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mappings  for  the 
omega network 

This  paper  presents  a  study of the  best  and 
worst  mappings  for  the  omega  network 
proposed  by D. H. Lawrie in 1975. We identify 
mappings  that  produce  no conflicts in the 
network  and  mappings  that  produce  a  maximum 
number  of conflicts. The  analysis  of  mappings 
for  some typical applications  shows  that an 
initial allocation of data to memory  modules 
determines  the  contention  within  the  network  for 
all iterations  of  the  algorithm. For the  case of the 
FFT  and the  bitonic sort algorithm  executed on a 
shared-memory  architecture, we prove  that if no 
conflicts are  produced  during  the first iteration 
of the  algorithm,  then  no conflicts are  produced 
during any other  iteration.  Moreover, if a 
maximum  number  of conflicts are  produced 
during  the first iteration,  then  a  maximum 
number  of conflicts are  produced  during all 
other  iterations of the  algorithm. For the 
d-dimensional grid computations  where 
communication is required  with 2d nearest 
neighbors, we prove  that if the initial allocation 
produces  no conflicts within  the  network,  then 
communication  with all the  neighbors is conflict- 
free. Also, if the initial allocation  produces  a 
maximum  number  of  conflicts,  then 
communication  with all the  neighbors is 
maximum-conflict. We show  that  the  omega 
network  cannot  produce  without conflicts some 
of the  bit-permute  mappings  such  as  the perfect 

shuffle  and  the bit reversal. The network  can 
produce  both of these  mappings  provided  that 
data  items  are  accessed  from  memories 
according to a  specific  skewed scheme. 

1. Introduction 
The analysis by Cvetanovii. [ 11 of the performance of 
iterative  algorithms  executed on both  dataflow and shared- 
memory parallel architectures shows that  the  method for 
allocating data  to local memories in a dataflow architecture 
or to global memories  in a shared-memory architecture  is 
significant for  controlling the  contention within the 
interconnection  network. In particular, we have  shown that 
for the omega  network  proposed by Lawrie [2], the 
allocation affects the  communication  time by a  factor  of 
O( &), where N is the  number of processors. Conflicts 
within the interconnection  network  become  a significant 
source of overhead in dataflow architectures that exploit 
pipelining  of  operations, since the delay at a single stage of 
the pipeline is spread to  the whole system. A similar effect is 
observed in  shared-memory  architectures  executing 
synchronous parallel algorithms, where the execution time 
between synchronization points is determined by the 
processor that takes longest to finish. 

In this  paper, we identify the allocations that  do  not 
produce any conflicts within the network and  the allocations 
that  produce a maximum  number of conflicts. We derive 
expressions for the  number of  allocations  of  each type  and 
characterize  their  properties. For an N-processor system, the 
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algorithm,  then  no conflicts are  produced  during  any  other 
iteration.  Moreover, if data  items  are allocated to  memory 
modules such that a maximum  number of conflicts are 
produced during  the first iteration of the algorithm, then a 
maximum  number of conflicts are produced during all other 
iterations. 

We extend the analysis to d-dimensional grid 
computations where at each grid point,  communication is 
required with 2d nearest neighbors. Examples  of  applications 
with 2d-neighbor communication  include grid-type 
computations such  as the Poisson equation  on a 
d-dimensional  grid, the weather-prediction  model, and 
turbulence modeling  in fluid flow. For these  types  of 
communication patterns, we prove that if the initial 
allocation  produces no conflicts within the network, then 
communication with all the  neighbors is also conflict-free. 
Moreover, if the initial  allocation  produces a maximum 
number of conflicts, then a maximum  number of conflicts 
are produced with all the neighbors. 

Finally, we prove that  some  important bit-permute 
mappings  such as  the perfect shuffle and  the  bit reversal 
cannot be achieved without  conflicts through  the network. 
However, if data  items  are accessed from  memories in a 
skewed manner,  then  the omega  network can  produce both 
the initial mapping  and  the perfect shuffle and bit reversal of 
this  mapping. 

The next  section  presents the background and states the 
assumptions. In Section  3, we define formally the property 
that holds  for the best and worst mappings. In Section 4, we 
describe  processor-memory  mappings  for the F l T ,  and we 
extend the analysis to  the  bitonic sort  algorithm  in  Section 5 .  
The analysis of  mappings  for the nearest-neighbor 
communication  appears in  Section 6. In Section 7, we 
analyze some of the bit-permute  mappings. The conclusions 
appear in the last section. 

2. Background and assumptions 
The  interconnection network we study  in  this paper is 
Lawrie’s omega  network  [2], with N inputs  and N outputs 
and (N/2) logN two-input-two-output switches 
interconnected by a perfect-shuffle connection where N is a 
power  of 2. We assume  that each switch has  associated 
infinite-length queues for maintaining multiple messages. 
Each switch can be in one of four states,  two of which are 
conflicting states and  the  other two  nonconflicting. An 
example of a 16 X 16 omega  network is shown in Figure 1. 

as the  FIT, polynomial  evaluation, and sorting can be 
efficiently implemented using the shuffle-exchange 
interconnection among processors. Lawrie [2]  has proved 
that  the omega  network can produce  without conflicts many 
of the  important accesses and  alignments of rows, columns, 
and diagonals  in an  array processor. In particular,  he has 
shown that if the omega network can produce  a conflict-free 

Stone  [3] has  shown that  some  important algorithms  such 

one-to-one mapping PN from  N inputs S, to N outputs D, 
represented by 

P, = {(S,, D,)lO 5 i < N}, 

then it can  produce a  uniform shift of  a conflict-free 
mapping P, + a represented by 

We use Lawrie’s terminology, where S = sIs2 . . . s, 
represents the binary  address of the source, D = d,d, . . . d, 
is the address of the destination, and n = logN. Lawrie [2] 
has  shown that  the switch position in network stage k for the 
path between the source S and  the destination D is 
determined by the  (logN - k)  least significant bits (LS bits) 
of the source S and  the k most significant bits (MS bits) of 
the destination D. Figure 2 illustrates  a method for 
determining  the  path between the source S = 0100 and  the 
destination D = 1 10 1. In the first network stage, the switch 
position is determined by three LS bits from the source 
address and  one  MS bit  from the destination address. In 
order  to  determine  the switch address at each successive 
stage, the  number of bits from  the source is decremented by 
one  and  the  number of bits from  the destination is 
incremented by one. 

In the sections that follow, we assume  that  the  number of 
processors N is equal  to  the problem size M. If, however, 
N < M ,  which is usually the case, our results still hold,  since 
for all algorithms  analyzed here, the  same  communication 
pattern is maintained by increasing the problem size. 

memory parallel computer where the omega  network 
connects N processors to N memory  modules  and where 
each data access requires traversing the network. In 
Cvetanovii. [I], we show  how the results obtained  here can 
be applied to  other multiple-processor architectures. 

The network is traversed twice for all load requests, since 
at  the beginning of each data access the request is sent from 
a processor to a memory  module  and  then  data  items  are 
transmitted  in  the opposite  direction. For the omega 
network from Figure 1, the  number of conflicts in network 
switches is the  same in  both  directions. This is true since 
there is a unique  path from any source to  any destination, 
and  thus  the  same set of network switches is traversed in 
both  directions.  Therefore, we analyze  only  mappings  from 
processors to memories. 

As a specific case of an architecture, we consider  a  shared- 

3. Properties of the best and worst  mappings 
In this  section, we identify a  property common  to all 
mappings that  can be produced  without conflicts (conflict- 
free mappings), and a  property common  to all mappings that 
yield a maximum  number of conflicts (maximum-conflict 
mappings). We also determine  the  number of mappings  of 
each type  as  a function of N. 453 
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Definition I The conflict-free mapping is defined as  a 
mapping for which two or  more messages are  not  in conflict 
at  the  same switch. For conflict-free mappings, all N paths 
from N sources to N destinations  are disjoint. 

Definition 2 The maximum-conflict mapping is defined 
as  a mapping for which N messages are  in conflict at 

I I O ~ N ) I ~  1 switches of the 1 (logN)/2 J network stage, such 
454 that 2 L ( l o g N ) / 2 J  messages are  in conflict at  the  same switch. 

Lang [4] has proved that  the  maximum  number of 
conflicts for the shuffle-exchange network  is equal  to 
2 L(losN)'2 = O( d 3 .  Consequently,  for the omega  network 
which applies the shuffle interconnection between stages, the 
maximum  number of  conflicts is equal  to 2 L1'og"2 , and it 
occurs  in the  middle stage of the network  (bottleneck stage). 

Definition 3 The distance between destinations (sources) i 
and j ,  where i > j ,  is defined as  the integer distance which is 
a  power  of two  and for which (i - j )  mod distance = 0. 
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Maximum-conflict mapping forN = 16 processors. 

equal to 2‘N/2’’0gN = d?. Note  that each switch can be set to 
one of four states,  two of which are  the conflict-free states. 
Table 1 presents the fraction of all mappings that  are 
conflict-free as a  function of N. Note  that  as N increases, the 
fraction  of conflict-free mappings decreases rapidly. 

Property of maximum-conflict mappings 
The next claim identifies the property of maximum-conflict 
mappings, which produce O( 4% conflicts in  the middle 
stage of the network. 

Claim 2 A mapping belongs to  the class of maximum- 
conflict mappings iff the 1 (logN)/2 ] MS bits are identical 
for all sets of  N/2 ( l o g N ) ’ *  ’ destination  addresses with 
distance equal  to 2 ‘ (iogN)i21 . 

Proof As stated by Definition 2, a maximum  number of 
conflicts are  produced  in  the 1 (logN)/2 ] network stage. 
The switch position  in  this stage is determined by 
the [ (logN)/2 1 LS bits of  the source  address and  the 
1 (logN)/2 J MS bits of the  destination address. 

The [ (logN)/2 1 LS bits from source addresses at distance 
equal to 2 ’ for stage 1 (logN)/2 J are identical. 
Therefore,  in order  to have all switch positions with this 
distance  identical, the 1 (log N)/2 J remaining bits from  the 
destination addresses at  this distance must be the same. 0 

As an example, Figure 4 shows one of the  maximum- 
conflict mappings  for  N = 16. In this case, the [ (logN)/2 J 

456 = 2 MS bits are identical for all four  destinations with 

distance equal  to f i  = 4. Note  that for destinations Do, D4, 
D,, Dl,, marked by four windows on  this figure, two  MS 
address  bits are identical.  These four  destinations  and  four 
corresponding  sources determine  the address of switch 0. 
The  same holds for the set of  destinations  including D l ,  D,, 
D9,  D,3, and for  two other sets. The  maximum  number of 
conflicts in this case is  equal to 4 and is found in the 
bottleneck switches 0, 5, 10 and 15 of the second  network 
stage. 

N = 22k, where k is an integer. The results for other N can  be 
obtained by substituting  a floor function  for f i .  

In order  to simplify the analysis, we now  assume that 

Claim 3 The total number  of maximum-conflict  mappings 
is equal  to 

Proof The  number of maximum-conflict  mappings is 
obtained as a product of the  number of arrangements of f i  
different groups  each  including f i  neighboring  destinations. 
The  number of arrangements for the first group of f i  
neighboring  destinations is equal to (h)! . f i p ,  where 
( f i ) !  is the  number of different permutations of f i  MS bits 
and d i f l  is the  number of arrangements of dx LS bits  of 
destinations’ addresses. The  number of arrangements of f i  
MS bits of destinations in all the  other  groups is equal to 1, 
since there is only one way that  the f i  MS bits  can be 
arranged to be equal to  the corresponding MS bits in  the first 
group.  Therefore, the  number of arrangements for the next 
group of f i  destinations is equal to  the  number of 
arrangements of f i  LS bits, which is ( f i  - l)? Since 
there are f i  such  groups, the total number of maximum- 
conflict mappings is equal  to (JF!)fi+l. 

a maximum  number of conflicts as  a function of N. Note 
that this  fraction is smaller than  the fraction of conflict-free 
mappings and it decreases rapidly as N grows. 

Table 1 presents the fraction of all mappings that  produce 

4. Processor-memory  mappings for the FFT 
Various parallel FFT algorithms have been studied by Pease 
[6]. Their performance is analyzed in [ 11. In this  section, we 
assume that all data  items of the one-dimensional FFT 
accessed by a processor during  an iteration are allocated to a 
single memory module.  Therefore,  two or more processors 
cannot access the  same  memory  module  during  one 
iteration. We show that if an initial  allocation of data  to 
memory  modules results in  a conflict-free mapping,  a 
conflict-free mapping is produced during all other iterations 
of the algorithm.  Moreover, if an initial  allocation results in 
a  maximum-conflict  mapping, then mappings for all other 
iterations  of the algorithm are maximum-conflict.  Therefore, 
for the FFT algorithm, an initial  allocation of data  to 
memories appears  to be very important for  controlling the 
contention within the network. 
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ConJlict-free  mappings 
In  this case, we assume  that  data items are allocated to 
memory  modules so that N processors can access data from 
N  memories  without  generating any conflicts within the 
network. In order  to show that  no conflicts are generated 
during  any  other of logN iterations  of the algorithm, we 
prove that  the property of conflict-free mappings  is 
maintained  through all iterations. 

Figure 5 illustrates  this  property using an example with 
N = 16 processors. In this figure, the first column represents 
binary  addresses of 16 processors (sources). The  other 
columns represent  binary  addresses  of 16 memory  modules 
(destinations) accessed by processors during each  iteration  of 
the algorithm.  Each row contains addresses  of the source and 
all destinations accessed by this particular  source during 
every iteration  of the algorithm. The initial mapping shows 
addresses of those destinations accessed by processors in 
order  to load data before the beginning of the  computation. 

Claim 4 For the FFT algorithm, if the initial  allocation 
produces no conflicts in  the omega  network, then  no 
conflicts are produced during  any iteration of the algorithm. 

Proof We first observe that  the  mapping  from processors 
to memories during  the j th  iteration ( j  = 1, 2, . . . , log N) of 
the FFT is  equivalent to exchanging  consecutive groups of 
2'" neighboring destinations  in each group  from  the initial 
mapping  and  then performing  a mapping  from sources to 
destinations in the  same rows. The groups  exchanging  their 

positions are marked  in Figure 5 for each  iteration of the 
algorithm. Note  that  there  are N/2'" such  groups  in thejth 
iteration. For example, there  are  four groups consisting of 
four  elements in the  third iteration ( j  = 3). In this  example, 
the second and  the  fourth  group  are shifted up  and  the first 
and  the third group  are shifted in  the opposite  direction. 

N/21°g N-k destinations with distance equal  to 21°g N-k for 
network stage k = I ,  2, . . . , logN are  the  same  as for the 
initial  mapping. 

In  order  to prove the above statement, for  iteration j of 
the FFT ( j  = I ,  2, . . . , logN), we distinguish three different 
cases: 

1. The  destinations with distance  greater than 2'" are 

We now show that for all iterations  of the F F T ,  the sets of 

shifted in the  same direction and  thus  remain  at  the  same 
distance.  Hence, the sets of all destinations with  distance 
greater than 2"' are  the same. From Figure 5 we observe 
that  groups of four  elements  are exchanged at  the  third 
iteration and  the  destinations with distance  equal to 8 
move in  the  same direction.  Therefore they remain  at  the 
same  distance  from one  another. 

2. The consecutive  destinations with distance equal  to 2'" 
are swapped. Therefore, the sets of elements with distance 
equal to 2"' are  the  same  as for the initial  mapping. The 
consecutive destinations with distance  equal to 4 in the 
third  iteration  shown  in Figure 5 exchange  their  positions 
and  thus  remain  at  the  same distance. 

3. Since the  order of  destinations  within the groups does  not 
change,  these destinations also  remain at  the  same 457 
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Proof Claims 4 and 5 state that  the property of  the initial Therefore, the bitonic  sort  algorithm preserves the property 
mapping is maintained through all logN iterations of the of the initial  mapping. 0 
FFT. The  bitonic sort  algorithm  applies the FFT graph of For example, in Figure 7 the smaller  graphs F F T ,  with 
size N a n d  all the  other FFT graphs  of  smaller sizes. Since all logN - 3 iterations, FFT, with logN - 2 iterations, and 
these  smaller graphs  are  embedded  in  the graph  of size N, F F T 3  with logN - 1 iterations are  embedded  in  the full-size 
the property  of the initial mapping is also extended to  them. graph FFT,,, with logN iterations. 459 
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2d neighbors. We consider  processor-memory  mappings in 
which all data  items  are loaded into global memories before 

t t t t the  computation is begun. During  the  computation, each 
data access requires  traversing the network. 

of a N'ld X N l l d  X . . . X Nlld d-dimensional grid of data.  For 
example, Figure 8 shows  a 4 X 4 grid of data which is 
mapped into a system consisting of N = 16 processors. We 
assume that  the grid wraps around such that,  in this 
example, the first row is adjacent to  the JNth row and  the 
first column is adjacent to  the  JEth  column.  During each 
iteration,  a processor references one  data  item (initial 
mapping) and this item's upper, lower, right, and left 
neighbors. The addresses of the  memory modules containing 
data  from  the grid for a conflict-free allocation are indicated 
by the  numbers associated with each grid point. Figure 9 
shows conflict-free mappings  for  four-neighbor 
communication with N = 16 processors and a 4 X 4 grid of 
data. 

4""t 0 "-D We assume  that a computation is  performed at each point f.+ 3 ++ 2 4"- 1 

t t f t 
--+ 4 f- e-+ +A I "-t 6 5 

t t t t 
e--) 8 +- c"c 11 +& 10 ++ 9 

t t t t 
-"-) 12 c+ f- 15 "+ 14 +--) 13 

t t t t 

is also conflict-free (maximum-conflict). 
6. Mappings for nearest-neighbor 
communication Proof The mappings  required by the network include a 
In this section, we analyze  mappings for the d-dimensional rotation by N(d")'d positions up  and  down, where nld is an 
grid computations  in which communication is required with integer, in the groups  of N(d"+l'ld destinations for  all 

Source Initial Lower Right Left 

0 010  0 0 010 0 
0 0 0 1  0 0 0 1  
0 0 1 0  0 0 1 0  
0 0 1  I 0 0  1 I 
0 1 0 0  
0 1 0 1   0 1 0 1  

0 1 0 0  

0 1 1 0  0 1 1 0  
0 1 1 1  0 1 1 1  

1 0 0 0  1 010 0 
1 0 0  1 1 0 0  I 
1 0 1 0  1 0 1 0  
1 0 1 1  1 0 1 1  
1 110 0 I 1  0 0  
1 1 0 1   1 1 0 1  
1 1 1 0  1 1 1 0  
1 1 1 1  1 1 1 1  

I 1 0 0  
I 1 0 1  
1 1 1 0  
I l l 1  
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0  1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  

I Conflict-free mapping for four-neighbor communication and N = 16 processors. 
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neighbors i = 1, 2, . . . , d. For example,  in  Figure 9 a  request 
for data from the  upper (lower) neighbor is equivalent to  the 
rotation of destination addresses from  the initial mapping by 
fi positions down  (up), while a  request  for data  from  the 
right (left) neighbor is equivalent to  the  rotation by one 
position up  (down)  in  the  groups of JE neighboring 
destinations. The  third (fourth) column  in Figure 9 is 
obtained by a rotation by four positions down (up) of 
destination addresses from the initial  mapping. The fifth 
(sixth) column from this figure is obtained by rotating the 
destinations by one position up (down) in  the groups  of four 
destinations. 

All of  these mappings  are conflict-free (maximum-conflict) 
provided that  the initial mapping is conflict-free (maximum- 
conflict). This is true because by such rotations in the groups 

destinations  remain  at  the  same distance from  one  another. 
Therefore, the properties of an initial mapping  from Claims 
1 and 2 are preserved. 0 

Of2n(d-l+l)/d destinations where n/d is an integer, the 

7. Bit-permute mappings 
In this  section, we show that  the omega  network cannot 
produce  without conflicts some of the  common bit-permute 
mappings of an identity  mapping. Specifically, it cannot 
produce the perfect-shuffle and  the bit-reversal permutations. 

Perfect-shuffle mapping 
The perfect-shuffle mapping is obtained by applying the 

Source Identity Shuffle 

perfect-shuffle permutation  to  the destinations,  such that  the 
destination  i is replaced by the  destination  2imod(N - 1)  for 
all i = 0, I ,  . . . , N - 1. This  mapping is equivalent to  the 
left rotation of the destination  address  bits from  the initial 
mapping. If the initial mapping is an identity  mapping, then 
the  number of MS bits that  are identical  for destinations 
with distance equal  to 2k, where k = 1, 2, . . . , logN - 1, is 
increased two times after the perfect-shuffle permutation. 

Figure 10(a) illustrates the perfect shuffle of an identity 
mapping for  N = 16 processors. The second column shows 
the initial  mapping, which is an identity  mapping, while the 
third column presents the perfect shuffle of destinations  from 
the initial  mapping. In this  example, the  number of conflicts 
increases from 0 to 2  after the perfect-shuffle permutation. 
The bottleneck switches are  determined by sources and 
destinations with distance  equal to 8. 

We now show that  data  items  can be accessed from 
memories  such that if an initial mapping is conflict-free, 
then  the perfect shuffle of  such mapping is also conflict-free. 
Figure lO(b) shows the allocation in which data items are 
accessed from  memories in a skewed manner, resulting in 
both the initial mapping  and  the perfect-shuffle mapping 
being conflict-free. This  mapping keeps the first N/2 
destinations  in the  same  order  as for the identity  mapping, 
while the second  N/2 destinations  are skewed such that 
shifting their  addresses one position to  the left results in 
different switch addresses in  each  network stage. 

Source Initial Shuffle 

0 0 0 0  
0 0 0 1  0 0 0 1  

0 0 0 0  

0 0 1 0  0 0 1 0  
0 0  I 1  0 0 1  I 

0 1  I 1  0 1  I I 
0 1 1 0  0 1 1 0  
0 1 0 1  0 1 0 1  

0 1 0 0  0 1 0 0  

1 0 1 0  0 I O 0 0  
1 0 0 1  I O 0  I 
I 0 1 0  I 0 1 0  
1 0 1 1  1 0 1 1  
1 1 0 0  

I l l 0  1 1 1 0  
1 1 0 1  1 1 0 1  

1 1 0 0  

I l l 1  I I I I  

(a) 

0 010 0 
0 0  I O  
0 1 0 0  
0 1 1 0  

1 1 0  0 
1 0 1 0  
1 1 0 0  
I l l 0  

0 1 0  I 
0 0 1  I 
0 1 0 1  
0 1  1 I 

7 0  I 
1 0 1 1  
1 1 0 1  
I I I I  

0 0 0 0  
0 0 0 1  0 0 0 1  

0 0 0 0  

0 0 1 0  0 0  I 0  
0 0 1  I 0 0  I I 
0 
0 1 0 1  0 1 0 1  

1 0 0  I O 0  0 

0 1 1 1  0 1 1 1  
0 1 1 0  0 1 1 0  

I 010 0 I l l 0  
I 0 0  I I I I I  
1 0 1 0  1 I O 0  
1 0 1 1  1 1 0 1  
I 1 0 0  
I 1 0 1  1 0 1 1  

1 0 1 0  

I 1  1 0  1 0 0 0  
1 1 1 1  1 0 0 1  

(b) 

0 0 1 0  0 
0 0  I O  
0 1 0 0  
0 1 1 0  

1 0  0 
I 0 1 0  
I 1 0 0  
I l l 0  

I 1 0  1 
1 1 1 1  
1 0 0 1  
I O 1 1  

" q o  I 
0 1 1 1  
0 0 0 1  
0 0  I 1  
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Source Identity Bit-Reversal Source Initial Bit-Reversal 

0 0 0 0  
0 0 0 1  0 0 0 1  

0 0 0 0  

0 0  I O  0 0 1 0  
0 0  I 1  0 0 1  I 
0 1 0 0  
0 1 0 1  0 1 0 1  

0 1 0 0  

0 1 1 0  0 1 1 0  
0 1  I I 0 1  I I 
1 0 0 0  
I 0 0  I 1 0 0 1  

1 0 0 0  

I 0 1 0  1 0 1 0  
1 0 1 1  1 0 1 1  
I 1 0 0  
1 1 0 1  I 1 0 1  

I 1 0 0  

1 1 1 0  I l l 0  
1 1 1 1   1 1 1 1  

(a) 

0 0  0 
1 0 0 0  
0 1 0 0  
1 1 0 0  

0 1  0 
I 0 1 0  
0 1 1 0  
1 1 1 0  

0 0  1 
1 0 0 1  
0 1 0 1  
1 1 0 1  

0 1  1 
1 0 1 1  
0 1 1 1  
1 1 1 1  

0 0 0 0  
0 0 0 1  0 0 0 1  

0 0 0 0  

0 0 1 0  0 0  I O  
0 0 1 1   0 0 1  1 

0 1 1 1  0 1 0 1  
0 1 1 0  0 1 0 0  
0 1 0 1  0 1 1 1  

0 1 1 0  1 0 0 0  

1 0 0 0  1 110 1 
1 0 0 1  1 1   1 0  
1 0 1 0  1 1 1 1  
1 0 1 1  1 1 0 0  
1 110 0 1 0 1 1  
1 1 0 1  1 0 0 0  
1 1 1 0  1 0 0 1  
I 1 1 1  1 0 1 0  

(b) 

0 0  0 
1 0 0 0  
0 1 0 0  
I 1  0 0  

3 1  0 
1 1 1 0  
0 0 1 0  
1 0 1 0  

- 1  1 
0 1 1 1  
1 1 1 1  
0 0 1 1  

3 0  1 
0 0 0 1  
1 0 0 1  
0 1 0 1  

Note also that  the property of a maximum-conflict 
mapping is not preserved by the perfect-shuffle permutation. 
This is true since the d% LS bits are different for all 
destinations  at a  distance equal  to &?, thus preventing the 
same switch address  from  being  generated  after the perfect- 
shuffle permutation. 

Bit-reversal mapping 
The bit-reversal mapping is obtained by applying the bit- 
reversal permutation  to  the destinations,  such that  the new 
destination addresses are  obtained by reversing bits from the 
old addresses. After the bit-reversal mapping, the (logN)/2 
MS bits of the destination  addresses  exchange their positions 
with the  (logN)/2 LS bits in reverse order. For  the identity 
mapping, which is conflict-free, the (logN)/2 MS bits of all 
destinations with distance  equal to d% are different, and 
thus  the (logN)/2 LS bits of  these destinations  must be the 
same.  Hence, with the bit reversal, the identity mapping is 
transformed into a  maximum-conflict  mapping. 

Figure ll(a) illustrates the bit reversal of an identity 
mapping for N = 16 processors. The  third  column represents 
the bit reversal of destinations  from  the second column 
(identity  mapping). In  this example, the  number of conflicts 
is increased from 0 to 4 after the bit reversal of a conflict-free 
mapping. The set of destinations  that  determine  one of four 
switches with four conflicts is indicated in  the figure by four 
windows. Note  that conflicts appear  in  the second  network 
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Figure l l (b )  shows a conflict-free mapping for which the 
bit-reversal permutation is also conflict-free. 

Note  further  that  the property of a  maximum-conflict 
mapping  cannot be preserved by the  bit reversal, since  for 
the  destinations  at distance d z  the dN LS bits are different 
and  thus  cannot result in the  same switch address  after the 
bit reversal. 

8. Conclusions 
The omega  network belongs to a class of  multistage 
networks  for use in  both a dataflow architecture  as  an 
interconnection structure  among processors, and a  shared- 
memory  multiprocessor  architecture  where  it connects 
processors to global memories. In this  paper, we have 
analyzed several synchronous structured parallel algorithms 
which apply  a  static  allocation  of data  to  memories  and 
where all requests  from N processors amve  at  the network 
simultaneously. The  common property of the algorithms 
analyzed  here  is that they repeat the  same  computation  in 
cycles or iterations, and  that  the  communication  pattern is 
well defined during each  iteration. We showed that different 
allocations of data  to  memory  modules cause the  contention 
within the network to vary significantly. For conflict-free 
allocations, no conflicts are produced  within the network 
and  the  communication delay grows as O(logN) if network 
stages are  not pipelined, or as O( 1) if network stages can  be 
pipelined. For maximum-conflict  allocations,  a maximum 
number of conflicts are produced  in the network and  the 
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communication delay is increased from O(1ogN) to 
O(logN + f i )  if network stages are  not pipelined, or from 
O( 1 ) to O( 4%) if network stages can be pipelined.  Therefore, 
by identifying and applying conflict-free allocations, the 
communication delay can be improved by a  factor  of O( f i )  
during  each  iteration of the algorithm. 

One surprising  finding of this  study  for the FFT and 
bitonic sort  algorithms is that if an initial  allocation results 
in  a conflict-free mapping, then all other iterations  of the 
algorithm produce a conflict-free mapping.  Similarly, if an 
initial  allocation results in a  maximum-conflict  mapping, 
then all other iterations of the algorithm  produce  a 
maximum-conflict  mapping. It would be interesting to 
determine whether the results obtained for the FFT and 
bitonic  sort  algorithm can be extended to  other  structured 
iterative  applications with similar characteristics. The 
butterfly graph used to  implement  the FFT exhibits  a global 
communication property in that each input affects each 
output through logN stages of the graph. We conjecture that 
the results obtained here  can be applied  for other algorithms 
with the  same  communication property.  Consider,  for 
example,  prefix-computation  algorithms, which are related 
to linear  recurrences and binary addition.  The  computation 
graph  for  a prefix computation is similar to  that of the FFT 
network. It applies  a  uniform shift of outputs  at each stage of 
the algorithm, and hence it can be realized by the omega 
network,  provided that  an initial  allocation is conflict-free. 

The second group of  mappings  analyzed  in this  paper 
includes  algorithms where communication is required with 
2d nearest neighbors. These  mappings share a local 
communication property, since input  data  items affect only 
a  limited number of outputs.  For these  algorithms, there is 
even more freedom  for  avoiding  network contention by 
applying  a conflict-free allocation. Other problems with 
similar  properties include tree computations, where each 
node in  the tree affects only a limited number of descendant 
nodes, and matrix  operations  such  as  matrix  multiplication, 
where the  computation of  each output matrix element 
requires access to  one row of the first matrix and  one 
column of the second  matrix. We believe that for  these 
problems, careful allocation  of data  to memories can reduce 
network contention considerably. 

It would be also interesting to investigate whether the 
same results can be obtained  for very large problems where 
the problem size exceeds the  number of processors available. 
The problems  analyzed here are reducible, so that  the graph 
of  smaller size exhibits the  same  communication properties 
as the original graph. 

The results obtained here indicate that  the initial 
allocation of data  to  memory  modules is significant for 
determining network contention  during all other iterations 
of several algorithms  analyzed here. Since many applications 
intended for parallel execution  require  a large number of 
iterations, we believe that it is worthwhile to investigate 

methods for  allocating data  to memories  as one of the 
strategies for  avoiding  network  bottlenecks and thereby 
significantly improving the performance  of  multiple- 
processor systems. 
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