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The purpose of this study is to develop and
extend techniques to provide architectural
correspondence between high-level language
objects and hardware resources so as to
minimize execution time parameters (memory
traffic, program size, etc.). A resulting computer
instruction set called Adept has been emulated,
and a compiler has been developed with it as
the target language. Although the study was
restricted to Pascal, the resulting data are
generally applicable to the execution time
environment of any procedure-based language.
Data indicate that significant bandwidth
reductions are possible compared to
System/370, VAX, P-code, etc. Specifically, the
average improvement ratios realized were
instruction bandwidth reduction: 3.46; data read
reduction (in bytes): 5.42; data write reduction
(in bytes): 14.72.
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1. Introduction

The purpose of this paper is to provide data on the behavior
of an idealized computer architecture. The architecture itself,
called Adept, is in correspondence with the abstract machine
defined by the constructs of a procedural language such as
Pascal. (The name Adept is derived from “a directly
executed Pascal translation.”)

As used here, the architecture of a computer is simply its
instruction set. The computer consists of its instruction set,
its storage, over which the instructions are defined, and an
interpretive mechanism (the Aost), which causes the state
transitions specified by the instruction S"Qt to be carried out.

The question of what makes a good instruction set
involves many factors, including but not limited to the
following:

¢ Implementation time. The time to design a host for an
instruction set is often critical. Simpler instruction sets
require less design effort.

e Technology. If the computer is to be realized on one chip,
the number of devices available is crucial. Small and
simple instruction sets can be supported by fewer devices
better than instruction sets with larger vocabularies.

e Compatibility. Compatibility with an existing instruction
set may dominate all other considerations due to market
factors.
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e Code density. The efficient use of memory can be an
important design attribute.

Customized architectures for particular languages or
applications can be developed with superior attributes [1].

Two different starting points might be taken to understand
and evaluate an instruction set:

1. A top-down view, where one derives the architecture in
terms of the primitives of the language or application.

2. A bottom-up approach, where one derives the instruction
set based upon technological and implementation
considerations.

In the first approach, one refines the architecture based
upon implementation and technological considerations—for
example, deleting infrequently used primitives and speeding
up others [2,3]. In the second approach, one produces a
good host design and uses software, either compiler
technology or interpreters, to match the host with the
environment. The more one knows about the environment,
the better one can support it in hardware; thus floating-point
operations might be used for scientific applications or
register windows in the RISC machine [4] to support the C
language environment. In the final analysis, both of these
viewpoints must be considered.

The purpose of this and our earlier, related work has been
to study the relationship between source language and
architecture. Implementation considerations being equal, an
architecture that minimizes the space-time product of the
use of memory for a program will be the best. If we view
the processor simply as an instruction set and its
implementation, then from the memory’s point of view, it is
better to have

1. Small program size.

2. A minimum number of instructions to execute a program
(dynamic instruction count).

3. A minimum amount of memory traffic (bandwidth).

We attempt to minimize the product of the memory space
occupied by a program and the program execution time. The
execution time is dependent on factors other than those
listed above, especially the implementation (the execution
time per instruction required by the processor), which is only
partially determined by the dynamic execution count and
the memory traffic requirements. The dynamic instruction
count is a primary measure of execution time. Instruction
set implementations which provide close to one cycle per
instruction are possible using familiar test programs [5],
though not all architectures are equally efficient in their use
of a given processor technology. We are not primarily
interested in measuring this implementation efficiency, but
rather in understanding the correspondence or
representational efficiency of the architecture with respect to
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the source program. Data characterizing the behavior of such
architectures can be valuable in making later trade-offs in
implementation.

In our earlier work [6-8] we developed several techniques
for instruction set design to enable concise mapping of high-
level language statements into executable form. In the initial
study we selected Fortran as the high-level language because
of its relative simplicity. The resulting architecture, DELtran
[9], showed significant improvement in both conciseness
(static measures of space requirements) and execution
parameters, such as dynamic instruction counts and memory
referencing activity. This earlier work was limited in several
important respects. The source language itself was static, and
several interesting techniques for object referencing were left
unevaluated. Secondly, the variety of source programs
evaluated was limited since full compilation facilities were
not developed—much of the evaluation of sample programs
relied on hand coding. In the present work a full
compilation facility is available to translate Pascal source
programs into Adept instructions. The evaluation of Adept is
also materially aided by the availability of our Emulation
Laboratory with emulators for a variety of alternate
instruction sets, such as IBM System/370, PDP-11,

HP 1000, and P-code. While the precise details of the design
decisions of Adept [10] were determined by Pascal, the
approach used can be applied to a variety of procedure-based
languages, and the data presented are generally applicable.

2. The DCA approach to instruction set design
In order to achieve architectural effectiveness as measured by
the basic parameters of program size, instruction count, and
memory bandwidth, one can vary the complexity of
encoding instructions and fields within instructions, as well
as making more extensive use of processor storage (registers).
The trade-off is among the following parameters (see

Figure 1):
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1. Overall execution effectiveness vs. instruction decode
complexity.

2. Memory traffic to fetch instructions (instruction
bandwidth).

3. Memory traffic to fetch and store data (data bandwidth).

The first issue seems simplest, but is actually related to the
other two. The fewer instructions executed, the better, but
minimizing the number of instructions may increase
decoding complexity by requiring the decoder to interpret
multiple formats. Alternatively, we can retain minimal
instruction count and simple instruction format decode (e.g.,
a three-address format), but at the expense of instruction
bandwidth (larger instructions). The basic issue in
architecture is trading off the various parameters to achieve
optimal cost performance. If, for example, a processor
executes data transformations slowly (relative to memory
bandwidth), it is of little interest to minimize instruction or
data bandwidth or even overhead instructions (load, store,
etc.); execution time is dominated by ALU operation.

In encoding identifiers there is a trade-off between coding
efficiency (the space required to represent an object or
operand name) and decoding complexity. Specifically, there
are three levels of decoding complexity:

1. Bit-Dependent Code (BDC). The size of the encoded
object depends on the contents of the object. A Huffman
code is an example of a BDC.

2. Bit-Variable Code (BVC). The size of the object is known
(as in a block code) to the decoder, but its starting point
with respect to word boundaries is variable (i.e., does not
always start at the same bit within a word).

3. Fixed-Block Codes (FBC). The size and starting point are
known to the decoder.

Pure FBCs are used in only the simplest computer
architectures. (Not even all RISCs use FBCs. Instructions in
Stanford’s MIPS computer, for example, are encoded in 12,
20, or 32 bits, depending on the instruction class, the
number of operands, and the size of the immediate field
[11}.) Most common is the use of fixed-size identifiers with a
limited number of starting points. The use of BDC or
Huffman-type codes provides the maximum representational
efficiency, but also maximum decoder complexity.
Moreover, the key to making BDCs work is ensuring that
the most often used messages are the shortest. Thus, in order
to achieve optimal spatial efficiency, the frequency
distribution of objects must be determined before encoding
can be performed.

While there have been many approaches to language-
oriented instruction set design, the direct correspondence
architecture' (DCA) approach is distinguished in at least two
ways from these earlier efforts:
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¢ The use-ordered DCA instruction.

1. It uses a robust set of formats to eliminate overhead
instructions.

2. It uses the contour model (originally developed by
J. D. Johnson [12]) as an implementation vehicle for
object accessing.

In Adept, we have attempted to minimize the basic
parameter values by making assumptions about the trade-
offs available among the various parameters illustrated in
Figure 1. Specifically, we make the following assumptions in
Adept:

1. That the execution of semantic operations (as
distinguished from overhead operations) is fast. Thus,
execution time will be dominated by the number of
overhead instructions and by memory referencing
activity. Minimizing overhead instructions will
proportionately improve overall execution time.

2. To eliminate overhead instructions and minimize the
total dynamic instruction count, a robust set of formats is
used in Adept, somewhat increasing the complexity of
instruction decode.

3. Instruction bandwidth is minimized by using bit-variable
encoding of fields or objects within an instruction. This is
a strategic middle ground between fixed block encoding
(no variability between starting point and size) and bit-
dependent encoding. BDC codes require more complex
decoding than FBC codes.

4. Data bandwidth is minimized through judicious use of
processor storage. Assignment of objects to contour
storage (an idealized register set) has been done on the
basis of expected usage by the program as defined by the

! Some previous references 1o DCA methodology called it the directly executed language
(DEL) approach, but we found many readers mistakenly associating the name with the
investigations of Yaohan Chu and others involving run-time source code parsing.
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semantics associated with that object in the high-level
language. For example, local scalars are assigned to
contour storage, whereas local structures (arrays, etc.) are
retained in main memory. No a priori limit is placed on
the size of contour storage in Adept.

5. Opcode and object distributional data are not known
a priori—in fact, it 1s these data that are to be collected.
Bit-variable codes are spatially most efficient in the
absence of frequency data; this forms the basis for DCA
encoding. Clearly, the choice between bit-variable and
fixed-block encoding is a technology/implementation
decision.

A DCA instruction (Figure 2) consists of a format syllable,
from zero to three object identifiers, and an operation
syllable. The format and operation syllables are fixed in size,
in most cases five bits each. The number of object identifiers
is determined by the format syllable, and varies between zero
and three syllables. The width of an object identifier syllable
is determined by the number of unique objects in a
particular scope of definition, as determined by the high-
level language. This width is [log, ] of the number of
unique objects in a particular scope, creating a bit-variable
code (BVC). For example, in Pascal, a procedure with 21
unique objects would use five bits to encode syllables to
represent operands.

o Formats

It is well known that statements in high-level languages can
be represented as trees or, more accurately, as directed
acyclic graphs (DAGs). In a DAG, an interior node consists
of a high-level language operation. Instruction sets that use a
single format cannot concisely represent all possible
relationships described by a node. The classic case of

a+boc
is represented in a stack architecture as

push a
push b
add
pop ¢

In a simple register-oriented architecture, the pushes are
replaced by register loads and the pop is replaced by a store.
In the case of a three-address architecture, the above can be
captured concisely in one instruction; however, for the
evaluation of complex expressions or statements with
redundant identifiers, such as a + a — b, significant
redundancy is introduced. In the DCA approach, each DAG
node is associated with a single instruction.

A stack is used for communicating results between
internal nodes of a statement. Thus, the statement

axXb+c—>d
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A two-instruction representation of the statement A X B + C - D.

illustrated in Figure 3 is represented as two instructions:
Fl9abx
Fl2cd+

F19 is the instruction format in Table 1 which takes two

Table 1 Transformationally complete formats. (a, b, and ¢ are
any explicit operand identifiers, ¢ is the top of the evaluation stack, s
is the next element in the stack, and u is the previous element.)

Format Transformation Number of explicit
operand identifiers
Fl a=»b 2
F2 a = op(a) 1
F3 a = op(b) 2
F4 a = op(t) 1
F5 $ = op{a) 1
Fé6 t = op(t) 0
F7 a=aopa 1
F8 a=bopa 2
F9 a=topa 1
F10 a=aopb 2
Fl11 a=bopb 2
F12 a=topb 2
F13 a=bopc 3
Fl4 a=aopt 1
F15 a=bopt 2
F16 a=uop! 1
F17 s=aopa 1
F18 t=topa 1
F19 s=aopb 2
F20 t=aopt 1
F21 u=uopt 0
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explicit identifiers, a and b, and pushes the result onto a
stack, labeled s (the “s :== g op b” format). The push is not
accomplished by a separate instruction, but rather implied in
the format itself. Similarly, F12 takes the stack (performing a
pop) and ¢ as source operands, and assigns the result to the
second explicit identifier, in this case d (the “a =t op b”
format). Thus, in compilation, code generation consists of
selecting the appropriate format which binds variables to
each operation (DAG node). The format implicitly specifies
the number of variable identifiers required by the operation.
Naturally, many variations are possible, depending on the
level of redundancy that can be tolerated in the resulting
instruction set. As few as four formats provide an interesting
basis for an instruction set reasonably free of redundancy
[7]. In the DCA experiments to date, we have used
transformationally complete format sets—sets without
redundancy (Table 1). In Adept, 35 formats are used,
including branches and array index operations as formats.

o Using contours for operand identification

In addition to representing the node of the parse tree, there
must be a method for specifying the operands that are
associated with the node. Essentially there are two methods
for specifying operands. One is to embed the needed
information within the instructions, and the other is to
gather all such information into descriptor tables to which
the instructions can refer. Most architectures use both of
these methods. For example, if a displacement address
requires 12 or fewer bits, it is placed in an immediate field of
an instruction for the IBM System/370. If it is larger than 12
bits, it is placed in a full 32-bit word and is loaded into a
register when it is needed during execution.

The scope of definition for the names of operands in a
high-level language program can be described as a contour
[12]. In such a description a procedure or function is
declared within a level of scoping and can be represented as
a region of higher altitude within a plane. An entire program
with procedures and functions declared within the main
program and within each other can be represented as a kind
of contour map. By the scoping rules of a block-structured
language such as Pascal, statements in the body of any one
procedure or function can refer only to operands at the local
level and at levels that can be reached from the local level by
descending. Descriptions of operands can be collected into
tables. There can be a different table for each procedure and
function and one for the main program. If these tables
contain an entry for every operand accessed from each
block, the tables completely define the contour model for the
entire program. The table of descriptors for each block is
called the contour for that block [9].

If descriptors are collected into a contour, then to make
reference to an operand through its descriptor, an instruction
needs merely an index into the contour; each identifier field
requires [log, n] bits, where 7 is the number of descriptors
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in the contour, although fixed-block encodings may also be
used.

The decision as to what range of statements a contour
should service is not clear-cut. At one extreme, a single
contour could contain the descriptors for all the operands in
an entire program. This would result in the smallest total
amount of memory devoted to storing operand descriptors,
since there would be no duplication of descriptors in
multiple contours. But then, every reference in the
instructions to descriptors in the single contour would have
to specify one out of all the descriptors for the program, so
the identifier field would require more bits of memory for
this scheme than for any other. At the other extreme, a
different contour could be associated with each statement,
containing descriptors only for operands to which that
statement refers. While the identifier fields under this scheme
are likely to be small, the large number of contours use a
great deal of memory and require the processor to switch
between contours frequently during execution.

A simple compromise was suggested by Johnson [12], in
which a different contour is associated with each procedure
and function and with the main program. If a contour
contains descriptors only for operands to which its
corresponding statements actually refer (the technique
chosen for Adept), switching between contours during
execution becomes part of the semantics of call and return
instructions. What most distinguishes this scheme from
others, though, is that it takes advantage of the locality of the
scopes of operands. Structured programming practices call
for procedures that encapsulate various phases of the work to
be done. If a program is well written, then variables that are
used in only one phase are declared local to a procedure, and
descriptors for them need appear in only one contour.
Similarly, some global variables may be heavily used in some
phases and not at all in others. These need only appear in
contours for procedures that use them. The use of such
contour tables reduces the total memory size without
drastically increasing the amount of switching between
contours during execution.

The goal of contour design is to minimize both instruction
and data memory traffic without requiring compiler-
managed register-assignment optimization. In the processor
the register set is replaced with the contour register set, which
holds the collection of all currently encapsulated single
contours. The contour register set is similar to multiple-
windowed register sets, but the size of a single contour is
completely variable. Its starting point is defined by a pointer
(environmental pointer, or EP in Johnson’s nomenclature
[12]), which is defined on procedure entry.

Keeping individual contours small keeps identifier fields
short and minimizes required instruction bandwidth. But
more importantly, if contours are small, it becomes
economical to store them in fast memory devoted to that
purpose. Contour register sets then have the advantages of
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registers and cache memories without their overhead. Like
registers, they have small operand specification fields
compared to main memory addresses; but unlike registers,
there is an entry for every operand that needs to be
referenced, so there is no register allocation to be done. Like
a cache, a sufficiently large contour contains the working set
of simple variables, but achieves that effect without the
hardware support that a cache needs in the form of its partial
or full associative store for addresses. Instead, the
concentration of variables in the contour is done at compile
time, and the contour can be kept in a simple, random-
access memory. (This is the basis for a related study by
Alpert [13].)

The contour for a given block, say, for a procedure, may
be different each time the procedure is called, especially if
the high-level language allows recursion. The same
procedure may be called more than once before it returns
from the first time it is called, with different parameters each
time and with different values for its local variables. Also,
variables that are neither local nor global but declared at an
intermediate level may have different values for different
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instantiations. Not only may the contour for the procedure
be different on multiple calls, but the contours for earlier
calls may be needed after subsequent calls on the same
procedure. For these reasons, storage space for new contours
cannot be allocated statically, and there must be a dynamic
control mechanism in the processor. Contours can be
allocated directly on a stack, or they can be allocated
statically for the first instantiation of each procedure, with a
stack onto which all but the most recent instantiation are
pushed when recursion is detected at run time. Allocating
contours directly on a stack has two advantages: It takes only
as much memory as is needed, and it returns quickly from
calls.

A width index must be specified for each environment,
determining the size of identifier fields in that particular
scope. This is shown in Figure 4.

At this point, it is important to review what the contour is
and is not. The contour register set is the conceptually fast
data memory for an abstract language machine. It is
unbounded a priori, as is the size of the identifiers. Since the
contour set is more limited (“expensive”) than memory, only
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data assigned to it are both within a current scope of
definition and can be characterized (by type, attribute, or
use) as being “frequently” used; other data will remain in
“main memory.” Different assumptions as to frequency of
data referencing or relative cost of contour storage will lead
to different implementation strategies of the contour set, but
a major goal is to minimize data memory traffic.

The contour model is not an implementation of fast
memory per se, but rather provides the basis for an
implementation. Several implementations can be viewed as
following the contour model:

1. Register sets—especially register sets with designated
purposes, such as local variables or globals.

2. The RISC register windows. Multiple overlapping register
sets provide access to local variables and call-by-value
parameters without save/restore overhead. The scheme is
reportedly quite effective in supporting the C language
[4], which does not allow referencing of variables in an
enclosing lexical level—a service not provided by the
registers and required, for example, by Pascal.

3. The Ditzel-McLellan stack buffer [14]. Even closer to the
contour model is the (1K-word) buffer for a C-based stack
frame. In this implementation the entire stack frame
(including structured variables, for example) is buffered.

4. The contour buffer. Developed by Alpert [13] and based
in part on data contained in this work, this provides a
“contour” buffer of 256 words—sufhicient to contain
stack frame contour references without structured
variables, as measured by our test programs.

o Characteristics of classes of objects

The contour model can be extended to cover the
identification of objects, including operands, labels,
operators, etc. The method that is most suitable for object
identification depends on the object’s characteristics. Objects
found in high-level languages include operators, constants,
labels, variables, and procedures and functions. Procedures
and functions have the same characteristics as constants by
run time, so the discussion for constants below applies to
them as well.

Operators

The size of the set of operators in a program tends to be
fixed, for two reasons. First, for most programming
languages, the programmer cannot declare new operators
beyond those already defined in the language. Thus, no
matter how large a program grows, the number of distinct
operators is bounded by the number in the language.
Second, the number of operators in the language is not large.
For many programs the usage of operators extends to within
a binary order of magnitude of the total set, suggesting the
fixed encoding adopted for Adept.
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Constants

Descriptors for constants can be placed in a table in a
manner indistinguishable from that for variables, except that
for Pascal, variables do not have initial values as do
constants. Alternatively, constants can be inserted into the
instruction stream [15].

In an architectural model which has unbounded contour
storage, it is clear that bandwidth will be minimized by
assigning constants to this storage, an approach followed in
Adept. In practical implementations, the encoding of
constants is determined by the relative costs of instruction
bandwidth and contour storage (however such storage is
implemented).

Labels

Explicit labels and other unlabeled destinations of branch
instructions are similar to constants in that their values are
known at compile time, making it possible for the compiler
to place them either in a table or in the instruction stream.
Labels differ from constants in one crucial way, however:
Many instructions may refer to one constant, but with only
three infrequent exceptions, a given label will be found as
the destination of only one branch instruction.

Explicit labels in Pascal are completely under programmer
control, so anything is possible, but to keep programs
structured their use should be limited. Most destinations
appear only once, whether they come from explicit labels or
structured flow-of-control statements, so for Adept they are
placed in the instruction stream rather than a table.

Variables

One technique for identifying variables is to allocate space in
the contour for the values of all the variables. This is
virtually the same, however, as allocating space for them in
main memory. Ditzel and McLellan [14] have proposed a
stack frame cache related to this technique.

A second approach is to allocate space for the values of
the variables in main memory and to place the addresses of
the variables in the contour. Now the contour is much
smaller than for the previous case, because the addresses of
arrays are much smaller than their values. The DELtran
processor uses this kind of contour [9].

A third approach is to consider the amount of memory
taken up by the address of a variable and compare it to the
amount taken up by its value. If the value is the same size or
smaller than the address, then overall memory requirements
are reduced by directly placing the value in the contour and
allocating no main memory space at all for that variable.
(This is the approach used in Adept.) This modification uses
the least contour memory by a small amount. A more
important effect is that references to simple variables require
only one access to memory instead of two, and access is to
the faster contour. Between 74.7 percent and 78 percent of
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all dynamic operand references (4] are either to constants or
to simple variables.

3. The Adept architecture

& Implementation details

As an experiment to evaluate the characteristics of an
architecture based on the concepts of the previous section,
the Adept architecture was developed for the high-level
programming language Pascal [16].

The implementation was done on the Stanford Emmy, a
32-bit microprogrammable processor designed specifically
for emulation research [17]. Emmy has a fast storage of 4096
32-bit words accessible from the register set in one cycle.
This fast storage is used in Adept to contain both the
emulator and the run-time contours.

A new contour is created by the call instruction. Every
procedure block (every procedure and function and the main
body of the program) begins execution after a call
instruction has been executed. The contour created for a
block is used to identify all objects referred to in that block.
At the beginning of a block’s code, following information
about the number of parameters and the way they are to be
passed, is a 12-bit field giving the size of the block’s contour.
The call instruction creates descriptors for the parameters as
it passes them and inserts them as the first entries in the
contour. The information needed to create parameter
descriptors is contained in the contours already on the stack.
Every descriptor contains a tag. After passing the parameters,
the call instruction sets the tag fields in the rest of the
contour to a value called “invalid.” During subsequent
execution, the first time one of these descriptors is
referenced, the rest of the descriptor is prepared and the tag
takes on some value other than invalid. Information needed
to create these descriptors is contained in a pointer table,
located in memory before the block’s executable code.
During compilation, descriptors are added to the table in the
order that their corresponding objects are encountered in the
statements of the block. Then, the pointers are placed in
memory in reverse order in an attempt to maximize locality;
objects mentioned early in the block will have descriptors
close to the first executable code. The relationship between
contour and memory is shown in Figure 5.

In the contour (Figure 6), local, simple variables consist of
a tag and the value of the variable. Local, simple variables
are always assigned before they are used, requiring no
information in the pointer memory. Attempts to use such
variables before their assignment will cause a processor error
signal. The compiler assigns identifiers so that local, simple
variables have identifiers smaller than those assigned to other
objects. This allows the pointer memory to contain
initialization information for a contiguous block of
descriptors without any unused entries for local, simple
variables. The same word in the header of a procedure that
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contains the size of the contour also contains a 12-bit field
giving the identifier of its first object in the pointer memory.

The descriptors for constants are simply copied from the
pointer memory the first time they are used and thereafter
are indistinguishable from local, simple variables. This
means that languages which allow the programmer to
declare an initial value for simple variables can have them
translated as if they were Pascal-style constants. The first
time they are accessed they have an initial value, but they
can be subsequently modified.
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Object Pointer/constant memory descriptor

Simple constant Tag Value

Nonlocal variable

(single or array) Tag Levels back id

Local array variable | Tag I Relative array base

Global array variable

(or string constant) Tag g Absolute array base

Descriptors as they appear in the pointer/constant memory (/ and g
indicate local or global, determined by a single bit).

Nonlocal, simple variables can occur as call-by-reference
parameters in which the actual parameter is a simple
variable. In this case, the call instruction uses the descriptor
for the actual parameter to create a new descriptor with a tag
of “nonlocal.” If the descriptor for the actual parameter has
a tag of “nonlocal,” the processor simply copies the entire
descriptor. Thus, there is always only one level of indirection
for nonlocal, simple variables.

Figure 7 summarizes the kinds of descriptors that can
appear in the pointer memory. Recall that there are no
entries for local, simple variables, because they are created
when they are first assigned. Nor are there any entries for
formal parameters; they are created by the call instruction.
Figure 8 lists the three kinds of descriptors that can appear
in the contour. Pointer memory can be characterized as
using lexical-level addressing, but the contour is very
different. After an object is first referenced, the contour
either contains its value or points directly to its value; all
address chains are gone.

o Test programs used

The first two programs that we used to test the Adept
architecture are more numeric in nature than the others.
The first, FFT, has short but nested loops. The second,
Kalman, may be the most representative of scientific
programs actually in use. The third test program, Puzzle,
solves a bin-packing problem. The fourth is an
implementation of the quicksort algorithm, Sort, whose
transformation of data consists of simply moving them
around. The last program, Walk, is an example of a simple
recursive-descent compiler that also traverses the parse tree it
creates. The programs were carefully selected to provide a
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Object Contour
4
Simple constant or ’
local, simple variable Tag Value
Nonlocal, simple variable | Tag Address of value
Array variable Tag Absolute array base

Descriptors that can appear in the contour.

reasonably diverse mix of source program material. Details
are found in Wakefield [10].

o Architectures used

First, all five test programs were cross-compiled to produce
Adept code. The Adept compiler is a recursive-descent
compiler consisting of 9500 lines of Pascal. Unlike some
other compilers, it does not rely on a preliminary pass over
the entire source program in which the program is translated
into an intermediate form. The Adept compiler constructs a
code tree to represent each procedure block as it is read from
the input source file, then passes over the tree a second time
generating Adept code.

The Adept processor emulator consists of 2569 32-bit
words of microcode, of which 181 are devoted to carrying
our floating-point operations and 584 are for input and
output. Since the microstore is shared by the emulator and
the contour store, 1527 words are available for the contour
store. The emulator was instrumented to produce the counts
presented below. Recall that all variables in the
implementation are 32 bits wide.

Emulator size gives a rough estimate of instruction set
complexity. For comparison (all numbers excluding I/O and
floating-point), Adept has 1904 words of microcode, System
360 has 2100, and DELtran [7] has 800.

Second, the test programs were compiled on a Hewlett-
Packard HP 1000 F-series computer [18] and executed on a
simulator for that machine written by John D. Johnson.
Compiler switches were set for real numbers to be 32 bits
wide, integers to be 32 bits, and subranges to be 16 bits if
possible and 32 bits otherwise.

Third, the test programs were compiled for the IBM
System/370 by using the Pascal/VS compiler [19] with
optimization. The load modules were run on the Stanford
Emmy emulating an IBM System/370 [20].
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Table 2 Adept format frequency for the Kalman program. The
total count is 77 035 instructions.

Percent Cumulative Class name
37.702 37.702 arrayx
14.573 52.276 a=aopb

9.150 61.426 u=uopt
9.114 70.540 s=aopb
6.608 77.149 a=aopt
4.767 81.917 s = op(a)
2.928 84.845 a=b
2.726 87.571 callstdproc
2.287 89.859 a=bopc
2.232 92.091 t=topa
1.835 93.927 t = opl(t)
1.809 95.737 goto

1.718 97.455 a=uopt
0.554 98.009 call

0.498 98.508 a=topb
0.345 98.853 t=aopt
0.336 99.189 a = op(b)
0.293 99.483 procreturn
0.262 99.745 funcreturn
0.140 99.885 a=bopt
0.050 99.936 a = op(t)
0.028 99.964 arrayt
0.024 99.989 a = opla)
0.010 100.000 a=bopa

Fourth, the test set was translated by the Pascal “P”
Compiler into P-code, which is the object code for a
hypothetical stack computer [21]. Emmy was programmed
to interpret the resulting P-code and monitor the execution
of the programs [22].

Fifth, one of the programs in the test set, Kalman, was
compiled into code for the DEC VAX 11/780 architecture
by the Berkeley Pascal UNIX compiler.

4. Results and observations

Recall that the purpose of this study is not to define an
implementation of an architecture, but rather to provide a
basis for making implementation trade-offs. The Adept
experiment, as reported here, has already been elaborated on
in several ways by subsequent research. Among the more
interesting results are the following.

o Code size vs. decoding complexity

While the issue of decoding complexity vs. code size is
resolved primarily by technological and implementation
considerations, some useful data can be provided by an
architectural study. The relative infrequency of a number of
the format types included in the transformationally complete
format set for a sample program (Table 2) indicates that
improved code density can be achieved by better format set
selection. Other work examines some subsetting possibilities
[7]. Moreover, the use of a robust format set together with
variable-bit coded identifiers might strike the reader as
overkill on code density. Our colleague C. Mitchell [23] has

IBM J. RES. DEVELOP. VOL. 31 NO. 4 JULY 1987

Table 3 Relative dynamic code size of various format sets.

Adept (as reported) 1.0
System/370 3.30
Optimized Adept 0.947
Explicit temporary formats 1.047
A three-address format only 1.177

Table 4 Dynamic instruction counts: Effect of bit-variable

coding.
Adept Explicit temporary  Three-operand

BVC 1.00 1.05 1.18
4/8/12/. .. 1.18 1.28 1.42
6/12/18/. .. 1.13 1.22 1.41
8/16/24/. .. 1.43 1.58 1.81

12 only 1.78 2.06 2.33

16 only 2.12 2.68 3.003
System/370 3.30 — —

run a number of different block-encoded format and
identifier combinations on a similar test program set.

Table 3 gives the relative dynamic size (based on the
Adept reported here) of executable code for our test program
set, for IBM System/370, and various modifications to the
Adept format set—all, however, based on bit-variable coding
of identifiers. Optimized Adept is simply Adept with a five-
bit rather than a six-bit format syllable (because the number
of format combinations barely exceeds 32, it is relatively
straightforward to compress the format syllable to the five-bit
target). For the explicit temporary format set, the evaluation
stack is eliminated and replaced with explicitly named
temporaries. This would reduce the number of format
combinations to eight formats. Such an arrangement would
increase the code space by only ten percent over the
optimized Adept. Finally, if only a single evaluation format
were used—the three-address format—code size would
increase by only 23 percent over optimized Adept so long as
bit-variable encoding of identifiers was retained. Indeed,
robust formats together with bit-variable-encoded identifiers
appear to be duplicative techniques unless code density is a
singular consideration in the design of the architecture.

Now consider the use of block codes as compared to bit-
variable codes with a variety of format sets.

Table 4 shows the Adept format set, the explicit
temporary format set, and the single three-address format
used with a variety of different identifier encoding
techniques. Again, bit-variable encoding is used in Adept, as
reported here. The 4/8 encoding represents the code size
when all identifiers are encoded on four-bit boundaries.
Similarly, 6/12 and 8/16 represent incremental identifier
container sizes. Distinction among identifiers is achieved by
environment—once one enters a procedure, the container

size is fixed for that procedure, just as in the bit-variable- 429
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encoded Adept. Finally, fixed 12-bit and 16-bit identifiers
were also tested. The test programs used required no more
than 12 bits of data address (data storage requirements never
exceeded 2'? words). The reader will note an apparent
anomaly in the test programs in that the 6/12 encoding is
actually better than the 4/8. The majority of contour sizes
were between 17 and 64, resulting in identifier scopes which
could be captured in six bits but not in four. A
transformationally complete format set, even the single
three-address format, provides a significant advantage by
eliminating overhead instructions. The single three-address
format, even with a 16-bit fixed identifier, is still competitive
with load/store architectures, such as System/370. As a
corollary, designers of load/store register set-type
architectures must pay careful attention to instruction
bandwidth requirements.

Some variability is quite valuable in specifying operand
identifiers. In particular, using block encoding based upon
four or six bits still retains a significant spatial benefit.

It is important to recall that for all of these cases no
escape-type codes are required; size is not content-
dependent, but rather is known on procedure entry. The
value of the identifier’s size can be stored in a register and
the fields broken apart as soon as the format syllable is
decoded, except in the case where the format syllable itself is
trivial—the three-address format case—where fields are
predetermined.

o Data referencing strategies

Some measures that are important in the design of processor
storage are shown in Tables 5 and 6. The contour should be
at least large enough to hold the largest contour encountered
in the program to be run. If the contour is to be large
enough to hold the entire stack of contours throughout
execution, then the maximum size of the stack is also of
interest (Table 7). In another study associated with the
Adept experimental architecture, Alpert [13] has extended
both the scope and resolution of the data on the dynamic
behavior of contours in Pascal. Using larger test programs,’
he reports a mean contour size of 26.1 entries, with
composition given in Table 8.

If local branch labels were included in the contour, rather
than explicitly included in the instruction stream (as in
Adept), one would add about 9.6 entries to each contour.

The cited data represent mean values with relatively large
variance. As Alpert [13] notes, “most procedures refer to a
relatively few objects, so their contours are small, but some
procedures refer to many objects, particularly initialization
procedures.”

2 The method used in this study differed from that used in the evaluation of Adept in that the
existence of a viable architecture was assumed, and an existing compiler was modified to emit
instructions to increment counters. This eased the burden of debugging all phases of
compilation and execution on an experimental architecture, and made the consideration of
much larger programs practical.
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Table 5 Single contour size.

Single contour composition Average Maximum Minimum

Number of local scalars/
parameters (no memory

reference required) 6.73 14.60 1.93
Number of all other data types 9.29 18.80 341
Size total 16.02 33.40 5.34

Table 6 Instructions executed.

Number of instructions
executed per procedure block

Average Maximum Minimum

538.23  2115.41 12.35

Table 7 Maximum size of contour register set.

Size of contour register set Average Maximum Minimum

Total contour memory words
required during execution 481.2 1475 50
Size of largest contour in words 109 194 17

Table 8 Single contour composition.

Contour make-up by data type:

a) Entries not requiring memory access
Local scalars 73%

Parameters 27%
b) Entries requiring memory access

Constants 58%

Globals 27%

All others 15%

In Adept the existence of a large contour store is assumed.
The optimization emphasis is on instruction and data
bandwidth in exchange for this larger storage. Varying the
trade-off among instruction and data bandwidth and contour
storage gives rise to a multiplicity of lexically based storage
strategies, some of which are mentioned earlier.

Note that constants can easily be placed in the instruction
stream as literals (as in the PDP-11), or treated as data
references, or treated as contour entries (as in Adept). Most
constants are short; their values can frequently be encoded
within the opcode or an opcode byte. A particularly
interesting DCA format-based technique to reduce the
number of contour entries for constants has been reported in
detail elsewhere [24]. This technique uses about 10
additional formats to specify right or left operands as scalar
constants whose value is contained in the designated
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Contour 0.09 structures
set >

Adept memory traffic per instruction (256 contour entries provide a
hit rate over 90%).

identifier. (Of course, the value of the constant must be less
than or equal to the container allocated to the identifier.)
Constants of value larger than the identifier are treated as
variables. This eliminates most constant entries for contours
at the expense of about one format bit per instruction.

As with constants, globals can also be distinguished within
the instruction stream. Probably the easiest way to make this
distinction is to tag each identifier within the instruction as
being global or nonglobal. This would add an average of
about two bits per instruction, increasing the overall
program size and (to a first approximation) the instruction
bandwidth by about 12 percent. The net effect would be to
reduce contour size to about half that shown in Table 5.

Local structures (arrays, etc.) occur in only a small
fraction of contours—less than 20 percent. They have a
significant variance, however, and for this reason are
probably best not allocated to the contour storage, consistent
with the practice described in Adept.

The RISC register window [4] can be viewed as an
approximation to the contour memory. The RISC register
window consists of a register-addressing space of 32 registers,
of which 16 are designated for global use and 16 are
allocated for local use (six are caller/callee-overlapped for
passing parameters). Four sets have been implemented and
additional sets have been suggested. The fixed register
allocation is a problem in that the high variance of contour
size will create additional data traffic (either for overflows or
in its inability to capture required local data in cases of large
contours). There is an obvious associated problem of access
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to nonlocal, nonglobal variables, as required by Pascal (but
not by C). However, our frequency data suggest that such
references are rare enough to justify special compiler
handling of them, i.e., retaining of all such potential
referands in memory. However, note that detection of
aliased variables is a serious problem for a Pascal compiler.

The Ditzel-McLellan “C” cache stack [14] is even closer
to the contour model. Labels and constants are encoded in
the instruction stream and globals are handled within the
instruction by a global bit. A notable distinction is the
allocation of local structures to the buffer. As mentioned
before, it is probably a better idea to retain the local
structures in memory because of the high variance of
contour storage requirements.

Alpert has suggested a contour buffer [13] which more or
less directly implements the contour as described in our
experiment, i.e., assigning constants, globals, etc., to the
contour. Such a buffer of 256 entries will fault on less than 5
percent of the contours entered. If constants are removed, a
buffer of 256 entries will fault on about 1.5 percent of the
contours entered.

Alpert has shown that his contour buffer with 256 entries
will fault approximately as often as a similar contour buffer
with 128 entries, but with the constants excluded and
reflected in the instruction stream, or with 64 entries and
constants and global traffic excluded. The contour buffer
provides significant reduction in the instruction bandwidth
required over other approaches, but does so at the expense of
a larger number of buffer entries. The RISC register window
suffers both in terms of instruction bandwidth and data
storage requirements due to its rigid allocation policy. Of
course, the same policy ensures relatively straightforward
implementation.

Figure 9 contrasts the trade-off between bandwidth and
processor storage. In Figure 10, small constants are placed in
the id field of the instruction; large constants are treated as
variables. Scalar globals are flagged by a bit in the id fields
and are directly accessed in memory without the need for a
pointer in contour storage.

Both of these schemes retain a consistent memory image
at all times. Further reductions in bandwidth are possible by,
for example, copying global values into processor registers.
This, of course, means that multiple processors will not see
the same global processor state. The effect of consistency
requirements on bandwidth is still under study.

As additional storage becomes available within a
processor, a reasonable strategy for its use would be to
reduce the instruction and data bandwidth requirements.
Our data indicate a broad spectrum of possible trade-offs, up
to about 256 to 512 words of contour-type storage. At that
point one has basically captured all scalar data and
minimized program representation requirements up to the
point of using data-dependent encoding or frequency-
encoded representations. Handling structured data, whether
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Adept memory traffic modified for constants stored in instructions
and separate global reference (now 64 entries provide a hit rate
over 90%).

global, local, or of other lexical scope, remains a question for
future work, especially where implementations will allow
more than 512 words of fast storage. While a data cache for
such references is always a possibility, the cache structures
themselves are not particularly good vehicles for
implementing access to array-type structures because of
limited array element locality.

o Contrasting RISC and Adept
Largely through related studies at Stanford [25, 26] we can
comment on a topical issue, the so-called RISC approach to
architecture, as contrasted with Adept. Initially they appear
as opposite approaches to the architectural problem: a highly
encoded Adept approach vs. a simple encoded RISC
approach. Actually, the extent of the differences depends at
least partially on the definition one chooses for the RISC
approach.

What is a RISC? The RISC approach has been defined in
various ways [27]. Most RISC definitions include the
following features:

o A load/store architecture.

¢ Fixed instruction size (usually 32 bits).

e Single instruction format.

e One-cycle instruction execution.

o A relatively small opcode vocabulary and few addressing
modes.
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This allows or requires additional features such as

Hard-wired control.

Fast cycle times.

Pipelined execution.

More extensive compiler effort to optimize code.

A large register set, with or without register windows, is a
feature of many RISC implementations. If one includes such
a set, especially with register windows, as a part of a RISC
architecture, then at least as far as the trade-off between data
bandwidth required of memory and on-chip storage is
concerned, RISC is similar to Adept. Adept attempts to
minimize data traffic through the use of contours and
contour buffers by increasing the on-chip storage (Figure 1).
A large register set, especially with extensive windowed
features, is an approximation to a contour buffer, and while
the encoding and object assignment differ, the net effect is
rather similar as measured in percentage reduction in
memory traffic to support the data stream per unit data
storage added to a chip.

A more fundamental difference between the RISC
architectures and Adept is the trade-off between instruction
bandwidth required to support program execution and
decoder complexity. RISC favors a very simple decoder
which is achieved by use of the load/store architecture with
fixed instruction size and format. Adept increases decoder
complexity for the use of bit-variable encodings and a more
robust format set. To see the net effect of all this, we refer to
the work of our colleague C. Mitchell [25]. In order to look
only at the effects of object encoding and formats, Mitchell
uses a standard set of functional operations in the instruction
set for both a fixed 32-bit load/store instruction set
(designated FIX32) and Adept. Thus, both opcode
vocabularies are the same as the vocabulary of Pascal for his
test programs, except for the load and store and other
memory management instructions defined by the RISC
architecture and Adept. Using the same compiler front end
and generating Adept and FIX32 code, he analyzed the effect
of instruction encoding on instruction bandwidth required
from memory (Figure 11). FIX32 has a single 16-element
register set, while FIX 32w has multiple, windowed register
sets of 128 total registers [4]. Overall, because of its more
efficient encoding, Adept requires about a third the number
of instructions to execute a program as the FIX32 (RISC)
approach. Perhaps it is more striking to see the effect of
instruction bandwidth required as cache storage is added to
both RISC and Adept. The figure presents data for an
instruction cache only, 16-byte line, 2-way set associative.
The more concisely encoded the instruction stream, the
more rapidly the working set is contained by the cache.
Thus, it takes four times the cache size for a poorly encoded
instruction stream (FIX32) to achieve the same memory
bandwidth as is achievable with a concisely encoded
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To achieve constant memory traffic, required FIX32 cache sizes for
various Adept cache sizes (instruction cache only).

instruction stream. Adept increases the instruction decoder
complexity to achieve low instruction bandwidth, or is able
to realize a fixed instruction traffic by using a much smaller
cache than a less highly encoded instruction stream.
Whether the increased decoder complexity is worth the
savings in instruction bandwidth or not is determined by
implementation considerations. For on-chip
implementations and large instruction cache sizes, the
additional decoder complexity offers a promising alternative,
as the cache area can easily dominate on-chip area
considerations. Of course, a complex instruction decoder
may influence cycle time considerations. However, cycle
time is determined by the slowest of a number of processor
actions:

o Instruction decode.
o Cache access time.
o Register access time.
e ALU time.

Published data indicate that, at least for RISC processors, the
cycle time is determined primarily by register access time or
ALU time and not by instruction decode.

RISC processors with small register sets and without
on-board cache represent a trade-off wherein on-chip decode
and storage are minimized at the expense of increased
memory bandwidth. Adept takes the other approach,
maximizing on-chip storage and instruction encoding to
achieve minimum instruction and data bandwidth required.
By proper instruction encoding and data storage allocation,
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Adept allows for the optimized utility of on-chip cache. The
RISC approach with large register sets appears anomalous, in
that it emphasizes the reduction of data bandwidth through
on-chip storage yet does not make a similar accommodation
for instruction bandwidth.

5. Conclusions

Procedural programming languages imply an abstract
machine for execution. An instruction set in correspondence
with this language can be derived. Using a robust set of
formats, and concise encoding of objects, redundancy in this
instruction set representation can be minimized. The
contour model of data referencing describes a minimum of
data traffic required from a large register set to maintain a
consistent global memory. The resulting instruction set
architecture provides a useful lower bound on memory
traffic as defined by the program. Trade-offs between
memory traffic and processor storage and decoding
capabilities define possible design alternatives.
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