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An algorithm
for automatic
identification
of R-fields

in bond graphs

by S. J. Hood

R. C. Rosenberg
D. H. Withers

T. Zhou

Bond graphs may be used to model the power
flow in dynamic systems. They are especially
attractive for modeling systems which function
in coupled energy domains, for example,
electromechanical systems. For such systems,
bond graphs can be used to provide a natural
subdivision into power/energy fields: storage,
sources, transformers, and dissipation. In the
case of nonlinear dissipative fields, implicit,
nonlinear, coupled systems of algebraic
equations may arise. Causality assignment on
the bond graph provides a basis for detecting
implicit formulations. This paper presents an
algorithm for detection and solution of these
forms within a model, thereby providing an
opportunity for efficient numerical solution, and
includes a brief introduction to bond graphs via
an electromechanical system example.

Introduction

Bond graphs are playing an increasingly useful role in the
modeling, analysis, and design of engineering systems. In this
paper we introduce bond graphs, identify an important,
practical computational problem, and present an algorithm
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to help provide better feedback to the modeler and improve
the efficiency of computation. .

The particular problem of interest is that of coupled
nonlinear algebraic equations and their solution. We focus
on the identification, formulation, and calculation of such a
problem in the bond graph context. OQur particular
contribution is to show how to maximize the use of bond
graph causality information in conjunction with data from
the graph structure. This leads to increased efficiency in
calculating solutions. In the process of presenting the
algorithm, we answer a previously posed question regarding
a minimum set of computing variables [1].

In the next section, bond graphs are introduced briefly
and are illustrated for an electromechanical system.
Following that, the general equation formulation procedure
now in common use is described. The specific computational
problem, that of R-fields, is elucidated, and the current state
of the art is summarized. Next, a new algorithm is presented
and applied to some examples. Finally, a summary is given.

A brief introduction to bond graphs

o History

The basic concept of bond graphs and many details of their
representation were developed by H. M. Paynter in 1959 and
presented in his classic text published in 1961 [2]. Further
research and development focused on extending modeling
applications and building up a set of automated processing
procedures and algorithms [3). Progress has continued to the
point that a recent bibliography contained references to 290
papers and 10 books [4]. Interest in bond graph methods has
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become international, as a review of that bibliography
indicates.

& Advantages

The major advantages of bond graph modeling are that in
such modeling a topological structure is used to represent the
power/energy characteristics of engineering systems, and that
systems with diverse energy domains are treated in a unified
manner. A topological representation, such as a bond graph,
offers great advantage at the conceptual design level, since
quantitative details are not required prematurely. In
addition, graphical representations document complex
models clearly and unambiguously. They often are the
easiest way for a group of engineers to communicate the
description of energy flows in dynamic systems.

Since a bond graph is an unambiguous representation of
an energy system, it is possible for a computer program to
automatically generate the equations for dynamic analysis of
the system [5-8].

Because the bonds in bond graphs represent the power
coupling, such models apply to mechanical translation and
rotation, electrical circuits, thermal, hydraulic, magnetic,
chemical, and other physical domains. They are especially
useful in systems which function in coupled domains, such
as electromechanical systems. We illustrate this aspect later.

& Disadvantages

The major disadvantage of bond graphs is that the notation
is new. Experienced modelers sometimes find it difficult to
change from the methods of block diagrams and state
equations to bond graphs.

& Notation

The two graph elements of a bond graph are the node

(or vertex) and the bond (or edge). The node denotes a
multiport element, with associated energy laws. The bond
denotes power flow between a pair of nodes. A node, or
multiport, is usually represented by a letter or number. A
bond is represented by a line with a half-arrowhead at the
end, indicating the direction of positive power; an
information signal is represented by a line with a full arrow
at the end. See Figure 2 (discussed later). Associated with
each bond is a pair of scalar variables, an effort (¢) and a
flow (/). Their instantaneous product is the power on the
bond.

There are nine basic muitiports used to model a wide
variety of engineering systems. They are given in Table 1,
together with their definitions. When the basic name is used
as the initial part of a node label, it is typically assumed to
indicate the type of multiport. For example, R3 is an R type
of node.

In Table 1, the first two entries denote system inputs. E is
an effort source; F is a flow source. These two nodes are
always 1-ports (i.e., exactly one bond is incident). In the
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Table 1 The elements of bond graphs.

Mudltiport type Equation Action
E—- e= ¢(1) Source of effort
F— S= ¢ Source of flow
R— #le,f)=0 Dissipation
C—— ole, q)=0 “Potential” energy storage
[— #(fip)=0 “Kinetic” energy storage
I =0 Zero junction
—— 00—y e,=e,=e, (Common effort)
Iz Ze;=0 One junction
—l—; fL=f=/, (Common flow)
— T, e, = ne Transformer
L=
—G—; e =1, Gyrator
e =1,

table and in general, ¢ denotes time, the independent
variable. The third entry is R, the generalized resistance
effect (i.e., dissipation). Note that an R node can have any
number of ports greater than zero. In the case of more than
one port, ¢, f, and ¢ are vectors. In certain modeling
domains, 2- and 3-port R nodes are not uncommon.

To discuss the next two node types, C and I, we must first
introduce two additional variable types, g and p, the
generalized displacement and momentum, respectively:

a(e) = gty + f Sy, )

13

o) = plty) + f e(r)dr. )

o
These equations are frequently used in the related form
dq/dt = fand dp/dt = e, respectively. The C and I nodes
denote energy storage effects. Their constitutive equation
forms are given in the table. Note that both C and I may
have more than one port. In that case, the associated
variables and functions become vectors.

Perhaps the most important node types in bond graph
modeling are the ideal power junctions, 0 and 1. (Paynter
thought that this was the case.) Each obeys a power
conservation law: namely, the net power into the multiport
at each instant is zero. In electrical circuit modeling, a
0-junction represents a parallel connection (common effort)
and a 1-junction represents a series connection (common
flow). In mechanics, a 1-junction is typically associated with
a mass (common velocity), while a O-junction is often
associated with a spring (common force) or a damper.

Finally, the transtormer T and the gyrator G are power-
preserving node types. They are strictly 2-port nodes, and are
very useful in modeling transducer and power-conversion
effects. The moduli » and r do not have to be constant.

When one is a function of other system variables, the 383
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An electromechanical relay. (a) Sketch of relay. (b) Major compo-
nents of relay.

transformer or gyrator is said to be modulated. Such a node
is designated by the input of a signal bond denoted by a full
arrow on the end.

o An electromechanical example

A sketch of an electromechanical relay and a diagram
labeling the major components are shown in Figure 1. The
voltage input energizes the magnetic coil. The magnetized
coil attracts the pivot arm, pulling it down toward the coil.
The spring is the return spring that holds the pivot arm open
when the coil is not energized. The contact at the end of the
pivot arm closes an electrical circuit (not shown) when the
pivot arm closes.

The detailed bond graph for this relay model is shown in
Figure 2. The input voltage is modeled by an effort source,
E. The resistance in the windings around the magnetic coil is
represented by the R element on bond 2. The gyrator
element, G, relates the voltage input to the coil to the
magnetic flux output. The C element models energy storage
in both the iron in the coil and the air gap above the coil.
Bonds 7, 8, and 9, signal 10, and the attached nodes form an
impact model for the pivot arm hitting the top of the coil.
This impact model is repeated (bonds 21, 22, and 23, signal
24, and attached nodes) in the contact model. The impact
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model includes a signal with a full arrow on the end. The
signal indicates information flow with negligible energy flow.
The information in this case is whether or not the pivot arm
or contact is closed, making physical contact. There is
energy dissipation, represented by the R element, only when
there is physical contact. When the pivot arm or contact is
open, there is no energy flow through bond 8 or bond 22.
The pivot arm is represented by bonds 12, 13, 14, 16, 17, 18,
and the attached nodes. The transformers convert
translational velocities to rotational velocities and back
again. The flow variable for bonds 12, 13, 14, and 16 is the
rotational velocity at the pivot point. The I element models
kinetic energy storage. The C element models potential
energy storage due to the bending in the pivot arm. Finally,
the I element attached to bond 20 represents the mass of the
contact at the end of the pivot arm, and the remaining
bonds and nodes form the impact model for the contact
hitting the stop.

There are standard modeling procedures that help make
the task of bond graph model generation routine [9].

The R-field problem

e Simulation objectives
Our major objective is to automate the process of
formulating and solving the state equations associated with
bond graph models of engineering systems. A secondary
objective is to provide timely and insightful feedback to the
designer. There are several sources of difficulty in
accomplishing the major objective. The one we wish to focus
on here is that of coupled nonlinear algebraic equations that
arise when the R nodes are connected in particular ways in
the model. The implicit equations are often difficult to solve,
and they typically must be solved several times in each
integration step. Consequently, it is helpful to be able to
inform the modeler in detail of the existence of such
coupling. Furthermore, increasing the efficiency with which
such solutions are obtained can dramatically decrease the
overall solution time.

Algebraic loops may be broken by introducing parasitic
elements, but doing so results in stiff differential equations
which are difficult to solve numerically.

o Identifying R-fields
R-fields arise when there are several coupled dissipative
effects and very little associated energy storage.

A given bond graph can be thought of as having several
fields, depending upon the types of basic nodes that
are present. Figure 3 shows a sorting of the nodes by
power/energy features. We have included the T and G nodes
with the 0 and 1 nodes, since they all conserve power
strictly.

In preparation for formulating the system equations, we
assign to the bond graph model a set of indicators called
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“causality strokes.” One of these is assigned to each bond,
giving the bond a causal orientation. The purpose of
causality is to define input/output relations at each of the
nodes. Nodes such as E and F have a required causal
orientation, while nodes such as 0, 1, T, and G must meet
certain required conditions. For example, a 0-junction must
have exactly one stroke next to it, indicating the independent
(input) effort variable. Causal orientation is indicated by a
short perpendicular stroke at the effort end of the bond. The
causality assignment is summarized in the templates in
Figures 4(a)-(f).

When causality has been assigned to the bond graph
according to the Sequential Causality Assignment Procedure
(SCAP) [9], it is possible to identify each separate implicit
R-field within the graph. As a result of assigning causality,
the diagram of Figure 3 can be converted to a computing
diagram based on a set of key vectors for the various fields in
the graph. This diagram is shown in Figure 5. For
convenience we have assumed that T and G nodes have
constant moduli; they can then be incorporated into the
junction structure component (JS), creating a weighted
junction structure (WJS),

The system equations implied by the diagram of Figure 5
are

Z=¢,X) . storage field (3a)
D,=¢,D) . dissipation field (3b)
U=e¢,0) . source field (3¢)
dX/dt =S, Z+ S,,D,

+8,,U .. junction structure (3d)
D, =8, Z+8,,D,+ S,,U .. junction structure (3e)

V=S5,Z+S,D,+ S,U

.. junction structure

(3f)

Proper use of causality leads to considerable insight about
the nature of the equation structure. For example, one can
tell at the causal graph level whether dependent C and/or I
ports exist.

o Current status

Once causality is assigned using the SCAP, it is known
whether or not S,, is zero [10]. If S, is zero, then no
implicit R-fields exist, and a straightforward procedure for
integrating the system equations can be employed. If the
bond graph contains some implicit R-fields (IRFs), they can
be identified and isolated by the proper use of causality data
[11]. The D, and D, vectors can be sorted into explicit and
implicit subsets. Then the implicit D, and D, can be further
grouped by their fields, leading to a block form of equations.
These features have been implemented in the ENPORT-6
program, a nonlinear bond graph processor [5].
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1. Identify the separate implicit R-fields.
2. For each implicit R-field,
a. Find the minimum number of iteration variables;
b. Find a suitable set of iteration variables that is
minimum in number;
c. Organize the equations in a form leading to efficient
iterative solution.

Referring to the field structuring of systems equations of
the previous section, the particular subset of equations with
which we are concerned is

Dy=¢,(D), 4)
D, =S, Z + Sp,D, + S,,U. )

We seek an efficient solution to these equations at each time
step, given values for the Z and U vectors. A more succinct
form for the equations is

D, = ¢,(D), (6)

D,=S,,D,+ C, 7
where C is a constant vector. Clearly, it would be possible to
iterate on the D, vector to obtain a solution to the problem.
It should be noted that formulating the problem in this
manner implies that either all T and G nodes have constant
moduli, or they are all evaluated at each time step and
treated as constant over the integration interval, Under these
conditions, their effects can be captured in the S, matrices.

We impose two restrictions on the R-field problem, which
still leaves us with the most common practical subclass of
the general problem:

1. All R nodes in implicit fields are 1-ports.
2. The bond graph does not contain T and G nodes in the
implicit fields.

The resulting problem is practically important, since typical
dynamic models of electromechanical and electrical systems
fall within the subclass. Extension to the more general
problem is an open research issue.

o Some preliminaries

The first level of organization of the system R-fields derives
from applying the SCAP to the source (E, F) and storage

(C, I) nodes. If causality is completely assigned by these
steps, then no implicit R-fields exist. Assume that this is not
the case; then some bonds are acausal. We now attend to the
acausal part of the bond graph.

By using simple reach relation calculations on the
subgraph composed of all nodes with at least one acausal
incident bond, the separate implicit R-fields can be
identified. Acausal fields that do not have at least one R
node will not concern us further here: They are junction
structure (JS) complexes. The bonds in the IRFs can be
ordered by field, thereby grouping the equations into blocks.
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z
Storage
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Dissipation

Key vectors in the field structure.

Now we arrive at the basic questions for a given IRF.
Subject to the restrictions imposed earlier, each obeys local
equations of the form of Equations (6) and (7). We ask,
“What is the smallest number of iteration variables?” “How
can such a set be found?” “How should equation set (6), (7)
be used for best computing efficiency?”

o Implicit R-field equation formulation
The bonds of a given IRF can be sorted into one of three
mutually exclusive sets:

1. The external bonds, connecting the IRF to the rest of the
graph (these bonds are causal).

2. The bonds incident to R nodes, with which are associated
the (local) D, and D, vectors.

3. The remaining bonds, which are internal to the (local)
junction structure (JS).

First we focus on the JS. Earlier work [14] has shown that
there are two critical numbers associated with a JS. These
indicate the number of effort (E) and flow (F) inputs
required at the JS ports in order to determine all internal
variables and the outputs. For completeness we state the rule
here for calculating the numbers:

E=N,+ N,- N, - B,, (3
F=N,+N,-N,-B,, ®

S. J. HOOD ET AL.
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External bonds: a, b

= ’”b—> R-field bonds: 1, 2, 3
/ ‘zy\ Ny =3
R, R, Ny=0 B;=0
R2 N, =1 B] =3

1
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g~ [2] +[}]

SR TA R ON

(b)

An example of an IRF. (a) Bond graph of the R-field and the values
needed for the calculation of Equations (8) and (9). (b) The vectors
from Equations (10) and (11).

where

N, is the number of bonds of the JS,

N, is the number of O-junctions,

N, is the number of 1-junctions,

B, is the number of bonds incident to the O-junctions,
B, is the number of bonds incident to the 1-junctions.

Next, we observe that a JS composed only of 0- and 1-
junctions has a pair of separate but related transformations
associated with it. Namely, input efforts determine output
efforts, and input flows determine output flows.
Furthermore, if all powers at the JS ports are oriented out
(or all in), the associated matrix is skew-symmetric, subject
to proper ordering of the port variables {10, 15].

Now assume that causality assignment to the IRF has
been completed and is consistent. The preceding
observations allow us to organize Equations (6) and (7) in
detail as foliows.

Sort the D, and D, vectors into a resistance set (r) and a
conductance set (g). The r set has flow inputs to the R nodes
and effort outputs; the g set has effort inputs to the R nodes
and flow outputs. Write Equation (6) as

e, = ¢f) (10)
f,=0e), (11

where e, and f, are associated with the » bond set, and fg and
e, are associated with the g bond set. Write Equation (7) as

f; = S22rrer + SZngf;' + Cr’ (12)
€, = Sygl, + Sy fo + C,. (13)

S. J. HOOD ET AL.

Since the (0, 1) JS transforms efforts to efforts and flows to

flows, then S, and S,, , must be zero. Consequently, we

have
fr = S22rgf;" + Cr’ (14)
e,= Sy, +C,. (15)

Furthermore, we note that the combined set ( f,, e,) contains
the JS outputs, while the combined set ( fg, e, contains the
JS inputs. We are now prepared to state the computational
algorithm.

o Algorithm
A computational algorithm for solving implicit R-fields by
local iteration methods is stated below:

1. Assign causality to the source and storage nodes, using
the SCAP.

2. Identify each implicit R-field within the (partially) causal
bond graph.

3. For each implicit R-field:
a. Calculate £ and F.

o If either E or F is less than one, stop. (There is no
guarantee that there are unique outputs from the
inputs for this JS.)

b. Obtain a complete, consistent causal orientation for
the IRF. (It will obey the E, F numbers.)
c. Order the R bonds by resistance (), then conductance

(g) causality. Define the vectors e, f, f,, and e,

d. Assume that E is less than or equal to F. Use f; as the

iteration vector. Make an initial guess f, for f.

¢ Use Equation (10) to find e,.

o Use Equation (15) to find ¢,

¢ Use Equation (11) to find f,.

o Use Equation (14) to find f,.

Compare f, to f,. If the error is within tolerance,
stop. Else return to Equation (10) and repeat
sequence with the new guess for f.

o Note: If E is greater than F, use ¢, as the iteration
vector. The equation order is then (11), (14), (10),
(15).

o Observations about the algorithm

We observe that the minimum iteration set that we seek has
the size min(E, F). This is always less than or equal to one
half the number of bonds on the IRF R nodes. Reducing the
dimension of the iteration vector has a major positive
influence on computing efficiency, as noted previously.

The restrictions placed on the problem structure can be
relaxed to a certain extent without changing the algorithm as
stated above. A given IRF can contain R nodes with more
than 1 port, provided each such B node is a pure r, or a pure
g, type. See Equations (10) and (11) in this regard. In
addition, the R-field JS can contain T nodes, since they do
not alter the structure of the effort-to-effort, flow-to-flow

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987




transformation properties. See Equations (12) and (13). As
mentioned previously, if the T nodes are modulated, we
assume them to be constant over a single integration
interval. Their effects are combined into S,,.

& Some examples

An example of an implicit R-field with three 1-port R nodes
is given in Figure 6(a). The inputs to the IRF are ¢, and e,.
The goal is to calculate all R-field variables. We first find £
and F from the data given:

E=3+0-1-0=2,
F=3+1-0-3=1.

A solution does exist, since both E and F are greater than
zero. We obtain a complete, consistent causal orientation, as
shown in Figure 6(b). The ordered r bond vectors are
defined, based on the causality, as indicated in the figure.
The equations can be written as

e, =o,(f) (16)
e, = ¢, f), (an
Sy = o8, (18)
fi=r» (19)
L=5 (20)
e,=—e —e +(e,—e) 21

A suitable iteration vector is e,, since E is greater than F.
The iterative solution pattern is (18), (19), (20), (16), (17),
21).

Another example is shown in Figure 7(a). On the basis of
the R-field structure, we get

E=6+1-3-3=1,
F=6+3-1—-6=2.

A satisfactory causal orientation is shown in Figure 7(b).
The ordered r bond variables are indicated:

e = ¢/ (22
fo= ey, (23)
Sy = o5(e3), 24
fi=h+t s (25)
e,=—e + (e, +¢,), (26)
e,=—e +(e,+e) @7

Since E is less than F, use f, as the iteration variable. The
equation sequence is (22), (26), (27), (23), (24), (25).

Summary
In this paper we have introduced the bond graph
representation for physical (i.e., energy-based) systems and
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External bonds: a, b, ¢
1 5 ‘ 3 L R-field bonds: 1-6
Ny=

€= le] fr: n

Another example of an IRF. (a) Bond graph of the R-field and the
values needed for the calculation of Equations (8) and (9). (b) The
vectors from Equations (10) and (11).

have illustrated its application to an electromechanical
device, a relay. We have stated a major objective of
completely automating the generation and solution of
system equations, given a bond graph model. A major
problem was discussed, namely the calculation of implicit
R-fields, which generally leads to coupled nonlinear algebraic
equations. An algorithm was presented to treat a major
subclass of the general problem. Its implementation will lead
to increased efficiency in the iterative solution of implicit
equations.

At least three questions remain to be answered:

_—

. Can the given algorithm be extended to treat the more
general R-field problem? More specifically, can the
restriction on multiport R nodes within an implicit
R-field having mixed causality be relaxed? And can
gyrators be included in the field junction structure?

2. Within the framework of the given algorithm, what is the
numerically most robust set of iteration variables to use?
No attention has been given to that important issue in
this paper.

3. Should systems with modulated transformer and gyrator

nodes be treated differently from current practice?

We look forward to continued progress in obtaining
maximum efficiency from bond graph computing methods,

as a step toward the goal of completely automated solution. 389
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