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This  paper  presents  a  model  for  the 
performance  prediction of  FFT algorithms 
executed  on  a  shared-memory  parallel  computer 
consisting  of N processors  and  the  same 
number  of  memory  modules.  The model  applies 
a  deterministic  analysis to estimate  the 
communication  delay  through  the 
interconnection  network  by  assuming  that all 
requests  arrive  at  the  network in bursts. Our 
results  indicate  that  the  communication  delay is 
significantly  affected  by  the  method  applied to 
allocate  data to memory  modules.  For  the  case 
in which all data  items  referenced  by  a 
processor  during  an  iteration  are  allocated to a 
single memory  module, the  best-case 
communifation  time  complexity  grows  as 
O[(logN) /N] .  The worst-case  communication 
time  complexity  for this case,  obtained  by  a 
different  allocation of data to memory  modules, 
is increased to O[(logN)/h] due to high 
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network  contention.  For  the  case in which  the 
data  items  referenced  by  different  processors 
during  an  iteration  are  allocated to the same 
memory  module,  the  communication  time 
complexity is further  increased to O(logN) since 
all N requests  generated by processors  are 
serialized  at  a  single memory  module.  The 
methods  developed in this paper  can be applied 
for  the  performance  prediction of other well: 
structured  parallel iterative algorithms. 

1. Introduction 
Analyzing and predicting the performance  of  multiple- 
processor systems is a very complex  task,  since many factors 
jointly  determine system behavior. In this paper, we present 
a  model which provides methods for  better understanding of 
the interaction among various factors which influence the 
performance. As a case study we have chosen the one- 
dimensional  and two-dimensional Fast Fourier  Transform 
(FFT) algorithms  executed on a  shared-memory parallel 
computer.  The FFT algorithms play an  important role in 
mathematical and  numerical analysis. Some of the 
applications  of FFI algorithms include time-series and wave 
analysis, spatial  correlation,  particle  simulations, solvers of 
linear  partial differential equations, Poisson's equation 
solvers, convolution,  and digital filtering. Various parallel 
F"r algorithms  have  been  studied by Pease [ I ]  and by 
Hockney and Jesshope [2], and their adaptation  for 435 

i. CVETANOVIC IBM J.  RES. DEVELOP. VOL. 31 NO. 4 JULY 1987 



execution on  the shuffle-exchange  parallel computer was 
investigated by Stone [3]. 

Our analysis  is  restricted to the parallel architecture 
consisting of N processors and  the same number of global 
and local memories, where  processors and global memories 
are connected through an interconnection network. 
Variations of  such architecture include the NYU 
Ultracomputer by Gottlieb et al. [4], the more recently 
described IBM RP3 by Pfister  et al. [5], the University of 
Illinois CEDAR computer by Gajski et al. [6], and the BBN 
Butterfly'" computer by Thomas et al. [7]. 

Although the scope  of this paper is limited to the FFT 
algorithms and a particular class  of  parallel architectures, the 
methodology developed  in this paper can be  used to estimate 
the performance of other parallel programs and a variety  of 
architectures, as demonstrated by  CvetanoviC [8]. The 
technique developed here  provides methods for obtaining 
closed-form expressions for the total execution time on a 
parallel computer as a function of several parameters. With 
this function, we can study how different parameters affect 
the performance of  parallel programs in order to determine 
their combination such that the total system  design  achieves 
its best  cost-effectiveness. 

Many models based on probabilistic methods have  been 
proposed  for performance analysis of  parallel programs. 
Examples of such models include studies by Baskett and 
Smith 191, Bhandarkar [IO], Heidelberger [ 1 1 1 ,  Dubois and 
Brigs [ 121, and Mudge and Al-Sadoun [ 131. The crucial 
difference  between  these  models and our approach is  in 
estimating the communication delay through the 
interconnection network. In probabilistic models, a certain 
probability distribution for an amval process is assumed in 
order to estimate an average  delay through the 
interconnection network. In our model, we perceive that  the 
requests amve at the network in bursts. This assumption is 
justified by the fact that the computation for FFT algorithms 
can be uniformly distributed among processors. Moreover, 
according to the parallel algorithms chosen, all processors 
are synchronized following each iteration of the algorithm 
(bamer synchronization). Since the communication pattern 
for these algorithms is defined  for  each iteration, we can 
apply a deterministic analysis to compute the execution time 
exactly instead of estimating an average time by using 
probabilistic methods. 

following: 
The major questions we discuss in this paper include the 

1. How is the performance of  parallel FFT algorithms 
affected  by altering the allocation of data to memory 
modules? 

2. How does the performance of parallel FFT algorithms 
change as a function of problem size?  How  is 
performance affected by the match between the number 
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3.  How is the performance of the one-dimensional FFT 
different from the performance of the two-dimensional 
FFT of the same size? 

4. Is it better to access  global data instead of copying data to 
local memories? 

5. How is performance affected by the level  of granularity? 
What is the best grain size  for a given problem size? 

6. How  is performance affected by architecture-dependent 
parameters such as processor  speed and network  speed? 

Our results indicate that  the communication delay and 
therefore the performance of a system are significantly 
affected  by the method of allocating data to memory 
modules. For the case in which  all data items referenced by a 
processor during an iteration are allocated to a single 
memory module, the best-case communication delay is 
obtained by applying the allocation which  results in no 
contention within the interconnection network. The 
communication time complexity for the fixed-size problem 
and N processors  grows as O[(logNy/N]. The worst-case 
communication delay complexity for this case  is obtained by 
applying a different  strategy  for allocating data to memory 
modules which  results  in the maximum possible number of 
conflicts within the network, and the delay  increases to 
O[(logN)/JE]. For the case in which all data items 
referenced by a processor during an iteration are allocated to 
different memory modules, the communication time 
complexity  increases to O(1ogN). The reason  for this is that 
all N requests from processors  accessing data allocated to a 
single memory module need to be serialized at this module. 

Our model  also  provides means for comparing two 
different data-access modes:  where all data are accessed from 
global memories, and where data items are first  copied to 
local memories and then accessed  locally. If the number of 
processors is smaller than  the problem size, our results 
indicate that  the case  with  local/global copying performs 
better than  the case  with  global data access, since copying a 
block of data can take advantage of pipelining data through 
stages  of the network. This is particularly beneficial  for the 
two-dimensional F F T ,  since in this case no performance 
improvement can be obtained with  global data access  when 
the problem size  exceeds the number of  processors. 

The next  section  describes the model for computing the 
execution time and states the assumptions. In Section 3,  we 
derive expressions for the best-case execution time, while  in 
Section 4 we derive expressions for the worst-case execution 
time for the allocation in  which  all data referenced by a 
single  processor during an iteration are allocated to a single 
memory module. In  Section 5, we derive expressions  for the 
execution time for the allocation in which  all data items 
referenced by a single  processor during an iteration are 
allocated to different memory modules. In Section 6, we 
compare our results to  the results from the model proposed 
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by Norton  and Silberger [ 141. The conclusions and a general accessing local data is included in  the  computation time. 
discussion appear in the last section. Processors are  connected  to global memories  through an 

interconnection  network, so that each processor can access 

We restrict our analysis to a parallel architecture consisting memories  requires  traversing the  interconnection network. 
of N identical  processors and N memory modules, with two Figure 1 illustrates  such  architecture, which comprises N 
levels of memory hierarchy.  Each processor has associated processors, N memory modules, and  the interconnection 
with it a local memory,  and we assume  that  the delay for network. 

2. Model  and  assumptions any  memory module.  Each data access from  any of N global 
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As a special case of the  interconnection network, we 
assume  the omega  network  proposed by Lawrie [ 151. An 
N X N omega  network  with 2 X 2 switches consists of logN 
identical stages. Each stage consists of N / 2  switches 
connected by the perfect-shuffle interconnection. An 
example of a 16 X 16 omega  network is shown in Figure 1 of 
[ 161. We  further  assume  that each switch includes an 
infinite-length queue associated with every input  port  for 
maintaining multiple messages. Variations  of  such a network 
are proposed  for many research multiple-processor 
prototypes  being  built at present,  such as  the IBM RP3 [ 5 ] ,  
the  CEDAR [ 6 ] ,  and  the  TRAC [ 171. 

synchronous algorithms  where  all processors are 
synchronized following each iteration of the algorithm, and 
wait for the last processor to  complete  an  iteration before 
proceeding to  the next one. At the beginning  of  each 
iteration, processors must load data  items for  which the FFT 
is computed, which results in  the first burst of  requests 
amving  at  the network.  While the  computation is 
performed, no communication  through  the  interconnection 
structure is required. Upon  completion of the  computation, 
all processors store their results in global memories, which 
produces the second  burst  of data  amving  at  the network. 
Therefore,  such  synchronized  iterative parallel algorithms are 
characterized by bursty amvals  at  the  interconnection 
network.  Since the  communication  pattern  for most  of  these 
algorithms is defined  for every iteration, we can apply a 
deterministic  analysis to  compute  the  communication delay. 

The  model we describe  encompasses the following 
assumptions: 

The FFT algorithms we analyze belong to a class of 

1. In order  to simplify expressions for the  computation  time 
of the FFT algorithms  for M data items, we consider  only 
factors with complexity  of O(M1ogM)  and neglect all 
factors with lower complexity. This  assumption is 
justified by the fact that for large problems, the factors 
with lower complexity  have less influence on  the  total 
execution  time. 

2. For  the purpose  of our analysis, we further  assume  that 
the  additional overhead introduced by converting the 
algorithms into a form  suitable  for parallel execution can 
be neglected. Although this is not a realistic assumption, 
since parallel FFT algorithms  require some  extra 
computation for  spawning parallel tasks and  bamer 
synchronization,  these  factors  represent a small portion of 
the  computation  time  and for the purpose  of our 
complexity  analysis can be neglected. Note  that  our 
model can be enhanced  to  include  this overhead in 
expressions  for the total  execution time. 

computation  and  communication  time slots. In [8 ]  we 
have  extended the analysis to  the case where such  overlap 
is feasible. 

3. We assume  that  no overlap is possible between 
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4. In order  to  further simplify the analysis, we also assume 
that  both  the problem size M and  the  number of 
processors N can  be expressed as a power  of two. 

We now derive a global expression for the  communication 
delay of FIT algorithms  for the class of  architectures 
described above. The effective communication  time T, for a 
burst  of amvals  at  the  interconnection network is computed 
as a sum of the network  latency and  the  queuing delay. The 
latency is proportional  to  the  number of  network stages, and 
the  queuing delay is directly proportional  to  the  number of 
requests amving in a burst and inversely proportional to  the 
network bandwidth,  and T,, is obtained  in accordance with 
the following expression: 

T,= ( E )  D+-- 1 t , .  

In this expression, D is the network depth, or the  number 
of network stages; NA is the  number of requests amving  at 
the network in  one burst; B W is the network bandwidth, or 
the  number of requests  accepted by the network  without 
contention;  and t, is the  communication delay per  network 
stage, excluding contention.  The factor Dt, accounts for the 
network  latency, while (NA/B W - I)t ,  represents waiting 
time  due  to network contention. 

If  we assume that  the  same network contention is 
produced during each  iteration, then  the  total 
communication  time T, for an algorithm  is  obtained by 
multiplying Equation ( 1 )  by the  number of  bursts  per 
iteration and  the  number of iterations that require 
communication  through  the network, in accordance with the 
following expression: 

T, = 6(NCI)(NB) ( E )  D + - - 1 t , .  

In the above expression, NCZ is the  number of those 
iterations  of the algorithm that require communication 
through  the network, and NB is the  number of bursts 
amving  at  the network during  an iteration. The whole 
expression is multiplied by a constant which is in  this case 
equal to 6 ,  since at each iteration two new data  items  are 
loaded from a global memory  and  the results are  then stored 
in a global memory.  We  assume  that for  loading data  the 
interconnection  network  is traversed twice (sending a request 
and receiving data), while it  is  traversed only once for storing 
data  in a global memory. 

For example,  for a single shared communication resource 
(bus), the  bandwidth is B W =  1, the  depth is D = 1 ,  and, 
hence, the  communication  time is proportional  to  the 
number of  requests amving  at  the  bus  in a burst. For a 
multistage  network  with depth  equal  to IogN, such as  the 
omega  network  proposed by Lawrie [ 151, the  maximum 
bandwidth  is B W = N,  provided that  there  are  no conflicts 
within  network switches and  that network stages can  be 
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Table 1 Communication time parameters. 

ID FFT I 2 0  FFT 

COPY I Global I Copy Global 

Shufle  Nonshufle Shufle I Nonshufle 1 I 

Bursts ( N E )  I I 1  
M l M 1  N 1 NJZ 1 Arrivals in burst ( N A )  

Table 2 Best-case  performance for the  Chunk Allocation. 

1 I Execution time I Speedup 
i i N 

N < M  I E (logM)t, + 6  (IogNYt, 
N 

M 
I D  FFT Global 

M 

(logM)t, + 6(logM)(logN)tc I + 6(logN) fr 
1, 

N <  M ~ $ (logM)f,  + 6 
N 

Local 1 + 6  
(logN)(NlogN + M - N )  fr 

MlogM t, 

M 
(logM)t, + 6(logM)(logN)t, 1 + 6(logN) 

t, 

N E ”  i 

N 
N <  J Z  E (logM)t, + 6 - (logM)(logN)t, 

M 
N N 1 + 6(logN) ’. 

t o  

Global 2D FFT 

JG 
N Z  JG JZ(IogM)t, + bJ%(IogM)(logN)t, 

1 + 6(logN) fr 
1, 

N 

Local 

J Z  
N Z  J Z  &(logM)t, + 12(10gN + JZ - l ) t ,  

pipelined.  Hence, the  minimum  communication delay for 3. Best-case  Performance for the  Chunk 
the omega  network is Allocation 

We first analyze the case where the whole portion of the  data 

iteration is allocated to a single memory  module, so that all 
(3) array (chunk) referenced by a single processor during  an 

The values for NB, NCZ, and NA for different data-access chunks  can be accessed independently. We name this 
modes and FFT algorithms are derived  in the next section allocation  a Chunk Allocation. In this section, we obtain 
and  are  summarized in Table 1. expressions for the best-case communication  time for the 439 
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each  of them. Each processor computes  the FFT for the 
chunk  containing M/N data items. An example  of  such 
partitioning  is  shown in Figure 2, where the FFT for M = 16 
data  items is executed on N = 4 processors. Note  that  the 
resulting  graph  is  also a butterfly graph, since the property  of 
the butterfly graph  is that it is reducible. We call this 
algorithm the Nonshuffle Algorithm to distinguish  it  from 
the algorithm that applies a shuffle permutation  during  the 
iterations requiring communication (Shuffle Algorithm). The 
latter algorithm is used in Norton  and Silberger’s model [ 141 
and is analyzed in Section 6. 

dimensional FFT for M data  items is 
We assume  that  the serial time for  executing the one- 

T, = (MlogM)t,, (4) 

where M is the  number of data items, logM is the  number of 
iterations of the algorithm, and t, is the  time  to complete the 
processing of one  data item during a single iteration. 

The processing time  on  an N-processor system is obtained 
as  the  time  on a single processor from  Equation (4) divided 
by the  number of processors: 

MlogM 
T, = - N tP’ 

In order  to  compute  the  communication delay, we 
distinguish two cases according to two different data-access 
modes. 

Case I Data  items  are referenced from global memories. 
In  this case, all data  items  are referenced from global 

memories.  Each memory request traverses the 
interconnection network. We  assume  that for  each data 
point,  two  data  items  are loaded from global memories, then 
the  computation is performed, and  then  the result  is  written 
back to global memories. Processors are synchronized 
following each memory reference; all of them wait for the 
last one  to  complete  the  computation (barrier 
synchronization). 

The  communication  time is obtained  from  Equation (3) 
by substituting NB = M/N  for  the  number of bursts during 
an iteration, NCI = logN  for  the  number of  iterations 
requiring communication,  and NA = N for the  number of 
requests  arriving at  the network during t,: 

T, = 6 - (log N)2t , .  
M 
N (6) 

The  number of  iterations  requiring communication is  equal 
to  logN  and is obtained by subtracting  the  number of 
iterations which do  not require communication  from  the 
total number of iterations: logM - log(M/N). Thus, since 
each processor references M/N data items, the total number 
of  iterations  for which a processor needs data  from global 
memory is reduced by log(M/N),  as illustrated in  the 
example from Figure 2. 

The total  execution time for N processors, T,, is obtained 
by summing  Equations (5) and (6), since by our  assumption 
the  computation  and  communication  time slots are  not 
overlapped: 

MlogM M 
T, = - tp + 6 - (logN)’t,. 

N N 

The expression for the  speedup S is obtained by dividing the 
serial time  from  Equation (4) by the execution time  on  an 
N-processor system from Equation (7): 

The efficiency 7 is obtained by dividing the speedup  from 
Equation (8) by the  number of processors: 

S 1 

The cost/performance ratio is  estimated as  the  product of 
the  number of processors, which is proportional to  the 
hardware  complexity or cost, and  the execution time from 
Equation (7), which is inversely proportional to  the 
performance: 

costlperformance = NT, = M(logM)tp + 6M(logNftc. (IO) 

If the  number of processors N is greater than  or  equal  to 
the problem size M, the total  execution time is obtained 
from  Equation (7) by substituting M for all N except  for the 
N in  logN, the  number of stages in the interconnection 
network: 

T, = (logM)(tp + 6tclogN). ( 1  1) 

The  speedup for this case is obtained by dividing Equation 
(4) by Equation ( 1  I ) :  

M 
S =  

I + 6 ( t ) logN 

Case 2 Data items are copied to local memories. 
In this case, all M/N data items needed by a processor 

during  an iteration are copied into its local memory before 
the  computation is initiated. We assume that  data items can 
be pipelined through  the stages of the network. We further 
assume that  no  computation is performed until all data 
items are copied to local memories. After data copying is 
completed, the  computation is  initiated and processors 
access data  from their local memories; thus  the network  is 
not used during  that  time.  Upon  completion of the 
computation,  the resulting data items are copied back to 
global memories. At this  point, processors are synchronized; 
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all of them wait  for the last one to complete the 
computation (bamer synchronization). 

Equation (3) by substituting NB = 1 (since processors 
access  global memories only once during the iteration), 
NCI = logN for the number of iterations requiring 
communication, and NA = M for the number of requests 
amving at the network during t,: 

The communication time for this case is obtained from 

The speedup is obtained by dividing Equation (4) by the 
sum of Equations (5) and ( 13): 

S =  
N 

(14) 
1 + 6  (logN)(NlogN + M - N) t, 

MlogM (ii 
If N 2 M, the execution time and the speedup are the same 
as in the case  with  global data, since each  processor  accesses 
only a single data item and pipelining of data through the 
network stages cannot be applied. 

Two-dimensional FFT 
The two-dimensional FFT is computed for a & X 4% 
data array, so that the one-dimensional FlTs are computed 
first  for the rows and then for the columns of the array. One 
way to execute the algorithm on N processors  is to compute 
&/N one-dimensional FFTs for the rows at each  processor. 
The same computation is then repeated for the columns of 
the array. The expressions for the best-case execution time 
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and speedup for the two-dimensional FFT can be derived 
using Table 1 and following the same procedure as for the 
one-dimensional F l T .  These results are summarized in 
Table 2.  

Discussion of the results 
Figure 3 presents the speedup for the cases  analyzed above 
as a function of the problem size  for a fixed number of 
processors N = 5 12 and t,/t, = 75. The value  for this ratio is 
chosen so that its complexity matches tp / tc  estimated from 
the RP3 prototype. 

On the basis  of  Figure 3, we observe the following: 

1. The breakpoint for the one-dimensional FFT is at M = N, 
while the breakpoint for the two-dimensional FFT is at 
M = N2 for  reasons explained below. 

The speedup for the one-dimensional FFT increases 
with a complexity of O(M)  until the problem size 
becomes equal to  the number of  processors.  Above this 
point, the computation time complexity increases 
O(1ogM) times faster than  the communication time 
complexity, and  the speedup approaches its maximum as 
M increases. The reason  for this change of  slope is that 
below the breakpoint, each  processor performs a 
computation for a single data item at each iteration and is 
used once for  each of logM iterations, while above this 
point there are not enough processors  available and each 
processor performs a computation for M/N data items 
and is  used M/N times per iteration. 

For the two-dimensional F F T ,  the speedup changes its 
complexity after the problem size  exceeds N2.  The reason 
for this change is that below this breakpoint, each 
processor computes a single one-dimensional FFI for 
& data items, while above this point each processor 
computes &/N one-dimensional FlTs. 

2.  We  now relate the performance for the case  with  global 
data access to the performance with  local/global  copying. 

For the one-dimensional FFT, the performance for 
both data-access modes is the same, provided that the 
problem size  is smaller than the number of processors. 
This is so in both cases  because  each  processor  references 
a single data item and the time to load data from a global 
memory is the same in both cases.  Above the breakpoint, 
the communication time for the case  with  global data 
access  grows  with a complexity of O[M/N(~O~N)~] ,  while 
the communication time for the case  with  local/global 
copying  grows  with a complexity of O(M/Nlog N). 
Therefore, the communication time for the case  with 
local/global  copying is O(1ogN) times lower than for the 
case  with  global data access. The reason  for this 
improvement is that in the case  with  global data access, 
all data items are accessed one by one from a global 
memory, while  in the case  with local/global copying, 
portions of the  data array consisting of M/N data items 
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are copied to local memories and  data can be  pipelined 
through stages  of the interconnection network.  With 
pipelining, each data item takes time of O( I )  instead of 
O(logN), which  is proportional to the number of  stages at 
the network. 

For similar reasons, the communication time for the 
two-dimensional FFT and  the case  with  copying data  to 
local memories is O(1ogMlogN) times lower than the 
communication time for the case  with  global data access. 

The speedup for the two-dimensional FFT with  global 
data access saturates if the problem size  exceeds N2. This 
is  because above this point the communication time has 
the same growth rate as the computation time. The 
reason  for this is that for  each data item, a global memory 
reference  is required, independent of the problem size. 
This result  suggests that for the two-dimensional FFT, 
copying data to local memories is very beneficial if the 
problem size  exceeds 2, since with  global data access no 
further performance improvement can be expected  as the 
problem size  exceeds N2.  

and two-dimensional FFTs of the same size. 
3. We  now compare the performance of one-dimensional 

For the case  with  global data access and a fixed number 
of processors, the execution time complexity for the one- 
dimensional FFT grows as O(logM), while the execution 
time complexity for the two-dimensional FFT grows  as 
O( JGlogM) until the problem size becomes equal to the 
number of processors. This is  because  for the one- 
dimensional FIT each  processor performs a computation 
for a single data item, while  for the two-dimensional FFT 
each processor computes a complete one-dimensional 
FFT for &data items. If the problem size  exceeds N 2 ,  
the time complexity for both FFTs increases as 
O(MlogM),  but  the communication time complexity  for 
the one-dimensional FFT increases O[(logM)/logN] 
times slower than does that for the two-dimensional FIT. 
The reason  is that for the one-dimensional FFT each 
processor performs the computation for M/N data items, 
and the number of iterations is  reduced from O(1ogM) to 
O(logN). 

The time complexity for the case  with  local/global 
copying exhibits behavior similar to  that for the case  with 
global data access. 

Figure 4 shows the cost/performance ratio as a function of 
the number of processors  for a fixed problem size M = 230 
and tp/ tc  = 75. The best-case cost/performance should 
remain constant as the number of processors  increases, since 
this indicates that the execution time decreases 
proportionally to the number of  processors. If the 
cost/performance grows, then the decrease in the execution 
time is smaller than O(N) due to some time wasted on 
communication or  on contention for shared resources. 

We can use the cost/performance ratio as a function of the 

IBM J.  RES. DEVELOP. VOL. 31 NO. 4 JULY 1987 

.-. 50 
0 “i 

I 

I 

0 1  , I I I I I I I )  
4 8 12 16 20  24 28 32 36 

log, (number of processors) 

Cost/performance ratio vs. number of processors (log, M = 30, 
t,, = 150, rL = 2). 

number of  processors to determine the optimal value  of the 
number of processors  for executing a problem of a given 
size. For fixed-size problems, the number of processors  is 
also  related to the granularity: the larger the number of 
processors  used, the smaller the grain size that is  executed on 
a single  processor. By increasing the number of processors, 
the parallelism  available in the application can be exploited 
better, but at the same time the communication 
requirements are increased. 

From Figure 4 we note that  the cost/performance 
increases  drastically after the number of processors N 
exceeds the problem size M for the one-dimensional FFT or 

for the two-dimensional FFT. The reason for this 
change is that above this breakpoint, as the number of 
processors  increases, the execution time grows as O(logN), 
so that  the cost/performance increases  as O(N1ogN). Below 
this breakpoint, the cost/perforrnance for cases  with  global 
data access exhibits a small increase as the number of 
processors  increases, due to some time wasted on 
communication. For the case  with  global data access, the 
cost/perfonnance grows as O(1ogNY for the one-dimensional 
FlT, while its growth rate is  decreased to U(1ogN) for the 
two-dimensional FFT. For the case  with  local/global 
copying, the cost/performance remains very  close to a 
constant until N approaches M for the one-dimensional FFT 
or h? for the two-dimensional FFT, since the 
communication delay is significantly reduced by taking 
advantage of pipelining data through the network stages. 
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Table 3 Worst-case  performance  for  the  Chunk Allocation. 

r 

ID FFT 

2D FFT 

Execution time 

Global N <  M (logM)r, + 6 - (IogNXlogN + f i  - 1)1, 
M 

N  N 

M s N c M 2  (logM)t, + 6(logM)(logN + f i  - I)t, 

N Z  M~ (logM)I, + 6(10gM)(logN + M - l)t, 

Local N < M _M (logM)t, + 6  logN + N ( JN 

M s N r . M 2  (logM)t, + 6(logM)(logN + JE - l ) t ,  

N Z  M' (logM)t, + 6(10gM)(logN + M - l)fc 

Global N < 4% (logM)t, + 6 - (logM)(logN + JF - I)t, 
M 

N N 

4% c N < M f i ( l ogM) t ,  + 6&(logM)(logN + Jz - l)t, 

N Z  J% J%(IogM)tp + 6f i ( logM)( logN + fi - l)tc 

Local N JG M(logM)t ,  + 12- (logN + J E  - l)t, 
& 

N  N 

fi(IogM)t, + I2(l0gN + JE - I)tc 

f i ( l o g M ) t p  + 12(l0gN + fi - l ) tc  

T 

4. Worst-case  performance  for  the Chunk 
Allocation 
The results derived in the previous section represent the best- 
case execution time, where the  chunks of data  are allocated 
to global memories such that  the contention within the 
network can be neglected. In this section, we derive 
expressions for the worst-case execution time for the  Chunk 
Allocation by assuming that  chunks  are allocated such that a 
maximum number of  conflicts  is produced within the 

444 network during each iteration of the algorithm. By Claim 5 

Speedup 

N 

1 + 6  
(logN)(logN + JZ - I )  t, 

log M 4 
- 

M 

1 + 6(logN + M - 1) fE 
I ,  

N 
(IogNXNlogN + JFM - N) 1, 

1 + 6  MlogM - 
4 

~ 

M 

I + 6(logN + JZ - I )  5 
1, 

M 

1 + 6( logN+ M -  
I ,  

N 

1 + 6(logN + f i  - I )  e t 

J Z  

J Z  
I + 6(logN + J% - I )  5 

t, 
N 

J% 

of [ 161 and its proof, we show that such allocations are 
feasible and that all iterations of the algorithm produce a 
maximum number of conflicts  provided that  an initial 
allocation is conflict-free. 

In order to compute the execution time, we need to 
determine the  minimum bandwidth of the interconnection 
network. The minimum bandwidth is determined by the 
maximum number of conflicts within the network. Lang 
[ 181 has  shown that the maximum number of  conflicts  for 
the shuffle-exchange  network is equal to 2 L''%N'z' = q&). 
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Table 4 Performance for the Nonchunk Allocation. 

r 
T 

I D  FFT 

2D  FFT 

Global 

Local 

Global 

Local 

L 

Execution  time 

(logM)t, + 6 ; (logN)(logN + N - I)t, M 
N 

N  N 

( logM)tp + 6(logM)(logN)f, 

N 

(logM)f,  + 6(logM)(logN)t, 

(logM)t, + 6 - (logM)(logN + N - I)(, 
M 

N N 

JG (logM)t, + 6&(logM)(logN + Jz - I ) ( ,  

(logM)tp + 12 - (IogN + d% - I)(, 
JG 

N  N 

JG(IogM)t, + 12(logN + d% - I)(, 

~ 

cost/performance  becomes significantly larger than  the best- 
case cost/performance even for relatively small values of N. 

5.  Performance  results  for  the  Nonchunk 
Allocation 
In all the cases analyzed previously, we have  assumed that 
data items from  one  chunk  are allocated to  the  same 
memory  module (we have called this allocation the Chunk 
Allocation). In this section, we study how performance is 
affected by applying  a different allocation  where all data 
items from a single chunk  are allocated to different memory 
modules (we call this allocation the Nonchunk Allocution). 
We  then derive  expressions  for the  communication delay for 
the  Nonchunk Allocation. 

While for  the  Chunk Allocation every processor accesses a 
different memory  module  during each iteration of the 
algorithm, for  the  Nonchunk Allocation two or more 
processors may request the  same  memory  module  during  the 
same iteration. Expressions for the total  execution time  and 

Speedup 
N 

N 

M 

I + 6(logN) '. 
t, 

N 
(logN)(NlogN + M - N )  

1 + 6  
MlogM 

M 

1 + 6(logN) 
t P 

N 

1 + 6(logN + N - I )  '. 
to 

JG 

I + 6(logN + JG - I )  2 
f P 

t 

N 

J Z  

the  speedup for the  Nonchunk Allocation are  summarized in 
Table 4. 

One-dimensional FFT 
For  the one-dimensional FFT, we assume  that according to 
the  Nonchunk Allocation,  a data item from each chunk  up 
to  the  chunk size is allocated to a different memory  module. 
Therefore, all processors reference the  same  memory  module 
at  the  same  time  during each  iteration. 

Case I Data  items  are referenced from a global memory. 
In order  to  compute  the execution time  for  the case with 

global data access, we need to  determine  the bandwidth  of 
the network,  since all other  parameters  in  Equation ( 2 )  are 
the  same  as  in  the previous  sections and  are  summarized in 
Table 1. 

First, we analyze the case where N < &, or the  number 
of processors is smaller than  the  number of data items in  one 
chunk. In this case, all data  items of a chunk  are allocated to 
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different memory modules.  Since all processors reference the 
same  memory  module, all N  requests are in conflict at this 
memory  and  the  bandwidth of the network is reduced to 1. 
The  communication delay is obtained  from Equation (2) by 
substituting NB = M/N,  NCI = logN, NA = N, and B W = 1: 

For the case where dz 5 N < M ,  the  number of processors 
is larger than  M/N,  the  number of data  items  at each 
memory module.  Therefore, the  maximum of M/N requests 
are in conflict, and consequently, the  bandwidth is equal to 
N2/M. All other  parameters  are  the same, and  the 
communication delay is  obtained from  Equation (2): 

Case 2 Data  items  are copied to local memories. 
The case with local/global copying  for the  Nonchunk 

Allocation is the  same as for the  Chunk Allocation,  since 
data  are pipelined through stages of the  interconnection 
network. The  bandwidth of the network is equal to N since, 
although  N  requests are sent to  the  same  memory module, 
there  are still M - N  requests  for the  other  modules  and  the 
requests for different memory modules  can be pipelined 
through the stages of the network. The expressions  for the 
execution time  and  the speedup are therefore the  same  as for 
the  Chunk Allocation. 

Discussion of the results 
We now compare  the best-case results for the  Chunk  and 
Nonchunk Allocations  for the one-dimensional FFT with 
global data access. 

Figure 7 presents efficiency as a function of  problem size 
for a fixed number of processors N = 5 12 and  both 
allocations. The efficiency exhibits very interesting  behavior. 
If M 5 N, the efficiency increases as O(M) and is the  same 
for both  allocations. For N < M 5 N2,  the efficiency for the 
Nonchunk Allocation decreases with a  complexity  of 
O(M/logM), whereas the efficiency for the  Chunk Allocation 
increases with a  complexity of O(1ogM). The reason  for this 
discrepancy is that for the  Nonchunk Allocation the 
communication  time grows faster than  the  computation 
time  as M increases, since M/N requests are serialized at a 
single memory  module. Finally, for M 2 N2  the efficiency 
for the  Nonchunk Allocation increases, as does  that of the 
Chunk Allocation, with a  complexity  of O(1ogM). 

The speed ratio of the  Nonchunk  and  Chunk Allocations 
is shown by the  dotted line  in  Figure 7. Two allocations  have 
the  same speed of  execution if M 5 N.  As the problem size 
exceeds N, the speed of the  Nonchunk Allocation  becomes 
much lower than  that of the  Chunk Allocation,  until  it 
approaches the  point where it is just 0.062 of the speed of 
the  Chunk Allocation. Above this  point,  the performance of 
the  Nonchunk Allocation is slightly improved. 

Figure 8 plots the  speedup as  a function of the  number of 
processors N  for  a fixed problem size M = 230 and all three 
allocations  analyzed  above. Note  that increasing the  number 
of processors while keeping the problem size fixed is 
equivalent to increasing the level of  granularity or decreasing 
the size of subproblems executed on processors. 

From this figure we note  that for the best-case Chunk 
Allocation, the  speedup increases as  O[N/(logNy] until the 
number of processors becomes  equal to  the problem size. 
After the  number of processors exceeds the problem size, the 
speedup decreases as O(1ogN). The speedup  for the worst- 
case Chunk Allocation, which is obtained by a different 
allocation of chunks  to memory  modules,  increases with a 
complexity of O[ &/(logN)] if N I M; after  N exceeds M, it 
decreases with a  complexity of O( JN). For example, if 
N = M, the  speedup for the best-case Chunk Allocation  is 
776 times greater than  the  speedup for the worst-case Chunk 
Allocation. 

The speedup  for the best-case Nonchunk Allocation is 
composed  of two curves. If N I J%, the  speedup is very 
low. It first increases and after  reaching the  maximum  it 
decreases as  N  approaches dG. At this point  the  speedup 
from  Figure  8  for the  Chunk Allocation is 821 times greater 
than  the  speedup for the  Nonchunk Allocation. If N 5 JG, 
the  number of processors is smaller than  the  chunk size and 
all requests from N processors are serialized at a single - 
memory module. As N exceeds JM,  the  number of 447 
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processors becomes  greater than  the  chunk size, and  the 
speedup for the best-case Nonchunk Allocation  improves, 
approaching  the  speedup for the best-case Chunk Allocation. 
From these results we conclude  that  the  method applied  for 
allocating data  items  to  memory  modules has a significant 
effect on  the performance  of parallel FFT algorithms. 

6. Shuffle  Algorithm  for  the  one-dimensional 
FFT 
In this section, we present a different algorithm  for  executing 
the one-dimensional FFT on a shared-memory  architecture. 
We use our model  to  estimate  the performance  of  this 
algorithm  in order  to  compare our results with the results 
from  the  model developed by Norton  and Silberger [ 141. 
Since this algorithm  performs a shuffle permutation  at each 
iteration  requiring communication  through  the network, we 
call it  the Shuffle Algorithm to distinguish it  from  the 
algorithm  described  in  Sections 3 and 4 which we named  the 
Nonshuffle Algorithm. The  major difference between these 
two  algorithms is that  the Shuffle Algorithm  reduces the 
number of iterations  requiring communication  from 
log N required by the Nonshuffle Algorithm to 

problem size is much larger than  the  number of processors. 
Figure 9 presents the Shuffle Algorithm  for the example of 

M = 16 data  items  and N = 4 processors. Note  that  the 
communication is  required  after  each log(M/N) iterations  of 

[ (logM)/log(M/N) 1 . This  can  be very beneficial if the 

the  computation.  The  data  items needed by each processor 
for the next log(M/N) iterations are stored in global 
memories by the inverse shuffle of power of log(M/N). 
These data  items  are  then loaded into local memories by 
each of the processors, so that  the next log(M/N) iterations 
can proceed without  requiring communication  through  the 
interconnection  network. 

As for the  Nonchunk Allocation, the  maximum  number 
of conflicts in  the  memory  module is obtained as the 
minimum of the  number of processors and  the size of the 
chunk,  and is equal  to  min(N,  M/N). Consequently, the 
bandwidth is equal  to  max( 1, N2/M).  The expression for the 
communication overhead  for the case with global data access 
is obtained from  Equation (2) by substituting NB = M/N, 
NCI = [ (logM)/log(M/N) 1 , and NA = N: 

The best-case communication overhead is obtained by 
assuming that  no conflicts are generated  within the network 
and replacing B W = N in Equation ( 18): 

The worst-case communication overhead is obtained by 
assuming a maximum  number of conflicts at  the  memory 
module  and substituting B W = max( 1, N 2 / M )  in  Equation 
(18): 

M logM 
Tc = ti 7 [log(M/Nd pN + ( $) - 1 “’ N 

max 1, - 

Expressions for the total  execution time  and  other 
performance  measures can be obtained following the 
procedure from  the previous sections. 

one-dimensional FFT with global data access as a function 
of the problem size for N = 5 12 and t p / t c  = 100. The speed 
of our worst-case estimates and  the speed computed  from 
Norton  and Silberger’s model  are normalized to  the speed of 
our best-case estimates. From  this figure we note  that  the 
results from  Norton  and Silberger’s model fall between our 
best and worst cases and  that  their complexity  matches the 
complexity  of our best-case estimates  for large problems. 
While the results from  Norton  and Silberger’s model 
approach our best-case estimates, they differ significantly 
from our worst-case estimates. We believe that  the  main 
reason for  this  discrepancy is that we have  assumed that  the 
requests for global memories amve  at  the network in bursts 
and  that for a specific allocation of data  to  memory  modules 
they can decrease the network bandwidth by a factor of 
O(N). In  Norton  and Silberger’s model, the  communications 
delay is  estimated using an average memory-request rate  at 
each iteration.  Therefore, in  this  model  the effect of changing 

Figure 10 presents the speed ratios  for two models and  the ‘\ 
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the allocation of data  to  memory  modules  does  not have any 
effect on  the performance. 

This figure also  shows that  the best-case performance 
measures  estimated by our model differ from  the results 
obtained from  Norton  and Silberger's model  for  smaller 
problems. A possible reason  for this discrepancy is that in 
estimating the  computation  time we neglect all factors less 
than  MlogM,  including both M and  logM factors. For 
smaller M, these  factors  tend to influence the  computation 
time  more profoundly, and therefore in  this region our 
performance estimates  are different from  Norton  and 
Silberger's estimates. 

7.  Conclusions and  general discussion 
We have  presented a deterministic model for  predicting the 
performance  of  various FFT algorithms  executed on a 

shared-memory parallel computer. By applying a 
deterministic analysis, we have obtained expressions for 
performance  measures as a function of the problem size, the 
number of processors, the allocation of data  to  memory 
modules, and  the speed of processing and  communication. 
We used these  expressions to analyze the interaction among 
various  parameters. On  the basis of  these results, we can 
recognize performance  bottlenecks, and  determine how 
performance can be improved by changes  in both  the 
architecture and  the application  being  executed. 

The results obtained  in  this  paper were related to  the 
results from  the model  developed by Norton  and Silberger. 
In contrast to their results, our estimate for the 
communication delay is very sensitive to  the  method used 
for  initial  allocation  of data  to  memory modules. We have 
shown that when different allocations are applied, the 
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communication delays among  the models differ  by a factor 
of O(N), where N is the number of  processors. 

the case  with  local/global copying performs better than the 
case  with  global data access, as long as the problem size  is 
larger than  the number of  processors, since copying a large 
block  of data can take advantage of pipelining data through 
the network  stages. 

The model presented here captures the bursty nature of 
amvals  at the interconnection network, which  is a property 
of many synchronous algorithms. It provides a means for 
measuring the performance effect  of different allocations of 
data  to memory modules, which is not achievable using a 
probabilistic analysis.  Using the technique demonstrated 
here, we can further investigate  strategies  for partitioning 
large problems in order to minimize the communication 
through the network. Also, the optimal number of  processors 
for executing a fixed-size problem can be determined by 
maximizing expressions for the speedup as a function of the 
number of  processors. 

Although the scope  of our analysis has  been limited to 
FFT algorithms, the methods demonstrated here can be 
successfully applied to other iterative structured algorithms, 
as shown in [8]. Various iterative problems proposed for 
parallel execution can be  classified on the basis of a method 
used  for the processing and communication decomposition 
among N processors, as demonstrated by  VrsaloviC [ 191. Our 
analysis, then, can be applied to those classes, so that the 
performance of various classes  of problems rather than 

With respect to different data-access modes, we found that 
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specific algorithms can be compared, thus enhancing the 
generality  of methods adopted here. 

However, since our primary goal  was to investigate the 
general relationship among various parameters that influence 
the performance of multiple-processor systems, we have 
simplified the analysis by several assumptions. We  now 
discuss some of the limitations of our approach and the ways 
of extending the model for application in a more general 
framework. 

1. Owing to length constraints, our analysis in this paper has 
been limited to shared-memory parallel architecture. In 
[8(a)], we  showed  how the methods demonstrated here 
can  be applied to other parallel architectures. Although 
we have estimated bounds for the communication delay 
for a specific interconnection network, our model can be 
generalized to include other interconnection structures. If 
it  is  possible to determine the worst and best bandwidth 
for an interconnection structure as a function of N,  then 
this function can be substituted in our expressions for the 
performance measures, so that  the impact of 
communication complexity on performance can be 
directly observed. 

2. We have assumed that all  processors are synchronized 
following  each iteration of the algorithm and  that  the 
computation can be uniformly distributed over N 
processors, so that all  processors  send requests to the 
network simultaneously. If this assumption does not hold, 
then processors  have different initiation times, resulting in 
an asynchronous execution. It  would be interesting to 
investigate whether the model  described  here can be 
extended to include asynchronous parallel algorithms. 

3. We have further assumed that iterative algorithms do not 
include data-dependent branches and  that a regular 
pattern of data accesses  is  repeated at each iteration. For 
such algorithms, a static allocation of data  to memories 
prior to execution can be applied. For algorithms with 
dynamic and irregular data access, the deterministic 
analysis can be applied only for portions between data- 
dependent points; otherwise the simulation-based 
predictions are more appropriate. 

4. The analysis performed in this paper does not include the 
case  where computation at processors can be overlapped 
with communication through the network. If overlap 
between  processing and communication is  allowed, then 
a similar analysis can be performed in order to obtain 
expressions for the communication delay, as  shown in 
181. 

5 .  In this paper we have considered only the case  where 
data-access times for both global and local memories are 
the same. The model can be  easily extended to include 
different  data-access times for  global and local memories, 
so that  the performance effect  of changing memory 
speeds can be observed. 
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The results of this paper  indicate that for well-structured 
problems  such  as the F F T ,  the congestion at  the 
interconnection  network can be reduced significantly by 
applying  a  static  allocation  of data  to memories. One 
interesting  problem that  remains is to identify allocations 
that result in the best and worst performance  for the FFT. 
We believe that  communication  requirements of various 
parallel algorithms  have some  common characteristics. If it 
is possible to classify algorithms  according to their 
communication properties, then it would be worthwhile to 
investigate the best and worst allocations  for each of  these 
groups. 
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