the Stone-Sipala
model because it is not everywhere expanding or
everywhere contracting.

3. The exponential behavior of lexicographic search is due
to explorations in the middle of the search tree that
follow paths that almost always fail.

4. The search complexity for terse MIN search grows very
slowly with N for N up to 96. Above that value, the
complexity may grow much faster.

5. The statistical variations within a search lead to regions in
the search tree where the solution rate is much faster or
much slower than the average solution rate.

complexity for lexicographic search.

6. Because of statistical variations, a constrained search 473

;TONE IBM J . RES. DEVELOP. VOL. 31 NO. 4 JULY 1987 I YAROLD S. S STONE A .ND J ANlCE M. E

might produce a solution much faster than an
unconstrained search. We demonstrated this by showing
that solutions for N even can be produced from 2 to 70
times faster by solving a problem for larger N.

The most important conclusion to draw from this work is
that MIN appears to be extremely effective for solving the
search problem posed here, and is sufficiently general to fit
in many other contexts. This confirms the suggestions of
Bitner and Reingold, and the intuition underlying the work
of Purdom, Brown, and others. The fact that MIN brought
the complexity of terse search down so dramatically was
unexpected.

A second major conclusion is that the average complexity
of search need not be exponential. We have demonstrated by
example that search for which lexicographic ordering yields
exponential average behavior can be solved orders of
magnitude faster by other search strategies. It is essential in
finding such strategies that some cleverness be used, and in
developing a strategy we recommend that the search-tree
statistics be studied to see where they can be exploited to
make the search go faster. Through the use of constraints to
guide search, a MIN strategy, or other methods, it may be
possible to find solutions to huge searches in a reasonable
time.

References
I . Harold S. Stone and Paolo Sipala, “The Average Complexity of

Depth-First Search with Backtracking and Cutoff,” IBM J. Res.
Develop. 30, 242-258 (May 1986).

2. D. Nicol, “Expected Performance of m-Solution Backtracking,”
NASA ICASE Report No. 8655, August 1986.

3. J. P. Roth, W. G. Bouricius, and P. R. Schneider, “Programmed
Algorithms to Compute Tests to Detect and Distinguish
Between Failures in Logic Circuits,” IEEE Trans. Electron.
Computers EC-16, 567-580 (1967).

4. C. Brown and P. W. Purdom, Jr., “An Average Time Analysis of
Backtracking,” SIAM J. Comput. 10, 583-593 (August 198 I) .

5. P. W. Purdom, Jr., and C. A. Brown, “An Analysis of
Backtracking with Search Rearrangement,” SIAM J. Comput.
12,717-733 (November 1983).

6. P. W. Purdom, Jr., “Search Rearrangement Backtracking and
Polynomial Average Time,” Art$ Intell. 21, 117-133 (1983).

7. C. Brown and P. W. Purdom, Jr., “An Empirical Comparison of
Backtracking Algorithms,” IEEE Trans. Pattern Anal. &
Machine Intell. PAMI-4, 309-316 (May 1982).

8. P. W. Purdom, Jr., C. A. Brown, and E. L. Robertson,
“Backtracking with Multi-Level Dynamic Search
Rearrangement,” Acta Informat. 15,99-113 (198 I) .

9. J. Bitner and E. M. Reingold, “Backtrack Programming
Techniques,” Commun. ACM 18,65 1-655 (1975).

IO. D. E. Knuth, “Estimating the Efficiency of Backtracking
Programs,” Math. Comp. 29, I2 1 - 136 (1975).

I I . P. W. Purdom, Jr., “Tree Size by Partial Backtracking,” SIAM
J. Comput. 7,481-491 (1977).

Received August 29, 1986; accepted for publication February
12, 1987

474

1 iAROLD S. STONE A .ND JANICE I

Harold S. Stone IBM Thomas J. Watson Research Center, P.O.
Box 704, Yorktown Heights, New York 10598. Dr. Stone is the
manager of advanced architecture studies at the IBM Thomas J.
Watson Research Center. He has been a faculty member at the
University of Massachusetts and Stanford University and has held
visiting faculty appointments at institutions throughout the world.
He is the author, coauthor, or editor of six textbooks, and has
produced over sixty technical publications. The series he has
produced as a consulting editor to Addison-Wesley, McGraw-Hill,
and University Microfilms contain more than seventy titles in all
areas of computer science and engineering. Dr. Stone received a
Ph.D. in electrical engineering in 1963 from the University of
California at Berkeley. His research contributions have been
primarily in computer architecture and digital systems design. He
has been active in both the IEEE Computer Society and ACM. For
the ACM he has served as Associate Editor of the J. ACM, and for
the IEEE Computer Society he has served as Technical Editor of
Computer Magazine and Governing Board Member. He is a Fellow
of the IEEE.

Janice M. Stone IBM Thomas J. Watson Research Center, P.O.
Box 704, Yorktown Heights, New York 10598. Ms. Stone is a staff
programmer in the experimental languages and concurrent systems
group at the IBM Thomas J. Watson Research Center. She received
the A.B. degree in mathematics from Duke University, Durham,
North Carolina, in 1962, and pursued graduate studies in
mathematics at Georgetown University and in logic and philosophy
of science at Stanford University. She has worked as a software
consultant and independent software producer, and as an adjunct
assistant professor at Hampshire College. In 1984 Ms. Stone joined
IBM Research; her research interests focus on parallel algorithms
and tools for development and analysis of parallel programs.

d. STONE IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

