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We explore modifications to the standard
simulated annealing method for circuit
placement which make it more suitable for use
on a shared-memory parallel computer. By
employing chaotic approaches we allow the
parallel algorithms to deviate from the algorithm
defined for a serial computer and thus obtain
good execution efficiencies for large numbers of
processors. The qualitative behavior of the
parallel algorithms is comparable to that of the
serial algorithm.

1. Introduction

In engineering design, a wide range of problems require
optimizing some figure of merit which depends upon a great
many quantitative design parameters. Examples are
sequencing problems such as the traveling salesman
problem, or circuit placement and wiring in computer-aided
electronic design. Solution of these problems is difficult
because there are far too many degrees of freedom to permit
exhaustive search for an optimum, and in many cases (the
so-called NP-complete problems) no algorithms are known
which will determine the exact optimum with significantly
less work than exhaustive search. Instead, heuristics are
employed, such as iteratively searching through local
rearrangements of a design in which one or a few parameters

©Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

are changed in each rearrangement. Recently, the method of
simulated annealing (SA) [1] has proven successful as a
common nondeterministic approach to most of these
problems. This method obtains good solutions, even when
conventional methods quickly get trapped in local sub-
optima. A state-of-the-art overview of the theory and
applications of SA is given in [2].

In the SA method, an analogy is made between the states
of a physical system (e.g., a solid) and the configurations of
the design being optimized. The design parameters being
varied are equated with atomic positions in the solid, and
the energy of the solid is identified as the objective function
being optimized for the design. Through the analogy, a
temperature is defined as a control parameter. In
optimization by simulated annealing, the temperature
controls the probability that rearrangements which make the
design worse will be accepted in order to have a more
exhaustive search. Just as in growing perfect crystals from
molten mixtures by annealing them at successively lower
temperatures, the optimization process using SA proceeds by
searching at successively lower temperatures, starting at a
high temperature at which nearly random rearrangements
are accepted (the melted state). Although this procedure is
computationally laborious, it is no more so than the best
heuristics previously available for many design problems,
and in most cases finds the best solutions which are known.

Currently a variety of MIMD (multiple-instructions-
multiple-data) computer architectures are being proposed as
a means of providing increased computational power. The
characterization of these architectures is that they employ
multiple processors interconnected and cooperatively
working to execute the same program. Such parallel
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architectures require not only new ways of performing the
computations and new ways to execute algorithms, but in
many cases new ways of thinking about the algorithms. In
particular we have in mind parallel architectures that utilize
shared memory [3] as a means of synchronization and
communication between the parallel processors. The shared
memory contains, for example, the description of the
problem under study and the current version of the design
being optimized. The effectiveness of the parallel algorithm,
and the parallel hardware, is often measured by the speedup,
defined by dividing the elapsed time required to solve a
problem on P processors into the time required to execute
the algorithm on a single processor.

In this paper we explore deviations from the form of SA
appropriate for a single processor (we call this the serial
algorithm) which enhance the performance of SA on parallel
hardware. Convergence of simulated annealing can be
proved in the serial algorithm, but the deviations we
consider will invalidate the usual proofs. Thus we shall
consider the quality of the solutions found using parallel SA,
as well as the efficiency of doing the calculation in parallel.

To model machine architectures with various numbers of
processors dedicated to this problem, we employ a software
environment for parallel execution (VM/EPEX [4]) that
runs on an IBM 3081 multiprocessor. In this environment,
each processor is emulated by a virtual machine, a separate
process created under the VM/SP operating system. Shared
memory for communication between emulated processors is
provided by standard VM system facilities.

2. The serial SA algorithm for chip placement
First we describe the application of simulated annealing to a
simple version of the chip (or circuit) placement problem.
Our chips (also referred to as books or cells) are all identical
in size, and situated in a regular array of allowed positions.
The techniques we describe are also appropriate for placing
standard-sized circuits on regularly structured gate array
chips, and can be extended to describe more complicated
situations. All the connections required by the design are
specified in a netlist, or list of nets, where the ith net,
connecting 7 chips, would be defined by the statement that
the output of chip j(i, 1) is connected to specified inputs on
chips j(i, 2), - - -, j(i, n). We also specify the coordinates of
each chip, x(;), y()). For this example, we suppress details of
chip orientation, location of specific input or output pins on
the chip boundary, etc., treating the chips as pointlike.

To rearrange the placement, we pick a pair of chips at
random and consider the effect of interchanging them. The
desirability of the exchange is evaluated by calculating the
change it would cause in a cost function. The cost function
is also called the score for the problem or, using the
annealing metaphor, the energy; we use the latter term in
this paper. The two principal factors in the energy E are the
length of wire L required to complete all the nets in the
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netlist, and the congestion C which may occur if a
placement calls for a greater density of wires in some region
than the intended package can provide. We define below one
possible measure of congestion to use. The two factors must
be weighted and combined into a single number to be used
as an objective criterion for accepting or rejecting trial
exchanges. Thus, introducing a weight factor W, we have

E=L+WC

for the calculation of the energy.
The length of a single connection [(j, k) between two chips
jand k is calculated in the Manhattan metric, defined by

1(J, k) = |x()) — x(k}| + | () — y(K)|.

We approximate the length of a multichip net by its lower
bound, the half-perimeter of a rectangle tightly bounding all
the chips on the net:

i) = max G, Ol - mkin [, Bl
+ mkaxty[j(i, 19) i mkinfy[j(i, W9) {8

and sum over nets / to obtain L:

L= % Ii.

nets i
Congestion can be measured by counting the number of nets
which must cross lines of constant x or y coordinate.
Histograms A(x) and A(y) are convenient ways to collect this

information:
hx)= X ' (x = mkin {x[ G, k)]%)o(m’flx xLjG, B} = x)

(where the function @ is 1 if its argument is positive, 0
otherwise) and similarly for A(y). Congestion problems can
be identified by comparing the entries in A(x) and A(y) with
known package capacities. For the global measure C we have
used a simpler quantity,

C = X [h(x) = hoJ0[h(x) — ho]

+ X [h) — hl0lh() — hol,

where we have subtracted £, a congestion threshold. The
excess over the threshold is squared to increase the penalty
of the deviation.

The histograms also provide a convenient way to calculate
L or changes in L, since

L=73 hx)+ X hy).

Use of the histograms makes it relatively inexpensive to
calculate the change in the cost function that results from a
given trial exchange of two chips.

A pair of chips is selected for exchange, and the new
energy (E,.,) of the proposed move is calculated. Then the
difference AE from the old energy (E,) is calculated: AE =
E_, - E_, A move is always accepted when the effect of the
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exchange decreases the energy; if the energy increases, the
move is accepted, with a certain probability that depends on
the temperature of the system, according to the Metropolis
criterion:

If AE = 0, accept the move.
If AE > 0, accept the move with probability

P(AE)=€7"7,

where T is the temperature. When the move is accepted, the
old energy is replaced by the new energy.

At a given temperature several exchanges are attempted;
then the temperature is decreased and the procedure is
repeated. Thus the system is gradually cooled until it has
reached some cutoff (steady-state) criteria such as the
following: The number of moves accepted is small and no
substantial reduction of the energy is achieved.

The maximum number of attempts (¢rials) made at each
temperature is such as to obtain a good statistical ensemble
of trials. The number of distinct pairwise permutations on a
board of N chips is N X (N — 1)/2; thus, the maximum
number of trials we allow at each temperature is about that.
In addition, another criterion is built into the algorithm: If at
a given temperature a certain number of successful attempts
have been made, it is decided that the state space has been
searched adequately and the search stops for this
temperature. In our particular problem we choose a number
of successes equal to about 10% of the maximum number of
exchanges as providing a good sampling of the state space.

At high temperatures uphill moves are accepted with a
higher probability than at low temperatures, so at high
temperatures the upper limit of moves is not reached. At the
lower temperatures, however, the maximum number of trials
is always reached; thus most of the computation is spent in
the lower temperature region.

For a good annealing schedule, the temperature of the
system has to be high enough initially so that the system
becomes completely disordered (liquid phase) and no
partially ordered domains remain. The rate at which the
system is cooled down is an important consideration in
obtaining convergence. A slower cooling rate increases the
chances of obtaining good solutions at increased
computational cost. Several quasi-empirical criteria have
been established regarding the cooling schedule [1, 5, 6] and
the parameters that are important to examine. Common
tools for judging the quality of convergence of the algorithm
are plots of the energy vs. temperature, or plots of the
average value of the energy vs. temperature; they are referred
to as annealing curves.

3. Mogel problem

We have used for our studies a two-dimensional
configuration of 81 chips, arranged on a square grid with
each net connecting two chips (two-pin connections).
Figure 1 shows the configuration of the chips and their
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Ground-state configuration of chips on a rectangular grid.

connections when the system is in its ground state. The chips
are labeled A1-A9, B1-B9, etc.

This is a simplified model of actual connections in chip
layouts, where the most usual case is three or more chips per
net. On the other hand, our model resembles circuit
connections in master-slices. However, the methods and the
program we have used are general enough to handle any
types of connections. The advantage of selecting such a
problem is that the states of the system (ground state and
excited states) are known; therefore it provides a good test
bed for evaluating the algorithms themselves. Because we are
interested in the performance of nondeterministic
algorithms, using a problem whose solution is known makes
it possible to compare the quality of solutions obtained with
different algorithms.

On the basis of the algorithms discussed in the previous
section, the energy for the ground state is 160 (using /4, = 8),
while for states differing by a transposed pair from the
ground state, the energy is around 200. Scores above that
and below 400 correspond to configurations which differ
from the ground state by two pairs of chips transposed or
configurations where a set of chips is rotated.

In all our experiments we follow a cooling schedule as
suggested in [1]. The temperature is first increased until a
sufficient percentage of moves is accepted (75% in our
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problem); that corresponds to a temperature high enough to
disorder (melt) the system. Then the cooling phase starts and
the temperature is gradually lowered, by a ratio of 0.98 (T,
=0.98T,,).

Following our arguments in Section 2 for obtaining a
good statistical ensemble of trials, at each temperature either
we attempt a maximum of 50N = 4050 trials [that is, about
N X (N — 1)/2 trials], or trials are made until the number of
moves accepted is 10% of the maximum allowed attempts
(that is, 5N successes). The cooling stops a) if the
temperature drops below 0.01; b} if for a certain number
(120) of temperatures less than 5N moves were accepted; or
c) if a temperature has been reached at which no successful
moves are made.

4, Parallel SA methods

The problem in parallel execution of the SA method is how
to enable multiple processors to act cooperatively. Here we
discuss two methods, and their variations, that we have
implemented to execute the algorithm in parallel.

The two methods have the following in common: As in
the serial algorithm, we maintain one configuration of the
system; but now the various processors attempt
simultaneous exchanges of disjoint pairs of chips at each
temperature. The pairs are assigned dynamically; that is, we
do not assign a fixed group of chips to each processor. Thus,
each processor randomly picks two chips, sets a flag so that
no other processor can move either of these two chips (we
call this locking the chips), and attempts to exchange their
positions, If a chip is found locked, another chip is searched
for. We do not wait for the locked chip to become free,
because the computation time required to select a chip and
attempt to lock it is much smaller than the time needed to
decide on the move, exchange the chips, and then free the
locked chips. During the process of deciding on the
acceptance or rejection of the move, each processor
calculates locally the change in the histograms and evaluates,
also locally, what the new energy would be due to the
attempted move; then the (local) new energy is compared
with the (shared) energy. If according to the acceptance
criteria the move is accepted, the processor updates the
(shared) histogram information (using the fetch-and-add
function [4]) and replaces the (shared) energy value with its
new energy. Each processor calculates the energy, and the
move is accepted or rejected on the basis of information
which may change during the evaluation. Thus, we
introduce some chaos into the procedure of making the
decision for acceptance or rejection of a move; in other
words, the computation contains noise from the effects of
other moves going on simultaneously. Specifically, the new
energy is calculated by each processor on the basis of
histograms that might be changing during the computation
and the (shared) energy is based on the latest processor’s
update of its value.
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The parallel methods follow the same annealing schedule
and convergence criteria as the serial algorithm discussed
previously. Next we discuss the differences of the parallel
annealing methods.

The first method, referred to as Method A, involves
locking of nets and chips. Not only the pair of chips
considered for exchange, but also all the nets that involve
these two chips are locked; this results in all the chips that lie
on the locked nets becoming effectively locked. With this
complete locking when a move is accepted, the wire length
and congestion are correctly calculated by each processor in
parallel. This method, however, restricts the number of
processors that can be used for a given problem size.

The amount of the locking overhead and the maximum
number of processors that can be used depend on how the
locking of the nets is applied. The following variants of
Method A can be considered:

o A less restrictive approach, which would permit more
processors to operate, is to lock only those chips that are
connected by a single bond to each chip of the pair
considered for exchange. In some cases the nets can be
such that they connect only a pair of chips each; in this
case this approach coincides with Method A.

e An equally less restrictive approach, which would also
permit more processors to operate than in the strict case
but is harder to implement than the previous method, is
the following: For every two pairs of chips picked by the
various processors, construct the two geometrical
rectangles that contain each pair of chips. Then, even if
the chips lie on the (same) locked nets but their bounding
rectangles do not overlap, they can be considered for an
interchange. We have not implemented this variant, as we
opted for another method discussed later. In a recent
paper Kravitz and Rutenbar [7] implement a form of this
variation, but they appear to impose additional
synchronization for the update of the energy when a
successful move is found, not allowing chaotic
computation to occur.

Method A and its variations yield more locking overhead
and can in general employ fewer processors than the second
method, discussed next.

In Method B only the chips considered for a move are
locked. We introduce more chaos into the algorithm, but
with this method there is less locking overhead and more
processors can be used: In principle, as many processors as
half the number of chips could be used.

In this method, when simultaneous moves are made by
the various processors, the wire histograms are at times
calculated incorrectly because of the relaxation on the net
locks. However, the moves are based not on the absolute
value of the energy but on differences between the old value
and the new value that would result from the attempted
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move. Though the differences themselves can also be
incorrect, the error should be smaller. Thus we felt that such
an approach might still be successful. We tried two variants
of this approach.

Method Bl  The correct histograms of the wires, and
therefore the energy, are recalculated at each temperature,
when the trials at this temperature are completed. The
computation involved to perform this correction is negligible
but processor synchronization is required (barrier [4]) at this
point; because this is done once at each temperature, it does
not cause performance degradation.

Method B2  To push this algorithm to its limits, we even
ignore the correction of the histograms and energy at each
temperature.

Variants of Methods Bl and B2 were considered but not
implemented for the current model problem: In Method Bl
one could restore the correctness of the histograms more
frequently, that is, for every given number of histories at
each temperature. Also, in Method B2, corrections could be
made every few temperature steps.

Recent work by Casotto, Romeo, and Sangiovanni-
Vincentelli [8] allows, as we do, errors in the computation of
the energy but differs from our approach in that it partitions
the chips among the processors and then (dynamically)
moves chips from processor to processor to minimize the
error in the energy.

We have implemented Method A and the variants Bl and
B2 of the second method.

5. Virtual speedup measurements

The measurements in this study were performed in a parallel
emulation environment, VM/EPEX [4] running on a
dedicated IBM 3081 two-processor system. The EPEX
system permits simulation of a shared-memory
multiprocessor system with up to 64 processors. In EPEX,
the multiple processors are emulated by multiple processes
(Virtual Machines under the VM Operating System); we will
hereafter use the terms (emulated) processor and process
interchangeably. All processes have read/write access to user-
specified segments of shared memory. Synchronization of
these processes and communication among them are
performed via semaphores in shared memory, using for
example the compare-and-swap instruction, without
operating system involvement. When more than two
processes are used, the two physical processes time-share
execution of the parallel program.

For each virtual machine executing, the VM Operating
System measures the CPU time spent, referred to as the
virtual time. Speedup measurements are deduced from the
elapsed virtual time of the various processes applied to the
problem. This is done as follows: Suppose N processes P,, P,,
- -+, P, are applied in parallel to one program execution,
resulting in elapsed virtual times T, T, - - -. Suppose also
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that the program can be executed by one process using
virtual time T. The “virtual speedup” is defined to be VS =
T/max{T}.

Because the simulated annealing algorithm is
nondeterministic, virtual speedups are derived from timing
measurements of multiple runs over independent problem
samples. The estimated virtual speedup (VS,) is the average
time of a serial run divided by the average max {7}. That is,
VS, = (T)/{(max{T}).

The virtual speedup provides an approximation of the
speedup which would be attained if the code were executed
on a true N-way shared-memory multiprocessor such as RP3
[3]. The accuracy of this approach is limited by hardware
and software overheads of multiprogramming that differ
from those present in a true N-way parallel system. We have
observed that the VM scheduler does not schedule all virtual
machines in a round-robin manner but in a more irregular
fashion, designed to optimize throughput in the entire
system. However, in our parallel environment where all N
virtual machines are applied to the execution of a program,
the scheduler tends to give one virtual machine more time
than the others even if the underlying program is entirely
parallel. This makes our virtual speedups more pessimistic
than they would be in true parallel hardware. The effect
becomes more pronounced the more processes we apply;
specifically, for more than 16 processes, we start seeing skews
of the order of 20% (or larger) of the maximum virtual CPU
time from the average time for each of the processes.

The VM scheduler provides time slices to the various
running processes of duration several thousand instructions.
Two processes cannot interact more frequently than that
unless they are scheduled simultaneously on the two
processors. The virtual speedup measurements do not
accurately reflect the parallelism which can be obtained from
assigning units of work less than a time slice, nor do they
reflect all interactions that would occur in a true parallel
machine.

Despite these limitations, the EPEX simulation
environment captures the most important distinctions
between the serial and the parallel algorithms. The parallel
SA algorithms have two ingredients which would not occur
in a serial algorithm: First, multiple processors use locks to
ensure correct updating of the state; second, the calculation
of the energy cost of a move does not take into account
simultaneous moves which would alter the cost. Qur
measurements take these effects into account.

6. Performance measurements

In executing a problem in parallel, a measure of
performance is how fast the job completes, i.e., the wall-
clock speedup for that job. In addition, when the parailel
algorithm is quite different from the serial, the quality of the
parallel algorithm is gauged by examining how well it

converges in comparison with the serial algorithm. In solving 395
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Time scatter plots for various final energies (from Method A).

Table 1 Average speedups.

Number of processors

1 2 4 8 16 32

Speedup — Method A 1 1.7 3.0 59 7.1 —
“ “ Bl 1 1.7 33 69 111 14.1
“ “ B2 1 1.9 36 6.6 9.5 11.7

deterministic problems, the speedup can usually be
calculated by comparing the time required to execute the
original (serial) algorithm vs. the time it takes to achieve the
same result running on multiple processors.

In nondeterministic problems such as SA, the criteria
above can be applied, but only in a statistical fashion. For
example, we measure how well the parallel algorithm
performs by the frequency of successful convergence
compared with the frequency of convergence of the serial
algorithm. In principle, speedups should be determined by
comparing times needed to achieve the same result (energy)
in serial and parallel execution, but in nondeterministic
problems even the time needed to achieve the same result
can vary. Another method we apply is to consider statistical
speedups, that is, speedups averaged over multiple runs and
various final energies.

o Parallel SA algorithm performance measurements
We have carried out the following performance
measurements to examine the quality of the parallel
algorithm:
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o Parallelization overheads and speedup numbers between
the serial execution and the parallel execution.
e Frequency of success and the distribution of the energies
for the various algorithms.
¢ Annealing curves:
a. Average energy as a function of temperature: (E(T))
vs. T.
b. Final energy at each temperature as a function of
temperature: E(7) vs. T.
c. Average value of |AE| for the the accepted moves
as a function of temperature.
o Effect of locking: the overhead it incurs and the limitations
it imposes in the parallelism.

o Speedups

As the algorithm is nondeterministic, we chose the following
ways to display the speedup numbers. First, we display
distributions of execution times for a number of runs as a
function of the number of processors for each of the two
parallel methods and the original serial algorithm. Second,
we provide average speedup numbers; these were calculated
by comparing computation times for 100 samples on varying
the number of processors. A sample is generated by using a
different initial configuration of the model problem and a
different seed for the random number sequence. The
computation time is the measured virtual time on System/
370 [9], defined in Section 5.

The time distributions resulting from Method A are
shown in Figure 2 for various final energies and a varying
number of processors; similar time distributions were
obtained for the serial algorithm and the parallel method B.
These plots show that the execution times are in general
shorter when the problem converges, and that the execution
times roughly tend to increase as the final energy increases.

By comparing the computation times for the serial
algorithm and parallel methods A and B when run with one
process, we determine the cost of inserting the parallelization
routines [4] and the cost of imposing locks. On the average
we find that the overhead of inserting the parallelization
routines is about 15%. This parallelization overhead could
be reduced by assigning, at a given temperature, more than
one trial to each process each time; this is called chunking
[4]. The locking overhead is due to the locks imposed on the
chips and the nets. In Method B, where only the pair of
chips considered for a move is locked, the overhead of
locking is less than 1%. In Method A, where the chips and
their nets are locked, the locking overhead is about 11%.
The computation of imposing locks on the nets is more
complex than simply imposing locks on the pair of the
moved chips, and has the higher overhead.

The parallelization overhead remains roughly the same as
the number of processors increases. The locking overhead,
however, increases as the number of processors increases
because of increased competition among the processors for
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free chips. In Table 1 we present speedups (VS,, defined in
Section 5) for each of the two methods. These speedups are
average numbers over 100 runs for each set of processors.
For each method, the speedups are normalized to | for one
processor; in other words, we have included parallelization
and locking overheads in the execution times of one process.
The reason for doing that is to display more effectively the
increase in the locking overhead as the number of processes
increases.

As defined in Section 5, these speedups are measured by
dividing the virtual CPU time for one process to execute the
problem by the maximum virtual CPU time measured
among the parallel processes. The time skew caused by the
VM scheduler (Section 5) has the effect that the obtained
virtual speedups for 32 processors for Methods B1 and B2
are lower than if, instead of the maximum time, we picked
the average time spent by all (32) processes and defined the
virtual speedup as V'S = T/(T,). The estimated average
speedup (I7§e) can be defined analogously, and then the
speedup for 32 processors for Method B1 becomes 16.7, and
that for Method B2 becomes 15.9. For 16 processors, the
corresponding numbers would be 11.4 and 10.8. Thus we
conclude that in terms of their average speedups, both
Methods B1 and B2 exhibit similar behavior.

In comparing the speedups for Method A and both
Methods B we see that for two to four processors the
speedup is nearly the same. As the number of processors
increases, we see that the efficiency of Method A drops faster
than that of either of the B methods; this trend persists also
when we consider the average CPU time instead of the
maximum CPU time to calculate the speedups. We believe
that the reason for the difference between Methods A and B
is increased contention due to the net locking.

For a fixed final energy, speedups can be calculated from
only the runs that obtained that energy. Such speedups are
shown in Table 2 for obtaining the ground state (lowest
energy).

It is intriguing to observe that Method B2 yields what
could be considered superlinear speedups. Such superlinear
behavior is also observed for higher values of the final
energy. We find experimentally that with Method B2 the
threshold of maximum number of trials at each temperature
is reached at a much lower temperature than in the serial
case and with Methods A and B1; thus, B2 performs fewer
temperature steps involving the more expensive
computation. However, we show in the following sections
that B2 gives fewer good solutions, so it is not clear that the
speedup shown in Table 2 can be used to advantage in a
multiple-search procedure.

A correlation between the quality of solution and the
speed with which it is obtained opens the possibility of
efficient procedures in which several independent searches
are conducted in parallel, all searches halting when one or
two solutions have been found. Our work has not provided
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Table 2 Speedups in obtaining the ground state.

Number of processors

1 2 4 8
Speedup — Method A 1 1.8 3.1 5.8
“ “ Bl 1 1.8 34 6.4
“ “ B2 1 2.54 43 7.6

enough data to other than suggest this as an interesting
possibility.

& Distributions of energies

Next we examine the distribution of energies over a sample
of runs for the various algorithms. In Figure 3, we display
the distribution of energies for the serial algorithm; Figures
4(a)-4(b) and 5(a)-5(b) show the distributions of the
energies for the parallel algorithms (Methods A and B1) for
runs with two processors and eight processors. The solid line
in these figures is a curve fitted through the points, and the
vertical dotted line indicates the average energy obtained
over the sample.

Energies below 300 correspond to final states which differ
from the ground state by the transposition of a pair of chips
or a slight rotation of some chips relative to their placement
on the rectangular grid. In general, energies below 400 can
be considered quite good; energies below 600 correspond to
more complex rotations but may still be considered

acceptable. 397
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We observe that both parallel algorithms find the correct
result as frequently as the serial algorithm, and that the
frequency of obtaining a given energy falls rapidly as the
energy increases. The algorithm with net locks does as well
as the serial algorithm for all the numbers of processors. It is
encouraging to see that Method B1 also yields distributions
of similar quality. Thus we conclude that Methods A and B1
behave as well as the serial algorithm,

Figures 6(a)-6(b) show distributions that were produced
with Method B2. With this method too, for up to 16
processors, the frequency of obtaining the ground state is not
low and the frequencies fall fairly rapidly for the higher final
energies. We see, though, that the tails of the distributions
get longer; that is, now we also find final energies that are
considerably higher than with the other methods.

& Annealing curves
To examine the quality of the parallel methods and attempt
to explain their successes and failures, we examine the
traditional measures of the simulated annealing algorithm,
namely the annealing curves E(T) vs. T and (E(T)) vs. T.

Figure 7 shows the E(T) vs. T plot for an eight-processor
run with Method A. Similar curves have been obtained for
up to 16 processors with Method A and 32 processors with
Method B1. We found no significant quantitative and
qualitative differences from method to method, whether the
problem converged or not.

A parameter examined often in SA [5] is the average value
of the energy (E) as a function of the temperature. Figure 8
shows a plot obtained for an eight-processor run with
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Frequency of final energies with parallel method A: (a) two-processor and (b) eight-processor runs.

Method A. Corresponding plots obtained with the serial
algorithm, for up to 16 processors with Method A and for up
to 32 processors with Method B1, show similar behavior.

It should be emphasized that whether the problem has
converged to the exact ground state or to an excited state,
these annealing curves have similar shape, and they only
change if the annealing schedule changes [1, 5]. Thus, the
similarity of the plots of the parallel execution (Method A)
and the serial execution indicates that the annealing schedule
in the parallel algorithm is as good as the annealing schedule
in the serial algorithm, despite the introduction of some
chaos in the parallel methods.

Figure 9 shows the corresponding (E(T)) vs. T plot
obtained for Method B2. In this method the energy of the
system is calculated wrongly and can reach nonphysical
(negative!) values of E at low temperatures. However, though
the energy is calculated incorrectly during the annealing
process, at the end, based on the final positions of the chips,
the resulting configuration is legitimate.

& Curves of the average fluctuations in the cost function

To examine the effect of chaotic energy calculation in
Method B2, we examine another quantity: the average |AE|
for the accepted moves; we call these the AE curves. The
rationale behind examining such curves is that moves are
decided on the basis of energy differences between an old
value (before the move) and the new value (after the move).
Small fluctuations in the average accepted |AE| at high and
intermediate temperatures may indicate that the algorithm
got stuck in a (high-lying) local minimum.
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Frequency of final energies with parallel method B2: (a) two-processor and (b) eight-processor runs.

corresponding plot for Method B2. Indeed, we see that

399

Such a plot is shown in Figure 10 for the serial algorithm
and parallel methods A and B1. Figure 11 shows the

curves of AE for Method B2, which has worse convergence
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features, are characteristically different from the
corresponding curves for Methods A and B1, where we
observe better convergence characteristics.

In general we observe that the AE plots of the well-
behaved methods A and Bl show that at intermediate
energies they allow larger fluctuations in energy, while the
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fluctuations in Method B2 are characteristically smaller. This
behavior might cause the algorithm to become stuck at the
high-lying minima, having less chance to escape to the
lower-lying minima.

Thus, we have introduced an additional measure of the
quality of the simulated annealing algorithm, namely the

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987




average fluctuations in the energy (AF) for the accepted
moves. The general usefulness of this quantity remains to be
examined for other cases.

e Locking

In paralle! SA methods such as the ones used here, where all
processors work on the same chip configuration and locks
are imposed on the chips, it is of interest to understand the
overhead due to the locking, how this overhead increases as
the number of processors increases, and what limitations the
locking imposes on the maximum number of processors that
can be employed.

From the elapsed virtual CPU time measurements we find
that the static overhead of imposing locks on the chips is
about 1% and of imposing locks on the nets is about 11%.
Besides the longer execution time incurred by the net
locking, another implication is the effect the net locking has
on the maximum number of processors that can be
employed for a given problem size. Following are our
estimates on the limitations of the locking on the number of
processors that can be effectively used.

Let n be the average number of chips locked each time
a processor attempts to select a chip for exchange. In the
case where we lock only the chips but not their nets, #n = 1.
In the case where not only a given chip but also its nets are
locked, for our model problem, n = 3.8. Thus, each time a
processor attempts to lock a pair, 2z chips are locked, that is,
2 chips and 7.6 chips for Methods B and A, respectively.
This implies that, for our model problem (N = 81), the
maximum number of processors is about 11 for Method A
and 40 for Method B. In our experiments we have
successfully made runs with up to 16 processors with
Method A and with up to 32 processors with Method B.
However, we find small improvement beyond 8 processors
for Method A.

An additional loss in efficiency occurs because multiple
processors compete to select pairs of chips, and thus the
number of trials to select a pair increases. The average
number of retrials as a function of the number of processors
(P) is given by N/[N — 2n(P — 1)], where N is the total
number of chips in the problem and # is the number of
chips locked every time a processor selects a chip for
exchange. This estimate follows reasonably closely the
average number of retries that we find experimentally as the
number of processors increases.

7. Summary

We have studied two parallel approaches to the simulated
annealing algorithm applied to the solution of the chip
placement problem. Established criteria (annealing curves)
have been examined and new ones (AE curves) proposed to
investigate the quality of the parallel methods in terms of
their convergence properties. Traditional parallel speedup
performance measurements have been extended to statistical
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Typical (IAEI) vs. T plot for parallel method B2.

speedup measurements to handle the nondeterministic
nature of the algorithm.

The results we have obtained are encouraging. Of the
approaches we have examined, we think that the most
promising is Method B1, in which we lock only the chips,
not the nets, and in which we resurrect the correct energy at
the end of each temperature.

Our results indicate that with Method B1 we can employ a
maximum number of processors that is of the order of 10-
20% of the total number of chips, with efficiencies of about
80%. Considering that current realistic VLSI design
problems involve the use of SK~-10K logic circuits, our
results indicate that our proposed approaches can be used
efficiently with highly parallel systems.
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