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The  purpose  of this study is to develop  and 
extend  techniques to provide  architectural 
correspondence  between  high-level  language 
objects  and  hardware  resources so as to 
minimize  execution  time  parameters  (memory 
traffic,  program  size, etc.). A resulting  computer 
instruction  set  called  Adept  has  been  emulated, 
and a compiler  has  been  developed  with it as 
the  target  language.  Although  the  study  was 
restricted to Pascal,  the  resulting  data  are 
generally  applicable to the  execution  time 
environment of  any procedure-based  language. 
Data indicate that significant  bandwidth 
reductions  are  possible  compared to 
System/370, VAX, P-code,  etc.  Specifically,  the 
average  improvement  ratios  realized  were 
instruction  bandwidth  reduction: 3.46; data  read 
reduction (in bytes): 5.42; data  write  reduction 
(in bytes): 14.72. 

“Copyright 1987 by  International Business Machines Corporation. 
Copying in  printed  form  for  private use is  permitted without 
payment of royalty  provided  that ( 1 )  each reproduction is done 
without alteration and (2) the Journal reference  and IBM copyright 
notice are included on the  first  page. The title and abstract,  but no 
other portions, of this paper  may  be copied or distributed  royalty 
free without  further  permission  by computer-based and other 
information-service systems. Permission to republish any other 
portion of this paper  must be obtained from  the  Editor. 

1. Introduction 
The purpose of this  paper is to provide data  on  the behavior 
of an idealized computer architecture. The architecture itself, 
called Adept, is in correspondence with the abstract machine 
defined by the constructs of a procedural language such as 
Pascal. (The  name Adept is derived from “a directly 
executed Pascal translation.”) 

As used here, the architecture of a computer is simply  its 
instruction set. The  computer consists of its  instruction  set, 
its storage, over which the  instructions  are defined, and  an 
interpretive  mechanism (the host), which causes the state 
transitions specified by the instruction stt  to  be  camed  out. 

The question of what  makes  a  good instruction set 
involves many factors, including but  not limited to  the 
following: 

Implementation time. The  time  to design a host for an 
instruction set is often  critical.  Simpler instruction sets 
require less design effort. 
Technology. If the  computer is to be realized on  one chip, 
the  number of devices available is crucial.  Small and 
simple  instruction sets can  be  supported by fewer devices 
better than instruction sets with larger vocabularies. 
Compatibility.  Compatibility with an existing instruction 
set may  dominate all other considerations due  to  market 
factors. 
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Code density. The efficient use of memory  can be an 
important design attribute. Processor 

Customized  architectures  for  particular languages or 
applications can be developed with superior  attributes [ I ] .  

Two different starting  points  might be taken  to  understand 
and evaluate an instruction set: 

1. A topdown view, where one derives the  architecture in 
terms of the primitives  of the language or application. 

2. A bottom-up  approach, where one derives the instruction 
set based upon technological and  implementation 
considerations. 

In  the first approach,  one refines the architecture based 
upon  implementation  and technological considerations-for 
example,  deleting  infrequently used primitives and speeding 
up  others [2,3]. In the second approach,  one produces  a 
good host design and uses software, either compiler 
technology or interpreters, to  match  the host with the 
environment.  The  more  one knows about  the  environment, 
the better one  can  support it  in  hardware; thus floating-point 
operations might be used for scientific applications or 
register windows in the RISC machine [4] to  support  the C 
language environment. In the final analysis, both of  these 
viewpoints must  be considered. 

The purpose  of this  and  our earlier, related work  has  been 
to study the relationship between source language and 
architecture. Implementation considerations  being  equal, an 
architecture that minimizes the space-time product of the 
use of memory for  a  program will be the best. If  we  view 
the processor simply  as an  instruction set and its 
implementation,  then from the memory's point of view, it  is 
better to have 

1. Small  program size. 
2. A minimum  number of instructions  to execute  a  program 

3 .  A minimum  amount of memory traffic (bandwidth). 
(dynamic  instruction count). 

We attempt  to  minimize  the  product of the  memory space 
occupied by a  program and  the program  execution time.  The 
execution time is dependent  on factors other  than those 
listed above, especially the  implementation  (the execution 
time per  instruction  required by the processor), which is only 
partially determined by the dynamic execution count  and 
the  memory traffic requirements. The  dynamic instruction 
count is a  primary  measure  of  execution time. Instruction 
set implementations which provide close to  one cycle per 
instruction  are possible using familiar test programs [5], 
though not all architectures are equally efficient in  their use 
of a given processor technology. We are  not primarily 
interested  in  measuring  this implementation efficiency, but 
rather in  understanding the correspondence or 
representational efficiency of the  architecture with respect to 

I n Storage, S 
(registers, 
cache) 

the source  program. Data characterizing the behavior  of  such 
architectures can be valuable in  making  later trade-offs in 
implementation. 

In our earlier work [6-81 we developed several techniques 
for  instruction set design to  enable concise mapping of high- 
level language statements  into executable form. In the initial 
study we selected Fortran  as  the high-level language because 
of its relative simplicity. The resulting architecture, DELtran 
[9], showed significant improvement in both conciseness 
(static  measures of space requirements) and execution 
parameters,  such  as dynamic instruction counts  and  memory 
referencing activity. This earlier  work was limited  in several 
important respects. The source language itself was static, and 
several interesting  techniques  for  object referencing were left 
unevaluated.  Secondly, the variety of source  programs 
evaluated was limited since full compilation facilities were 
not developed-much of the evaluation of sample  programs 
relied on  hand coding. In  the present  work  a full 
compilation facility is available to translate Pascal source 
programs into Adept  instructions. The evaluation  of  Adept is 
also materially  aided by the availability of our  Emulation 
Laboratory with emulators for a variety of alternate 
instruction sets, such as IBM System/370, PDP- 1 1, 
HP 1000, and P-code. While the precise details  of the design 
decisions  of  Adept [ I O ]  were determined by Pascal, the 
approach used can  be applied to a variety of procedure-based 
languages, and  the  data presented are generally applicable. 

2. The DCA approach to instruction  set  design 
In  order  to achieve  architectural effectiveness as measured by 
the basic parameters of program size, instruction  count,  and 
memory  bandwidth,  one  can vary the complexity  of 
encoding instructions  and fields within  instructions,  as well 
as making more extensive use of processor storage (registers). 
The trade-off is among  the following parameters (see 
Figure 1): 
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1. Overall execution effectiveness  vs. instruction decode 

2. Memory  traffic to fetch instructions (instruction 

3. Memory  traffic to fetch and store data (data bandwidth). 

complexity. 

bandwidth). 

The first  issue  seems simplest, but is actually related to the 
other two. The fewer instructions executed, the better, but 
minimizing the number of instructions may  increase 
decoding  complexity by requiring the decoder to interpret 
multiple formats. Alternatively, we can retain minimal 
instruction count and simple instruction format decode (e& 
a three-address format), but at the expense of instruction 
bandwidth (larger instructions). The basic  issue in 
architecture is trading off the various parameters to achieve 
optimal cost performance. If,  for example, a processor 
executes data transformations slowly (relative to memory 
bandwidth), it is of little interest to minimize instruction or 
data bandwidth or even overhead instructions (load, store, 
etc.); execution time is dominated by  ALU operation. 

In encoding identifiers there is a trade-off  between  coding 
efficiency (the space required to represent an object or 
operand name) and decoding  complexity.  Specifically, there 
are three levels  of decoding  complexity: 

1. Bit-Dependent Code  (BDC). The size  of the encoded 
object depends on the contents of the object. A Huffman 
code  is an example of a BDC. 

2. Bit-Variable  Code (BVC). The size of the object is known 
(as in a block code) to the decoder, but its starting point 
with  respect to word boundaries is  variable  (i.e.,  does not 
always start at the same bit within a word). 

3. Fixed-Block Codes (FBC). The size and starting point are 
known to the decoder. 

Pure FBCs are used in only the simplest computer 
architectures. (Not even  all  RISCs use FBCs. Instructions in 
Stanford‘s MIPS computer, for example, are encoded in 12, 
20, or 32 bits, depending on the instruction class, the 
number of operands, and  the size  of the immediate field 
[ 1 11.) Most common is the use of  fixed-size identifiers  with a 
limited number of starting points. The use of  BDC or 
Huffman-type  codes  provides the maximum representational 
efficiency, but also maximum decoder complexity. 
Moreover, the key to making BDCs  work  is ensuring that 
the most often used  messages are the shortest. Thus, in order 
to achieve optimal spatial efficiency, the frequency 
distribution of objects must be determined before encoding 
can be  performed. 

While there have  been many approaches to language- 
oriented instruction set  design, the direct  correspondence 
architecture’ (DCA) approach is distinguished in  at least  two 

422 ways from these  earlier  efforts: 

Fixed size ,Fixed size 

Bit  variable  by p d u r e  
(width  specified by “width  index”  register) 

Format: 
specifies number of identifiers  in  the  instruction 

1 The use-ordered DCA instruction. 

1. It uses a robust set of formats to eliminate overhead 
instructions. 

2.  It  uses the contour model  (originally  developed by 
J. D. Johnson [ 121) as an implementation vehicle  for 
object  accessing. 

In Adept, we have attempted to minimize the basic 
parameter values by making assumptions about the trade- 
offs available among the various parameters illustrated in 
Figure 1. Specifically,  we make the following assumptions in 
Adept: 

1. That the execution of semantic operations (as 
distinguished from overhead operations) is fast. Thus, 
execution time will  be dominated by the number of 
overhead instructions and by memory referencing 
activity. Minimizing overhead instructions will 
proportionately improve overall execution time. 

total dynamic instruction count, a robust set of formats is 
used in Adept,  somewhat  increasing the complexity of 
instruction decode. 

3. Instruction bandwidth is minimized by  using bit-variable 
encoding of  fields or objects within an instruction. This is 
a strategic middle ground between  fixed  block encoding 
(no variability  between starting point and size) and bit- 
dependent encoding. BDC codes require more complex 
decoding than FBC codes. 

4. Data bandwidth is minimized through judicious use of 
processor  storage.  Assignment of objects to contour 
storage (an idealized  register set) has been done on the 
basis  of  expected  usage by the program as defined by the 

2. To eliminate overhead instructions and minimize the 

’ Some previous references to DCA methodology c a l l e d  it the directly executed language 
(DEL) approach, hut  we found many readers mistakenly associating the name with the 
investigations of Yaohan Chu and others involving run-time source code parsing. 
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semantics associated with that object  in the high-level 
language. For example, local scalars are assigned to 
contour storage, whereas local structures (arrays, etc.) are 
retained in  main memory. No a priori limit is placed on 
the size of contour storage in  Adept. 

5. Opcode  and object  distributional data  are  not  known 
a priori-in fact, it  is  these data  that  are  to be collected. 
Bit-variable codes are spatially most efficient in the 
absence  of  frequency data;  this forms the basis for DCA 
encoding. Clearly, the choice between bit-variable and 
fixed-block encoding is a technology/implementation 
decision. 

A DCA instruction (Figure 2) consists of a format syllable, 
from  zero to  three object identifiers, and  an  operation 
syllable. The  format  and  operation syllables are fixed in size, 
in  most cases five bits  each. The  number of  object identifiers 
is determined by the  format syllable, and varies between zero 
and  three syllables. The width of an object  identifier syllable 
is determined by the  number of unique objects  in a 
particular  scope  of  definition,  as determined by the high- 
level language. This width is [ log, 1 of the  number  of 
unique objects  in a particular scope, creating a bit-variable 
code (BVC). For example,  in Pascal, a procedure with 2 1 
unique objects  would use  five bits to  encode syllables to 
represent operands. 

Formats 
It is well known that  statements in high-level languages can 
be represented as trees or, more accurately, as directed 
acyclic graphs (DAGS). In a DAG,  an interior node consists 
of a high-level language operation.  Instruction sets that use a 
single format  cannot concisely represent all possible 
relationships described by a node. The classic case of 

a + b + c  

is represented  in a stack architecture  as 

push a 
push b 
add 
POP c 

In a simple register-oriented architecture, the  pushes  are 
replaced by register loads and  the  pop is replaced by a store. 
In the case of a three-address  architecture, the  above  can be 
captured concisely in one  instruction; however, for the 
evaluation of complex  expressions or statements with 
redundant identifiers, such as a + a + 6, significant 
redundancy is introduced. In the DCA approach, each DAG 
node is associated with a single instruction. 

internal nodes  of a statement.  Thus,  the  statement 

a x b + c + d  

A stack is used for communicating results between 
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Stack 

Stack P 

I f0zt op b 

D 

illustrated  in Figure 3 is represented  as  two  instructions: 

F19 a b X 

F12cd-k 

F19 is the  instruction  format in Table 1 which takes two 

Table 1 Transformationally complete formats. (a,  b, and c are 
any explicit operand  identifiers, t is the top of the evaluation stack, s 
is the  next element in  the stack, and u is the previous element.) 

Format  Transformation  Number of explicit 
operand identifiers 

Fl a := b 2 
F2 a := op(a) 1 
F3 a := op(b) 2 
F4 a := op(t) 1 
F5 s := op(a) 1 
F6 t := op(t) 0 
F7 a := a op a 1 
F8 a := b op a 2 
F9 a := t op a 1 
FIO a := a OQ b 2 
Fl1 a : = b o p b  2 
F12 a := t op b 2 
F13 a := b op c 3 
F14 a = a o p t  1 
F15 a := b op t 2 
F16 a := u op t 1 
F17 s := a op a 1 
F18 t := t op a 1 
F19 s := a op b 2 
F20 t := a op t 1 
F2 1 u := u op t 0 
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explicit identifiers, a and b, and pushes the result onto a 
stack, labeled s (the “s := a op b” format). The push is not 
accomplished by a separate instruction, but rather implied in 
the format itself. Similarly, F12 takes the stack (performing a 
pop) and c as source operands, and assigns the result to  the 
second explicit identifier, in this case d (the “a := t op b” 
format). Thus, in compilation, code generation consists  of 
selecting the appropriate format which binds variables to 
each operation (DAG node). The format implicitly specifies 
the number of  variable identifiers required by the operation. 
Naturally, many variations are possible, depending on  the 
level  of redundancy that can be tolerated in the resulting 
instruction set. As few as four formats provide an interesting 
basis  for an instruction set reasonably free of redundancy 
[7]. In the DCA experiments to  date, we have  used 
transformationally complete format sets-sets without 
redundancy (Table I) .  In Adept, 35 formats are used, 
including branches and array index operations as formats. 

Using contours for operand identiJication 
In addition to representing the node of the parse tree, there 
must be a method for  specifying the operands that are 
associated  with the node.  Essentially there are two methods 
for  specifying operands. One is to embed the needed 
information within the instructions, and the other is to 
gather all such information into descriptor tables to which 
the instructions can refer.  Most architectures use both of 
these methods. For example, if a displacement address 
requires 12 or fewer  bits, it is  placed  in an immediate field  of 
an instruction for the IBM System/370. If it  is  larger than 12 
bits,  it  is  placed in a full  32-bit  word and is loaded into a 
register  when  it  is  needed during execution. 

The scope  of definition for the names of operands in a 
high-level  language program can be described as a contour 
[ 121.  In such a description a procedure or function is 
declared within a level  of scoping and can be represented as 
a region  of  higher altitude within a plane. An entire program 
with procedures and functions declared within the main 
program and within each other can be represented as a kind 
of contour map. By the scoping rules  of a block-structured 
language such as Pascal, statements in the body  of any one 
procedure or function can refer only to operands at the local 
level and at levels that can be  reached from the local  level by 
descending. Descriptions of operands can be  collected into 
tables. There can be a different table for  each procedure and 
function and one for the main program. If these tables 
contain an entry for  every operand accessed from each 
block, the tables completely define the  contour model for the 
entire program. The table of descriptors for  each  block is 
called the contour for that block [9]. 

If descriptors are collected into a contour, then to make 
reference to  an operand through its descriptor, an instruction 
needs  merely an index into  the  contour; each identifier field 
requires [ log, n 1 bits,  where n is the number of descriptors 424 
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in the contour, although fixed-block encodings may  also  be 
used. 

The decision  as to what  range  of statements a contour 
should service is not clear-cut. At one extreme, a single 
contour could contain the descriptors for  all the operands in 
an entire program. This would  result in the smallest total 
amount of memory devoted to storing operand descriptors, 
since there would be no duplication of descriptors in 
multiple contours. But then, every  reference in the 
instructions to descriptors in the single contour would  have 
to specify one out of all the descriptors for the program, so 
the identifier field  would require more bits of memory for 
this scheme than for any other. At the other extreme, a 
different contour could be associated  with  each statement, 
containing descriptors only  for operands to which that 
statement refers.  While the identifier fields under this scheme 
are  likely to be small, the large number of contours use a 
great  deal of memory and require the processor to switch 
between contours frequently during execution. 

A simple compromise was  suggested  by Johnson [ 121, in 
which a different contour is  associated  with  each procedure 
and function and with the main program. If a contour 
contains descriptors only  for operands to which its 
corresponding statements actually refer (the technique 
chosen  for Adept), switching  between contours during 
execution becomes part of the semantics of call and return 
instructions. What most distinguishes this scheme from 
others, though, is that it takes advantage of the locality of the 
scopes  of operands. Structured programming practices call 
for procedures that encapsulate various phases of the work to 
be done. If a program is well written, then variables that are 
used  in only one phase are declared  local to a procedure, and 
descriptors for them need appear in only one contour. 
Similarly, some global  variables  may  be  heavily  used  in some 
phases and not at all in others. These need only appear in 
contours for procedures that use them. The use of such 
contour tables reduces the total memory size without 
drastically increasing the  amount of switching  between 
contours during execution. 

and data memory traffic without requiring compiler- 
managed  register-assignment optimization. In the processor 
the register  set  is  replaced  with the contour register set, which 
holds the collection of  all currently encapsulated single 
contours. The  contour register  set  is similar to multiple- 
windowed  register  sets, but the size  of a single contour is 
completely variable. Its starting point is defined by a pointer 
(environmental pointer, or EP in Johnson’s nomenclature 
[ 12]),  which is defined on procedure entry. 

Keeping individual contours small keeps identifier fields 
short and minimizes required instruction bandwidth. But 
more importantly, if contours are small, it  becomes 
economical to store them in fast memory devoted to  that 
purpose. Contour register  sets then have the advantages of 

The goal  of contour design  is to minimize both instruction 
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id is offset 

Format specifies 
number of ids 

Single 
contour 

Contoul 
register 
set 

1 Operand  accessing in a DCA. 

registers and cache memories without  their  overhead. Like 
registers, they have  small operand specification fields 
compared  to  main  memory addresses; but unlike registers, 
there is an  entry  for every operand  that needs to be 
referenced, so there is no register allocation to be done. Like 
a cache, a sufficiently large contour  contains  the working set 
of simple variables, but achieves that effect without  the 
hardware  support  that a cache  needs in  the  form of its  partial 
or full associative store for addresses. Instead, the 
concentration of variables in  the  contour is done  at compile 
time,  and  the  contour can be kept in a simple, random- 
access memory.  (This is the basis for a related study by 
Alperl [ 131.) 

be different each time  the  procedure is called, especially if 
the high-level language allows recursion. The  same 
procedure  may be called more  than once before it  returns 
from  the first time it is called, with different parameters each 
time  and with different values for  its local variables. Also, 
variables that  are neither local nor global but declared at  an 
intermediate level may have different values for different 

The  contour for a given block, say, for a procedure, may 

instantiations. Not only may  the  contour for the procedure 
be different on multiple calls, but  the  contours for  earlier 
calls may be needed after  subsequent calls on  the  same 
procedure. For these  reasons,  storage  space  for new contours 
cannot be allocated statically, and  there  must  be a dynamic 
control  mechanism  in  the processor. Contours  can be 
allocated directly on a stack, or they can be allocated 
statically for the first instantiation of each  procedure, with a 
stack onto which all but  the most  recent instantiation  are 
pushed  when  recursion  is  detected at  run  time. Allocating 
contours directly on a stack  has  two advantages: It takes  only 
as  much  memory as is needed, and it returns quickly from 
calls. 

A width  index must be specified for  each environment, 
determining  the size of identifier fields in  that particular 
scope. This is shown  in Figure 4. 

and is not. The  contour register set is the conceptually fast 
data  memory for an abstract language machine. It is 
unbounded a priori, as is the size of the identifiers. Since the 
contour set is more limited (“expensive”) than  memory, only 

At this  point, it is important to review what the  contour is 
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data assigned to it are both  within a current scope of 
definition and can be characterized (by type, attribute, or 
use) as being “frequently” used; other data will remain in 
“main memory.” Different assumptions as to frequency of 
data referencing or relative  cost  of contour storage will lead 
to different implementation strategies of the contour set, but 
a major goal  is to minimize data memory traffic. 

memory per se, but rather provides the basis  for an 
implementation. Several implementations can be  viewed as 
following the contour model: 

The contour model is not an implementation of  fast 

Register  sets-especially  register sets  with  designated 
purposes,  such as local  variables or globals. 
The RISC  register  windows. Multiple overlapping  register 
sets  provide  access to local  variables and call-by-value 
parameters without save/restore overhead. The scheme  is 
reportedly quite effective  in supporting the C language 
[4],  which  does not allow  referencing  of  variables in an 
enclosing  lexical level-a service not provided by the 
registers and required, for example, by  Pascal. 
The Ditzel-McLellan  stack  buffer [ 141.  Even closer to the 
contour model is the (1 K-word) buffer  for a C-based  stack 
frame.  In this implementation the entire stack frame 
(including structured variables,  for example) is  buffered. 
The contour buffer.  Developed by Alpert [ 131 and based 
in part on data contained in this work, this provides a 
“contour” buffer  of 256 words-sufficient to contain 
stack frame contour references without structured 
variables, as measured by our test  programs. 

Characteristics of classes of objects 
The contour model  can be extended to cover the 
identification of objects, including operands, labels, 
operators, etc. The method that is  most suitable for  object 
identification depends on the object’s  characteristics.  Objects 
found in high-level  languages include operators, constants, 
labels,  variables, and procedures and functions. Procedures 
and functions have the same characteristics as constants by 
run time, so the discussion  for constants below applies to 
them as well. 

Operators 
The size  of the set  of operators in a program tends to be 
fixed,  for  two  reasons.  First,  for  most programming 
languages, the programmer cannot declare new operators 
beyond  those  already  defined in the language. Thus, no 
matter how  large a program  grows, the number of distinct 
operators is bounded by the number in the language. 
Second, the number of operators in the language is not large. 
For many  programs the usage of operators extends to within 
a binary order of magnitude of the total set, suggesting the 
fixed encoding adopted for Adept. 426 
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Constants 
Descriptors  for constants can  be  placed in a table in a 
manner indistinguishable  from that for variables,  except that 
for  Pascal,  variables do not have initial values as do 
constants. Alternatively, constants can be  inserted into the 
instruction stream [ 151. 

In an architectural model  which  has unbounded contour 
storage,  it  is  clear that bandwidth will  be minimized by 
assigning constants to this storage, an approach followed in 
Adept.  In  practical implementations, the encoding of 
constants is determined by the relative  costs of instruction 
bandwidth and contour storage  (however  such  storage  is 
implemented). 

Labels 
Explicit  labels and other unlabeled destinations of branch 
instructions are similar to constants in that their values are 
known at compile time, making it possible for the compiler 
to place them either in a table or in the instruction stream. 
Labels  differ  from constants in one crucial way,  however: 
Many instructions may  refer to one constant, but with  only 
three infrequent exceptions, a given label will  be found as 
the destination of only one branch instruction. 

control, so anything is  possible, but to keep  programs 
structured their use should be limited.  Most destinations 
appear only  once,  whether  they come from explicit  labels or 
structured flow-of-control statements, so for  Adept  they are 
placed in the instruction stream rather than a table. 

Explicit  labels in Pascal are completely under programmer 

Variables 
One technique for  identifying  variables is to allocate  space in 
the contour for the values of  all the variables. This is 
virtually the same,  however, as allocating  space  for them in 
main memory.  Ditzel and McLellan [ 141  have proposed a 
stack frame cache  related to this technique. 

A second approach is to allocate  space for the values of 
the variables in main memory and to place the addresses of 
the variables in the contour. Now the contour is much 
smaller than for the previous  case,  because the addresses of 
arrays are much smaller than their values. The DELtran 
processor  uses this kind of contour [9]. 

A third approach is to consider the amount of memory 
taken up by the address of a variable and compare it to the 
amount taken up by its value.  If the value  is the same size or 
smaller than the address, then overall memory requirements 
are reduced by directly  placing the value in the contour and 
allocating no main memory space at all  for that variable. 
(This is the approach used in Adept.) This modification  uses 
the least contour memory by a small amount. A more 
important effect is that references to simple variables require 
only one access to memory instead of two, and access  is to 
the faster contour. Between  74.7  percent and 78 percent of 
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all dynamic operand references [4] are either to constants or 
to simple variables. 

3. The  Adept  architecture 

Implementation details 
As an experiment to evaluate the characteristics of an 
architecture based on the concepts of the previous section, 
the Adept architecture was developed for the high-level 
programming language  Pascal [ 161. 

The implementation was done  on  the Stanford Emmy, a 
32-bit microprogrammable processor  designed  specifically 
for emulation research [ 171. Emmy has a fast storage of  4096 
32-bit  words  accessible from the register  set in one cycle. 
This fast  storage  is  used  in Adept to contain both the 
emulator and  the run-time contours. 

A new contour is created by the call instruction. Every 
procedure block  (every procedure and function and the main 
body  of the program) begins execution after a call 
instruction has  been executed. The contour created for a 
block is used to identify all objects referred to in that block. 
At the beginning of a block's code, following information 
about the number of parameters and the way they are to be 
passed,  is a 12-bit  field  giving the size of the block's contour. 
The call instruction creates descriptors for the parameters as 
it  passes them and inserts them as the first entries in the 
contour. The information needed to create parameter 
descriptors is contained in the contours already on  the stack. 
Every descriptor contains a tag.  After  passing the parameters, 
the call instruction sets the tag  fields in the rest of the 
contour to a value  called  "invalid." During subsequent 
execution, the first time one of  these descriptors is 
referenced, the rest  of the descriptor is prepared and the tag 
takes on some value other than invalid. Information needed 
to create these descriptors is contained in a pointer table, 
located in memory before the block's executable code. 
During compilation, descriptors are added to the table in the 
order that their corresponding objects are encountered in the 
statements of the block. Then, the pointers are placed in 
memory in reverse order in an attempt to maximize locality; 
objects mentioned early  in the block will have descriptors 
close to the first executable code. The relationship between 
contour  and memory is  shown  in Figure 5. 

a tag and the value  of the variable.  Local, simple variables 
are always  assigned  before they are used, requiring no 
information in the pointer memory. Attempts to use such 
variables  before their assignment will cause a processor error 
signal. The compiler assigns identifiers so that local, simple 
variables  have identifiers smaller than those assigned to other 
objects. This allows the pointer memory to contain 
initialization information for a contiguous block  of 
descriptors without any unused entries for  local, simple 
variables. The same word  in the header of a procedure that 

In the  contour (Figure 6), local, simple variables  consist  of 

register 
set 

- 
'ontoul 

Read  only 
4"- 

- 
f" 

Pointers, 
constants, 
and  code 

Structures 
and  glohals 

Processor Memory 

Local  scalars 

Parameters 

Constants 

Others:  Globals 

Require  no  memory  reference 

Require  initial  reference  only 

Require  initial  reference  for  pointer,  and  subsequent 

memory  access  for  value  on  each  reference 

contains the size  of the contour also contains a 12-bit  field 
giving the identifier of its first  object  in the pointer memory. 

The descriptors for constants are simply  copied  from the 
pointer memory the first time they are used and thereafter 
are indistinguishable from local, simple variables. This 
means that languages  which  allow the programmer to 
declare an initial value  for simple variables can have them 
translated as if they were  Pascal-style constants. The first 
time they are accessed they have an initial value, but they 
can be subsequently modified. 427 
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Object 

Simple constant 

Nonlocal  variable 
(single or array) 

Local array  variable 

Global array  variable 
(or string constant) 

Pointerlconstant memory descriptor Object 

Tag  Value 
Simple  constant or 
local, simple variable 

I :g ~ ~ ~ s b a c k  I id 1 Nonlocal, simple  variable 

Relative  array  base 

Contour 

Value 

Tag Absolute array  base 

: Descriptors as they appear in the pointericonstant memory (1 and g 
i indicate local or global, determined by a single bit). 

Nonlocal, simple variables can occur as call-by-reference 
parameters in which the actual parameter is a simple 
variable. In this case, the call instruction uses the descriptor 
for the actual parameter to create a new descriptor with a tag 
of “nonlocal.” If the descriptor for the actual parameter has 
a tag  of “nonlocal,” the processor simply copies the entire 
descriptor. Thus, there is  always only one level  of indirection 
for nonlocal, simple variables. 

Figure 7 summarizes the kinds of descriptors that can 
appear in the pointer memory. Recall that there are no 
entries for local, simple variables,  because they are created 
when they are first  assigned. Nor are there any entries for 
formal parameters; they are created by the call instruction. 
Figure 8 lists the three kinds of descriptors that can appear 
in the contour. Pointer memory can be characterized as 
using  lexical-level addressing, but the  contour is  very 
different. After an object  is  first referenced, the  contour 
either contains its value or points directly to its value;  all 
address chains are gone. 

Test programs used 
The first two programs that we  used to test the Adept 
architecture are more numeric in nature than the others. 
The first, F l T ,  has short but nested  loops. The second, 
Kalman, may be the most representative of  scientific 
programs actually in use. The third test program, Puzzle, 
solves a bin-packing problem. The fourth is an 
implementation of the quicksort algorithm, Sort, whose 
transformation of data consists  of  simply moving them 
around. The last program, Walk,  is an example of a simple 
recursive-descent compiler that also traverses the parse tree it 
creates. The programs were  carefully  selected to provide a 
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Table 2 Adept format frequency  for the Kalman program. The 
total count is 77 035 instructions. 

Percent 

37.702 
14.573 
9.150 
9.1 14 
6.608 
4.767 
2.928 
2.726 
2.287 
2.232 
1.835 
I .809 
1.718 
0.554 
0.498 
0.345 
0.336 
0.293 
0.262 
0. I40 
0.050 
0.028 
0.024 
0.0 10 

Cumulative 

37.702 
52.276 
6 1.426 
70.540 
77.149 
81.917 
84.845 
87.571 
89.859 
92.09 1 
93.927 
95.737 
97.455 
98.009 
98.508 
98.853 
99. I89 
99.483 
99.745 
99.885 
99.936 
99.964 
99.989 

I00.000 

Class name 

arrayx 
a := a op b 
u := u op t 
s := a op b 
a := a op t 
s := op(a) 
a := b 
callstdproc 
a := b op c 
t := t op a 
t := op(t) 

got0 
a : = u o p t  
call 
a := t op b 
t := a op t 
a := op(b) 
procreturn 
funcreturn 
a := b op t 
a := op(t) 
arrayt 
a := op(a) 
a : = b o p a  

Fourth,  the test set was translated by the Pascal “P” 
Compiler  into P-code, which is the object code for a 
hypothetical  stack computer [21]. Emmy was programmed 
to interpret the resulting P-code and  monitor  the execution 
of the programs [22]. 

Fifth, one of the programs  in the test set, Kalman, was 
compiled into code  for the  DEC VAX 11/780  architecture 
by the Berkeley Pascal UNIX compiler. 

4. Results  and  observations 
Recall that  the purpose  of  this study is not  to define an 
implementation of an architecture, but rather to provide a 
basis for making  implementation trade-offs. The Adept 
experiment, as reported here, has  already  been  elaborated on 
in several ways by subsequent research. Among  the  more 
interesting results are  the following. 

Code size vs. decoding complexity 
While the issue of  decoding  complexity vs. code size is 
resolvcd primarily by technological and  implementation 
considerations, some useful data  can be provided by an 
architectural  study. The relative infrequency  of a number of 
the  format types  included  in the transformationally  complete 
format set for a sample  program (Table 2) indicates that 
improved code  density can  be achieved by better  format set 
selection. Other work  examines some subsetting possibilities 
[7]. Moreover, the use of a robust format set together with 
variable-bit coded identifiers might  strike the reader as 
overkill on  code density. Our colleague C. Mitchell [23]  has 

Table 3 Relative dynamic code  size  of  various format sets 

Adept (as reported) I .o 
Systeml370 3.30 
Optimized Adept 0.947 
Explicit temporary formats 1.047 
A three-address format only 1.177 

Table 4 Dynamic instruction counts: Effect  of bit-variable 
coding. 

Adept  Explicit temporary Three-operand 

BVC 1 .oo 1.05 1.18 
4/81 121. . . 1.18  1.28 1.42 
6/12/18/. . . 1.13 1.22 1.41 
81  161241. . . 1.43 1.58 1.81 
I2 only 1.78 2.06 2.33 
16 only 2.12 2.68 3.003 
System1370 3.30 - - 

run a number of different block-encoded format  and 
identifier combinations  on a similar test program set. 

Table 3 gives the relative dynamic size (based on  the 
Adept  reported here) of  executable  code for our test program 
set, for IBM System/370, and various  modifications to  the 
Adept format set-all, however, based on bit-variable coding 
of identifiers. Optimized Adept  is  simply  Adept with a five- 
bit  rather than a six-bit format syllable (because the  number 
of format  combinations barely exceeds 32, it  is relatively 
straightforward to compress the  format syllable to  the five-bit 
target). For the explicit temporary  format set, the evaluation 
stack is eliminated  and replaced with explicitly named 
temporaries. This would reduce the  number of format 
combinations  to eight formats.  Such an  arrangement would 
increase the  code space by only  ten  percent  over the 
optimized  Adept. Finally, if only a single evaluation format 
were used-the three-address format-code size would 
increase by only 23 percent  over  optimized  Adept so long as 
bit-variable encoding  of identifiers was retained.  Indeed, 
robust formats together with bit-variable-encoded identifiers 
appear  to  be duplicative  techniques unless code  density is a 
singular  consideration in  the design of the architecture. 

Now  consider the use of block codes  as compared  to bit- 
variable codes with a variety of format sets. 

Table 4 shows the Adept format set, the explicit 
temporary  format set, and  the single three-address format 
used with a variety of different identifier encoding 
techniques. Again, bit-variable encoding is used in Adept, as 
reported here. The 4/8 encoding represents the code size 
when all identifiers are encoded on four-bit  boundaries. 
Similarly, 6/ 12 and 8/16 represent incremental identifier 
container sizes. Distinction among identifiers is achieved by 
environment-once one  enters a procedure, the  container 
size is fixed for that procedure, just as  in the bit-variable- 429 
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encoded Adept. Finally, fixed  12-bit and 16-bit identifiers 
were  also tested. The test programs used required no more 
than 12 bits of data address (data storage requirements never 
exceeded 2’’ words). The reader will note an apparent 
anomaly in the test programs in that  the 6/ 12 encoding is 
actually better than  the 4/8. The majority of contour sizes 
were  between 17 and 64, resulting in identifier scopes  which 
could be captured in  six bits but not in four. A 
transformationally complete format set, even the single 
three-address format, provides a significant advantage by 
eliminating overhead instructions. The single three-address 
format, even  with a 16-bit fixed identifier, is still competitive 
with load/store architectures, such as System/370. As a 
corollary, designers  of load/store register set-type 
architectures must pay careful attention to instruction 
bandwidth requirements. 

Some variability is quite valuable in  specifying operand 
identifiers. In particular, using  block encoding based upon 
four or six bits still retains a significant spatial benefit. 

It is important to recall that for all of  these  cases no 
escape-type codes are required; size is not content- 
dependent, but rather is known on procedure entry. The 
value of the identifier’s  size can be stored in a register and 
the fields broken apart as soon as the format syllable  is 
decoded, except in the case  where the format syllable  itself  is 
trivial-the three-address format case-where  fields are 
predetermined. 

Table 5 Singe contour size. 

Single contour composition Average Maximum  Minimum 

Number of local  scalars/ 
parameters (no memory 
reference required) 6.73 14.60 1.93 

Number of all other data types 9.29 18.80  3.41 
Size total 16.02 33.40 5.34 

Table 6 Instructions executed. 

Number of instructions Average Maximum  Minimum 
executed per procedure block 

538.23 21  15.41 12.35 

Table 7 Maximum size of contour register  set. 

Size  ofcontour register set Average Maximum  Minimum 

Total contour memory  words 
required during execution 481.2 1475 50 

Size of largest contour in  words 109 I94 17 

Table 8 Singe contour composition. 

Data referencing  strategies 
Some measures that are important in the design  of  processor Contour make-up by data type: 
storage are shown  in Tables 5 and 6. The  contour should be a) Entries not requiring memory access 
at least  large enough to hold the largest contour encountered Local  scalars 73% 
in the program to be run. If the  contour is to be  large 

Parameters 27% 

enough to hold the entire stack  of contours throughout Constants 58% 
execution, then  the maximum size of the stack is  also  of Globals 27% 
interest (Table 7). In another study associated  with the All others 15% 

Adept experimental architecture, Alpert [ 131 has extended 
both the scope and resolution of the  data  on the dynamic 

b) Entries requiring memory access 

behavior of contours in  Pascal.  Using  larger  test  programs,’ 
he reports a mean contour size of  26. I entries, with 
composition given  in Table 8. 

than explicitly included in the instruction stream (as in 
Adept), one would add about 9.6 entries to each contour. 

The cited data represent mean values  with  relatively  large 
variance. As Alpert [ 131 notes, “most procedures refer to a 
relatively few objects, so their contours are small, but some 
procedures refer to many objects, particularly initialization 
procedures.” 

If local branch labels  were included in the contour, rather 

’The method used in this study dlffered from that used In the evaluation of Adept in that  the 
existence o f a  vlable architecture was assumed, and an existlng compller was modified to emit 

compilation and execution on  an experimental architecture, and made the consideration of 
instmctlons to increment counters. This eased the  burden  ofdebugging all phases of 

430 much larger program5 practral. 

In  Adept the existence  of a large contour store is assumed. 
The optimization emphasis is on instruction and  data 
bandwidth in  exchange  for this larger  storage.  Varying the 
trade-off among instruction and  data bandwidth and  contour 
storage  gives  rise to a multiplicity of  lexically  based  storage 
strategies, some of which are mentioned earlier. 

stream as literals (as in the PDP-I l ) ,  or treated as data 
references, or treated as contour entries (as in Adept).  Most 
constants are short; their values can frequently be encoded 
within the opcode or an opcode byte. A particularly 
interesting DCA format-based technique to reduce the 
number of contour entries for constants has  been reported in 
detail elsewhere [24]. This technique uses about I O  
additional formats to specify  right or left operands as scalar 
constants whose  value is contained in the designated 

Note that constants can easily  be  placed in the instruction 
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Contour 
set 

identifier. (Of course, the value of the constant must be  less 
than or equal to  the container allocated to  the identifier.) 
Constants of value larger than the identifier are treated as 
variables. This eliminates most constant entries for contours 
at the expense  of about one format bit  per instruction. 

As  with constants, globals can also  be distinguished within 
the instruction stream. Probably the easiest way to make this 
distinction is to tag  each identifier within the instruction as 
being  global or nonglobal. This would add an average of 
about two  bits per instruction, increasing the overall 
program size and (to a first approximation) the instruction 
bandwidth by about 12 percent. The net effect  would  be to 
reduce contour size to about half that shown  in Table 5. 

Local structures (arrays, etc.) occur in only a small 
fraction of  contours-less than 20 percent. They have a 
significant variance, however, and for this reason are 
probably best not allocated to the  contour storage, consistent 
with the practice described  in  Adept. 

approximation to the contour memory. The RISC  register 
window consists of a register-addressing  space  of 32 registers, 
of which 16 are designated for global  use and 16 are 
allocated for  local use (six are caller/callee-overlapped for 
passing parameters). Four sets  have  been implemented and 
additional sets  have  been  suggested. The fixed register 
allocation is a problem in that the high variance of contour 
size  will create additional data traffic (either for  overflows or 
in its inability to capture required local data in cases  of  large 
contours). There is an obvious associated problem of  access 

The RISC  register  window [4] can be viewed as an 

to nonlocal, nonglobal variables,  as required by Pascal (but 
not by C). However, our frequency data suggest that such 
references are rare enough to justify special compiler 
handling of them, i.e., retaining of  all  such potential 
referands in memory. However, note that detection of 
aliased  variables is a serious problem for a Pascal compiler. 

The Ditzel-Mckllan “C” cache stack [ 141 is  even  closer 
to the contour model. Labels and constants are encoded in 
the instruction stream and globals are handled within the 
instruction by a global bit. A notable distinction is the 
allocation of local structures to the buffer.  As mentioned 
before,  it  is probably a better idea to retain the local 
structures in memory because of the high variance of 
contour storage requirements. 

less directly implements the  contour as  described in our 
experiment, i.e.,  assigning constants, globals,  etc., to the 
contour. Such a buffer  of 256 entries will fault on less than 5 
percent of the contours entered. If constants are removed, a 
buffer  of 256 entries will fault on about 1.5 percent of the 
contours entered. 

Alpert has suggested a contour buffer [ 131 which more or 

Alpert  has  shown that his contour buffer  with 256 entries 
will fault approximately as often as a similar contour buffer 
with I28 entries, but with the constants excluded and 
reflected  in the instruction stream, or with 64 entries and 
constants and global  traffic  excluded. The contour buffer 
provides  significant reduction in the instruction bandwidth 
required over other approaches, but does so at the expense  of 
a larger number of  buffer entries. The RISC  register  window 
suffers both in terms of instruction bandwidth and data 
storage requirements due to its rigid allocation policy. Of 
course, the same policy ensures relatively straightforward 
implementation. 

Figure 9 contrasts the trade-off  between bandwidth and 
processor  storage. In Figure 10, small constants are placed in 
the id  field  of the instruction; large constants are treated as 
variables.  Scalar  globals are flagged  by a bit in the id  fields 
and are directly accessed  in memory without the need  for a 
pointer in contour storage. 

Both of these  schemes retain a consistent memory image 
at all times. Further reductions in bandwidth are possible  by, 
for example, copying global  values into processor  registers. 
This, of course, means that multiple processors  will not see 
the same global  processor state. The effect  of consistency 
requirements on bandwidth is  still under study. 

As additional storage becomes available within a 
processor, a reasonable strategy  for its use would be to 
reduce the instruction and  data bandwidth requirements. 
Our  data indicate a broad spectrum of possible  trade-offs, up 
to  about 256 to 5 12 words of contour-type storage. At that 
point one has basically captured all  scalar data and 
minimized program representation requirements up  to the 
point of using data-dependent encoding or frequency- 
encoded representations. Handling structured data, whether 431 
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This allows or requires additional features such as 

contour 
set 
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c"----. 

0.04 - 
0.17 - 
0.09 
P 

Instructions 

Pointers 

StruCNES 

Scalar globals 

global,  local, or of other lexical scope, remains a question for 
future work,  especially  where implementations will allow 
more than 5 12 words  of  fast  storage.  While a data cache  for 
such references is always a possibility, the cache structures 
themselves are not particularly good  vehicles  for 
implementing access to array-type structures because  of 
limited array element locality. 

Contrasting RISC and  Adept 
Largely through related studies at Stanford [25, 261  we can 
comment on a topical issue, the so-called  RISC approach to 
architecture, as contrasted with  Adept. Initially they appear 
as opposite approaches to the architectural problem: a highly 
encoded Adept approach vs. a simple encoded RISC 
approach. Actually, the extent of the differences depends at 
least partially on  the definition one chooses  for the RISC 
approach. 

various ways  [27].  Most  RISC definitions include the 
following  features: 

What is a RISC? The RISC approach has  been  defined  in 

A load/store architecture. 
Fixed instruction size (usually 32 bits). 
Single instruction format. 
One-cycle instruction execution. 
A relatively small opcode vocabulary and few addressing 

432 modes. 

Hard-wired control. 
Fast  cycle times. 
Pipelined execution. 
More  extensive compiler effort to optimize code. 

A large  register set, with or without register  windows,  is a 
feature of many RISC implementations. If one includes such 
a set, especially  with  register  windows, as a part of a RISC 
architecture, then at least  as  far as the trade-off  between data 
bandwidth required of memory and on-chip storage is 
concerned, RISC  is similar to Adept. Adept attempts to 
minimize data traffic through the use  of contours and 
contour buffers by increasing the on-chip storage (Figure 1). 
A large  register set, especially  with  extensive  windowed 
features, is an approximation to a contour buffer, and while 
the encoding and object assignment differ, the net  effect  is 
rather similar as measured in  percentage reduction in 
memory traffic to support the data stream per unit data 
storage added to a chip. 

A more fundamental difference  between the RISC 
architectures and Adept is the trade-off  between instruction 
bandwidth required to support program execution and 
decoder complexity. RISC  favors a very simple decoder 
which is achieved by  use  of the load/store architecture with 
fixed instruction size and format. Adept increases decoder 
complexity for the use  of bit-variable encoding and a more 
robust format set. To see the net effect  of  all this, we refer to 
the work  of our colleague C. Mitchell [25]. In order to look 
only at the effects  of object encoding and formats, Mitchell 
uses a standard set  of functional operations in the instruction 
set  for both a fixed 32-bit load/store instruction set 
(designated FIX32) and Adept. Thus, both opcode 
vocabularies are  the same as the vocabulary  of  Pascal  for  his 
test programs, except  for the load and store and other 
memory management instructions defined by the RISC 
architecture and Adept.  Using the same compiler front end 
and generating Adept and FIX32 code, he analyzed the effect 
of instruction encoding on instruction bandwidth required 
from memory (Figure 11). FIX32 has a single  16-element 
register set, while  FIX32w has multiple, windowed  register 
sets  of  128 total registers  [4].  Overall,  because of its more 
efficient encoding, Adept requires about a third the number 
of instructions to execute a program as the FIX32 (RISC) 
approach. Perhaps it  is more striking to see the effect  of 
instruction bandwidth required as cache storage  is added to 
both RISC and Adept. The figure presents data for an 
instruction cache only, 16-byte line, 2-way  set associative. 
The more concisely encoded the instruction stream, the 
more rapidly the working  set is contained by the cache. 
Thus, it takes four times the cache  size  for a poorly encoded 
instruction stream (FIX32) to achieve the same memory 
bandwidth as  is  achievable  with a concisely encoded 
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To achieve  constant  memory traffic, required  FIX32  cache  sizes for 
various  Adept  cache  sizes  (instruction  cache only). 

instruction stream. Adept increases the instruction decoder 
complexity to achieve low instruction bandwidth, or is able 
to realize a fixed instruction traffic by using a much smaller 
cache than a less  highly encoded instruction stream. 
Whether the increased decoder complexity is worth the 
savings in instruction bandwidth or not is determined by 
implementation considerations. For on-chip 
implementations and large instruction cache sizes, the 
additional decoder complexity offers a promising alternative, 
as the cache area can easily dominate on-chip area 
considerations. Of course, a complex instruction decoder 
may influence cycle time considerations. However,  cycle 
time is determined by the slowest  of a number of  processor 
actions: 

Instruction decode. 
Cache access time. 
Register  access time. 
ALU time. 

Published data indicate that, at least  for  RISC  processors, the 
cycle time is determined primarily by register  access time or 
ALU time  and not by instruction decode. 

on-board cache represent a trade-off  wherein on-chip decode 
and storage are minimized at the expense  of increased 

RISC  processors  with small register sets and without 

Adept allows  for the optimized utility of on-chip cache. The 
RISC approach with  large  register  sets appears anomalous, in 
that it emphasizes the reduction of data bandwidth through 
on-chip storage  yet does not make a similar accommodation 
for instruction bandwidth. 

5. Conclusions 
Procedural programming languages imply an abstract 
machine for execution. An instruction set  in correspondence 
with this language can be derived. Using a robust set  of 
formats, and concise encoding of  objects, redundancy in this 
instruction set representation can be minimized. The 
contour model  of data referencing  describes a minimum of 
data traffic required from a large  register  set to maintain a 
consistent global memory. The resulting instruction set 
architecture provides a useful  lower bound on memory 
traffic as defined by the program. Trade-offs  between 
memory traffic and processor  storage and decoding 
capabilities define  possible  design alternatives. 
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