Performance
analysis of the
FFT algorithm
on a shared-
memory parallel
architecture

by Z. Cvetanovié

This paper presents a model for the
performance prediction of FFT algorithms
executed on a shared-memory parallel computer
consisting of N processors and the same
number of memory modules. The model applies
a deterministic analysis to estimate the
communication delay through the
interconnection network by assuming that all
requests arrive at the network in bursts. Our
results indicate that the communication delay is
significantly affected by the method applied to
allocate data to memory modules. For the case
in which all data items referenced by a
processor during an iteration are allocated to a
single memory module, the best-case
communication time complexity grows as
O[(log N)2/N]. The worst-case communication
time complexity for this case, obtained by a
different allocation of data to memory modules,
is increased to O[(log N)/\/ﬁ] due to high

©Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

network contention. For the case in which the
data items referenced by different processors
during an iteration are allocated to the same
memory module, the communication time
complexity is further increased to O(logN) since
all N requests generated by processors are
serialized at a single memory module. The
methods developed in this paper can be applied
for the performance prediction of other well-
structured parallel iterative algorithms.

1. Introduction

Analyzing and predicting the performance of multiple-
processor systems is a very complex task, since many factors
jointly determine system behavior. In this paper, we present
a model which provides methods for better understanding of
the interaction among various factors which influence the
performance. As a case study we have chosen the one-
dimensional and two-dimensional Fast Fourier Transform
(FFT) algorithms executed on a shared-memory parallel
computer. The FFT algorithms play an important role in
mathematical and numerical analysis. Some of the
applications of FFT algorithms include time-series and wave
analysis, spatial correlation, particle simulations, solvers of
linear partial differential equations, Poisson’s equation
solvers, convolution, and digital filtering. Various parallel
FFT algorithms have been studied by Pease [1] and by
Hockney and Jesshope [2], and their adaptation for

v
7. CVETANOVIC

435

436

execution on the shuffle-exchange parallel computer was
investigated by Stone [3].

Our analysis is restricted to the parallel architecture
consisting of N processors and the same number of global
and local memories, where processors and global memories
are connected through an interconnection network.
Variations of such architecture include the NYU
Ultracomputer by Gottlieb et al. [4], the more recently
described IBM RP3 by Pfister et al. [5], the University of
Illinois CEDAR computer by Gajski et al. [6], and the BBN
Butterfly™ computer by Thomas et al. [7].

Although the scope of this paper is limited to the FFT
algorithms and a particular class of parallel architectures, the
methodology developed in this paper can be used to estimate
the performance of other parallel programs and a variety of
architectures, as demonstrated by Cvetanovic [8]. The
technique developed here provides methods for obtaining
closed-form expressions for the total execution time on a
parallel computer as a function of several parameters. With
this function, we can study how different parameters affect
the performance of paraliel programs in order to determine
their combination such that the total system design achieves
its best cost-effectiveness.

Many models based on probabilistic methods have been
proposed for performance analysis of parallel programs.
Examples of such models include studies by Baskett and
Smith [9], Bhandarkar [10], Heidelberger [11], Dubois and
Briggs [12], and Mudge and Al-Sadoun [13]. The crucial
difference between these models and our approach is in
estimating the communication delay through the
interconnection network. In probabilistic models, a certain
probability distribution for an arrival process is assumed in
order to estimate an average delay through the
interconnection network. In our model, we perceive that the
requests arrive at the network in bursts. This assumption is
justified by the fact that the computation for FFT algorithms
can be uniformly distributed among processors. Moreover,
according to the parallel algorithms chosen, all processors
are synchronized following each iteration of the algorithm
(barrier synchronization). Since the communication pattern
for these algorithms is defined for each iteration, we can
apply a deterministic analysis to compute the execution time
exactly instead of estimating an average time by using
probabilistic methods.

The major questions we discuss in this paper include the
following:

1. How is the performance of parallel FFT algorithms
affected by altering the allocation of data to memory
modules?

2. How does the performance of parallel FFT algorithms
change as a function of problem size? How is
performance affected by the match between the number
of processors and the problem size?

¥ z
Z. CVETANOVIC

3. How is the performance of the one-dimensional FFT
different from the performance of the two-dimensional
FFT of the same size?

4. Is it better to access global data instead of copying data to
local memories?

5. How is performance affected by the level of granularity?
What is the best grain size for a given problem size?

6. How is performance affected by architecture-dependent
parameters such as processor speed and network speed?

Our results indicate that the communication delay and
therefore the performance of a system are significantly
affected by the method of allocating data to memory
modules. For the case in which all data items referenced by a
processor during an iteration are allocated to a single
memory module, the best-case communication delay is
obtained by applying the allocation which results in no
contention within the interconnection network. The
communication time complexity for the fixed-size problem
and N processors grows as O[(log N)2/N]. The worst-case
communication delay complexity for this case is obtained by
applying a different strategy for allocating data to memory
modules which results in the maximum possible number of
conflicts within the network, and the delay increases to
O[(logN)/ JI_\f] For the case in which all data items
referenced by a processor during an iteration are allocated to
different memory modules, the communication time
complexity increases to O(log N). The reason for this is that
all N requests from processors accessing data allocated to a
single memory module need to be serialized at this module.

Our model also provides means for comparing two
different data-access modes: where all data are accessed from
global memories, and where data items are first copied to
local memories and then accessed locally. If the number of
processors is smaller than the problem size, our results
indicate that the case with local/global copying performs
better than the case with global data access, since copying a
block of data can take advantage of pipelining data through
stages of the network. This is particularly beneficial for the
two-dimensional FFT, since in this case no performance
improvement can be obtained with global data access when
the problem size exceeds the number of processors.

The next section describes the model for computing the
execution time and states the assumptions. In Section 3, we
derive expressions for the best-case execution time, while in
Section 4 we derive expressions for the worst-case execution
time for the allocation in which all data referenced by a
single processor during an iteration are allocated to a single
memory module. In Section 5, we derive expressions for the
execution time for the allocation in which all data items
referenced by a single processor during an iteration are
allocated to different memory modules. In Section 6, we
compare our results to the results from the model proposed

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

Local
memory,,
Processor, Global
0 memory,
Local
memory,
Processor, Global
1 memory,
Local
memory,
Interconnection
network
Processor. Global
2 memory,
L]
hd L]
. .
M .
Local
memory,, _,
Processor,, Global
N1 memory,, |

Shared-memory architecture.

e

by Norton and Silberger [14]. The conclusions and a general
discussion appear in the last section.

2. Model and assumptions

We restrict our analysis to a parallel architecture consisting
of N identical processors and N memory modules, with two
levels of memory hierarchy. Each processor has associated
with it a local memory, and we assume that the delay for

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

accessing local data is included in the computation time.
Processors are connected to global memories through an
interconnection network, so that each processor can access
any memory module. Each data access from any of N global
memories requires traversing the interconnection network.
Figure 1 illustrates such architecture, which comprises N
processors, N memory modules, and the interconnection
network.

7. CVETANOVIC

437

438

As a special case of the interconnection network, we
assume the omega network proposed by Lawrie [15]. An
N X N omega network with 2 X 2 switches consists of log N
identical stages. Each stage consists of N/2 switches
connected by the perfect-shuffle interconnection. An
example of a 16 X 16 omega network is shown in Figure 1 of
[16]. We further assume that each switch includes an
infinite-length queue associated with every input port for
maintaining multipie messages. Variations of such a network
are proposed for many research multiple-processor
prototypes being built at present, such as the IBM RP3 [5],
the CEDAR [6], and the TRAC [17].

The FFT algorithms we analyze belong to a class of
synchronous algorithms where all processors are
synchronized following each iteration of the algorithm, and
wait for the last processor to complete an iteration before
proceeding to the next one. At the beginning of each
iteration, processors must load data items for which the FFT
is computed, which results in the first burst of requests
arriving at the network. While the computation is
performed, no communication through the interconnection
structure is required. Upon completion of the computation,
all processors store their results in global memories, which
produces the second burst of data arriving at the network.
Therefore, such synchronized iterative parallel algorithms are
characterized by bursty arrivals at the interconnection
network. Since the communication pattern for most of these
algorithms is defined for every iteration, we can apply a
deterministic analysis to compute the communication delay.

The model we describe encompasses the following
assumptions:

1. In order to simplify expressions for the computation time
of the FFT algorithms for M data items, we consider only
factors with complexity of O(MlogM) and neglect all
factors with lower complexity. This assumption is
justified by the fact that for large problems, the factors
with lower complexity have less influence on the total
execution time. ,

2. For the purpose of our analysis, we further assume that
the additional overhead introduced by converting the
algorithms into a form suitable for parallel execution can
be neglected. Although this is not a realistic assumption,
since parallel FFT algorithms require some extra
computation for spawning parallel tasks and barrier
synchronization, these factors represent a small portion of
the computation time and for the purpose of our
complexity analysis can be neglected. Note that our
model can be enhanced to include this overhead in
expressions for the total execution time.

3. We assume that no overlap is possible between
computation and communication time slots. In [8] we
have extended the analysis to the case where such overlap
is feasible.

Y z
Z. CVETANOVIC

4. In order to further simplify the analysis, we also assume
that both the problem size M and the number of
processors N can be expressed as a power of two.

We now derive a global expression for the communication
delay of FFT algorithms for the class of architectures
described above. The effective communication time 7, for a
burst of arrivals at the interconnection network is computed
as a sum of the network latency and the queuing delay. The
latency is proportional to the number of network stages, and
the queuing delay is directly proportional to the number of
requests arriving in a burst and inversely proportional to the
network bandwidth, and T_ is obtained in accordance with
the following expression:

NA
T =<D+W_ 1)[0. (1)

ec

In this expression, D is the network depth, or the number
of network stages; NA is the number of requests arriving at
the network in one burst; BW is the network bandwidth, or
the number of requests accepted by the network without
contention; and ¢, is the communication delay per network
stage, excluding contention. The factor D¢, accounts for the
network latency, while (NA/BW — 1)t_represents waiting
time due to network contention.

If we assume that the same network contention is
produced during each iteration, then the total
communication time 7, for an algorithm is obtained by
multiplying Equation (1) by the number of bursts per
iteration and the number of iterations that require
communication through the network, in accordance with the
following expression:

BW

In the above expression, NCI is the number of those
iterations of the algorithm that require communication
through the network, and NB is the number of bursts
arriving at the network during an iteration. The whole
expression is multiplied by a constant which is in this case
equal to 6, since at each iteration two new data items are
loaded from a global memory and the results are then stored
in a global memory. We assume that for loading data the
interconnection network is traversed twice (sending a request
and receiving data), while it is traversed only once for storing
data in a global memory.

For example, for a single shared communication resource
(bus), the bandwidth is BW = 1, the depth is D = 1, and,
hence, the communication time is proportional to the
number of requests arriving at the bus in a burst. For a
multistage network with depth equal to log NV, such as the
omega network proposed by Lawrie [15], the maximum
bandwidth is BW = N, provided that there are no conflicts
within network switches and that network stages can be

T, = 6(NCI)(NB)<D . 1)4. @)

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

Table 1 Communication time parameters.

1D FFT 2D FFT
Global Copy Global Copy
Shuffle Nonshuffle Shuffle Nonshuffle
Communication logM] [logM] M M
iterations (NCI) [log(M/N) logV log(M/N) log 2——N_ 27
M M — =
— = v N
Bursts (NB) N N i 1 MlogvM 1
Arrivals in burst (NA) N N M M N NVM

Table 2 Best-case performance for the Chunk Allocation.

Execution time Speedup
N
M M 2 ————2
1D FFT Global N<M = (osM)t, + 6 - (10g V), |4 GogN)
logM 1,
M
t
Nz=M (log M)z, + 6(log M)log Nz, I + 6(logN) <
tl’
M M N
Local N<M — (logM)}_ + 6 <logN +—~ 1) (logN) (logN)(NlogN + M - N) I,
N P N ¢ 1+6 =
Mlog M &
M
t
N=M (log M)z, + 6(log M)(1og N)z, I + 6(logN) <
tP
N
2D FFT Global N< VM M (logM)t_+ 6 M (log M)(log N)¢, {
v HoBMI, 67 (0B M08 I+ 6(10gN) ¢
P
M
= VM M M ;
Nz VM M(logM)t, + 6 M(log M Ylog N)i, I + 6(logh) =
tP
Ny N
Local N<VM %(logM)tp +12 T]M(logN + VM - 1y, Ly g loeN VM-,
VMlogM ¢,
VM
N= M VM(log M)t, + 12(logN + VM — 1), 4o loeN VM-,
+ =
MlogM 1,
pipelined. Hence, the minimum communication delay for 3. Best-case performance for the Chunk
the omega network is Allocation
NA We first analyze the case where the whole portion of the data
T, = 6(NCI)(NB)<10gN + N 1>tc. (3) array (chunk) referenced by a single processor during an

iteration is allocated to a single memory module, so that all

The values for NB, NCI, and NA for different data-access chunks can be accessed independently. We name this
modes and FFT algorithms are derived in the next section allocation a Chunk Allocation. In this section, we obtain
and are summarized in Table 1. expressions for the best-case communication time for the 439

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987 z. CVETANOVIé

1861 ATNf ¥ 'ON 1t "IOA 'dOT3AIA 'STF [Wl

Ul SWI ANNIISUOD AJ/J YIIM ‘SyUnyd A/ 01Ul Swa)l elep
JA JO ABII® 31} SPIAIP O} ST ‘UOTIDAS SIY} UI PazATeur ST yorym
‘ 144 [euotsudwip-auo 3y Surziarered 10J poylow U
‘Apoexa pandwiod 9q UBD PRIYIIA0 UONBIIUNWIOD Y}
Apuanbasuod pue UOIIUUOD FIOMIU Y] ‘SAMPOW AIOWAW
0] BJBp JO uOoTIRdO[[dyI1dads © 10J 20UIs ‘uoneinuudd [esIaasl
-11q 39U} 9pN[OUl 0} PAPUIIXI 3q UBD [dPOW Y} ‘I9AIMOH
-1aded syl ur pazATeue swyuosie 1.4 [[e 10j uonenuiad
[BSISAI-1IQ SY) YIIM PIILBIDOSSE 1S0D Y] 109[39U am ‘Sisk[eue
oy Ajduars 01 19pIO U] “SWSI BIEP [BIIUL 3] SB IIPIO
duwies dY) Ul PaJols JIe SINSAI Y} jeyl 0s ‘wyjuod[e syl jo
juiod swios Je uonenuwuad [es1aaal-)Iq e salnbar wiyiuode
144 yoeq ‘sadeis py o[yum ydesd Agronng e £q poyuasardal
ST SWY BIBP Jy JOJ WYILIOZ[E] 4. [BUOISUIWIP-oUO JY],
LA [PUOISUIWIP-2U() ®

JIAONVLIAD Z
7 ~

‘T3qeL
Ul PaZLIBUIWINS 218 PUB MO[[0] 18] SUOIID3S) Ul PIALISP
A1k ST . [BUOISUSWIP-OM] PUE [BUOISUIWIP-UO (10q I0J
dnpaads pue awin) UOTINDIXS ISLI-1S3q Y1 10J suorssaidxg
"331J-UOTIUSIUOI ST UOHIBIO[[.
[enul ue jey) papiaoid YIOMIGU UOTIIUUOIIIIUT 3Y) UIYIIm
uonuAuUod ou dnpoid wyiode 144 Y} Jo suone1dll (e
Jey) puE 9]qIses) 218 SUONIBIO[[R Yons jeyl Moys am ‘Jooxd si1
pue [9]] JO $ wire[) A "dWI] JWeS 3] JB J[NPOW AIOWI
SWES 9} SOUIYAI JOUUED SI0SS00Id 2I0W IO 0M] ‘SINPOLU
AIOWIW JUISPYIP O} PAILIO[[R 31k SYUNYD S[OYm 0UIS pur
JUNYO I9YIOUB WOIJ BIBP SIOUIIJAI 108$3001d © ‘UOTIRINT
[oed Sunm("JIomIaU 3] UIYIIM Uonualuod sunerousd
JNOYIIM PIJUIIJAL 3q Ued BIep 1ey) 0S sanpowr A1owaur 0}
PaTROO[[E 1B sUNYD Y} 1Byl urunsse Aq UONIBIO[[Y JunyD

o
!
g
/
0
O

\
\

pE=

M\

o

SRS

4

£105530014 10559001

108500014 008590014

ovy

each of them. Each processor computes the FFT for the
chunk containing M/N data items. An example of such
partitioning is shown in Figure 2, where the FFT for M = 16
data items is executed on N = 4 processors. Note that the
resulting graph is also a butterfly graph, since the property of
the butterfly graph is that it is reducible. We call this
algorithm the Nonshuffle Algorithm to distinguish it from
the algorithm that applies a shuffle permutation during the
iterations requiring communication (Shuffle Algorithm). The
latter algorithm is used in Norton and Silberger’s model [14]
and is analyzed in Section 6.

We assume that the serial time for executing the one-
dimensional FFT for M data items is

T, = (MlogM)t,,)

where M is the number of data items, log M is the number of
iterations of the algorithm, and ¢, is the time to complete the
processing of one data item during a single iteration.

The processing time on an N-processor system is obtained
as the time on a single processor from Equation (4) divided
by the number of processors:

T = Mloth

b= TN b s)

In order to compute the communication delay, we
distinguish two cases according to two different data-access
modes.

Case 1 Data items are referenced from global memories.

In this case, all data items are referenced from global
memories. Each memory request traverses the
interconnection network. We assume that for each data
point, two data items are loaded from global memories, then
the computation is performed, and then the result is written
back to global memories. Processors are synchronized
following each memory reference; all of them wait for the
last one to complete the computation (barrier
synchronization).

The communication time is obtained from Equation (3)
by substituting NB = M/N for the number of bursts during
an iteration, NCI = log N for the number of iterations
requiring communication, and N4 = N for the number of
requests arriving at the network during #.:

T, =6 A—Nl (logNYt,. (6)

The number of iterations requiring communication is equal
to log NV and is obtained by subtracting the number of
iterations which do not require communication from the
total number of iterations: log M — log(M/N). Thus, since
each processor references M/N data items, the total number
of iterations for which a processor needs data from global
memory is reduced by log(M/N), as illustrated in the
example from Figure 2.

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

The total execution time for N processors, T, is obtained
by summing Equations (5) and (6), since by our assumption
the computation and communication time slots are not

overlapped:
MlogM M 2
T, = N t,+6 N (log Ny, N

The expression for the speedup S is obtained by dividing the
serial time from Equation (4) by the execution time on an
N-processor system from Equation (7):

T, N
S=t=————o ®
Tv |, g UogN) (1
logM \¢,

The efficiency 5 is obtained by dividing the speedup from
Equation (8) by the number of processors:

1
= ©)

logN)* [1.\
R
logM \t,

7=

Zln

The cost/performance ratio is estimated as the product of
the number of processors, which is proportional to the
hardware complexity or cost, and the execution time from
Equation (7), which is inversely proportional to the
performance:

cost/performance = NT, = M(logM)t .t 6M(logN)Ztc. (10)

If the number of processors N is greater than or equal to
the problem size M, the total execution time is obtained
from Equation (7) by substituting M for all N except for the
N in log N, the number of stages in the interconnection
network:

T, = (logM)(t, + 6t,logN). (11)

The speedup for this case is obtained by dividing Equation
(4) by Equation (11):

M

[.
1+6 <t—°>logN

P

S = (12)

Case 2 Data items are copied to local memories.

In this case, all M/N data items needed by a processor
during an iteration are copied into its local memory before
the computation is initiated. We assume that data items can
be pipelined through the stages of the network. We further
assume that no computation is performed until all data
items are copied to local memories. After data copying is
completed, the computation is initiated and processors
access data from their local memories; thus the network is
not used during that time. Upon completion of the
computation, the resulting data items are copied back to

global memories. At this point, processors are synchronized; 441

Z. CVETANOVIC

442

ol bbb bbb b b gL

300 B8—8—&—5-3--0

Speedup

® 1D global

200 /i o 1D local
/ F{ o 2D global
100 S/ & 2D focal
Vs | Maximum
7/
‘e

1 1 ! I 1 I 1
4 8 12 16 20 24 28 32 36

log, (problem size)

Speedup vs. problem size (N = 512, 1, = 150,71, = 2).

all of them wait for the last one to complete the
computation (barrier synchronization).

The communication time for this case is obtained from
Equation (3) by substituting NB = 1 (since processors
access global memories only once during the iteration),
NCI = logN for the number of iterations requiring
communication, and N4 = M for the number of requests
arriving at the network during ¢_:

T, = 6<logN + % - 1>(logN)tc. (13)

The speedup is obtained by dividing Equation (4) by the
sum of Equations (5) and (13):

N
S= . (14)
L +6 (log N)Y(NlogN + M — N) (¢,
MlogM t

If N = M, the execution time and the speedup are the same
as in the case with global data, since each processor accesses
only a single data item and pipelining of data through the
network stages cannot be applied.

o Two-dimensional FFT

The two-dimensional FFT is computed for a VM x M
data array, so that the one-dimensional FFTs are computed
first for the rows and then for the columns of the array. One
way to execute the algorithm on N processors is to compute
v M/N one-dimensional FFTs for the rows at each processor.
The same computation is then repeated for the columns of
the array. The expressions for the best-case execution time

7. cvETANOVIC

and speedup for the two-dimensional FFT can be derived
using Table 1 and following the same procedure as for the
one-dimensional FFT. These results are summarized in
Table 2.

o Discussion of the results
Figure 3 presents the speedup for the cases analyzed above
as a function of the problem size for a fixed number of
processors N = 512 and £,/¢, = 75. The value for this ratio is
chosen so that its complexity matches 7,/ estimated from
the RP3 prototype.

On the basis of Figure 3, we observe the following:

1. The breakpoint for the one-dimensional FFT is at M = N,
while the breakpoint for the two-dimensional FFT is at
M = N* for reasons explained below.

The speedup for the one-dimensional FFT increases
with a complexity of O(M) until the problem size
becomes equal to the number of processors. Above this
point, the computation time complexity increases
O(log M) times faster than the communication time
complexity, and the speedup approaches its maximum as
M increases. The reason for this change of slope is that
below the breakpoint, each processor performs a
computation for a single data item at each iteration and is
used once for each of log M iterations, while above this
point there are not enough processors available and each
processor performs a computation for M/N data items
and is used M/N times per iteration.

For the two-dimensional FFT, the speedup changes its
complexity after the problem size exceeds N ?. The reason
for this change is that below this breakpoint, each
processor computes a single one-dimensional FFT for
VM data items, while above this point each processor
computes vM/N one-dimensional FFTs.

2. We now relate the performance for the case with global
data access to the performance with local/global copying.

For the one-dimensional FFT, the performance for
both data-access modes is the same, provided that the
problem size is smaller than the number of processors.
This is so in both cases because each processor references
a single data item and the time to load data from a global
memory is the same in both cases. Above the breakpoint,
the communication time for the case with global data
access grows with a complexity of O[M/N(log N)2], while
the communication time for the case with local/global
copying grows with a complexity of O(M/NlogN).
Therefore, the communication time for the case with
local/global copying is O(log N) times lower than for the
case with global data access. The reason for this
improvement is that in the case with global data access,
all data items are accessed one by one from a global
memory, while in the case with local/global copying,
portions of the data array consisting of M/N data items

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

are copied to local memories and data can be pipelined

through stages of the interconnection network. With
pipelining, each data item takes time of O(1) instead of 60 P Il !l
O(log N), which is proportional to the number of stages at | !
the network. < T ! !
For similar reasons, the communication time for the “ P
two-dimensional FFT and the case with copying data to é 40 - ;' 4
local memories is O(log Mlog N) times lower than the g ,; |
communication time for the case with global data access. § 0 ll ,;f
The speedup for the two-dimensional FFT with global 3§ d" /
data access saturates if the problem size exceeds N°. This % 0 / /
is because above this point the communication time has S / / e : :gi::f :
the same growth rate as the computation time. The 10 b E,E—f:_f%,r"' 02D global
reason for this is that for each data item, a global memory A s do 00— 42D local
reference is required, independent of the problem size. 04 é 1; 1t —23 2; 2‘8 3'2 3‘6—~

This result suggests that for the two-dimensional FFT,
copying data to local memories is very beneficial if the
problem size exceeds N°, since with global data access no
further performance improvement can be expected as the
problem size exceeds N 2

3. We now compare the performance of one-dimensional
and two-dimensional FFTs of the same size.

For the case with global data access and a fixed number
of processors, the execution time complexity for the one-
dimensional FFT grows as O(log M), while the execution
time _complexity for the two-dimensional FFT grows as
O(¥MlogM) until the problem size becomes equal to the number of processors to determine the optimal value of the
number of processors. This is because for the one- number of processors for executing a problem of a given
dimensional FFT each processor performs a computation size. For fixed-size problems, the number of processors is
for a single data item, while for the two-dimensional FFT ajso related to the granularity: the larger the number of

log, (number of processors)

Cost/performance ratio vs. number of processors (log, M = 30,
= 150, 1, = 2).

each processor computes a complete one-dimensional processors used, the smaller the grain size that is executed on
FFT for VM data items. If the problem size exceeds N, a single processor. By increasing the number of processors,
the time complexity for both FFTs iricreases as the parallelism available in the application can be exploited
O(Mlog M), but the communication time complexity for petter, but at the same time the communication

the one-dimensional FFT increases Of(log M)/log N} requirements are increased.

times slower than does that for the two-dimensional FFT. From Figure 4 we note that the cost/performance

The reason is that for the one-dimensional FFT each increases drastically afier the number of processors N

processor performs the computation for M/N data items, exceeds the problem size M for the one-dimensional FFT or
and the number of iterations is reduced from O(logM)to v/ for the two-dimensional FFT. The reason for this

O(logN). change is that above this breakpoint, as the number of

The time complexity for the case with local/global processors increases, the execution time grows as O(logN),
Copying exhibits behavior similar to that for the case with so that the cost/performance increases as O(NlogN) Below
global data access. this breakpoint, the cost/performance for cases with global

data access exhibits a small increase as the number of
Figure 4 shows the cost/performance ratio as a function of ~ processors increases, due to some time wasted on

the number of processors for a fixed problem size M = 2*° communication. For the case with global data access, the
and 1,/t, = 75. The best-case cost/performance should cost/performance grows as O(log N Y for the one-dimensional
remain constant as the number of processors increases, since ~ FFT, while its growth rate is decreased to O(log V) for the
this indicates that the execution time decreases two-dimensional FFT. For the case with local/global
proportionally to the number of processors. If the copying, the cost/performance remains very close to a
cost/performance grows, then the decrease in the execution constant until N approaches M for the one-dimensional FFT
time is smaller than O(N) due to some time wasted on or VM for the two-dimensional FFT, since the
communication or on contention for shared resources. communication delay is significantly reduced by taking
We can use the cost/performance ratio as a function of the advantage of pipelining data through the network stages. 443

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987 i CVETANOVlé

444

Table 3 Worst-case performance for the Chunk Allocation.

Execution time Speedup
N
1D FFT | Global N<M A—]\/:(logM)tp + 6 %(IogN)(logN + VN~ e, 1+6 (logN)logN + VYN ~ 1) ’_c
logM [
M
2 - — t
M<N<M (log M)t, + 6(log M)logN + VN ~ 1)z, I + 6(logh + Y - 1) t_
P
M
2 - t
Nz=M (logM)¢, + 6(log M)logN + M — 1)i, 1 + 6(logN + M ~ 1) t_c
P
M M N
Local N<M — (logM)i, + 6 (logN +— - 1> (log Nz, (logNXNlogN + JNM - N) 1,
N Y 1+6 =<
MlogM t
M
2 N — — t
M=sN<M (log M1, + 6{log M)log N + YN — 1)1, 1+ 6(ogN + VN = 1) T
P
M
2 - ¢
N=M (logM)t, + 6(log M)(log N + M —~ 1)i, 1 + 6(logN + M — 1) t_c
P
}7M M v
‘M = = ‘N — L
2D FFT | Global N< VM N (logM)tp +6 I (logM)(logN + YN 1)z, 1 + 6(logN + JN - 1 ,_C J
% g
M
VM<=N<M vM(log M)z, + 6M(log M Y(logN + VN = 1)t — 1
og M), (log M Xlog e 1+ 6llog N+ VN 1) <
P
B Vi
Nz VM VM(log M)1, + 6V M(log MY(log N + VM — 1)1,

—_— [c
1 + 6(logN + VM — 1){—

4

N
_ Wi . _
Local N< VM % (log M), + 12—~ (logN + VMN - 1), L+ 12 logN + YMN — 1 ¢,
JA—/IlogM L
M
JM=N<M VM(logM)1, + 12(logN + VN — 1), R
+ 12—
| VMlogM 1,
M
N>M VM(logM)1, + 12(logN + VM — 1), L, gl VM -1,
+ ——— e
MigM ¢,

4. Worst-case performance for the Chunk
Allocation

The results derived in the previous section represent the best-
case execution time, where the chunks of data are allocated
to global memories such that the contention within the
network can be neglected. In this section, we derive
expressions for the worst-case execution time for the Chunk
Allocation by assuming that chunks are allocated such that a
maximum number of conflicts is produced within the
network during each iteration of the algorithm. By Claim 5

¥ 3
Z. CVETANOVIC

of [16] and its proof, we show that such allocations are
feasible and that all iterations of the algorithm produce a
maximum number of conflicts provided that an initial
allocation is conflict-free.

In order to compute the execution time, we need to
determine the minimum bandwidth of the interconnection
network. The minimum bandwidth is determined by the
maximum number of conflicts within the network. Lang
[18] has shown that the maximum number of conflicts for
the shuffle-exchange network is equal to 2 Logh2} 0(\/1_\7).

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

JIAONVLIAD Z
7 A

95ED-1SIOM Y} JBY) SMOYS § AL ‘N/H 01 A/ WOLf PIdNPal st
UoNBIO[[Y JUNy)) 358d-1S10M U} 10] YIpIMpueq JI0M)dUu Yl
‘UOTIUSIUOD NIOMIJU PISBAIDUL 01 INP 1BY}L ST IDUIIIYIP SIY)
10j uoseax ay] ‘(N 301 NP)O S SaseaIdul ddoUBULIONAd /1500
9SBO-1SIOM JY] J[Iym ‘Z(N 8010 se saseaIoul 30UBULIONIAd/1S00
35B2-153q Y} DUIS ‘SISBIIOUT A7 SB IFISAIP Spunoq dy) 1.y}
0N ‘SL = 1/ pue ‘Ocz = J 9Z1s Wd[qoad poxy e ‘ssa00r
BIRP [BQO[3 Yim T 4 [RUOISUIWIP-9UO Y] I0] $10853001d
JO Idquunu 3y} JO UOTOUNJ B SB O1jRI ddueiofrad/1s00
31 JOJ SISBD 1SI0M puE 153q 31 S1udsard 9 aindiq
*9582 1539 Y3 jo paads oy 01
paredwos 1uad1ad ()7 Inoqe A[uo AQ Pasealdul s ased 1SIom
Y3 Jo paads oy} ‘e 01 (T WO} SISBIIDUL J/ SE 1B JION I
931e[J0J ased 153q Y3 sayoeordde A[mo[s ased 1s10m 3y} 10J
JouewIOjsd Y1 OUIS ‘A|MO[S AIdA SaseaIOUT onjer paads oyl
“quiod SIY) 9A0QE SISBAIOUL I SV "N = J4 [[10] 358D 1539 91
JO paads 3y Jo 6 01 [enba SI 358D 1810M) JO PIds Y,
"3sBD 159 2y} 0) pareduiod
(NMO Jo 10108} ® AQ PaseaIdul SI JWl) UONRIUNUWIWOD
ISBO-1SIOM Y] ‘19AMOY ()0 Se smoId A1xaidwod
Jwn uonEBdIUNWIWOD dY) Aiym (J Fo1)0 St smois
Axadwod swn uoneindwod 3y} ‘sased y1oq uj ‘(3010 Jo
10398] B Ylim gy 331e[Aq PYSBU SI AB[OP UONBIIUNIIWOD dY3
20UIS 2NI) SI SIY] "SISED 10q 10] Anun sayoeordde Louamdiyo
A1) ‘SISBAIDUI Jy SB 1Y) JJOU 9Mm ‘9Indy SIY) wol]
*S3sBO

144

1810M pueE 1539 9y} Jo onel paads Yy siuasarda werderp
SUIBS 2Y) UO JAIND PANOP AYL SL =1/ puR ZIS =N

‘ d
(T ="1'081 = '0g = WwBon
$108$2001d JO IaqUINU "SA ONEI DURWIOJId/1S00 Js10Mm pue Isag |

(s10882001d Jo Joquinu) “Foj

9¢ [43 8T (4

T T T T

580 199 — ———

aSED ISIOM

(,,01 X) oner ddueuLIo}Id/1S0D)

Al

g
I
|
|
|
|
|
|
|
|
|
|
|
i
I
I

I

|

|

|

(861 ATNL ¥ 'ON I "TOA 'dOTIAIQ 'STA ' Wl

$108$2301d Jo JaquInu paxy B 10J 9zis WwafqoId jo uonounj e
Se AQUDIOUYa J0J SISED ISIOM PUE 153Q Y1 s1uasaid ¢ a3y

*JOTARY2Q JB[ILUIS JIQIYX3 $ISBO ISYI0 Y] [[B 30UlS

‘K[uo $sa00® BlEp [BQO[3 Ylim] 4. [BUOISUIWIP-UO Y1 IOJ

SINSAI Y] MOYS IA\ "UOTIBOO[[Y Juny)) Y1 Ioj doueurioprad

3SBI-1SIOM PUB 3SBI-1S3Q I0J SINSAI Y] JIB[DI MOU IM

SINSa4 Yyl fo UOISSNISI(T o

'€ dqEJ Ul PaZLUBWWNS dIE PUE

uoI1938 SN01A31d 3y} Wwolj 2Inpadold oy} FUIMO[[0] PIALISP
2IB SOPOW $$300B-BI1EP OM] UM S 1] [EUOISUIWIIP-OM) PUE
[BUOISUSWIP-3UO [10q PUB UONHEIO[[Y Juny) ay) 1oy dnpaads
WNWIUW PUE SUIT UONNISXS WNWIXEW Yl JoJ suoissaidxy

(D) ~<1 - %[—AC + N301>(8N)(19N)9 =’

Np=M>

Sunmnsqns £q (7) uonenby wWolj paurelqo sI JUIl} UONNIIXNI
WNWIXeW 3y} 0} uoissardxa ayj ‘ynsar siy) 3uisn)

NN gum (,l[/\)o Joejdai pue ‘xa8a3ur

ue Sty dIaym ‘}Izz = N/ 1Byl SWNSse IayLIny am ‘uoriejou

ur Ayorduts Jo 9xes 33 10 '(Q[/*)O = (A_[MOIN = M9

SE PIUTULISAP ST YIPIMPUB] HI0MIU WNUITUTW

Y1 “210J319Y I, "3TEIS JI0MISU S[PPIW 3] Ul pauIeIqo

STSIOIUOD JO JoqUINU WHIXEW Y1 YdIYm Ul I0mIdu

sy} 01 pardde aq ued Jnsas dures dY) ‘uoueInuLIsd JPnys

3y} AQ PIJOUU0IINUI ATB YIOMIU BFIWO Y1 Jo sagels aourg

g ="1'0s1 =
‘216 = N) az1s wajqoid “sa oel paads pue Aousionyya JsIom pue 1sag

(o215 wayqosd) Loy

onel peads 18aq/1sIopy, <+
KOUSIO1J0 958I-1SIOM
ADUSIDNJa 958D-159g ————

onel paads pue Aouaronyyy

10'[

446

Table 4 Performance for the Nonchunk Allocation.

Execution time Speedup
M M l
‘M 2= = - log N t
IDFFT | Global N<VM & (08M)1, + 6 — (logN)(logN + N = 1)z, 14628 oan+ N 1)
logM L
N
— M M M
JVM<N<M —1Mt+—1N<N+——> logN :
= N(Og), 6N(0g) {log N 1) e, 1+60g <lOgN+A—/[—l)—C
logM N L
M
!
N=M (log M)z, + 6(log M log N)1, | + 6(logN) <
tP
M M al
Local N<M — (logM)t, + 6 {logN + — — 1} (logN)¢ (log N)(NlogN + M — N) L,
N 4 N c 1+6 =
MlogM L
M
3
NzM (logM)tp + 6(log M)(log N)1, 1 + 6(logN) =
tP
N
2D FFT | Global N< VM A—l(l M)z+6A—”(1 M)logN + N — 1)t L
oba v UoeM)t, +6 7 (log M)log e L+ 6(0gN + N = 1) ¢
P
M
N= VM VM (tog M)t + 65/M(log M)(logN + VM — 1 — !
= (log), (log 7)(log e I+ 6(log + VB — 1) <
P
N .
—_— M —
Local N< VM ~ (ogd), + 12 == (logN + VM — 1y, |y 1o loeN + M- 114,
VMlogM 1,
VM
Nz VM VM(log M), + 12(logN + VM — 1)1, Ly ol + VM- 11,
+ _— -
MlogM ¢,

cost/performance becomes significantly larger than the best-
case cost/performance even for relatively small values of N.

5. Performance resuits for the Nonchunk
Allocation

In all the cases analyzed previously, we have assumed that
data items from one chunk are allocated to the same
memory module (we have called this allocation the Chunk
Allocation). In this section, we study how performance is
affected by applying a different allocation where all data
items from a single chunk are allocated to different memory
modules (we call this allocation the Nonchunk Allocation).
We then derive expressions for the communication delay for
the Nonchunk Allocation.

While for the Chunk Allocation every processor accesses a
different memory module during each iteration of the
algorithm, for the Nonchunk Allocation two or more
processors may request the same memory module during the
same iteration. Expressions for the total execution time and

Z. cveranovi¢

the speedup for the Nonchunk Allocation are summarized in
Table 4.

o One-dimensional FFT

For the one-dimensional FFT, we assume that according to
the Nonchunk Allocation, a data item from each chunk up
to the chunk size is allocated to a different memory module.
Therefore, all processors reference the same memory module
at the same time during each iteration.

Case 1 Data items are referenced from a global memory.

In order to compute the execution time for the case with
global data access, we need to determine the bandwidth of
the network, since all other parameters in Equation (2) are
the same as in the previous sections and are summarized in
Table 1.

First, we analyze the case where N < x/ﬂ, or the number
of processors is smaller than the number of data items in one
chunk. In this case, all data items of a chunk are allocated to

iBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

.Q.
O -0—0
08| o ad
o ? /o,,o*
g [
o
g. 06 [L
§, 5 w—-w= Chunk efficiency
% 0al p Nonchunk efficiency
E Y ! NI . Worst/best speed ratio
i3]
0.2

log, (problem size)

Efficiency for two allocations and speed ratio vs. problem size
(N =512,1,= 150,12, = 2).

different memory modaules. Since all processors reference the
same memory module, all N requests are in conflict at this
memory and the bandwidth of the network is reduced to 1.
The communication delay is obtained from Equation (2) by
substituting NB = M/N, NCI = logN, NA = N, and BW = 1:

T.=6 A—; (logN)logN + N — 1)t.. (16)

For the case where VM < N < M, the number of processors
is larger than M/N, the number of data items at each
memory module. Therefore, the maximum of M/N requests
are in conflict, and consequently, the bandwidth is equal to
N 2/M. All other parameters are the same, and the
communication delay is obtained from Equation (2):

M M
T.=6 I (logN)(logN + N 1>. (17)

Case 2 Data items are copied to local memories.

The case with local/global copying for the Nonchunk
Allocation is the same as for the Chunk Allocation, since
data are pipelined through stages of the interconnection
network. The bandwidth of the network is equal to N since,
although N requests are sent to the same memory module,
there are still M — N requests for the other modules and the
requests for different memory modules can be pipelined
through the stages of the network. The expressions for the
execution time and the speedup are therefore the same as for
the Chunk Allocation.

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

o Discussion of the results

We now compare the best-case results for the Chunk and
Nonchunk Allocations for the one-dimensional FFT with
global data access.

Figure 7 presents efficiency as a function of problem size
for a fixed number of processors N = 512 and both
allocations. The efficiency exhibits very interesting behavior.
If M < N, the efficiency increases as O(M) and is the same
for both allocations. For N< M < Nz, the efficiency for the
Nonchunk Allocation decreases with a complexity of
O(M/log M), whereas the efficiency for the Chunk Allocation
increases with a complexity of O(logM). The reason for this
discrepancy is that for the Nonchunk Allocation the
communication time grows faster than the computation
time as M increases, since M/N requests are serialized at a
single memory module. Finally, for M = N ? the efficiency
for the Nonchunk Allocation increases, as does that of the
Chunk Allocation, with a complexity of O(log).

The speed ratio of the Nonchunk and Chunk Aliocations
is shown by the dotted line in Figure 7. Two allocations have
the same speed of execution if M < N. As the problem size
exceeds N, the speed of the Nonchunk Allocation becomes
much lower than that of the Chunk Allocation, until it
approaches the point where it is just 0.062 of the speed of
the Chunk Allocation. Above this point, the performance of
the Nonchunk Allocation is slightly improved.

Figure 8 plots the speedup as a function of the number of
processors N for a fixed problem size M = 2% and all three
allocations analyzed above. Note that increasing the number
of processors while keeping the problem size fixed is
equivalent to increasing the level of granularity or decreasing
the size of subproblems executed on processors.

From this figure we note that for the best-case Chunk
Allocation, the speedup increases as O[N/(log N)2] until the
number of processors becomes equal to the problem size.
After the number of processors exceeds the problem size, the
speedup decreases as O(log N). The speedup for the worst-
case Chunk Allocation, which is obtained by a different
allocation of chunks to memory modules, increases with a
complexity of O[VN/(logN)] if N < M; after N exceeds M, it
decreases with a complexity of O(\/N). For example, if
N = M, the speedup for the best-case Chunk Allocation is
776 times greater than the speedup for the worst-case Chunk
Allocation.

The speedup for the best-case Nonchunk Allocation is
composed of two curves. If N < \/]TJ, the speedup is very
low. It first increases and after reaching the maximum it
decreases as N approaches \/A—/I. At this point the speedup
from Figure 8 for the Chunk Allocation is 821 times greater
than the speedup for the Nonchunk Allocation. If N = s/]_l,
the number of processors is smaller than the chunk size and
all requests from N processors are serialized at a single
memory module. As N exceeds \/A_/[, the number of

%. cvETANOVIG

447

448

36 -
2+
N=M
28
=
3 24l
L
&
& 20+ N=M
2 o
N ﬂ
16 e \O\\o
12 Best-case chunk
———- Worst-case chunk
8- oS Nonchunk

Speedup for three allocations vs. number of processors (log,M =
30,¢, = 150,11, = 2).

processors becomes greater than the chunk size, and the
speedup for the best-case Nonchunk Allocation improves,
approaching the speedup for the best-case Chunk Allocation.
From these results we conclude that the method applied for
allocating data items to memory modules has a significant
effect on the performance of parallel FFT algorithms.

6. Shuffle Algorithm for the one-dimensional
FFT

In this section, we present a different algorithm for executing
the one-dimensional FFT on a shared-memory architecture.
We use our model to estimate the performance of this
algorithm in order to compare our results with the results
from the model developed by Norton and Silberger [14].
Since this algorithm performs a shuffle permutation at each
iteration requiring communication through the network, we
call it the Shuffle Algorithm to distinguish it from the
algorithm described in Sections 3 and 4 which we named the
Nonshuffle Algorithm. The major difference between these
two algorithms is that the Shuffle Algorithm reduces the
number of iterations requiring communication from
log N required by the Nonshuffle Algorithm to

[logM)/log(M/N)] . This can be very beneficial if the
problem size is much larger than the number of processors.

Figure 9 presents the Shuffle Algorithm for the example of

M = 16 data items and N = 4 processors. Note that the
communication is required after each log(M/N) iterations of

y 2
Z. CVETANOVIC

the computation. The data items needed by each processor
for the next log(M/N) iterations are stored in global
memories by the inverse shuffle of power of log(M/N).
These data items are then loaded into local memories by
each of the processors, so that the next log(M/N) iterations
can proceed without requiring communication through the
interconnection network.

As for the Nonchunk Allocation, the maximum number
of conflicts in the memory module is obtained as the
minimum of the number of processors and the size of the
chunk, and is equal to min(N, M/N). Consequently, the
bandwidth is equal to max(1, N %/M). The expression for the
communication overhead for the case with global data access
is obtained from Equation (2) by substituting NB = M/N,
NCI = [(logM)/log(M/N)],and NA=N.

_ M| _logM N
T.=6% [log(M/N)] <logN+ 2 1>zc. (18)

The best-case communication overhead is obtained by
assuming that no conflicts are generated within the network
and replacing BW = N in Equation (18):

_ M[logM

Y log(M/N)] (log M)

The worst-case communication overhead is obtained by
assuming a maximum number of conflicts at the memory
module and substituting BW = max(1, N ?/M) in Equation
(18):

T.=6

<

M [logM
N

N
logN+ —m8M8M8@8@88 -1
log(M/N)“ o8 :

N? .
1 —_
max< ’M>

Expressions for the total execution time and other
performance measures can be obtained following the
procedure from the previous sections. \

Figure 10 presents the speed ratios for two models and the \
one-dimensional FFT with global data access as a function
of the problem size for N = 512 and #_/t, = 100. The speed
of our worst-case estimates and the speed computed from
Norton and Silberger’s model are normalized to the speed of
our best-case estimates. From this figure we note that the
results from Norton and Silberger’s model fall between our
best and worst cases and that their complexity matches the
complexity of our best-case estimates for large problems.
While the results from Norton and Silberger’s model
approach our best-case estimates, they differ significantly
from our worst-case estimates. We believe that the main
reason for this discrepancy is that we have assumed that the
requests for global memories arrive at the network in bursts
and that for a specific allocation of data to memory modules
they can decrease the network bandwidth by a factor of
O(N). In Norton and Silberger’s model, the communications
delay is estimated using an average memory-request rate at
each iteration. Therefore, in this model the effect of changing

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

Processor0 Processor

Processor2 Pr(x:essor3

\

!

Shuffle

/‘)

\J

Shuffle

~L.

RefehoRoN
i £ %
O/O O

Shuffle algorithm for M = 16 data items, executed on N = 4 processors.

the allocation of data to memory modules does not have any
effect on the performance.

This figure also shows that the best-case performance
measures estimated by our model differ from the results
obtained from Norton and Silberger’s model for smaller
problems. A possible reason for this discrepancy is that in
estimating the computation time we neglect all factors less
than MlogM, including both M and log M factors. For
smaller M, these factors tend to influence the computation
time more profoundly, and therefore in this region our
performance estimates are different from Norton and
Silberger’s estimates.

7. Conclusions and general discussion
We have presented a deterministic model for predicting the
performance of various FFT algorithms executed on a

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

shared-memory parallel compute}. By applying a
deterministic analysis, we have obtained expressions for
performance measures as a function of the problem size, the
number of processors, the allocation of data to memory
modules, and the speed of processing and communication.
We used these expressions to analyze the interaction among
various parameters. On the basis of these results, we can
recognize performance bottlenecks, and determine how
performance can be improved by changes in both the
architecture and the application being executed.

The results obtained in this paper were related to the
results from the model developed by Norton and Silberger.
In contrast to their results, our estimate for the
communication delay is very sensitive to the method used
for initial allocation of data to memory modules. We have
shown that when different allocations are applied, the

. cveTANovié

449

450

Speed ratios

~~~~~ Worst/best ratio

(Norton & Silberger’s)/best ratio

0 ] J ! I 1 1 L |
4 8 12 16 20 24 28 32 36

log2 (problem size)

¢ Speed ratios for two models vs. problem size (N = 512, L, = 200,
Lo =2).
E C

communication delays among the models differ by a factor
of O(N), where N is the number of processors.

With respect to different data-access modes, we found that
the case with local/global copying performs better than the
case with global data access, as long as the problem size is
larger than the number of processors, since copying a large
block of data can take advantage of pipelining data through
the network stages.

The model presented here captures the bursty nature of
arrivals at the interconnection network, which is a property
of many synchronous algorithms. It provides a means for
measuring the performance effect of different allocations of
data to memory modules, which is not achievable using a
probabilistic analysis. Using the technique demonstrated
here, we can further investigate strategies for partitioning
large problems in order to minimize the communication
through the network. Also, the optimal number of processors
for executing a fixed-size problem can be determined by
maximizing expressions for the speedup as a function of the
number of processors.

Although the scope of our analysis has been limited to
FFT algorithms, the methods demonstrated here can be
successfully applied to other iterative structured algorithms,
as shown in [8]. Various iterative problems proposed for
parallel execution can be classified on the basis of a method
used for the processing and communication decomposition
among N processors, as demonstrated by Vrsalovic [19]. Our
analysis, then, can be applied to those classes, so that the
performance of various classes of problems rather than

¥ 2
Z. CVETANOVIC

specific algorithms can be compared, thus enhancing the
generality of methods adopted here.

However, since our primary goal was to investigate the
general relationship among various parameters that influence
the performance of multiple-processor systems, we have
simplified the analysis by several assumptions. We now
discuss some of the limitations of our approach and the ways
of extending the model for application in a more general
framework.

1. Owing to length constraints, our analysis in this paper has
been limited to shared-memory parallel architecture. In
[8(a)], we showed how the methods demonstrated here
can be applied to other parallel architectures. Although

- we have estimated bounds for the communication delay
for a specific interconnection network, our model can be
generalized to include other interconnection structures. If
it is possible to determine the worst and best bandwidth
for an interconnection structure as a function of N, then
this function can be substituted in our expressions for the
performance measures, so that the impact of
communication complexity on performance can be
directly observed.

2. We have assumed that all processors are synchronized
following each iteration of the algorithm and that the
computation can be uniformly distributed over ¥
processors, so that all processors send requests to the
network simultaneously. If this assumption does not hold,
then processors have different initiation times, resulting in
an asynchronous execution. It would be interesting to
investigate whether the model described here can be
extended to include asynchronous parallel algorithms.

3. We have further assumed that iterative algorithms do not
include data-dependent branches and that a regular
pattern of data accesses is repeated at each iteration. For
such algorithms, a static allocation of data to memories
prior to execution can be applied. For algorithms with
dynamic and irregular data access, the deterministic
analysis can be applied only for portions between data-
dependent points; otherwise the simulation-based
predictions are more appropriate.

4. The analysis performed in this paper does not include the
case where computation at processors can be overlapped
with communication through the network. If overlap
between processing and communication is allowed, then
a similar analysis can be performed in order to obtain
expressions for the communication delay, as shown in
[8].

5. In this paper we have considered only the case where
data-access times for both global and local memories are
the same. The model can be easily extended to include
different data-access times for global and local memories,
so that the performance effect of changing memory
specds can be observed.

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987




The results of this paper indicate that for well-structured 12. M. Dubois and F. A. Briggs, “Performance of Synchronized
Iterative Processes in Multiprocessor Systems,” IEEE Trans.

problems such as the FFT, the congestion at the Software Eng. SE-8, No. 4, 419-431 (July 1982).
interconnection network can be reduced significantly by 13. T. N. Mudge and Al-Sadoun, “A Semi-Markov Model for the
applying a static allocation of data to memories. One Performance of Multiple-Bus,” Proceedings of the 1985

. . .. . . . International Conference on Parallel Processing, Chicago, IL,
interesting problem that remains is to identify allocations IEEE Computer Society, August 1985, pp. 521-531.

that result in the best and worst performance for the FFT. 14. V. A. Norton and A. Silberger, “Parallelization and Performance

Prediction of the Cooley-Tukey Algorithm for Shared-Memory

We believe that communication requirements of various ) |
Architectures,” Research Report RC-11885, IBM Thomas J.

parallel algorithms have some common characteristics. If it Watson Research Center, Yorktown Heights, NY, May 1986.
is possible to classify algorithms according to their 15. D. H. Lawrie, “Access and Alignment of Data in an Array
communication properties, then it would be worthwhile to Processor,” IEEE Trans. Computers C-24, No. 12, 175-189

. . he b d 1L . f h of th (December 1975).

1nvestlgate the best and worst allocations for each ot these 16. Z. Cvetanovié, “Best and Worst Mappings for the Omega

groups. Network,” IBM J. Res. Develop. 31, No. 4, 452-463 (July 1987,
this issue).

17. M. C. Sejnowski, E. T. Upchurch, R. N. Kapur, D. P. S. Charlu,

ACKnOWIedgmepts . and G. J. Lipovski, “An Overview of the Texas Reconfigurable
The author would like to thank Harold S. Stone for his Array Computer,” AFIPS NCC Conference Proceedings,
numerous comments and suggestions during this research, Anaheim, CA, May 1980, pp. 631-641.

d Alan Nort d Frederica Darema for their valuable 18. T. Lang, “Interconnection Between Processors and Memory
?m a.n o (.)n and rre ) u Modules Using the Shuffle-Exchange Network,” IEEE Trans.
interaction. This research was supported in part by the Computers C-25, No. 5, 496-503 (May 1976).
National Science Foundation under Grant No. MCS- 19. D.;/rsal&)vié, E. I; Gehringer, Z. Z. Segall, and D. P. Siewiorek,

. “The Influence of Parallel Decomposition Strategies on the

7805298 and by the IBM Corporation under Contract No. Performance of Multiprocessor Systems,” Proceedings of the
462914, 12th Annual International Symposium on Computer

Architecture, Boston, MA, IEEE Computer Society and ACM,
June 1985, pp. 396-405.

References and note . . o
1. M. C. Pease, “An Adaptation of the Fast Fourier Transform for ?gge;lved April 11, 1986; accepted for publication February 6,

Parallel Processing,” J. ACM 15, 252-264 (April 1968).
2. R. W. Hockney and C. R. Jesshope, Parallel Computers, Adam
Hilger Ltd., Bristol, England, 1984. .
3. H. S. Stone, “Parallel Processing with the Perfect Shuffle,” IEEE ~ Zarka Cvetanovi¢ Digital Equipment Corporation, 85 Swanson

Trans. Computers C-20, No. 2, 153-161 (February 1971). Road, Boxborough, Massachusetts 01719. Dr. Cvetanovi¢ received a
4. A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, Ph.D. in computer and electrical engineering from the University of

L. Rudolph, and M. Snir, “The NYU Ultracomputer— Massachusetts at Amherst in 1986. She is currently a principal

Designing a MIMD Shared Memory Parallel Machine,” IEEE engineer at the Digital Equipment Corporation. This paper was

Trans. Computers C-32, No. 2, 175-189 (February 1983). conceived and written during her summer 1985 appointment at the
5. G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, IBM Thomas J. Watson Research Center in Yorktown Heights,

W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton, V. A. Norton, New York. Her research interests are in the area of parallel

and J. Weiss, “The IBM Research Parallel Processor Prototype algorithms and performance analysis of multiple-processor systems.

(RP3): Introduction and Architecture,” Proceedings of the 1985
International Conference on Parallel Processing, Chicago, IL,
[EEE Computer Society, August 1985, pp. 764-772.

6. D. Gajski, D. Kuck, D. Lawrie, and A. Sameh, “CEDAR,”
Report No. UITUCDCS-R-1123, Department of Computer
Science, University of Illinois, Urbana, February 1983.

7. R. Thomas, W. Crowther, and R. Gurwitz, “Benchmark Results
for a 256-Node Butterfly Parallel Processor,” Report No. 63535,
BBN Laboratories, Cambridge, MA, 1986. Butterfly is a
trademark of BBN Advanced Computers, Inc., Cambridge, MA.

8. (a) Z. Cvetanovi¢, “Performance Analysis of Multiple-Processor
Systems,” Ph.D. dissertation, Department of Electrical and
Computer Engineering, University of Massachusetts, Amherst,
MA, May 1986. (b) Z. Cvetanovi¢, “The Effects of Problem
Partitioning, Allocation, and Granularity on the Performance
of Multiple-Processor Systems,” IEEE Trans. Computers C-36,
No. 4, 421-432 (April 1987).

9. F. Baskett and A. J. Smith, “Interference in Multiprocessor
Computer Systems and Interleaved Memory,” Commun. ACM
19, No. 6, 327-334 (June 1976).

10. D. P. Bhandarkar, “Analysis of Memory Interference in
Multiprocessors,” IEEE Trans. Computers C-24, No. 9,
897-908 (September 1975).

11. P. Heidelberger, “Queuing Network Models for Parallel
Processing with Asynchronous Tasks,” IEEFE Trans. Computers
C-31, No. 11, 1099-1109 (November 1982). 451

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987 z. CVETANOVI(:




