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I. 

annealing 

We  explore  modifications  to  the  standard 
simulated  annealing  method  for  circuit 
placement  which  make  it  more  suitable  for  use 
on a shared-memory parallel computer.  By 
employing  chaotic  approaches  we  allow  the 
parallel algorithms  to deviate from  the  algorithm 
defined for a  serial  computer  and  thus  obtain 
good  execution  efficiencies  for  large  numbers of 
processors.  The  qualitative  behavior  of  the 
parallel algorithms  is  comparable  to  that  of  the 
serial  algorithm. 

1. Introduction 
In engineering design, a wide  range  of problems require 
optimizing some figure  of merit which depends upon a great 
many quantitative design parameters. Examples are 
sequencing problems such as the traveling salesman 
problem, or circuit placement and wiring in computer-aided 
electronic design. Solution of these problems is  difficult 
because there are far too many degrees  of freedom to permit 
exhaustive search for an  optimum,  and in many cases (the 
so-called NP-complete problems) no algorithms are known 
which will determine the exact optimum with  significantly 
less work than exhaustive search. Instead, heuristics are 
employed, such as iteratively searching through local 
rearrangements of a design  in  which one or a few parameters 
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are changed in each rearrangement. Recently, the method of 
simulated annealing (SA) [ 11 has proven successful as a 
common nondeterministic approach to most of these 
problems. This method obtains good solutions, even  when 
conventional methods quickly get trapped in local sub- 
optima. A state-of-the-art overview  of the theory and 
applications of SA is given in [2]. 

In  the SA method, an analogy is made between the states 
of a physical  system  (e.g., a solid) and  the configurations of 
the design  being optimized. The design parameters being 
varied are equated with atomic positions in the solid, and 
the energy  of the solid is identified as the objective function 
being optimized for the design. Through the analogy, a 
temperature is defined as a control parameter. In 
optimization by simulated annealing, the temperature 
controls the probability that rearrangements which make the 
design  worse  will  be accepted in order to have a more 
exhaustive search. Just as in growing  perfect crystals from 
molten mixtures by annealing them at successively  lower 
temperatures, the optimization process  using SA proceeds by 
searching at successively  lower temperatures, starting at a 
high temperature at which  nearly random rearrangements 
are accepted (the melted state). Although this procedure is 
computationally laborious, it  is no more so than  the best 
heuristics previously  available for many design problems, 
and in most cases  finds the best solutions which are known. 

Currently a variety of MIMD (multiple-instructions- 
multiple-data) computer architectures are being  proposed as 
a means of providing increased computational power. The 
characterization of these architectures is that they employ 
multiple processors interconnected and cooperatively 
working to execute the same program. Such parallel 
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architectures require not only new  ways  of performing the 
computations and new  ways to execute algorithms, but in 
many cases  new  ways  of thinking about the algorithms.  In 
particular we  have in mind parallel architectures that utilize 
shared memory  [3] as a means of synchronization and 
communication between the parallel  processors. The shared 
memory contains, for  example, the description of the 
problem under study and the current version  of the design 
being optimized. The effectiveness  of the parallel algorithm, 
and the parallel  hardware,  is often measured by the speedup, 
defined by dividing the elapsed time required to solve a 
problem on P processors into the time required to execute 
the algorithm on a single  processor. 

In this paper we explore deviations from the form of  SA 
appropriate for a single  processor  (we  call this the serial 
algorithm) which enhance the performance of  SA on parallel 
hardware.  Convergence of simulated annealing can be 
proved in the serial algorithm, but the deviations we 
consider will invalidate the usual  proofs. Thus we shall 
consider the quality of the solutions found using  parallel  SA, 
as well as the efficiency  of doing the calculation in parallel. 

To model machine architectures with various numbers of 
processors dedicated to this problem, we employ a software 
environment for parallel execution (VM/EPEX [4]) that 
runs on an IBM  308 1 multiprocessor.  In this environment, 
each  processor  is emulated by a virtual machine, a separate 
process created under the VM/SP operating system. Shared 
memory for communication between emulated processors  is 
provided by standard VM system  facilities. 

2. The serial SA algorithm for  chip  placement 
First we describe the application of simulated annealing to a 
simple version of the chip (or circuit) placement problem. 
Our chips (also  referred to as books or cells) are all identical 
in size, and situated in a regular array of  allowed  positions. 
The techniques we describe are also appropriate for  placing 
standard-sized circuits on regularly structured gate array 
chips, and can be extended to describe more complicated 
situations. All the connections required by the design are 
specified in a netlist, or list  of  nets,  where the ith net, 
connecting n chips,  would  be  defined by the statement that 
the output of chip j (  i, 1) is connected to specified inputs on 
chips j(i, 2), . . . , j(i, n). We also  specify the coordinates of 
each chip, x(~], y ( ~ ] .  For this example, we suppress details of 
chip orientation, location of  specific input or output pins on 
the chip boundary, etc., treating the chips as pointlike. 

To rearrange the placement, we  pick a pair of chips at 
random and consider the effect  of interchanging them. The 
desirability of the exchange  is evaluated by calculating the 
change  it  would  cause in a cost function. The cost function 
is  also  called the score for the problem or, using the 
annealing metaphor, the enerw, we use the latter term in 
this paper. The two principal factors in the energy E are the 
length of  wire L required to complete all the nets in the 392 
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netlist, and the congestion C which  may occur if a 
placement  calls for a greater  density of  wires in some  region 
than the intended package  can  provide.  We  define  below one 
possible  measure of congestion to use. The two  factors  must 
be  weighted and combined into a single number to be  used 
as an objective criterion for accepting or rejecting trial 
exchanges. Thus, introducing a weight factor W, we have 

E = L +  WC 

for the calculation of the energy. 

j and k is  calculated in the Manhattan metric,  defined by 
The  length of a single connection Iu, k)  between  two chips 

l ( j ,  k) = I x u )  - x(k)  I + I Y ( j )  - Y(k)  I. 
We approximate the length of a multichip net by its lower 
bound, the half-perimeter of a rectangle  tightly bounding all 
the chips on the net: 

I(i) = max(x[  j(i, k)]) - min(x[ j(i, k ) ] )  
k k 

+ maxIv[i(i, k)ll - minlY[j(i, k)lL 

and sum over nets i to obtain L: 

L = I(i). 

Congestion  can  be  measured by counting the number of nets 
which must cross lines of constant x or y coordinate. 
Histograms  h(x) and h(y) are convenient ways to collect this 
information: 

h(x) = 8(x = min(x[j(i,  k)]))8(max(x[j(i, k)]) - x) 

(where the function 8 is 1 if its argument is  positive, 0 
otherwise) and similarly for h Q .  Congestion problems can 
be identified by comparing the entries in h(x) and h(y) with 
known  package  capacities. For the global  measure C we have 
used a simpler quantity, 

nets i 

nets i k k 

C = [h(x) - hol28[h(x) - ho] 
x 

+ C - hoI2e[h(y) - hol, 
Y 

where  we  have subtracted h,, a congestion  threshold. The 
excess over the threshold is squared to increase the penalty 
of the deviation. 

The histograms also provide a convenient way to calculate 
L or changes in L, since 

L = C h(x) + C 0 ) .  

Use of the histograms  makes it relatively  inexpensive to 
calculate the change in the cost function that results from a 
given trial exchange of two  chips. 

A pair of chips is  selected  for  exchange, and the new 
energy (Enw) of the proposed  move is calculated. Then the 
difference AE from the old energy (Eold) is calculated AE = 

En, - Eo,& A move  is  always  accepted  when the effect  of the 

x Y 
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exchange  decreases the energy;  if the energy  increases, the 
move is accepted, with a certain probability that depends on 
the temperature of the system,  according to the Metropolis 
criterion: 

If AE 5 0, accept the move. 
If AE > 0, accept the move  with  probability 

P ( A E ) = e  , C-AEln 

where Tis the temperature. When the move  is  accepted, the 
old  energy  is  replaced  by the new energy. 

At a given temperature several  exchanges are attempted 
then the temperature is  decreased and the procedure is 
repeated. Thus the system  is  gradually cooled until it has 
reached some cutoff  (steady-state) criteria such as the 
following: The number of moves  accepted  is  small and no 
substantial reduction of the energy  is  achieved. 

The maximum number of attempts (trials) made at each 
temperature is  such as to obtain a good statistical  ensemble 
of trials. The number of distinct pairwise permutations on a 
board of N chips is N X ( N  - l)/2; thus, the maximum 
number of trials we  allow at each temperature is about that. 
In addition, another criterion is built into the algorithm: If at 
a given temperature a certain number of  successful attempts 
have  been made, it is  decided that the state space has been 
searched adequately and the search stops for this 
temperature. In our particular problem we choose a number 
of  successes equal to about 10% of the maximum number of 
exchanges as providing a good  sampling of the state space. 

At  high temperatures uphill  moves are accepted  with a 
higher probability than  at low temperatures, so at high 
temperatures the upper limit of moves  is not reached. At the 
lower temperatures, however, the maximum number of trials 
is  always reached  thus most of the computation is spent in 
the lower temperature region. 

For a good annealing schedule, the temperature of the 
system has to be  high enough  initially so that the system 
becomes  completely disordered (liquid phase) and no 
partially ordered domains remain. The rate at which the 
system  is  cooled down is an important consideration in 
obtaining convergence. A slower  cooling rate increases the 
chances of obtaining good solutions at increased 
computational cost.  Several quasi-empirical criteria have 
been  established  regarding the cooling  schedule [ 1, 5 , 6 ]  and 
the parameters that are important to examine. Common 
tools for judging the quality of  convergence of the algorithm 
are plots of the energy vs. temperature, or plots of the 
average  value of the energy  vs. temperature; they are referred 
to as annealing curves. 

We have  used for our studies a two-dimensional 
configuration of 8 1 chips, arranged on a square grid  with 
each  net connecting two chips (two-pin connections). 
Figure 1 shows the configuration of the chips and their 

Al-A2-A3-A4-A5-A6-A7-A8-A9 

I I I I I I I I I  

J1 - 52 - J3 - 54 - J5 - 56 - 57 - 38 - J9 

connections when the system  is in its ground state. The chips 
are labeled A 1 -A9, B 1 -B9,  etc. 

This  is a simplified  model of actual connections in chip 
layouts,  where the most  usual  case  is three or more chips per 
net.  On the other hand, our model  resembles circuit 
connections in master-slices.  However, the methods and the 
program we have  used are general enough to handle any 
types of connections. The advantage of selecting  such a 
problem  is that the states of the system (ground state and 
excited states) are known; therefore it  provides a good  test 
bed for evaluating the algorithms themselves.  Because we are 
interested in the performance of nondeterministic 
algorithms,  using a problem  whose solution is  known  makes 
it  possible to compare the quality of solutions obtained with 
different algorithms. 

On the basis  of the algorithms discussed in the previous 
section, the energy for the ground state is I60 (using h, = 8), 
while  for states differing by a transposed pair from the 
ground state, the energy  is around 200. Scores  above that 
and below 400 correspond to configurations which  differ 
from the ground state by two pairs of chips transposed or 
configurations where a set of chips is rotated. 

In  all our experiments we  follow a cooling  schedule as 
suggested in [I]. The temperature is  first  increased until a 
sufficient  percentage  of  moves  is  accepted (75% in  our 
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problem); that corresponds to a temperature high enough to 
disorder (melt) the system. Then  the cooling  phase starts and 
the temperature is  gradually  lowered, by a ratio of 0.98 (T,, 
= 0.98T0,). 

Following our arguments in Section 2 for obtaining a 
good statistical ensemble of trials, at each temperature either 
we attempt a maximum of 50N = 4050 trials [that is, about 
N X ( N  - 1)/2 trials], or trials are made until the number of 
moves  accepted  is 10% of the maximum allowed attempts 
(that is, 5N successes). The cooling stops a) if the 
temperature drops below 0.01; b)  if for a certain number 
(120) of temperatures less than 5N moves  were  accepted; or 
c) if a temperature has been  reached at which no successful 
moves are made. 

4. Parallel SA methods 
The problem in parallel execution of the SA method is  how 
to enable multiple processors to act cooperatively.  Here we 
discuss  two methods, and their variations, that we have 
implemented to execute the algorithm in parallel. 

The two methods have the following in common: As in 
the serial algorithm, we maintain one configuration of the 
system; but now the various  processors attempt 
simultaneous exchanges of disjoint pairs of chips at each 
temperature. The pairs are assigned dynamically; that is, we 
do not assign a fixed group of chips to each  processor. Thus, 
each  processor randomly picks  two  chips,  sets a flag so that 
no other processor can move either of these  two chips (we 
call this locking the chips), and attempts to exchange their 
positions. If a chip is found locked, another chip is  searched 
for. We do not wait for the locked chip to become  free, 
because the computation time required to select a chip and 
attempt to lock it is much smaller than the time needed to 
decide on the move, exchange the chips, and then free the 
locked  chips. During the process of deciding on the 
acceptance or rejection of the move,  each  processor 
calculates  locally the change in the histograms and evaluates, 
also  locally,  what the new  energy  would  be due to the 
attempted move; then the (local) new energy is compared 
with the (shared) energy. If according to the acceptance 
criteria the move  is  accepted, the processor updates the 
(shared) histogram information (using the fetch-and-add 
function [4]) and replaces the (shared) energy  value  with its 
new energy.  Each  processor  calculates the energy, and the 
move is accepted or rejected on the basis of information 
which  may  change during the evaluation. Thus, we 
introduce some chaos into the procedure of making the 
decision  for acceptance or rejection of a move; in other 
words, the computation contains noise from the effects  of 
other moves  going on simultaneously. Specifically, the new 
energy is calculated by each  processor on the basis  of 
histograms that might be changing during the computation 
and the (shared) energy  is  based on the latest  processor's 
update of its value. 

The parallel methods follow the same annealing schedule 
and convergence criteria as the serial algorithm discussed 
previously.  Next we discuss the differences  of the parallel 
annealing methods. 

The first method, referred to as Method A, involves 
locking of nets and chips. Not only the pair of chips 
considered for exchange, but also  all the nets that involve 
these  two chips are locked; this results in all the chips that lie 
on the locked nets becoming  effectively  locked. With this 
complete locking  when a move  is  accepted, the wire length 
and congestion are correctly  calculated by each  processor in 
parallel. This method, however,  restricts the number of 
processors that can be  used for a given  problem  size. 

The amount of the locking  overhead and the maximum 
number of processors that can be  used depend on how the 
locking of the nets is  applied. The following variants of 
Method A can be considered: 

A less  restrictive approach, which  would permit more 
processors to operate, is to lock  only those chips that are 
connected by a single bond to each chip of the pair 
considered  for  exchange.  In some cases the nets can be 
such that they connect only a pair of chips each; in this 
case this approach coincides  with Method A. 

permit more processors to operate than in the strict case 
but is harder to implement than the previous method, is 
the following: For every  two  pairs  of chips picked by the 
various  processors, construct the two  geometrical 
rectangles that contain each pair of chips. Then, even if 
the chips lie on the (same)  locked nets but their bounding 
rectangles do not overlap,  they  can be considered for an 
interchange. We  have not implemented this variant, as we 
opted for another method discussed later. In a recent 
paper  Kravitz and Rutenbar [7] implement a form of this 
variation, but they appear to impose additional 
synchronization for the update of the energy  when a 
successful  move  is found, not allowing chaotic 
computation to occur. 

An equally  less  restrictive approach, which  would  also 

Method A and its variations yield more locking  overhead 
and can in general  employ fewer processors than the second 
method, discussed  next. 

In Method B only the chips considered  for a move are 
locked. We introduce more chaos into the algorithm, but 
with this method there is  less  locking  overhead and more 
processors can be  used: In principle, as many processors as 
half the number of chips could be  used. 

In this method, when simultaneous moves are made by 
the various  processors, the wire histograms are at times 
calculated  incorrectly  because of the relaxation on the net 
locks.  However, the moves are based not on the absolute 
value of the energy but on differences  between the old value 
and the new value that would  result  from the attempted 
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move. Though the differences  themselves can also  be 
incorrect, the error should be  smaller. Thus we  felt that such 
an approach might  still be successful.  We tried two variants 
of this approach. 

Method B1 The correct histograms of the wires, and 
therefore the energy, are recalculated at each temperature, 
when the trials at this temperature are completed. The 
computation involved to perform this correction is  negligible 
but processor synchronization is required (barrier [4]) at this 
point; because this is done once at each temperature, it does 
not cause performance degradation. 

Method B2 To push this algorithm to its limits, we  even 
ignore the correction of the histograms and energy at each 
temperature. 

Variants of Methods B 1 and B2  were considered but not 
implemented for the current model problem: In Method B 1 
one could restore the correctness of the histograms  more 
frequently, that is,  for  every  given number of histories at 
each temperature. Also, in Method B2, corrections could be 
made every  few temperature steps. 

Vincentelli  [8]  allows, as we do, errors in the computation of 
the energy but differs  from our approach in that it partitions 
the chips among the processors and then (dynamically) 
moves  chips from processor to processor to minimize the 
error in the energy. 

B2  of the second method. 

Recent  work  by Casotto, Romeo, and Sangiovanni- 

We  have implemented Method A and the variants B1 and 

5. Virtual  speedup  measurements 
The measurements in this study were performed in a parallel 
emulation environment, VM/EPEX [4] running on a 
dedicated IBM  308 1 two-processor  system. The EPEX 
system permits simulation of a shared-memory 
multiprocessor  system  with up to 64 processors.  In EPEX, 
the multiple processors are emulated by multiple processes 
(Virtual Machines under the VM Operating System); we  will 
hereafter use the terms (emulated) processor and process 
interchangeably. All  processes  have read/write access to user- 
specified  segments  of shared memory. Synchronization of 
these  processes and communication among them are 
performed via semaphores in shared memory, using  for 
example the compare-and-swap instruction, without 
operating system involvement. When more than two 
processes are used, the two  physical  processes  time-share 
execution of the parallel  program. 

For each virtual machine executing, the VM Operating 
System  measures the CPU time spent, referred to as the 
virtual time. Speedup measurements are deduced from the 
elapsed  virtual time of the various  processes applied to the 
problem. This is done as  follows:  Suppose N processes P,,  Pz, 
. . . , PN are applied in parallel to one program execution, 
resulting in elapsed virtual times T,, T2, . . . . Suppose  also 
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that the program can be executed by one process  using 
virtual time T. The “virtual speedup” is defined to be VS = 
T/max(Tj. 

nondeterministic, virtual speedups are derived  from timing 
measurements of multiple runs over independent problem 
samples. The estimated virtual speedup (VS,) is the average 
time of a serial run divided by the average  max {Ti). That is, 

The virtual speedup provides an approximation of the 
speedup  which  would  be attained if the code  were  executed 
on a true N-way shared-memory multiprocessor such as RP3 
[3]. The accuracy of this approach is limited by hardware 
and software  overheads of multiprogramming that differ 
from  those  present in a true N-way parallel  system. We  have 
observed that the VM scheduler  does not schedule  all virtual 
machines in a round-robin manner but in a more irregular 
fashion,  designed to optimize throughput in the entire 
system.  However, in our parallel environment where  all N 
virtual machines are applied to the execution of a program, 
the scheduler tends to give one virtual machine more time 
than the others even if the underlying  program is entirely 
parallel. This makes our virtual speedups more pessimistic 
than they  would be in true parallel  hardware. The effect 
becomes more pronounced the more  processes we apply; 
specifically,  for more than 16 processes, we start seeing  skews 
of the order of 20% (or larger) of the maximum virtual CPU 
time from the average time for  each of the processes. 

The VM scheduler  provides time slices to the various 
running processes  of duration several thousand instructions. 
Two  processes cannot interact more frequently than that 
unless  they are scheduled simultaneously on the two 
processors. The virtual speedup measurements do not 
accurately  reflect the parallelism  which can be obtained from 
assigning units of  work  less than a time slice, nor do they 
reflect all interactions that would occur in a true parallel 
machine. 

Because the simulated annealing algorithm is 

VSe = (T)/(max(T,l). 

Despite  these limitations, the EPEX simulation 
environment captures the most important distinctions 
between the serial and the parallel  algorithms. The parallel 
SA algorithms have  two ingredients which  would  not occur 
in a serial algorithm: First, multiple processors use locks to 
ensure correct updating of the state; second, the calculation 
of the energy  cost of a move  does  not take into account 
simultaneous moves  which  would alter the cost. Our 
measurements take these  effects into account. 

6. Performance  measurements 
In  executing a problem in parallel, a measure of 
performance  is how  fast the job completes,  i.e., the wall- 
clock  speedup  for that job. In addition, when the parallel 
algorithm is quite different  from the serial, the quality of the 
parallel algorithm is  gauged  by examining how  well it 
converges in comparison with the serial algorithm. In  solving 
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Table 1 Average  speedups. 

Number of processors 

1 2  4 8 1 6 3 2  

Speedup-MethodA 1 1.7 3.0 5.9 7.1 - 
" B1 1 1.7 3.3 6.9 11.1 14.1 
" B2 1 1.9 3.6 6.6 9.5 11.7 

deterministic problems, the speedup can usually  be 
calculated by comparing the time required to execute the 
original  (serial) algorithm vs. the time it takes to achieve the 
same result running on multiple processors. 

In nondeterministic problems such as  SA, the criteria 
above can  be applied, but only in a statistical  fashion. For 
example, we measure how  well the parallel algorithm 
performs by the frequency  of  successful  convergence 
compared with the frequency of convergence of the serial 
algorithm. In principle, speedups should be determined by 
comparing times needed to achieve the same result  (energy) 
in serial and parallel execution, but in nondeterministic 
problems even the time needed to achieve the same result 
can vary. Another method we apply  is to consider  statistical 
speedups, that is,  speedups  averaged  over multiple runs and 
various  final  energies. 

Parallel SA algorithm  performance  measurements 
We have camed out the following performance 
measurements to examine the quality of the parallel 
algorithm: 

Parallelization  overheads and speedup numbers between 

Frequency of  success and the distribution of the energies 

Annealing  curves: 

the serial execution and the parallel execution. 

for the various  algorithms. 

a.  Average  energy as a function of temperature: (E(  T ) )  

b. Final energy at each temperature as a function of 

c.  Average value of I A E l  for the the accepted  moves 

vs. T. 

temperature: E( T )  vs. T. 

as a function of temperature. 
Effect  of locking: the overhead  it incurs and the limitations 
it  imposes in the parallelism. 

Speedups 
As the algorithm is nondeterministic, we chose the following 
ways to display the speedup numbers. First, we display 
distributions of execution times for a number of runs as a 
function of the number of processors for each of the two 
parallel methods and the original  serial  algorithm. Second, 
we provide  average speedup numbers; these  were  calculated 
by comparing computation times for  100 samples on varying 
the number of  processors. A sample  is  generated by using a 
different initial configuration of the model problem and a 
different  seed for the random number sequence. The 
computation time is the measured virtual time on System/ 
370 [9], defined in Section 5. 

The time distributions resulting from Method A are 
shown in Figure 2 for various final  energies and a varying 
number of processors; similar time distributions were 
obtained for the serial algorithm and the parallel method B. 
These plots show that the execution times are in general 
shorter when the problem  converges, and  that the execution 
times roughly tend to increase as the final  energy  increases. 

algorithm and parallel methods A and B when run with one 
process,  we determine the cost of inserting the parallelization 
routines [4] and the cost of imposing  locks. On the average 
we  find that the overhead of inserting the parallelization 
routines is about 15%. This parallelization overhead could 
be reduced by  assigning, at a given temperature, more than 
one trial to each  process  each time; this is  called chunking 
[4]. The locking  overhead is due to the locks  imposed on the 
chips and  the nets.  In Method B, where  only the pair of 
chips  considered  for a move  is  locked, the overhead of 
locking  is  less than 1 %. In Method A, where the chips and 
their nets are locked, the locking  overhead  is about 1 1 %. 
The computation of imposing locks on the nets is more 
complex than simply imposing locks on the pair of the 
moved  chips, and has the higher  overhead. 

the number of processors  increases. The locking overhead, 
however,  increases as the number of processors  increases 
because of increased competition among the processors  for 

By comparing the computation times for the serial 

The parallelization  overhead remains roughly the same as 
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free chips. In Table 1 we present speedups (VS,, defined in 
Section 5) for  each of the two methods. These speedups are 
average numbers over 100 runs for  each  set of  processors. 
For each method, the speedups are normalized to 1 for one 
processor; in other words,  we  have included  parallelization 
and locking  overheads  in the execution times of one process. 
The reason  for doing that is to display more effectively the 
increase  in the locking  overhead as the number of  processes 
increases. 

As defined in Section 5, these speedups are measured by 
dividing the virtual CPU time for one process to execute the 
problem by the maximum virtual CPU time measured 
among the parallel  processes. The time skew caused by the 
VM scheduler (Section 5) has the effect that the obtained 
virtual speedups for 32 processors  for Methods B1 and B2 
are lower than if,  instead  of the maximum time, we  picked 
the average time spent by  all (32) processes and defined the 
virtual speedup as rs = T/(   T , ) .  The estimated average 
speedup ( Vs,) can be  defined  analogously, and then the 
speedup for 32 processors  for Method B1 becomes  16.7, and 
that for Method B2 becomes 15.9. For 16 processors, the 
corresponding numbers would  be 11.4 and 10.8. Thus we 
conclude that  in terms of their average  speedups, both 
Methods B 1 and B2 exhibit similar behavior. 

In comparing the speedups for Method A and both 
Methods B we  see that for  two to four processors the 
speedup is nearly the same. As the number of processors 
increases, we  see that the efficiency  of Method A drops faster 
than that of either of the B methods; this trend persists  also 
when  we consider the average CPU time instead of the 
maximum CPU time to calculate the speedups. We  believe 
that the reason  for the difference  between Methods A and B 
is  increased contention due to the net  locking. 

For a fixed final  energy, speedups can be calculated from 
only the runs that obtained that energy. Such speedups are 
shown in Table 2 for obtaining the ground state (lowest 
energy). 

It  is intriguing to observe that Method B2 yields  what 
could be  considered superlinear speedups. Such superlinear 
behavior  is  also  observed  for  higher  values of the final 
energy. We  find experimentally that with Method B2 the 
threshold of maximum number of trials at each temperature 
is  reached at a much lower temperature than in the serial 
case and with Methods A and BI; thus, B2 performs fewer 
temperature steps involving the more expensive 
computation. However, we  show in the following  sections 
that B2 gives  fewer good solutions, so it  is not clear that the 
speedup shown in Table 2 can be  used to advantage in a 
multiple-search  procedure. 

A correlation between the quality of solution and the 
speed  with  which it is obtained opens the possibility of 
efficient  procedures in which  several independent searches 
are conducted in parallel,  all  searches halting when one or 
two solutions have  been found. Our work has not provided 
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Table 2 Speedups in obtaining  the  ground  state. 

Number of processors 

1 2 4 8 

Speedup -Method A 1 1.8 3.1 5.8 
" BI 1 1.8 3.4  6.4 
" B2 1 2.54 4.3  7.6 

enough data to other than suggest this as an interesting 
possibility. 

Distributions of  energies 
Next we examine the distribution of energies  over a sample 
of runs for the various algorithms.  In Figure 3, we display 
the distribution of energies for the serial algorithm; Figures 
4(a)-4(b) and 5(a)-5(b)  show the distributions of the 
energies  for the parallel algorithms (Methods A and Bl) for 
runs with  two  processors and eight  processors. The solid  line 
in these  figures  is a curve  fitted through the points, and the 
vertical dotted line indicates the average  energy obtained 
over the sample. 

Energies  below 300 correspond to final states which  differ 
from the ground state by the transposition of a pair of chips 
or a slight rotation of some chips relative to their placement 
on the rectangular grid. In general,  energies  below 400 can 
be  considered quite good;  energies  below 600 correspond to 
more complex rotations but may  still  be  considered 
acceptable. 
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Frequency of final energies with parallel method A: (a) two-processor and (b) eight-processor runs 

We observe that both parallel algorithms find the correct 
result as frequently as the serial algorithm, and that  the 
frequency of obtaining a given  energy  falls rapidly as the 
energy  increases. The algorithm with net locks does as well 
as the serial algorithm for  all the numbers of  processors. It is 
encouraging to see that Method B 1 also yields distributions 
of similar quality. Thus we conclude that Methods A and B 1 
behave as well as the serial algorithm. 

Figures 6(a)-6(b) show distributions that were produced 
with Method B2. With this method too, for up  to 16 
processors, the frequency of obtaining the ground state is not 
low and the frequencies fall  fairly rapidly for the higher  final 
energies.  We  see, though, that  the tails of the distributions 
get  longer; that is,  now we also find  final  energies that are 
considerably higher than with the other methods. 

Annealing curves 
To examine the quality of the parallel methods and attempt 
to explain their successes and failures, we examine the 
traditional measures of the simulated annealing algorithm, 
namely the annealing curves E( T )  vs. T and (E( T ) )  vs. T. 

Figure 7 shows the E( T )  vs. T plot  for an eight-processor 
run with Method A. Similar curves have  been obtained for 
up  to 16 processors  with Method A and 32 processors  with 
Method B I .  We found no significant quantitative and 
qualitative differences from method to method, whether the 
problem converged or not. 

of the energy ( E )  as a function of the temperature. Figure 8 
shows a plot obtained for an eight-processor run with 

A parameter examined often in SA [5] is the average  value 
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Method A. Corresponding plots obtained with the serial 
algorithm, for up  to 16 processors  with Method A and for up 
to 32 processors  with Method B 1, show similar behavior. 

It should be emphasized that whether the problem has 
converged to the exact ground state or to an excited state, 
these annealing curves have similar shape, and they only 
change if the annealing schedule changes [ 1, 51. Thus, the 
similarity of the plots of the parallel execution (Method A) 
and the serial execution indicates that  the annealing schedule 
in the parallel algorithm is as good as the annealing schedule 
in the serial algorithm, despite the introduction of some 
chaos in the parallel methods. 

Figure 9 shows the corresponding (E( 7 ) )  vs. T plot 
obtained for Method B2. In this method the energy  of the 
system  is calculated wrongly and can reach nonphysical 
(negative!)  values of E at low temperatures. However, though 
the energy is calculated incorrectly during the annealing 
process, at the  end, based on  the final positions of the chips, 
the resulting configuration is legitimate. 

Curves ofthe average fluctuations in the cost function 
To examine the effect of chaotic energy calculation in 
Method B2, we examine another quantity: the average I A,!?[ 
for the accepted moves; we call  these the AE curves. The 
rationale behind examining such curves is that moves are 
decided on  the basis of energy  differences  between an old 
value (before the move) and the new value (after the move). 
Small fluctuations in the average accepted I A E l  at high and 
intermediate temperatures may indicate that  the algorithm 
got stuck in a (high-lying)  local minimum. 
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Such a  plot is shown in Figure 10 for  the  serial  algorithm  corresponding  plot  for  Method B2. Indeed,  we  see  that 
and  parallel methods A and B 1 .  Figure 11 shows  the  curves of AE for  Method B2, which  has  worse  convergence 
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features, are characteristically  different  from the fluctuations in Method B2 are characteristically  smaller. This 
corresponding curves for Methods A and B 1, where we behavior  might cause the algorithm to become stuck at the 
observe better convergence  characteristics. high-lying minima, having  less chance to escape to the 

behaved methods A and B1 show that  at intermediate Thus, we  have introduced an additional measure of the 
energies  they  allow  larger fluctuations in energy,  while the quality of the simulated annealing algorithm, namely the 

In general we observe that the AE plots of the well-  lower-lying minima. 
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average fluctuations in the energy (Ah ‘ )  for the accepted 
moves. The general  usefulness  of this quantity remains to be 
examined for other cases. 

Locking 
In  parallel SA methods such as the ones used here,  where  all 
processors  work on the same chip configuration and locks 
are imposed on the chips, it is  of interest to understand the 
overhead due to the locking, how this overhead  increases as 
the number of processors  increases, and what limitations the 
locking  imposes on the maximum number of processors that 
can  be  employed. 

From the elapsed  virtual CPU time measurements we  find 
that the static overhead of imposing locks on the chips is 
about 1 % and of imposing  locks on the nets is about I I %. 
Besides the longer execution time incurred by the net 
locking, another implication is the effect the net  locking has 
on the maximum number of processors that can  be 
employed  for a given  problem  size.  Following are our 
estimates on the limitations of the locking on the number of 
processors that can be  effectively  used. 

Let n be the average number of chips locked  each time 
a processor attempts to select a chip for exchange.  In the 
case  where we lock  only the chips but not their nets, n = 1. 
In the case  where not only a given chip but also its nets are 
locked, for our model problem, n = 3.8. Thus, each time a 
processor attempts to lock a pair, 2n chips are locked, that is, 
2 chips and 7.6 chips for Methods B and A,  respectively. 
This implies that, for our model  problem ( N  = 8 l), the 
maximum number of processors is about 1 1 for Method A 
and 40 for Method B. In our experiments we have 
successfully made runs with up to 16 processors  with 
Method A and with up to 32 processors  with Method B. 
However, we  find small improvement beyond 8 processors 
for Method A. 

An additional loss in efficiency occurs because multiple 
processors compete to select  pairs  of  chips, and thus the 
number of trials to select a pair  increases. The average 
number of retrials as a function of the number of processors 
(P) is  given  by N / [ N  - 2n(P - l)], where N is the total 
number of chips in the problem and n is the number of 
chips locked  every time a processor  selects a chip for 
exchange. This estimate follows  reasonably  closely the 
average number of retries that we  find experimentally as the 
number of processors  increases. 

7. Summary 
We have studied two  parallel approaches to the simulated 
annealing algorithm applied to the solution of the chip 
placement problem.  Established criteria (annealing curves) 
have  been examined and new ones ( A E  curves)  proposed to 
investigate the quality of the parallel methods in terms of 
their convergence  properties. Traditional parallel speedup 
performance measurements have  been extended to statistical 

IBM J.  RES. DEMLQP. VOL. 31 NO. 3 MAY 1987 

‘03/ 

Temperature 

Typical (IAEI) vs. Tplot for parallel  method B2. 

speedup measurements to handle the nondeterministic 
nature of the algorithm. 

The results we have obtained are encouraging. Of the 
approaches we have examined, we think that the most 
promising is Method B 1, in which  we  lock only the chips, 
not the nets, and in which  we resurrect the correct energy at 
the end of each temperature. 

maximum number of processors that is  of the order of 10- 
20% of the total number of chips,  with  efficiencies of about 
80%. Considering that current realistic VLSI design 
problems  involve the use  of 5K-10K logic circuits, our 
results indicate that our proposed approaches can  be  used 
efficiently  with  highly  parallel  systems. 

Our results indicate that with Method B 1 we can  employ a 
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