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This  paper  investigates  the  cost  of  finding  the 
first solution to the  N-Queens  Problem  using 
various  backtrack  search  strategies. Among the 
empirical  results  obtained  are  the  following: 
1) To find  the first solution to the  N-Queens 
Problem  using  lexicographic  backtracking 
requires a time  that  grows  exponentially  with 
increasing  values of N. 2) For  most  even  values 
of N e 30, search  time  can  be  reduced  by  a 
factor  from 2 to 70 by  searching 
lexicographically  for  a  solution to the N + 1- 
Queens  Problem. 3) By reordering  the  search so 
that  the  queen  placed  next is the  queen  with  the 
fewest  possible  moves to make, it is possible to 
find  solutions  very  quickly  for all N c 97, 
improving  running  time  by  dozens of orders  of 
magnitude  over  lexicographic  backtrack  search. 
To estimate  the  improvement, we present an 
algorithm  that is a variant  of  algorithms  of  Knuth 
and  Purdom  for estimating  the  size of the 
unvisited  portion of a  tree  from  the statistics of 
the visited portion. 
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1. Introduction 
In a  recent  paper, Stone  and Sipala [ 11 showed a 
mathematical model of search that yields a surprising result. 
The average complexity of the search depends only linearly 
on  the  depth of the search tree, not exponentially, which is 
the complexity  predicted by worst-case analysis. The key 
assumptions in that model are  that search  halts when it first 
reaches a fixed depth N,  and  that all internal search nodes 
behave identically and independently with regard to  the 
probability that  the search cuts off on either  of the successor 
paths  from each node. 

Although the model appears  to be highly constrained and 
unrealistic, small  variations  in the model do  not affect the 
result. Hence, the probability  of cutoff does  not have to be 
identical at all nodes  in order  to achieve this behavior. 
Nevertheless, the results are limited to  two types of search 
trees. Nicol [2] proved that  the Stone-Sipala results hold 
either if the search tree is everywhere expanding, so that  at 
every node  the average number of live successors of  a node 
is  greater than  one,  or if the tree is everywhere contracting, 
so that  the average number of live successors of a node is less 
than  one. 

Since the Stone-Sipala  model  predicts low complexity, and 
we know that  there exist some searches that seem to  take  an 
exponentially  long time  to find the first solution, we seek a 
more general model that explains the exponential  behavior 
observed in practice. One model that has  been  studied 
extensively is a  probabilistic  model  for  finding  solutions to a 
Boolean predicate by discovering combinations of variables 
that set the predicate  true.  A practical instance  of  this 
problem is Roth’s D-Algorithm [3]. Brown and  Purdom [4] 
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analyzed  a lexicographic backtrack search and  found  that, 
although it has exponential average complexity, the 
exponent grows less than linearly in  the  number of variables, 
whereas the  exponent is  linear  for  exhaustive search. 

predicate  problem is a  backtrack  search with a 
nonlexicographic  ordering  of  solutions  in which more tightly 
constrained variables are explored before less tightly 
constrained variables. Purdom  and Brown [5]  and  Purdom 
[6] examine such  a strategy, in which Boolean variables that 
are forced to a specific Boolean value are treated before 
variables that  can  take either Boolean value. Purdom  and 
Brown [5] show that  the effect of this strategy is  equivalent 
to solving a  simpler  problem with one fewer variable. This 
changes the complexity by reducing the  exponent of an 
exponent, which yields a dramatic  improvement  in  running 
time.  Purdom  [6]  found  that search rearrangement can 
reduce average complexity to subexponential  complexity in 
some circumstances  in which lexicographical backtracking 
has  exponential average complexity.  Empirical  studies of this 
algorithm and a multilevel variant  appear  in Brown and 
Purdom  [7]  and  Purdom, Brown, and Robertson [8], 
respectively. The empirical  studies  show that one-level 
rearrangement yields great improvements over standard 
lexicographic search  (as  predicted by the search models) and 
that two-level rearranging gives a  small improvement over 
one-level rearranging. 

The results cited there  are intriguing, but  the question 
remains for that model, as it does for the Stone-Sipala 
model,  whether the model  accurately reflects any real-world 
problem.  Moreover, the rearrangements  considered  in the 
literature are somewhat artificial, because the one-level 
algorithm  simply  considers the variables whose choices 
become forced ahead of variables for which a binary  choice 
exists. Clearly, for a one-level rearrangement, the only 
sensible policy is to  treat forced variables before treating 
variables for which a  binary  choice exists. What is more 
interesting is a situation in which several choices, in general, 
are available  for  each variable. It is not clear that  the two- 
level policy studied in  the papers  cited is the  most effective 
means for  generalizing the one-level policy, and it is different 
from the “most-constrained” policy explored  in this paper. 
Moreover, the analytical methods  in  the literature do not 
carry  over to specific problems, because basic assumptions 
such  as  identical and  independent probabilities do  not 
generally hold for real problems. 

This paper  explores the average cost  of search for a model 
problem that is currently  a popular testbed  for investigating 
the search complexity  of Artificial Intelligence techniques. 
The problem is known as the N-Queens Problem, in which 
the objective is to place N queens  on a  chessboard so that  no 
two queens  attack each other. Although  it  is possible to 
construct solutions  for some values of  N  without conducting 
a  search, we limit the algorithms used in this  paper  to 

Another strategy that proves effective for the Boolean- 
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backtrack search in order  to use the problem  as  a  model  for 
other problems  in which techniques for directly constructing 
a  solthion  without  searching are  unknown. 

We have several findings of interest. First, a probability 
analysis does indeed  show that  the search tree expands for 
approximately  N/2 levels, then contracts. From  the Stone- 
Sipala model, we find that  the lexicographic search  algorithm 
is drawn rapidly down  to  the N/2 level, but below this level 
the probability  of failure climbs quite rapidly. Consequently, 
a lexicographic search may explore  a  substantial portion of 
the central part of the search tree, which grows exponentially 
in the  depth of the tree. Our experiments  confirm that 
lexicographic search appears  to  take a time  that grows 
exponentially before producing the first solution. 

Because of  statistical  variations that  depend  on N, we 
show  empirically that solutions  for some values of N are 
harder  to find than for larger values of N. Specifically, for N 
even and less than 30, it is generally preferable to solve a 
problem  of size N + 1 and  to throw away a queen  to get a 
solution  of size N, rather  than  to solve a  problem of size N.  
We call this  an  “odd” solution to  the N-Queens  Problem. 

rearrangement under  the rule “for the next  placement, place 
a queen in the row that has the fewest placement choices.” 
This rule  enabled us to solve quickly all N-Queens  Problems 
up  to N = 96 using only  a  personal computer.  The 
lexicographic strategy failed to produce  a  solution  in 
reasonable time for N = 30. Bitner and Reingold  [9] 
suggested that  this rule be used to solve the N-Queens 
problem, but they  proposed the rule with a few others 
without attempting  to give a relative evaluation  of the rules. 
We show  here that  an early cutoff rule  proposed by Bitner 
and Reingold yields only  a  small improvement, whereas the 
fewest-choices policy appears  to yield literally dozens of 
orders of magnitude  improvement for large problems. 

To help estimate  the size of  these enormous search trees, 
we modified an algorithm originally due  to  Knuth [ 101 and 
improved by Purdom [ 1 11 for  estimating the size of 
backtrack trees. They rely on statistical sampling of many 
paths in a  backtrack tree. Rather  than  sample  at  random, we 
propose an algorithm that produces an  estimate of  total tree 
size at  any  point  during a search. The algorithm keeps track 
of average statistics at each level of the  tree  as it  scans  nodes 
of the search tree. It estimates  total  tree size by assuming 
that  the unscanned portion of the search tree has  the  same 
statistics as  the  portion already visited. The advantage  of  this 
algorithm  over the  Knuth-Purdom techniques  is that cost 
estimates  of the  remainder of a  search are available to  our 

The  paper  demonstrates  the effectiveness of search 

algorithm  without  requiring any special searches to be 
conducted. But the estimates may  not have the  same 
accuracy as  the  Knuth-Purdom estimates. Our algorithm 
may  produce biased estimates, because the nodes visited lie 
in a  limited region of the search  tree rather  than being 
distributed throughout it. 465 
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Section 2 of the  paper presents the exponential  complexity 
of the lexicographical search  for one solution and  compares 
the results to  the results predicted by Stone  and Sipala. In 
Section 3 we present the  “odd” solution and  the search- 
rearrangement method for discovering solutions. The 
algorithm  for  estimating the size of the search and  the 
number of solutions  appears in  Section 4, together with an 
analysis of the  data collected for the N-Queens  Problem. The 
final section summarizes  the results of this research. 

2. Lexicographic search 
This section  presents basic empirical data for lexicographic 
searches that solve the N-Queens  Problem. We also show 
that  the results are consistent with the Stone-Sipala results, 
even though  the average complexity discovered grows 
exponentially with the tree depth. 

Nicol [2] defines a terse search to be one  that  terminates 
when the first solution is discovered. A full search is one  that 
produces all solutions.  Most  of the results in this paper  relate 
to terse search. 

A lexicographic search is one  that produces  solutions 
ordered lexicographically by some  natural sorting key. For 
the N-Queens  Problem, the  natural way to represent 
solutions is by an N-tuple whose ith  component is the 
column  number of the  queen in Row i. For four queens, the 
solutions are (2, 4, I ,  3) and (3, I ,  4, 2). The  natural sorting 
key for solutions to  the N-Queens  Problem is to  sort 
N-tuples  in  ascending order so that (2, 4, I ,  3) comes before 

466 (3, 1, 4, 2 )  because it is lexicographically less than (3, 1, 4, 2). 

Stone and Sipala [ 11 showed that  under certain conditions 
a terse search has an average complexity that  depends only 
linearly on  the  depth of the search tree. Those  conditions 
include uniform probability of cutoff on  the interior  of the 
tree, but  the results presented were not sensitive to small 
variations  in cutoff probability. However, they do  depend 
strongly on whether the tree is expanding or contracting.  A 
search tree is said to be expanding at a given node if the 
expected number of successors of that  node exceeds unity. 
The tree is contracting at a  node if the expected number of 
successors is less than unity. Nicol [2] proves that if a tree is 
everywhere expanding or everywhere contracting, then  the 
average terse-search complexity depends only linearly on  the 
depth of the tree. (The search complexity depends as well on 
the work per node visited, so that total  complexity may  be 
much  greater than a  linear function of the tree depth.) 

Given that expanding  trees and  contracting trees 
apparently lead to very efficient terse search,  what  trees 
remain that  can lead to very lengthy terse search? If a tree 
first contracts, then expands, the contracting  portion of the 
tree (if sufficiently large) determines  the search complexity 
and  the terse search is efficient. If the contracting portion is 
very small, then  the  expanding  portion of the tree 
determines  the search complexity, and again terse search  is 
very efficient. So trees that  contract,  then expand, are 
relatively efficient for terse search. 

The interesting case is a  tree that first expands, then 
contracts. In  the expansion portion of the tree, the tree grows 
exponentially. At some critical depth in the tree, the  tree 
reaches its maximum  breadth,  then  contracts exponentially 
at  depths below the critical depth.  The Stone-Sipala analysis 
predicts that a terse search will quickly  reach the critical 
depth,  but because most searches that reach the critical 
depth fail, a terse search may well have to visit a large 
number of nodes at  the critical depth before it discovers one 
that leads to a solution.  In fact, the  number of nodes 
explored can grow exponentially  in the  depth of the search 
tree. An expansion-contraction  tree is clearly a  tree that  can 
be exponentially difficult to search. 

contraction  tree when it is solved by a  terse lexicographic 
search. The reason that  this is true is illustrated  in Figure 1, 
which shows the average branching  factor  in the search  tree 
as  a function of search depth for the 29-Queens  Problem. 
The branching  factor is given both for lexicographic search 
(LEX) and for  most-constrained search (MIN), which is 
discussed later. Lexicographic search terminated after three 
million backtracks,  having found its first solution. The 
average branching  factor at each level of the tree is 
computed by counting each node  at  that level equally. Only 
a  minuscule  fraction of the search tree had actually been 
visited at  the  time  the search terminated, so the  data shown 
may differ somewhat  from the  true average branching  factor 
for the whole tree. 

The N-Queens  Problem  produces an expansion- 
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I assume that  the branching  factor diminishes by two for each 
of N/2 levels. Then  the  tree breadth at level N/2 is given by 

breadth (N/2) = n (N - 2i), 

which can be reduced to 

N/2 

I =  I 

468 
breadth (N/2) = 2N/2 (f)!. (1) 

Figure 4 compares  Equation ( I )  to  the  number of nodes 
visited during a full lexicographic search  for  N up  to 13, and 
we see that  Equation ( I )  behaves something like the 
complexity  of full lexicographic search, but lies strictly below 
that curve. Note  that  Equation  (1)  counts only the nodes at 
the widest part  of the tree, and fails to  count  the nodes  above 
or below this level. 

How  good is a  terse lexicographic search? The statistical 
analysis of terse lexicographic search for the N-Queens 
Problem is rather complicated, and we have not been able to 
produce an analysis that yields accurate predictions. The 
number of  backtracks  for  terse lexicographic search grows 
exponentially  in N, as shown  in Figure 5 for  N up  to 29. 
This graph  shows the  number of backtracks to  obtain  the 
first solution.  Although the  data curve is rather jagged, the 
trend is exponential because the  points lie along a  linear 
slope on a logarithmic scale. The curve  stops at N = 29, 
because we were not able to  obtain solutions  beyond the 
29th  in  a  reasonable time  on  the IBM PC/AT  computer  on 
which the  computations were performed. 

exponential because the search is dragged down  quickly to 
the widest portion of the search tree from where successful 
paths are very rare and difficult to discover. The  number of 
ways of placing N/2 nonattacking  queens  on  an N-by-N 
board grows much faster than exponentially  in  N/2,  as 
indicated in  Equation (1). These  partial  solutions form  the 
search space. But the full solutions are very sparse in the 
search space, so even with the efficiency of backtracking,  a 
terse search appears  to  take  an  amount of time  that grows 
exponentially in N .  

As  we pointed out above, terse search  in  this case is 

3. Two speedup  techniques 
This section treats  an interesting technique  that solves a 
problem  of size 2N by attacking  a larger problem 2 N  + 1 
that produces the solution more quickly. The section closes 
with an empirical  study of an extremely powerful technique 
based on search  rearrangement that leads to speed 
improvements measured  in dozens of orders  of magnitude 
over lexicographical search. 

0 An odd solution to the N-Queens Problem 
Consider the  data shown  in Figure 5, and notice the jagged 
nature of the curves through N = 29. Finding the first 
lexicographic solution turns  out to be much easier for odd N 
than for even N. The speed increase is obtained because a 
solution for size 2N + I requires  anywhere  from  2 to 70 
times fewer backtracks than a  solution  for size 2N for 
2N < 30 except  for 2N = 26.  If there is a  solution with a 
queen in the  corner,  then  the first solution found by 
lexicographic search has a queen in the  corner, so we can 
take any such  solution  for size 2N + 1 and  turn it into a 
solution  for size 2N by removing the  queen  in  the  corner, 
and  the row and  column occupied by that  queen.  The 
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solution technique is rather  odd because it  proposes to solve 
a  problem faster by solving a bigger problem. 

What is happening is that  the solution  for  a board of size 
2N + 1 contains a  solution  for  a board of size 2 N  that has 
no  queen  on  the  major diagonal.  Consequently, we can  add 
to  the 2 N  solution  a  bordering row and  column with a queen 
placed at  the intersection, and  the new solution is correct  for 
2N + 1 queens. The  data indicate that it appears  to  be  much 
easier to discover solutions that have no  queens  on  the 
major diagonal  when  N is even than when  N is odd. Hence, 
we are speeding up  the  computation by adding a special 
constraint  to focus the search to a  particular region of the 
search space. We are  not actually  increasing the size of the 
problem being solved. When we attempt  to solve the 
2N-Queens  Problem  directly, we seek a  solution with a 
queen  in  the corner.  When we solve the 2N-Queens  Problem 
by solving the  2N + I-Queens  Problem,  what we are really 
doing is seeking a  solution to  the 2N-Queens  Problem  in 
which no  queen lies on  the  major diagonal. For N  even, 
solutions  are  apparently easier to find when queens  are 
forbidden to lie on a  diagonal than when the solution  must 
have  a queen in the  corner. 

Although we cannot explain this particular  characteristic, 
clearly the solution  density is not uniform throughout  the 
search space. We must expect that  there exist search regions 
where solution  density  is many  times above or below average 
solution  density. Figure 6 shows the solution  density  for  a 
full lexicographic search for the 12-Queens  Problem. The 
plot  shows  solutions  per  backtrack at each  solution, 
normalized to a  rate  of 1 .O, which is the overall average 
solution  rate. The vertical divisions  show the  point  at which 
the  queen in Row 1 moves to a new column.  Note  that  the 
solution  rate is a few times higher than average for a queen 
placed near the  center of  Row 1 and a few times less than 
average for  a queen placed at  either  end of Row 1. Also note 
that  the solution  density tends  to be highest in  midsearch  for 
any given placement  in Row 1, which corresponds to a 
placement of the second queen near the  center of the board. 

Most-constrained search 
Bitner and Reingold [9] proposed  a search technique  that 
advances the search along the most constrained path.  That is, 
at  any  point in the search when seeking to place a new 
queen, place the  queen  that has the fewest possible choices of 
moves. (Break ties arbitrarily.) They proposed other 
techniques  as well, such  as  sharpening the cutoff  criteria, and 
branch-and-bound  when  a bound exists. It so happens  that 
most-constrained  search  alone solves terse search for the 
N-Queens  Problem  for  N up  to 96. While all of their 
suggestions generally produce  reductions in  computation 
time,  the results obtained from  most-constrained search are 
spectacular compared with their other suggestions. For 
example, it is relatively easy to initiate  a  backtrack  when any 
remaining row has no choices for  a  placement. When this 
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rule is used and  compared  to  the rule that forces a  backtrack 
when only the next row has no choices, we discover that  the 
search does  indeed visit fewer nodes  in the search tree. But 
the reduction in  the search effort is  a  small  factor, and in 
part is balanced by a  small  increase in  computation  time  due 
to  the  extra testing. The sharper cutoff criterion is 
worthwhile but  does  not alter the  computation  time 
dramatically. This observation is consistent with the 
Stone-Sipala model, which shows that small  changes in 
cutoff probability  have  a  small effect on effort expended. 

reductions  in  complexity. Figure 7 compares the average 
number of  backtracks  for LEX (lexicographic) and  MIN 
(most-constrained) search. The figure compares  the average 
number of  backtracks per solution for one  and  ten solutions. 
Note  that  the logarithmic scale tends  to deflate the 
differences. But  careful  inspection shows that  MIN is three 
orders of magnitude  more efficient than LEX for  N  in the 
high 20s. Figure 8 shows MIN plotted  for N up  to 96. This 
evidence shows a rather horizontal trend for the bulk of the 
points, although  the  upper envelope  might be viewed as 
following an exponential rise. However, at N = 97, MIN  did 
not  terminate after  a  reasonable running  time,  and we 
suspect that N = 97 may be a fairly difficult case to solve. If 
so, this  may be a point where exponential  behavior of MIN 
begins to be observable. The  running  time for  most  points 
on  the curve was a few seconds  of time  on  the IBM PC/AT. 

Figures 7 and 8 together suggest that LEX running  time 
increases exponentially and  MIN  running  time increases 
only  polynomially  over the range of  N  studied. The relative 
improvement of MIN over LEX is virtually impossible to 

But the most-constrained  rule  leads to  enormous 
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shown grows slightly faster than exponentially  in N. The 
estimated size for  N = 96 is nodes, yet a MIN search 
produced  a  solution  in less than five seconds. The most 
costly MIN search took 1 100 seconds to find a solution  for 
N = 93, whose estimated search tree  has nodes. 

Why is MIN so efficient? There  are  at least two different 
possible reasons, both of which definitely contribute to its 
efficiency. The first reason is that MIN tends  to  produce a 
narrower  backtrack tree  than LEX because MIN tends  to 
have  a  narrower  branching  factor in  the first several levels of 
the search tree. This holds  in  Figure 1,  but  the difference in 
the average is not  dramatic. Since average branching factor 
impacts  the estimated tree size, we can  compare  the effects 
of  branching  factor  reduction by comparing  the estimated 
tree sizes produced by MIN and LEX searches. For N = 29, 
the estimates are  1.15. 10’’ and  2.87. 10’’ for LEX and 
MIN searches, respectively, which are  not terribly different. 

The  more  dramatic effect of MIN over LEX is that it 
produces  a much higher success rate in the contracting 
portion of the search  tree than  does LEX, because MIN 
quickly  discards paths  that do not lead to solutions. How 
does  this  happen? Consider,  for  example, the difference in 
two strategies. Suppose that  Row i has nine choices and Row 
j has three choices left. LEX places a queen in  Row i, then 
places several more queens, then places a queen  in Row j .  
MIN places the  queen in  Row j ,  then several more queens, 
then  the  queen in  Row i. In this case, since there  are only 
three choices  for  Row j ,  we have to seek some  combination 
of choices  for  Row i and intervening choices that satisfy 
Row j .  If, for  example, some placement  in Row i is 
incompatible with any placement  in Row j ,  LEX will not 
discover  this fact until it  has  explored  a  potentially large 
search tree. On  the  other  hand, MIN will not explore that 
tree at all because, by choosing  Row j first, it does  not 
generate  choices  incompatible with Row j .  Since  Row J has 
fewer choices, it is the more difficult constraint  to satisfy. 
Satisfying the most difficult constraints first reduces the effort 
expended on rejecting paths that  do  not lead to solutions. 

We conjecture  that  the power of MIN is felt mostly at 
levels near the middle of the search tree. At early levels, 
selection is not critical because most arrangements of the 
first  few queens lead to solutions. In the middle levels, many 
queen placements lead to eventual search failure, but 
potentially large searches are required to discover  this fact. 
At these levels, MIN is far more effective than LEX at 
finding  placements that eventually lead to solutions, and it 
does so by ensuring that  the  queens most difficult to place 
are placed first, and  the remaining queens  are filled in 
around  them. 

One surprise  uncovered by the studies is that MIN was 
not dramatically  better then LEX in  a full search in spite of 
its excellent performance  on terse search. But full search was 
conducted only up  to N = 13, and MIN’s performance  may 
be relatively better  for larger N.  Data for  terse  searches 

Table 2 Terse search: Number of backtracks per solution. 

N I MIN 10 MIN I LEX 10 LEX 

7 
8 
9 

10 
11  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

0 I O  
68 26 
14  16 
20 35 
54 57 

125 I07 
157 82 
109 I I9 

19 81 
28  137 
42 103 
31 1 I8 
25 16 

I30 73 
22 63 
12 46 
14 58 
14 111  

220 I16 
227  145 

72 31 
0 28 

313 101 

2 
105 
32 
92 
41 

249 
98 

1,885 
1,344 

10,036 
5,357 

41,281 
2,526 

199,6 15 
834  I 

1,737,166 
25,406 

4 I 1,584 
48,658 

397,673 
454,186 

3,006,270 
I ,532,2 10 

12 
40 
25 
65 

120 
235 
213 
385 
859 

2,546 

I I , I  14 
3,197 

6,353 
215,652 

1 1,029 
165,661 
23,06 1 

111,125 
61,343 

30 1,220 
453,699 

1,628 

28,088 

comparing MIN to LEX appear in Table 2. The  data show 
that MIN is several orders of magnitude  more efficient than 
LEX for N between 20  and 30. We conjecture that  the cost 
of terse LEX search  climbs  exponentially  for  N 2 30, and 
consequently, MIN could easily be 50 to 100 orders  of 
magnitude faster than LEX for  N > 90. 

5. Conclusions 
The conclusions of Stone  and Sipala,  confirmed by Nicol, 
indicate that  the average complexity  of search can be very 
low in  spite  of an exponential upper  bound  on complexity. 
But those  conclusions were for a theoretical  model, and  not 
based on actual statistics for a real problem. This  paper 
extends that research by showing the following results: 

1. The N-Queens  Problem  has an exponentially  increasing 

2. The N-Queens  Problem does  not fit the Stone-Sipala 
model because it is not everywhere expanding or 
everywhere contracting. 

3. The exponential  behavior of lexicographic search is due 
to explorations  in the  middle of the search tree that 
follow paths  that  almost always fail. 

4. The search complexity for terse MIN search grows very 
slowly with N for  N up  to 96. Above that value, the 
complexity  may grow much faster. 

5. The statistical variations  within  a search lead to regions in 
the search tree where the solution  rate is much faster or 
much slower than  the average solution  rate. 

complexity  for lexicographic search. 

6. Because of statistical  variations,  a  constrained search 473 
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might produce a  solution much faster than  an 
unconstrained  search. We demonstrated  this by showing 
that  solutions for N even can  be produced from 2 to 70 
times faster by solving a  problem for larger N. 

The most important conclusion to  draw  from this  work is 
that  MIN  appears  to be extremely effective for solving the 
search problem posed here, and is sufficiently general to fit 
in many  other contexts. This confirms the suggestions of 
Bitner and Reingold, and  the  intuition underlying the work 
of Purdom, Brown, and others. The fact that  MIN brought 
the complexity of terse search down so dramatically was 
unexpected. 

A second major conclusion is that  the average complexity 
of search need not be exponential. We have demonstrated by 
example that search  for which lexicographic ordering yields 
exponential average behavior can be solved orders of 
magnitude faster by other search strategies. It is essential in 
finding  such strategies that  some cleverness be used, and  in 
developing  a strategy we recommend  that  the search-tree 
statistics be studied to see where  they can be exploited to 
make  the search go faster. Through  the use of constraints  to 
guide  search,  a MIN strategy, or other  methods, it may be 
possible to find solutions to huge  searches  in  a  reasonable 
time. 
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