
Performance
analysis of the
FFT-algorithm
on a shared-
memory parallel
architecture

by 2. Cvetanovik

This paper presents a model for the
performance prediction of FFT algorithms
executed on a shared-memory parallel computer
consisting of N processors and the same
number of memory modules. The model applies
a deterministic analysis to estimate the
communication delay through the
interconnection network by assuming that all
requests arrive at the network in bursts. Our
results indicate that the communication delay is
significantly affected by the method applied to
allocate data to memory modules. For the case
in which all data items referenced by a
processor during an iteration are allocated to a
single memory module, the best-case
communifation time complexity grows as
O[(logN) /N] . The worst-case communication
time complexity for this case, obtained by a
different allocation of data to memory modules,
is increased to O[(logN)/h] due to high

"Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

network contention. For the case in which the
data items referenced by different processors
during an iteration are allocated to the same
memory module, the communication time
complexity is further increased to O(logN) since
all N requests generated by processors are
serialized at a single memory module. The
methods developed in this paper can be applied
for the performance prediction of other well:
structured parallel iterative algorithms.

1. Introduction
Analyzing and predicting the performance of multiple-
processor systems is a very complex task, since many factors
jointly determine system behavior. In this paper, we present
a model which provides methods for better understanding of
the interaction among various factors which influence the
performance. As a case study we have chosen the one-
dimensional and two-dimensional Fast Fourier Transform
(FFT) algorithms executed on a shared-memory parallel
computer. The FFT algorithms play an important role in
mathematical and numerical analysis. Some of the
applications of FFI algorithms include time-series and wave
analysis, spatial correlation, particle simulations, solvers of
linear partial differential equations, Poisson's equation
solvers, convolution, and digital filtering. Various parallel
F"r algorithms have been studied by Pease [I] and by
Hockney and Jesshope [2], and their adaptation for 435

i. CVETANOVIC IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

execution on the shuffle-exchange parallel computer was
investigated by Stone [3].

Our analysis is restricted to the parallel architecture
consisting of N processors and the same number of global
and local memories, where processors and global memories
are connected through an interconnection network.
Variations of such architecture include the NYU
Ultracomputer by Gottlieb et al. [4], the more recently
described IBM RP3 by Pfister et al. [5], the University of
Illinois CEDAR computer by Gajski et al. [6], and the BBN
Butterfly'" computer by Thomas et al. [7].

Although the scope of this paper is limited to the FFT
algorithms and a particular class of parallel architectures, the
methodology developed in this paper can be used to estimate
the performance of other parallel programs and a variety of
architectures, as demonstrated by CvetanoviC [8]. The
technique developed here provides methods for obtaining
closed-form expressions for the total execution time on a
parallel computer as a function of several parameters. With
this function, we can study how different parameters affect
the performance of parallel programs in order to determine
their combination such that the total system design achieves
its best cost-effectiveness.

Many models based on probabilistic methods have been
proposed for performance analysis of parallel programs.
Examples of such models include studies by Baskett and
Smith 191, Bhandarkar [IO], Heidelberger [1 1 1 , Dubois and
Brigs [121, and Mudge and Al-Sadoun [131. The crucial
difference between these models and our approach is in
estimating the communication delay through the
interconnection network. In probabilistic models, a certain
probability distribution for an amval process is assumed in
order to estimate an average delay through the
interconnection network. In our model, we perceive that the
requests amve at the network in bursts. This assumption is
justified by the fact that the computation for FFT algorithms
can be uniformly distributed among processors. Moreover,
according to the parallel algorithms chosen, all processors
are synchronized following each iteration of the algorithm
(bamer synchronization). Since the communication pattern
for these algorithms is defined for each iteration, we can
apply a deterministic analysis to compute the execution time
exactly instead of estimating an average time by using
probabilistic methods.

following:
The major questions we discuss in this paper include the

1. How is the performance of parallel FFT algorithms
affected by altering the allocation of data to memory
modules?

2. How does the performance of parallel FFT algorithms
change as a function of problem size? How is
performance affected by the match between the number

436 of processors and the problem size?

i. C V E T A N O V I ~

3. How is the performance of the one-dimensional FFT
different from the performance of the two-dimensional
FFT of the same size?

4. Is it better to access global data instead of copying data to
local memories?

5. How is performance affected by the level of granularity?
What is the best grain size for a given problem size?

6. How is performance affected by architecture-dependent
parameters such as processor speed and network speed?

Our results indicate that the communication delay and
therefore the performance of a system are significantly
affected by the method of allocating data to memory
modules. For the case in which all data items referenced by a
processor during an iteration are allocated to a single
memory module, the best-case communication delay is
obtained by applying the allocation which results in no
contention within the interconnection network. The
communication time complexity for the fixed-size problem
and N processors grows as O[(logNy/N]. The worst-case
communication delay complexity for this case is obtained by
applying a different strategy for allocating data to memory
modules which results in the maximum possible number of
conflicts within the network, and the delay increases to
O[(logN)/JE]. For the case in which all data items
referenced by a processor during an iteration are allocated to
different memory modules, the communication time
complexity increases to O(1ogN). The reason for this is that
all N requests from processors accessing data allocated to a
single memory module need to be serialized at this module.

Our model also provides means for comparing two
different data-access modes: where all data are accessed from
global memories, and where data items are first copied to
local memories and then accessed locally. If the number of
processors is smaller than the problem size, our results
indicate that the case with local/global copying performs
better than the case with global data access, since copying a
block of data can take advantage of pipelining data through
stages of the network. This is particularly beneficial for the
two-dimensional F F T , since in this case no performance
improvement can be obtained with global data access when
the problem size exceeds the number of processors.

The next section describes the model for computing the
execution time and states the assumptions. In Section 3, we
derive expressions for the best-case execution time, while in
Section 4 we derive expressions for the worst-case execution
time for the allocation in which all data referenced by a
single processor during an iteration are allocated to a single
memory module. In Section 5, we derive expressions for the
execution time for the allocation in which all data items
referenced by a single processor during an iteration are
allocated to different memory modules. In Section 6, we
compare our results to the results from the model proposed

IBM J . RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

Local
memoryl

Processor,

a memory,

Processor,

ProcessorN , .

Interconnection
network

Global
memoryo

U Global
memory ,

Global
memory,

’ Shared-memory architecture

by Norton and Silberger [141. The conclusions and a general accessing local data is included in the computation time.
discussion appear in the last section. Processors are connected to global memories through an

interconnection network, so that each processor can access

We restrict our analysis to a parallel architecture consisting memories requires traversing the interconnection network.
of N identical processors and N memory modules, with two Figure 1 illustrates such architecture, which comprises N
levels of memory hierarchy. Each processor has associated processors, N memory modules, and the interconnection
with it a local memory, and we assume that the delay for network.

2. Model and assumptions any memory module. Each data access from any of N global

IBM J . RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

437

i. CVETANOVI~

438

As a special case of the interconnection network, we
assume the omega network proposed by Lawrie [151. An
N X N omega network with 2 X 2 switches consists of logN
identical stages. Each stage consists of N / 2 switches
connected by the perfect-shuffle interconnection. An
example of a 16 X 16 omega network is shown in Figure 1 of
[161. We further assume that each switch includes an
infinite-length queue associated with every input port for
maintaining multiple messages. Variations of such a network
are proposed for many research multiple-processor
prototypes being built at present, such as the IBM RP3 [5] ,
the CEDAR [6] , and the TRAC [171.

synchronous algorithms where all processors are
synchronized following each iteration of the algorithm, and
wait for the last processor to complete an iteration before
proceeding to the next one. At the beginning of each
iteration, processors must load data items for which the FFT
is computed, which results in the first burst of requests
amving at the network. While the computation is
performed, no communication through the interconnection
structure is required. Upon completion of the computation,
all processors store their results in global memories, which
produces the second burst of data amving at the network.
Therefore, such synchronized iterative parallel algorithms are
characterized by bursty amvals at the interconnection
network. Since the communication pattern for most of these
algorithms is defined for every iteration, we can apply a
deterministic analysis to compute the communication delay.

The model we describe encompasses the following
assumptions:

The FFT algorithms we analyze belong to a class of

1. In order to simplify expressions for the computation time
of the FFT algorithms for M data items, we consider only
factors with complexity of O(M1ogM) and neglect all
factors with lower complexity. This assumption is
justified by the fact that for large problems, the factors
with lower complexity have less influence on the total
execution time.

2. For the purpose of our analysis, we further assume that
the additional overhead introduced by converting the
algorithms into a form suitable for parallel execution can
be neglected. Although this is not a realistic assumption,
since parallel FFT algorithms require some extra
computation for spawning parallel tasks and bamer
synchronization, these factors represent a small portion of
the computation time and for the purpose of our
complexity analysis can be neglected. Note that our
model can be enhanced to include this overhead in
expressions for the total execution time.

computation and communication time slots. In [8] we
have extended the analysis to the case where such overlap
is feasible.

3. We assume that no overlap is possible between

5. CVETANOVIC

4. In order to further simplify the analysis, we also assume
that both the problem size M and the number of
processors N can be expressed as a power of two.

We now derive a global expression for the communication
delay of FIT algorithms for the class of architectures
described above. The effective communication time T, for a
burst of amvals at the interconnection network is computed
as a sum of the network latency and the queuing delay. The
latency is proportional to the number of network stages, and
the queuing delay is directly proportional to the number of
requests amving in a burst and inversely proportional to the
network bandwidth, and T,, is obtained in accordance with
the following expression:

T,= (E) D+-- 1 t , .

In this expression, D is the network depth, or the number
of network stages; NA is the number of requests amving at
the network in one burst; B W is the network bandwidth, or
the number of requests accepted by the network without
contention; and t, is the communication delay per network
stage, excluding contention. The factor Dt, accounts for the
network latency, while (NA/B W - I)t , represents waiting
time due to network contention.

If we assume that the same network contention is
produced during each iteration, then the total
communication time T, for an algorithm is obtained by
multiplying Equation (1) by the number of bursts per
iteration and the number of iterations that require
communication through the network, in accordance with the
following expression:

T, = 6(NCI)(NB) (E) D + - - 1 t , .

In the above expression, NCZ is the number of those
iterations of the algorithm that require communication
through the network, and NB is the number of bursts
amving at the network during an iteration. The whole
expression is multiplied by a constant which is in this case
equal to 6 , since at each iteration two new data items are
loaded from a global memory and the results are then stored
in a global memory. We assume that for loading data the
interconnection network is traversed twice (sending a request
and receiving data), while it is traversed only once for storing
data in a global memory.

For example, for a single shared communication resource
(bus), the bandwidth is B W = 1, the depth is D = 1 , and,
hence, the communication time is proportional to the
number of requests amving at the bus in a burst. For a
multistage network with depth equal to IogN, such as the
omega network proposed by Lawrie [151, the maximum
bandwidth is B W = N, provided that there are no conflicts
within network switches and that network stages can be

IBM J. RES, DEVELOP. VOL. 31 NO. 4 JULY 1987

Table 1 Communication time parameters.

ID FFT I 2 0 FFT

COPY I Global I Copy Global

Shufle Nonshufle Shufle I Nonshufle 1 I

Bursts (N E) I I 1
M l M 1 N 1 NJZ 1 Arrivals in burst (N A)

Table 2 Best-case performance for the Chunk Allocation.

1 I Execution time I Speedup
i i N

N < M I E (logM)t, + 6 (IogNYt,
N

M
I D FFT Global

M

(logM)t, + 6(logM)(logN)tc I + 6(logN) fr
1,

N < M ~ $ (logM)f, + 6
N

Local 1 + 6
(logN)(NlogN + M - N) fr

MlogM t,

M
(logM)t, + 6(logM)(logN)t, 1 + 6(logN)

t,

N E ” i

N
N < J Z E (logM)t, + 6 - (logM)(logN)t,

M
N N 1 + 6(logN) ’.

t o

Global 2D FFT

JG
N Z JG JZ(IogM)t, + bJ%(IogM)(logN)t,

1 + 6(logN) fr
1,

N

Local

J Z
N Z J Z &(logM)t, + 12(10gN + JZ - l) t ,

pipelined. Hence, the minimum communication delay for 3. Best-case Performance for the Chunk
the omega network is Allocation

We first analyze the case where the whole portion of the data

iteration is allocated to a single memory module, so that all
(3) array (chunk) referenced by a single processor during an

The values for NB, NCZ, and NA for different data-access chunks can be accessed independently. We name this
modes and FFT algorithms are derived in the next section allocation a Chunk Allocation. In this section, we obtain
and are summarized in Table 1. expressions for the best-case communication time for the 439

3. C V E T A N O V ~ IBM J. RES. DEVELOP. VOL 31 NO. 4 JULY 1987

f """"""""~"""""""""""""""""""""""""-

_"""""""" I

EJossaxq '1ossaJoq

"
I

'lossamq

"
I

each of them. Each processor computes the FFT for the
chunk containing M/N data items. An example of such
partitioning is shown in Figure 2, where the FFT for M = 16
data items is executed on N = 4 processors. Note that the
resulting graph is also a butterfly graph, since the property of
the butterfly graph is that it is reducible. We call this
algorithm the Nonshuffle Algorithm to distinguish it from
the algorithm that applies a shuffle permutation during the
iterations requiring communication (Shuffle Algorithm). The
latter algorithm is used in Norton and Silberger’s model [141
and is analyzed in Section 6.

dimensional FFT for M data items is
We assume that the serial time for executing the one-

T, = (MlogM)t,, (4)

where M is the number of data items, logM is the number of
iterations of the algorithm, and t, is the time to complete the
processing of one data item during a single iteration.

The processing time on an N-processor system is obtained
as the time on a single processor from Equation (4) divided
by the number of processors:

MlogM
T, = - N tP’

In order to compute the communication delay, we
distinguish two cases according to two different data-access
modes.

Case I Data items are referenced from global memories.
In this case, all data items are referenced from global

memories. Each memory request traverses the
interconnection network. We assume that for each data
point, two data items are loaded from global memories, then
the computation is performed, and then the result is written
back to global memories. Processors are synchronized
following each memory reference; all of them wait for the
last one to complete the computation (barrier
synchronization).

The communication time is obtained from Equation (3)
by substituting NB = M/N for the number of bursts during
an iteration, NCI = logN for the number of iterations
requiring communication, and NA = N for the number of
requests arriving at the network during t,:

T, = 6 - (log N)2t , .
M
N (6)

The number of iterations requiring communication is equal
to logN and is obtained by subtracting the number of
iterations which do not require communication from the
total number of iterations: logM - log(M/N). Thus, since
each processor references M/N data items, the total number
of iterations for which a processor needs data from global
memory is reduced by log(M/N), as illustrated in the
example from Figure 2.

The total execution time for N processors, T,, is obtained
by summing Equations (5) and (6), since by our assumption
the computation and communication time slots are not
overlapped:

MlogM M
T, = - tp + 6 - (logN)’t,.

N N

The expression for the speedup S is obtained by dividing the
serial time from Equation (4) by the execution time on an
N-processor system from Equation (7):

The efficiency 7 is obtained by dividing the speedup from
Equation (8) by the number of processors:

S 1

The cost/performance ratio is estimated as the product of
the number of processors, which is proportional to the
hardware complexity or cost, and the execution time from
Equation (7), which is inversely proportional to the
performance:

costlperformance = NT, = M(logM)tp + 6M(logNftc. (IO)

If the number of processors N is greater than or equal to
the problem size M, the total execution time is obtained
from Equation (7) by substituting M for all N except for the
N in logN, the number of stages in the interconnection
network:

T, = (logM)(tp + 6tclogN). (1 1)

The speedup for this case is obtained by dividing Equation
(4) by Equation (1 I) :

M
S =

I + 6 (t) logN

Case 2 Data items are copied to local memories.
In this case, all M/N data items needed by a processor

during an iteration are copied into its local memory before
the computation is initiated. We assume that data items can
be pipelined through the stages of the network. We further
assume that no computation is performed until all data
items are copied to local memories. After data copying is
completed, the computation is initiated and processors
access data from their local memories; thus the network is
not used during that time. Upon completion of the
computation, the resulting data items are copied back to
global memories. At this point, processors are synchronized;

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987 2. CVETANOVI~

442

600

500

400
(z 1 300
v)

200

100

0

e 1D global
0 ID local
0 2D global
A 2D local
4 Maximum

4 X 12 16 20 24 28 32 36

log2 (problem size)

all of them wait for the last one to complete the
computation (bamer synchronization).

Equation (3) by substituting NB = 1 (since processors
access global memories only once during the iteration),
NCI = logN for the number of iterations requiring
communication, and NA = M for the number of requests
amving at the network during t,:

The communication time for this case is obtained from

The speedup is obtained by dividing Equation (4) by the
sum of Equations (5) and (13):

S =
N

(14)
1 + 6 (logN)(NlogN + M - N) t,

MlogM (ii
If N 2 M, the execution time and the speedup are the same
as in the case with global data, since each processor accesses
only a single data item and pipelining of data through the
network stages cannot be applied.

Two-dimensional FFT
The two-dimensional FFT is computed for a & X 4%
data array, so that the one-dimensional FlTs are computed
first for the rows and then for the columns of the array. One
way to execute the algorithm on N processors is to compute
&/N one-dimensional FFTs for the rows at each processor.
The same computation is then repeated for the columns of
the array. The expressions for the best-case execution time

i. CVETANOVIC

and speedup for the two-dimensional FFT can be derived
using Table 1 and following the same procedure as for the
one-dimensional F l T . These results are summarized in
Table 2.

Discussion of the results
Figure 3 presents the speedup for the cases analyzed above
as a function of the problem size for a fixed number of
processors N = 5 12 and t,/t, = 75. The value for this ratio is
chosen so that its complexity matches tp / tc estimated from
the RP3 prototype.

On the basis of Figure 3, we observe the following:

1. The breakpoint for the one-dimensional FFT is at M = N,
while the breakpoint for the two-dimensional FFT is at
M = N2 for reasons explained below.

The speedup for the one-dimensional FFT increases
with a complexity of O(M) until the problem size
becomes equal to the number of processors. Above this
point, the computation time complexity increases
O(1ogM) times faster than the communication time
complexity, and the speedup approaches its maximum as
M increases. The reason for this change of slope is that
below the breakpoint, each processor performs a
computation for a single data item at each iteration and is
used once for each of logM iterations, while above this
point there are not enough processors available and each
processor performs a computation for M/N data items
and is used M/N times per iteration.

For the two-dimensional F F T , the speedup changes its
complexity after the problem size exceeds N2. The reason
for this change is that below this breakpoint, each
processor computes a single one-dimensional FFI for
& data items, while above this point each processor
computes &/N one-dimensional FlTs.

2. We now relate the performance for the case with global
data access to the performance with local/global copying.

For the one-dimensional FFT, the performance for
both data-access modes is the same, provided that the
problem size is smaller than the number of processors.
This is so in both cases because each processor references
a single data item and the time to load data from a global
memory is the same in both cases. Above the breakpoint,
the communication time for the case with global data
access grows with a complexity of O[M/N(~O~N)~] , while
the communication time for the case with local/global
copying grows with a complexity of O(M/Nlog N).
Therefore, the communication time for the case with
local/global copying is O(1ogN) times lower than for the
case with global data access. The reason for this
improvement is that in the case with global data access,
all data items are accessed one by one from a global
memory, while in the case with local/global copying,
portions of the data array consisting of M/N data items

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

are copied to local memories and data can be pipelined
through stages of the interconnection network. With
pipelining, each data item takes time of O(I) instead of
O(logN), which is proportional to the number of stages at
the network.

For similar reasons, the communication time for the
two-dimensional FFT and the case with copying data to
local memories is O(1ogMlogN) times lower than the
communication time for the case with global data access.

The speedup for the two-dimensional FFT with global
data access saturates if the problem size exceeds N2. This
is because above this point the communication time has
the same growth rate as the computation time. The
reason for this is that for each data item, a global memory
reference is required, independent of the problem size.
This result suggests that for the two-dimensional FFT,
copying data to local memories is very beneficial if the
problem size exceeds 2, since with global data access no
further performance improvement can be expected as the
problem size exceeds N2.

and two-dimensional FFTs of the same size.
3. We now compare the performance of one-dimensional

For the case with global data access and a fixed number
of processors, the execution time complexity for the one-
dimensional FFT grows as O(logM), while the execution
time complexity for the two-dimensional FFT grows as
O(JGlogM) until the problem size becomes equal to the
number of processors. This is because for the one-
dimensional FIT each processor performs a computation
for a single data item, while for the two-dimensional FFT
each processor computes a complete one-dimensional
FFT for &data items. If the problem size exceeds N 2 ,
the time complexity for both FFTs increases as
O(MlogM), but the communication time complexity for
the one-dimensional FFT increases O[(logM)/logN]
times slower than does that for the two-dimensional FIT.
The reason is that for the one-dimensional FFT each
processor performs the computation for M/N data items,
and the number of iterations is reduced from O(1ogM) to
O(logN).

The time complexity for the case with local/global
copying exhibits behavior similar to that for the case with
global data access.

Figure 4 shows the cost/performance ratio as a function of
the number of processors for a fixed problem size M = 230
and tp/ tc = 75. The best-case cost/performance should
remain constant as the number of processors increases, since
this indicates that the execution time decreases
proportionally to the number of processors. If the
cost/performance grows, then the decrease in the execution
time is smaller than O(N) due to some time wasted on
communication or on contention for shared resources.

We can use the cost/performance ratio as a function of the

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

.-. 50
0 “i

I

I

0 1 , I I I I I I I)
4 8 12 16 20 24 28 32 36

log, (number of processors)

Cost/performance ratio vs. number of processors (log, M = 30,
t,, = 150, rL = 2).

number of processors to determine the optimal value of the
number of processors for executing a problem of a given
size. For fixed-size problems, the number of processors is
also related to the granularity: the larger the number of
processors used, the smaller the grain size that is executed on
a single processor. By increasing the number of processors,
the parallelism available in the application can be exploited
better, but at the same time the communication
requirements are increased.

From Figure 4 we note that the cost/performance
increases drastically after the number of processors N
exceeds the problem size M for the one-dimensional FFT or

for the two-dimensional FFT. The reason for this
change is that above this breakpoint, as the number of
processors increases, the execution time grows as O(logN),
so that the cost/performance increases as O(N1ogN). Below
this breakpoint, the cost/perforrnance for cases with global
data access exhibits a small increase as the number of
processors increases, due to some time wasted on
communication. For the case with global data access, the
cost/perfonnance grows as O(1ogNY for the one-dimensional
FlT, while its growth rate is decreased to U(1ogN) for the
two-dimensional FFT. For the case with local/global
copying, the cost/performance remains very close to a
constant until N approaches M for the one-dimensional FFT
or h? for the two-dimensional FFT, since the
communication delay is significantly reduced by taking
advantage of pipelining data through the network stages.

i. CVETANOVI~.

Table 3 Worst-case performance for the Chunk Allocation.

r

ID FFT

2D FFT

Execution time

Global N < M (logM)r, + 6 - (IogNXlogN + f i - 1)1,
M

N N

M s N c M 2 (logM)t, + 6(logM)(logN + f i - I)t,

N Z M~ (logM)I, + 6(10gM)(logN + M - l)t,

Local N < M _M (logM)t, + 6 logN + N (JN

M s N r . M 2 (logM)t, + 6(logM)(logN + JE - l) t ,

N Z M' (logM)t, + 6(10gM)(logN + M - l)fc

Global N < 4% (logM)t, + 6 - (logM)(logN + JF - I)t,
M

N N

4% c N < M f i (l ogM) t , + 6&(logM)(logN + Jz - l)t,

N Z J% J%(IogM)tp + 6f i (logM)(logN + fi - l)tc

Local N JG M(logM)t , + 12- (logN + J E - l)t,
&

N N

fi(IogM)t, + I2(l0gN + JE - I)tc

f i (l o g M) t p + 12(l0gN + fi - l) tc

T

4. Worst-case performance for the Chunk
Allocation
The results derived in the previous section represent the best-
case execution time, where the chunks of data are allocated
to global memories such that the contention within the
network can be neglected. In this section, we derive
expressions for the worst-case execution time for the Chunk
Allocation by assuming that chunks are allocated such that a
maximum number of conflicts is produced within the

444 network during each iteration of the algorithm. By Claim 5

Speedup

N

1 + 6
(logN)(logN + JZ - I) t,

log M 4
-

M

1 + 6(logN + M - 1) fE
I ,

N
(IogNXNlogN + JFM - N) 1,

1 + 6 MlogM -
4

~

M

I + 6(logN + JZ - I) 5
1,

M

1 + 6(logN+ M -
I ,

N

1 + 6(logN + f i - I) e t

J Z

J Z
I + 6(logN + J% - I) 5

t,
N

J%

of [161 and its proof, we show that such allocations are
feasible and that all iterations of the algorithm produce a
maximum number of conflicts provided that an initial
allocation is conflict-free.

In order to compute the execution time, we need to
determine the minimum bandwidth of the interconnection
network. The minimum bandwidth is determined by the
maximum number of conflicts within the network. Lang
[181 has shown that the maximum number of conflicts for
the shuffle-exchange network is equal to 2 L''%N'z' = q&).

i. CVETANOVI~ IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

31AONVL3A3 'f 1861 Alnf P 'ON IE ' 1 0 A 'd013A3a ' S 3 X 'f Ne1

Table 4 Performance for the Nonchunk Allocation.

r
T

I D FFT

2D FFT

Global

Local

Global

Local

L

Execution time

(logM)t, + 6 ; (logN)(logN + N - I)t, M
N

N N

(logM)tp + 6(logM)(logN)f,

N

(logM)f, + 6(logM)(logN)t,

(logM)t, + 6 - (logM)(logN + N - I)(,
M

N N

JG (logM)t, + 6&(logM)(logN + Jz - I) (,

(logM)tp + 12 - (IogN + d% - I)(,
JG

N N

JG(IogM)t, + 12(logN + d% - I)(,

~

cost/performance becomes significantly larger than the best-
case cost/performance even for relatively small values of N.

5. Performance results for the Nonchunk
Allocation
In all the cases analyzed previously, we have assumed that
data items from one chunk are allocated to the same
memory module (we have called this allocation the Chunk
Allocation). In this section, we study how performance is
affected by applying a different allocation where all data
items from a single chunk are allocated to different memory
modules (we call this allocation the Nonchunk Allocution).
We then derive expressions for the communication delay for
the Nonchunk Allocation.

While for the Chunk Allocation every processor accesses a
different memory module during each iteration of the
algorithm, for the Nonchunk Allocation two or more
processors may request the same memory module during the
same iteration. Expressions for the total execution time and

Speedup
N

N

M

I + 6(logN) '.
t,

N
(logN)(NlogN + M - N)

1 + 6
MlogM

M

1 + 6(logN)
t P

N

1 + 6(logN + N - I) '.
to

JG

I + 6(logN + JG - I) 2
f P

t

N

J Z

the speedup for the Nonchunk Allocation are summarized in
Table 4.

One-dimensional FFT
For the one-dimensional FFT, we assume that according to
the Nonchunk Allocation, a data item from each chunk up
to the chunk size is allocated to a different memory module.
Therefore, all processors reference the same memory module
at the same time during each iteration.

Case I Data items are referenced from a global memory.
In order to compute the execution time for the case with

global data access, we need to determine the bandwidth of
the network, since all other parameters in Equation (2) are
the same as in the previous sections and are summarized in
Table 1.

First, we analyze the case where N < &, or the number
of processors is smaller than the number of data items in one
chunk. In this case, all data items of a chunk are allocated to

Z. CVETANOVIC IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

0.8 - P s e

1 0.6 -

0-0"
'..,gP'

/-.,
U
5 Chunk efficiency

.P 0.4 R - Nonchunk efficiency Worst/best speed ratio

'4- 1 0.6 - /-.,
U
5 Chunk efficiency

.P 0.4 R - Nonchunk efficiency Worst/best speed ratio

log, (problem size)

different memory modules. Since all processors reference the
same memory module, all N requests are in conflict at this
memory and the bandwidth of the network is reduced to 1.
The communication delay is obtained from Equation (2) by
substituting NB = M/N, NCI = logN, NA = N, and B W = 1:

For the case where dz 5 N < M , the number of processors
is larger than M/N, the number of data items at each
memory module. Therefore, the maximum of M/N requests
are in conflict, and consequently, the bandwidth is equal to
N2/M. All other parameters are the same, and the
communication delay is obtained from Equation (2):

Case 2 Data items are copied to local memories.
The case with local/global copying for the Nonchunk

Allocation is the same as for the Chunk Allocation, since
data are pipelined through stages of the interconnection
network. The bandwidth of the network is equal to N since,
although N requests are sent to the same memory module,
there are still M - N requests for the other modules and the
requests for different memory modules can be pipelined
through the stages of the network. The expressions for the
execution time and the speedup are therefore the same as for
the Chunk Allocation.

Discussion of the results
We now compare the best-case results for the Chunk and
Nonchunk Allocations for the one-dimensional FFT with
global data access.

Figure 7 presents efficiency as a function of problem size
for a fixed number of processors N = 5 12 and both
allocations. The efficiency exhibits very interesting behavior.
If M 5 N, the efficiency increases as O(M) and is the same
for both allocations. For N < M 5 N2, the efficiency for the
Nonchunk Allocation decreases with a complexity of
O(M/logM), whereas the efficiency for the Chunk Allocation
increases with a complexity of O(1ogM). The reason for this
discrepancy is that for the Nonchunk Allocation the
communication time grows faster than the computation
time as M increases, since M/N requests are serialized at a
single memory module. Finally, for M 2 N2 the efficiency
for the Nonchunk Allocation increases, as does that of the
Chunk Allocation, with a complexity of O(1ogM).

The speed ratio of the Nonchunk and Chunk Allocations
is shown by the dotted line in Figure 7. Two allocations have
the same speed of execution if M 5 N. As the problem size
exceeds N, the speed of the Nonchunk Allocation becomes
much lower than that of the Chunk Allocation, until it
approaches the point where it is just 0.062 of the speed of
the Chunk Allocation. Above this point, the performance of
the Nonchunk Allocation is slightly improved.

Figure 8 plots the speedup as a function of the number of
processors N for a fixed problem size M = 230 and all three
allocations analyzed above. Note that increasing the number
of processors while keeping the problem size fixed is
equivalent to increasing the level of granularity or decreasing
the size of subproblems executed on processors.

From this figure we note that for the best-case Chunk
Allocation, the speedup increases as O[N/(logNy] until the
number of processors becomes equal to the problem size.
After the number of processors exceeds the problem size, the
speedup decreases as O(1ogN). The speedup for the worst-
case Chunk Allocation, which is obtained by a different
allocation of chunks to memory modules, increases with a
complexity of O[&/(logN)] if N I M; after N exceeds M, it
decreases with a complexity of O(JN). For example, if
N = M, the speedup for the best-case Chunk Allocation is
776 times greater than the speedup for the worst-case Chunk
Allocation.

The speedup for the best-case Nonchunk Allocation is
composed of two curves. If N I J%, the speedup is very
low. It first increases and after reaching the maximum it
decreases as N approaches dG. At this point the speedup
from Figure 8 for the Chunk Allocation is 821 times greater
than the speedup for the Nonchunk Allocation. If N 5 JG,
the number of processors is smaller than the chunk size and
all requests from N processors are serialized at a single -
memory module. As N exceeds JM, the number of 447

i. C V E T A N O V I ~ IBM J. RES. DEVELOP. \. 'OL. 31 NO. 4 JULY 1987

440

t

36 32 1
N = M

24

20

16

12 - Best-case chunk

8
”“ Worst-case chunk

4
4 8 12 16 20 24 28 32 36

log2 (number of processors)

1 Speedup for three allocations vs. number of processors (log2M =
i 30, tp = 150, t, = 2).

processors becomes greater than the chunk size, and the
speedup for the best-case Nonchunk Allocation improves,
approaching the speedup for the best-case Chunk Allocation.
From these results we conclude that the method applied for
allocating data items to memory modules has a significant
effect on the performance of parallel FFT algorithms.

6. Shuffle Algorithm for the one-dimensional
FFT
In this section, we present a different algorithm for executing
the one-dimensional FFT on a shared-memory architecture.
We use our model to estimate the performance of this
algorithm in order to compare our results with the results
from the model developed by Norton and Silberger [141.
Since this algorithm performs a shuffle permutation at each
iteration requiring communication through the network, we
call it the Shuffle Algorithm to distinguish it from the
algorithm described in Sections 3 and 4 which we named the
Nonshuffle Algorithm. The major difference between these
two algorithms is that the Shuffle Algorithm reduces the
number of iterations requiring communication from
log N required by the Nonshuffle Algorithm to

problem size is much larger than the number of processors.
Figure 9 presents the Shuffle Algorithm for the example of

M = 16 data items and N = 4 processors. Note that the
communication is required after each log(M/N) iterations of

[(logM)/log(M/N) 1 . This can be very beneficial if the

the computation. The data items needed by each processor
for the next log(M/N) iterations are stored in global
memories by the inverse shuffle of power of log(M/N).
These data items are then loaded into local memories by
each of the processors, so that the next log(M/N) iterations
can proceed without requiring communication through the
interconnection network.

As for the Nonchunk Allocation, the maximum number
of conflicts in the memory module is obtained as the
minimum of the number of processors and the size of the
chunk, and is equal to min(N, M/N). Consequently, the
bandwidth is equal to max(1, N2/M). The expression for the
communication overhead for the case with global data access
is obtained from Equation (2) by substituting NB = M/N,
NCI = [(logM)/log(M/N) 1 , and NA = N:

The best-case communication overhead is obtained by
assuming that no conflicts are generated within the network
and replacing B W = N in Equation (18):

The worst-case communication overhead is obtained by
assuming a maximum number of conflicts at the memory
module and substituting B W = max(1, N 2 / M) in Equation
(18):

M logM
Tc = ti 7 [log(M/Nd pN + ($) - 1 “’ N

max 1, -

Expressions for the total execution time and other
performance measures can be obtained following the
procedure from the previous sections.

one-dimensional FFT with global data access as a function
of the problem size for N = 5 12 and t p / t c = 100. The speed
of our worst-case estimates and the speed computed from
Norton and Silberger’s model are normalized to the speed of
our best-case estimates. From this figure we note that the
results from Norton and Silberger’s model fall between our
best and worst cases and that their complexity matches the
complexity of our best-case estimates for large problems.
While the results from Norton and Silberger’s model
approach our best-case estimates, they differ significantly
from our worst-case estimates. We believe that the main
reason for this discrepancy is that we have assumed that the
requests for global memories amve at the network in bursts
and that for a specific allocation of data to memory modules
they can decrease the network bandwidth by a factor of
O(N). In Norton and Silberger’s model, the communications
delay is estimated using an average memory-request rate at
each iteration. Therefore, in this model the effect of changing

Figure 10 presents the speed ratios for two models and the ‘\

i. CVETANOVIE IBM J . RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

Processoro Processor, Processor,

r
i
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I
I
I I-

Shuffle
I-
I
I
I

1
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Shuffle

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1-
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1.
I

Processor,

""""""""-

the allocation of data to memory modules does not have any
effect on the performance.

This figure also shows that the best-case performance
measures estimated by our model differ from the results
obtained from Norton and Silberger's model for smaller
problems. A possible reason for this discrepancy is that in
estimating the computation time we neglect all factors less
than MlogM, including both M and logM factors. For
smaller M, these factors tend to influence the computation
time more profoundly, and therefore in this region our
performance estimates are different from Norton and
Silberger's estimates.

7. Conclusions and general discussion
We have presented a deterministic model for predicting the
performance of various FFT algorithms executed on a

shared-memory parallel computer. By applying a
deterministic analysis, we have obtained expressions for
performance measures as a function of the problem size, the
number of processors, the allocation of data to memory
modules, and the speed of processing and communication.
We used these expressions to analyze the interaction among
various parameters. On the basis of these results, we can
recognize performance bottlenecks, and determine how
performance can be improved by changes in both the
architecture and the application being executed.

The results obtained in this paper were related to the
results from the model developed by Norton and Silberger.
In contrast to their results, our estimate for the
communication delay is very sensitive to the method used
for initial allocation of data to memory modules. We have
shown that when different allocations are applied, the

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987 i. CVETANOVI~

450

I - (Norton & Si1berger's)ibest ratio

"4 8 12 16 20 24 28 32 36 -

log, (problem size)

: Speed ratios for two models v s . problem size (N = 512, tp = 200,
B tc = 2).

communication delays among the models differ by a factor
of O(N), where N is the number of processors.

the case with local/global copying performs better than the
case with global data access, as long as the problem size is
larger than the number of processors, since copying a large
block of data can take advantage of pipelining data through
the network stages.

The model presented here captures the bursty nature of
amvals at the interconnection network, which is a property
of many synchronous algorithms. It provides a means for
measuring the performance effect of different allocations of
data to memory modules, which is not achievable using a
probabilistic analysis. Using the technique demonstrated
here, we can further investigate strategies for partitioning
large problems in order to minimize the communication
through the network. Also, the optimal number of processors
for executing a fixed-size problem can be determined by
maximizing expressions for the speedup as a function of the
number of processors.

Although the scope of our analysis has been limited to
FFT algorithms, the methods demonstrated here can be
successfully applied to other iterative structured algorithms,
as shown in [8]. Various iterative problems proposed for
parallel execution can be classified on the basis of a method
used for the processing and communication decomposition
among N processors, as demonstrated by VrsaloviC [191. Our
analysis, then, can be applied to those classes, so that the
performance of various classes of problems rather than

With respect to different data-access modes, we found that

i. C V E T A N O V I ~

specific algorithms can be compared, thus enhancing the
generality of methods adopted here.

However, since our primary goal was to investigate the
general relationship among various parameters that influence
the performance of multiple-processor systems, we have
simplified the analysis by several assumptions. We now
discuss some of the limitations of our approach and the ways
of extending the model for application in a more general
framework.

1. Owing to length constraints, our analysis in this paper has
been limited to shared-memory parallel architecture. In
[8(a)], we showed how the methods demonstrated here
can be applied to other parallel architectures. Although
we have estimated bounds for the communication delay
for a specific interconnection network, our model can be
generalized to include other interconnection structures. If
it is possible to determine the worst and best bandwidth
for an interconnection structure as a function of N, then
this function can be substituted in our expressions for the
performance measures, so that the impact of
communication complexity on performance can be
directly observed.

2. We have assumed that all processors are synchronized
following each iteration of the algorithm and that the
computation can be uniformly distributed over N
processors, so that all processors send requests to the
network simultaneously. If this assumption does not hold,
then processors have different initiation times, resulting in
an asynchronous execution. It would be interesting to
investigate whether the model described here can be
extended to include asynchronous parallel algorithms.

3. We have further assumed that iterative algorithms do not
include data-dependent branches and that a regular
pattern of data accesses is repeated at each iteration. For
such algorithms, a static allocation of data to memories
prior to execution can be applied. For algorithms with
dynamic and irregular data access, the deterministic
analysis can be applied only for portions between data-
dependent points; otherwise the simulation-based
predictions are more appropriate.

4. The analysis performed in this paper does not include the
case where computation at processors can be overlapped
with communication through the network. If overlap
between processing and communication is allowed, then
a similar analysis can be performed in order to obtain
expressions for the communication delay, as shown in
181.

5 . In this paper we have considered only the case where
data-access times for both global and local memories are
the same. The model can be easily extended to include
different data-access times for global and local memories,
so that the performance effect of changing memory
speeds can be observed.

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

The results of this paper indicate that for well-structured
problems such as the F F T , the congestion at the
interconnection network can be reduced significantly by
applying a static allocation of data to memories. One
interesting problem that remains is to identify allocations
that result in the best and worst performance for the FFT.
We believe that communication requirements of various
parallel algorithms have some common characteristics. If it
is possible to classify algorithms according to their
communication properties, then it would be worthwhile to
investigate the best and worst allocations for each of these
groups.

Acknowledgments
The author would like to thank Harold S. Stone for his
numerous comments and suggestions during this research,
and Alan Norton and Frederica Darema for their valuable
interaction. This research was supported in part by the
National Science Foundation under Grant No. MCS-
7805298 and by the IBM Corporation under Contract No.
4629 14.

References and note
1.

2.

3.

4.

5.

6.

7.

8.

9.

IO .

I I .

M. C. Pease, “An Adaptation of the Fast Fourier Transform for
Parallel Processing,” J. ACM 15, 252-264 (April 1968).
R. W. Hockney and C. R. Jesshope, Parallel Computers, Adam
Hilger Ltd., Bristol, England, 1984.
H. S. Stone, “Parallel Processing with the Perfect Shuffle,” IEEE
Trans. Computers C-20, No. 2, 153-161 (February 1971).
A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe,
L. Rudolph, and M. Snir, “The NYU Ultracomputer-
Designing a MIMD Shared Memory Parallel Machine,” IEEE
Trans. Computers C-32, No. 2, 175-189 (February 1983).
G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey,
W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton, V. A. Norton,
and J. Weiss, “The IBM Research Parallel Processor Prototype
(RP3): Introduction and Architecture,” Proceedings ofthe 1985
International Conference on Parallel Processing, Chicago, IL,
IEEE Computer Society, August 1985, pp. 764-772.
D. Gajski, D. Kuck, D. Lawrie, and A. Sameh, “CEDAR,”
Report No. UIUCDCS-R-I 123, Department of Computer
Science, University of Illinois, Urbana, February 1983.
R. Thomas, W. Crowther, and R. Gurwitz, “Benchmark Results
for a 256-Node Butterfly Parallel Processor,” Report No. 6355,
BBN Laboratories, Cambridge, MA, 1986. Butterfly is a
trademark of BBN Advanced Computers, Inc., Cambridge, MA.
(a) Z. Cvetanovit, “Performance Analysis of Multiple-Processor
Systems,” Ph.D. dissertation, Department of Electrical and
Computer Engineerivg, University of Massachusetts, Amherst,
MA, May 1986. (b) Z. Cvetanovit, “The Effects of Problem
Partitioning, Allocation, and Granularity on the Performance
of Multiple-Processor Systems,” IEEE Trans. Computers C-36,

F. Baskett and A. J. Smith, “Interference in Multiprocessor
Computer Systems and Interleaved Memory,” Commun. ACM
19, No. 6, 327-334 (June 1976).
D. P. Bhandarkar, “Analysis of Memory Interference in
Multiprocessors,” IEEE Trans. Computers C-24, No. 9,
897-908 (September 1975).
P. Heidelberger, “Queuing Network Models for Parallel
Processing with Asynchronous Tasks,” IEEE Trans. Computers
C-31, No. 1 I , 1099-1 109 (November 1982).

NO. 4,421-432 (April 1987).

12.

13.

14.

15.

16.

17.

18.

19.

M. Dubois and F. A. Brigs, “Performance of Synchronized
Iterative Processes in Multiprocessor Systems,’’ IEEE Trans.
Software Eng. SE-8, No. 4,419-43 I (July 1982).
T. N. Mudge and AI-Sadoun, “A Semi-Markov Model for the
Performance of Multiple-Bus,” Proceedings of the I985
International Conference on Parallel Processing, Chicago, IL,
IEEE Computer Society, August 1985, pp. 52 1-53 1.
V. A. Norton and A. Silberger, “Parallelization and Performance
Prediction of the Cooley-Tukey Algorithm for Shared-Memory
Architectures,” Research Report RC-11885, IBM Thomas J.
Watson Research Center, Yorktown Heights, N Y , May 1986.
D. H. Lawrie. “Access and Alignment of Data in an Array
Processor,” IEEE Trans. Computers C-24, No. 12, 175-189
(December 1975).
Z. Cvetanovit, “Best and Worst Mappings for the Omega
Network,” IBM J. Res. Develop. 31, No. 4, 452-463 (July 1987,
this issue).
M. C. Sejnowski, E. T. Upchurch, R. N. Kapur, D. P. S. Charlu,
and G. J. Lipovski, “An Overview of the Texas Reconfigurable
Array Computer,” AFIPS NCC Conference Proceedings,
Anaheim, CA, May 1980, pp. 63 1-64 1.
T. Lang, “Interconnection Between Processors and Memory
Modules Using the Shuffle-Exchange Network,” IEEE Trans.
Computers C-25, No. 5, 496-503 (May 1976).
D. Vrsalovit, E. F. Gehringer, Z. Z. Segall, and D. P. Siewiorek,
“The Influence of Parallel Decomposition Strategies on the
Performance of Multiprocessor Systems,’’ Proceedings ofthe
12th Annual International Symposium on Computer
Architecture, Boston, MA, IEEE Computer Society and ACM,
June 1985, pp. 396-405.

Received April 11, 1986; accepted for publication February 6 ,
1987

Zarka Cvetanovic Digital Equipment Corporation, 85 Swanson
Road, Boxborough, Massachusetts 01 719. Dr. Cvetanovit received a
Ph.D. in computer and electrical engineering from the University of
Massachusetts at Amherst in 1986. She is currently a principal
engineer at the Digital Equipment Corporation. This paper was
conceived and written during her summer 1985 appointment at the
IBM Thomas J. Watson Research Center in Yorktown Heights,
New York. Her research interests are in the area of parallel
algorithms and performance analysis of multiple-processor systems.

45 1

i. C V E T A N O V I ~ IBM J . RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

