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An  algorithm 
for  automatic 
identification 
of  R-fields 
in  bond  graphs 

by S. J. Hood 
R. C. Rosenberg 
D. H. Withers 
T. Zhou 

Bond  graphs  may be used to model  the  power 
flow in dynamic  systems.  They  are  especially 
attractive  for  modeling  systems  which  function 
in coupled  energy  domains,  for  example, 
electromechanical  systems.  For  such  systems, 
bond  graphs  can be used to provide  a  natural 
subdivision into power/energy  fields:  storage, 
sources,  transformers,  and  dissipation.  In  the 
case of nonlinear  dissipative  fields,  implicit, 
nonlinear,  coupled  systems of algebraic 
equations may  arise.  Causality  assignment  on 
the  bond  graph  provides  a  basis  for  detecting 
implicit formulations.  This  paper  presents  an 
algorithm  for  detection  and  solution of these 
forms  within  a  model,  thereby  providing  an 
opportunity  for  efficient  numerical  solution,  and 
includes  a  brief  introduction to bond  graphs  via 
an  electromechanical  system  example. 

Introduction 
Bond graphs are playing an increasingly useful role in the 
modeling, analysis, and design of engineering systems. In this 
paper we introduce  bond graphs,  identify an  important, 
practical computational problem, and present an algorithm 
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to help  provide  better feedback to  the modeler and  improve 
the efficiency of computation. 

The particular  problem  of  interest is that of  coupled 
nonlinear algebraic equations  and their  solution. We focus 
on  the identification, formulation,  and calculation  of  such a 
problem in  the  bond graph  context. Our particular 
contribution is to show  how to maximize the use of bond 
graph  causality information  in  conjunction with data  from 
the graph structure.  This leads to increased efficiency in 
calculating  solutions. In  the process of  presenting the 
algorithm, we answer a previously posed question regarding 
a minimum set of computing variables [I] .  

In the next  section, bond graphs are  introduced briefly 
and  are illustrated  for an electromechanical system. 
Following that,  the general equation  formulation procedure 
now in common use is described. The specific computational 
problem, that of R-fields, is elucidated, and  the  current state 
of the  art is summarized. Next, a new algorithm is presented 
and applied to  some examples. Finally, a summary is given. 

A brief  introduction to bond  graphs 

History 
The basic concept  of bond graphs and  many details of their 
representation were developed by H. M. Paynter  in 1959 and 
presented  in his classic text  published in 196 1 [2]. Further 
research and  development focused on extending  modeling 
applications and building up a set of automated processing 
procedures and algorithms [3]. Progress has continued  to  the 
point  that a recent bibliography contained references to 290 
papers and 10 books [4]. Interest  in bond graph methods has 
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become international, as a review of that bibliography 
indicates. 

Advantages 
The  major advantages of bond graph  modeling are  that  in 
such  modeling a topological structure is used to represent the 
power/energy characteristics  of  engineering systems, and  that 
systems with diverse energy domains  are treated in a unified 
manner. A topological representation,  such as a bond graph, 
offers great advantage at  the  conceptual design level, since 
quantitative details are  not required  prematurely. In 
addition, graphical  representations document complex 
models clearly and unambiguously.  They  often are  the 
easiest way for a group of engineers to  communicate  the 
description  of energy flows in  dynamic systems. 

Since a bond graph is an  unambiguous representation  of 
an energy system,  it  is possible for a computer program to 
automatically  generate the  equations for dynamic analysis of 
the system [5-81. 

Because the  bonds  in  bond  graphs represent the power 
coupling,  such  models apply to mechanical  translation and 
rotation, electrical circuits, thermal, hydraulic,  magnetic, 
chemical, and  other physical domains. They are especially 
useful in systems which function  in coupled domains, such 
as  electromechanical systems. We illustrate this aspect later. 

Disadvantages 
The  major disadvantage  of bond graphs is that  the  notation 
is new. Experienced modelers  sometimes find it difficult to 
change  from the  methods of block diagrams and  state 
equations  to  bond graphs. 

Notation 
The two  graph elements of a bond graph are  the  node 
(or vertex) and  the  bond  (or edge). The  node  denotes a 
multiport  element, with associated energy laws. The  bond 
denotes power flow between a pair  of nodes. A node, or 
multiport, is usually represented by a letter or number. A 
bond is represented by a line  with a half-arrowhead at  the 
end, indicating the direction  of positive power; an 
information signal is represented by a line with a full arrow 
at  the  end. See Figure 2 (discussed later). Associated with 
each bond is a pair of scalar variables, an effort (e )  and a 
flow (f). Their  instantaneous  product is the power on  the 
bond. 

There are nine basic multiports used to model a wide 
variety of engineering systems. They are given in Table 1, 
together with their definitions.  When the basic name is used 
as the initial part of a node label, it is typically assumed to 
indicate the  type of multiport. For example, R3 is an R type 
of node. 

In Table I ,  the first two entries denote system inputs. E is 
an effort source; F is a flow source.  These  two  nodes are 
always 1-ports (Le., exactly one  bond is incident). In the 

Table 1 The elements of bond graphs. 

Multiport type Equation Action 

Source of effort 
Source of flow 

Dissipation 

“Potential” energy  storage 
“Kinetic” energy  storage 

Zero junction 
(Common effort) 

One junction 
(Common flow) 

Transformer 

Gyrator 

table and in  general, t denotes  time,  the  independent 
variable. The  third  entry is R, the generalized resistance 
effect  (i.e., dissipation). Note  that  an R node  can have any 
number of ports greater than zero. In the case of more  than 
one port, e, 1; and 6 are vectors. In certain  modeling 
domains, 2- and 3-port R nodes are  not  uncommon. 

introduce two additional variable types, q and p ,  the 
generalized displacement and  momentum, respectively: 

To discuss the next two  node types, C and I, we must first 

These equations  are frequently used in  the related form 
dq/d/ = f and dpldt = e, respectively. The C and I nodes 
denote energy storage effects. Their constitutive equation 
forms are given in the table. Note  that both C and I may 
have more  than  one port. In that case, the associated 
variables and  functions become vectors. 

Perhaps the most important  node types  in bond graph 
modeling are  the ideal power junctions, 0 and I .  (Paynter 
thought  that  this was the case.) Each obeys a power 
conservation law: namely, the  net power into  the  multiport 
at each instant is zero. In electrical circuit  modeling, a 
0-junction  represents a parallel connection  (common effort) 
and a 1-junction  represents a series connection  (common 
flow). In mechanics, a I-junction is typically associated with 
a mass (common velocity), while a 0-junction is often 
associated with a spring (common force) or a damper. 

Finally, the  transformer T and  the gyrator G are power- 
preserving node types. They are strictly 2-port nodes, and  are 
very useful in  modeling transducer  and power-conversion 
effects. The  moduli n and r do  not have to be constant. 
When one is a function of other system variables, the 383 
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transformer or gyrator is said to be modulated. Such a node 
is designated by the  input of a signal bond  denoted by a full 
arrow on  the  end. 

An electromechanical example 
A sketch of an electromechanical relay and a diagram 
labeling the  major  components  are shown in Figure 1. The 
voltage input energizes the magnetic coil. The magnetized 
coil attracts  the pivot arm, pulling it  down  toward the coil. 
The spring is the  return spring that holds the pivot arm  open 
when the coil is not energized. The  contact  at the end of the 
pivot arm closes an electrical circuit (not shown)  when the 
pivot arm closes. 

The detailed bond graph for  this relay model is shown in 
Figure 2. The  input voltage is modeled by an effort source, 
E. The resistance in  the windings around  the magnetic coil is 
represented by the R element  on  bond 2. The gyrator 
element, G, relates the voltage input  to  the coil to  the 
magnetic flux output.  The C element models  energy storage 
in  both  the  iron  in  the coil and  the  air  gap  above  the coil. 
Bonds 7 , 8 ,  and 9, signal IO, and  the  attached nodes form  an 
impact  model for the pivot arm hitting the  top of the coil. 
This  impact  model is  repeated (bonds 2 1, 22, and 23, signal 
24, and  attached nodes) in  the  contact model. The  impact 

model  includes a signal with a full arrow on  the  end.  The 
signal indicates information flow with negligible energy flow. 
The  information in  this case is whether or not  the pivot arm 
or contact is closed, making physical contact.  There is 
energy dissipation,  represented by the R element, only  when 
there is physical contact.  When  the pivot arm  or  contact is 
open, there is no energy flow through  bond 8 or bond 22. 
The pivot arm is represented by bonds 12, 13, 14, 16, 17, 18, 
and  the  attached nodes. The  transformers  convert 
translational velocities to  rotational velocities and back 
again. The flow variable for bonds 12, 13, 14, and 16 is the 
rotational velocity at  the pivot  point. The I element models 
kinetic energy storage. The C element models  potential 
energy storage due  to  the bending  in the pivot arm. Finally, 
the I element attached to bond  20 represents the mass of the 
contact  at  the  end of the pivot arm,  and  the  remaining 
bonds  and nodes  form the  impact model  for the  contact 
hitting the stop. 

the task of bond graph  model  generation routine [9]. 
There  are  standard modeling  procedures that help make 

The R-field problem 

Simulation objectives 
Our  major objective is to  automate  the process of 
formulating and solving the state equations associated with 
bond graph  models of engineering systems. A secondary 
objective is to provide  timely and insightful feedback to  the 
designer. There  are several sources  of difficulty in 
accomplishing the  major objective. The  one we wish to focus 
on here is that of  coupled nonlinear algebraic equations  that 
arise  when the R nodes are connected in particular ways in 
the model. The implicit equations  are often difficult to solve, 
and they typically must be solved several times  in each 
integration step. Consequently,  it is helpful to  be able to 
inform  the modeler in detail of the existence  of  such 
coupling. Furthermore, increasing the efficiency with which 
such  solutions are  obtained  can dramatically decrease the 
overall solution time. 

Algebraic loops may be broken by introducing parasitic 
elements, but  doing so results in stiff differential equations 
which are difficult to solve numerically. 

Identijying R-jields 
R-fields arise when there are several coupled  dissipative 
effects and very little  associated energy storage. 

fields, depending  upon  the types  of basic nodes that 
are present. Figure 3 shows a sorting of the nodes by 
powerlenergy features. We have  included the T and G nodes 
with the 0 and I nodes, since  they all conserve  power 

A given bond graph can be thought of as having several 

strictly. 
In  preparation for formulating  the system equations, we 

assign to  the  bond graph  model a set of indicators called 
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“causality strokes.” One of these  is assigned to each bond, 
giving the  bond a causal orientation.  The purpose  of 
causality is to  define  inputloutput relations at each  of the 
nodes. Nodes  such as E and F have a required  causal 
orientation, while nodes  such as 0, 1, T,  and G must meet 
certain  required  conditions. For example, a 0-junction  must 
have exactly one  stroke next to it,  indicating the  independent 
(input) effort variable. Causal orientation is indicated by a 
short perpendicular  stroke at  the effort end of the  bond.  The 
causality assignment is summarized in the templates  in 
Figures 4(a)-(f). 

When  causality  has been assigned to  the  bond graph 
according to  the Sequential  Causality  Assignment  Procedure 
(SCAP) [9], it is possible to identify each  separate  implicit 
R-field within the graph. As a result of assigning causality, 
the diagram of Figure 3 can be converted to a computing 
diagram based on a set of key vectors for the various fields in 
the graph. This diagram is shown  in Figure 5. For 
convenience we have  assumed that T and G nodes have 
constant moduli;  they  can then be incorporated into  the 
junction  structure  component (JS), creating a weighted 
junction  structure (WJS). 

The system equations implied by the diagram  of  Figure 5 
are 

z = @,(X) . . . storage field ( 3 4  

Do = @ P , )  . . . dissipation field (3b) 

u = @,(t) . . . source field ( 3 4  

dXldt = S,  I Z + S,,Do 

+ ’13’ . . .junction  structure (3d) 

D, = S,,Z + S,,Do + S,,U . . .junction  structure (3e) 

V =  S,,Z + S,,Do + S,,U . . .junction  structure  (3f) 

Proper use of  causality  leads to considerable insight about 
the  nature of the  equation structure. For example, one  can 
tell at  the causal graph level whether dependent C and/or I 
ports exist. 

Current status 
Once causality is assigned using the SCAP,  it is known 
whether or not S,, is zero [lo]. If S,, is  zero, then  no 
implicit R-fields exist, and a straightforward  procedure  for 
integrating the system equations  can be employed. If the 
bond graph contains  some implicit R-fields (IRFs), they can 
be identified and isolated by the proper use of  causality data 
[ 1 11. The Do and Di vectors can be sorted into explicit and 
implicit subsets. Then  the implicit Do and  D,  can  be  further 
grouped by their fields, leading to a block form of equations. 
These  features  have  been implemented  in  the  ENPORT-6 
program, a nonlinear  bond graph processor [ 5 ] .  

C 

T- l 7  0-1-1 Is‘ 19 20 

- 1 L R  

0 

’1 
R 

Source  field 

r - 4  
General junction 

structure 

R 
Dissipation field 
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1. Identify the separate  implicit R-fields. 
2.  For each  implicit R-field, 

a. Find  the  minimum  number of iteration variables; 
b. Find a suitable set of  iteration variables that is 

minimum  in  number; 

iterative  solution. 
c. Organize the  equations  in a form  leading to efficient 

Referring to  the field structuring of systems equations of 
the previous  section, the particular subset of equations with 
which we are concerned is 

Do = @JDi), (4) 

Di = S,, Z + S,,Do + S,,U. ( 5 )  

We seek an efficient solution to these equations  at each time 
step, given values  for the 2 and U vectors. A more succinct 
form for the  equations is 

Do = @JD,h ( 6 )  

D, = S,,Do + C, (7) 
where C is a constant vector. Clearly, it would be possible to 
iterate on  the D, vector to  obtain a solution to  the problem. 
It should be noted that formulating the problem  in  this 
manner implies that either all T and G nodes  have constant 
moduli, or they are all evaluated at each time step and 
treated  as constant over the integration  interval. Under these 
conditions, their effects can  be  captured in the S,, matrices. 

We impose  two  restrictions on  the R-field problem, which 
still leaves us with the most common practical subclass of 
the general problem: 

1. All R nodes  in  implicit fields are 1-ports. 
2.  The  bond graph  does not  contain T and G nodes in  the 

implicit fields. 

The resulting problem is practically important, since typical 
dynamic models  of  electromechanical and electrical systems 
fall within the subclass. Extension to  the  more general 
problem is an  open research issue. 

Some preliminaries 
The first level of  organization  of the system R-fields derives 
from  applying the SCAP to  the source (E, F)  and storage 
(C, I) nodes. If causality is completely assigned by these 
steps, then  no implicit R-fields exist. Assume that  this is not 
the case; then  some  bonds  are acausal. We now attend  to  the 
acausal  part  of the  bond graph. 

subgraph  composed  of all nodes with at least one acausal 
incident bond,  the separate  implicit R-fields can be 
identified. Acausal fields that do not have at least one R 
node will not  concern us further here: They are  junction 
structure (JS) complexes. The  bonds  in  the  IRFs  can be 
ordered by field, thereby  grouping the  equations  into blocks. 

By using simple  reach  relation  calculations on  the 
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Now we arrive at  the basic questions  for a given IRF. 
Subject to  the restrictions  imposed  earlier,  each obeys local 
equations of the form  of Equations (6) and (7). We ask, 
“What is the smallest number of  iteration variables?” “How 
can such a set be found?” “How should equation set (6) ,  (7) 
be used for best computing efficiency?” 

Implicit R-jield equation formulation 
The  bonds of a given IRF  can be sorted into  one of three 
mutually exclusive sets: 

1. The external  bonds, connecting  the  IRF  to  the rest of the 

2.  The  bonds  incident  to R nodes, with which are associated 

3. The  remaining bonds, which are  internal  to  the (local) 

graph  (these bonds  are causal). 

the (local) D, and Do vectors. 

junction  structure (JS). 

First we focus on  the JS. Earlier work [ 141 has shown that 
there are two critical numbers associated with a JS. These 
indicate the  number of effort ( E )  and flow ( F )  inputs 
required at  the JS ports in order  to  determine all internal 
variables and  the  outputs.  For completeness we state  the rule 
here  for  calculating the numbers: 

E = N B + N o - N , - B o ,  

F = N , + N , - N , - B , ,  
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An example of an  IRF. (a) Bond graph of the R-field and the values 
needed for the calculation of Equations (8) and (9). (b) The vectors 
from Equations (10) and ( 1 1). 

where 

NB is the number of bonds of the JS, 
No is the number of 0-junctions, 
N ,  is the number of I-junctions, 
Bo is the number of bonds incident to the 0-junctions, 
B, is the number of bonds incident to the 1 -junctions. 

Next, we observe that a JS composed only of 0- and 1- 
junctions has a pair of separate but related transformations 
associated  with it. Namely, input efforts determine output 
efforts, and input flows determine output flows. 
Furthermore, if all  powers at the JS ports are oriented out 
(or all in),  the associated matrix is skew-symmetric, subject 
to proper ordering of the port variables [ 10, IS]. 

Now assume that causality assignment to the IRF has 
been completed and is consistent. The preceding 
observations allow us to organize Equations (6) and (7) in 
detail as follows. 

Sort the D, and Do vectors into a resistance  set (r)  and a 
conductance set (g).  The r set  has flow inputs to the R nodes 
and effort outputs; the g set  has  effort inputs to the R nodes 
and flow outputs. Write Equation (6) as 

e, = 4Xf,)> 

f, = 4Jg(eg), (11) 

where e, andf, are associated  with the r bond set, andf, and 
eg are associated  with the g bond set. Write Equation (7) as 

S. J .  HOOD ET AL. 

Since the (0, 1 )  JS transforms efforts to efforts and flows to 
flows, then S22r, and S2, must be  zero. Consequently, we 
have 

f ,  = S22& + cr, (14) 

ex = S22,,e, + cg. (15) 

Furthermore, we note that  the combined set (6, eJ contains 
the JS outputs, while the combined set (&, e,) contains the 
JS inputs. We are now prepared to state the computational 
algorithm. 

Algorithm 
A computational algorithm for  solving implicit R-fields  by 
local iteration methods is stated below: 

1. Assign causality to  the source and storage nodes, using 

2. Identify  each implicit R-field  within the (partially) causal 
bond graph. 

3. For each implicit R-field: 
a. Calculate E and F. 

the SCAP. 

If either E or F is  less than one, stop. (There is no 
guarantee that there are unique outputs from the 
inputs for this JS.) 

b. Obtain a complete, consistent causal orientation for 

c. Order the R bonds by resistance (r) ,  then conductance 

d. Assume that E is  less than or equal to F. Usef, as the 

the IRF. (It will obey the E, F numbers.) 

(g)  causality. Define the vectors e , L , f , ,  and eg. 

iteration vector. Make an initial guesshi  forf,. 
Use Equation (10) to find e,. 
Use Equation (1 5 )  to find eg. 
Use Equation ( 1  1) to findf,. 
Use Equation (14) to findf,. 
Comparedi  to f,. If the error is within tolerance, 
stop. Else return to Equation ( I O )  and repeat 
sequence with the new  guess forf,. 
Note: If E is greater than F, use eg as the iteration 
vector. The equation order is then ( I   I ) ,  (14), (IO), 
(15). 

Observations about the algorithm 
We observe that the  minimum iteration set that we  seek has 
the size min(E, F ) .  This is always  less than or equal to one 
half the number of bonds on  the IRF R nodes. Reducing the 
dimension of the iteration vector has a major positive 
influence on computing efficiency, as noted previously. 

The restrictions placed on  the problem structure can be 
relaxed to a certain extent without changing the algorithm as 
stated above. A given IRF can contain R nodes with more 
than 1 port, provided  each such R node is a pure r, or a pure 
g, type.  See Equations (10) and ( 1  1) in this regard. In 
addition, the R-field JS can contain T nodes, since they do 
not alter the structure of the effort-to-effort,  flow-to-flow 
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transformation  properties. See Equations ( 12) and ( 13). As 
mentioned previously, if the T nodes are  modulated, we 
assume  them  to be constant over a single integration 
interval. Their effects are  combined  into  S2z. 

Some examples 
An example of an implicit R-field with three  I-port R nodes 
is given in Figure 6(a). The  inputs  to  the  IRF  are  e,  and e,. 
The goal is to calculate all R-field variables. We first find E 
and F from the  data given: 

E = 3 + 0 -  1 - 0 = 2 ,  

F = 3 + 1 - 0 - 3 = 1 .  

A solution does exist, since both E and  Fare  greater than 
zero. We  obtain a complete,  consistent  causal orientation,  as 
shown  in Figure 6(b). The ordered r bond vectors are 
defined, based on  the causality, as indicated in  the figure. 
The  equations  can be written as 

e, = @,(1; ) ,  (16) 

e, = @,(f,X (17) 

f, = @,(eJ, (18) 

1; =f,> (19) 

f, =A' (20) 

(21) e = - e  1 - e, + (ea - eb). 

A suitable  iteration vector is  e,,  since E is greater than F. 
The iterative  solution pattern is ( 1  8), (19),  (20),  (16), ( 1  7), 
(2 1). 

Another example is shown in Figure 7(a). On  the basis of 
the R-field structure, we get 

E = 6 + 1 - 3 - 3 = 1 ,  

F = 6 + 3 - 1 - 6 = 2 .  

A satisfactory causal orientation is shown  in Figure 7(b). 
The ordered r bond variables are indicated: 

e, = @,(1;X (22) 

f, = b,(eJ, (23) 

f, = @,(e,), (24) 

f; =f, +A> (25) 

e, = -e, + (e, + eb), (26) 

e, = -e, + (e, + ec). (27) 

Since E is less than F, used  as  the  iteration variable. The 
equation sequence  is (22),  (26),  (27),  (23),  (24),  (25). 

4 6 
L l - 0 - 1 -  Externa1bonds:u.b.c 

R-field bonds: 1-6 '1 '1 '1 N B =  6 

R ' / l \  R3 
N o =  1 B o =  3 

R2 N , = 3  B I = 6  

(a) 

have  illustrated  its  application to  an electromechanical 
device, a relay. We have stated a major objective of 
completely automating  the generation and solution of 
system equations, given a bond graph  model. A major 
problem was discussed, namely the calculation  of  implicit 
R-fields, which generally leads to coupled nonlinear algebraic 
equations. An algorithm was presented to  treat a major 
subclass of the general problem.  Its implementation will lead 
to increased efficiency in  the iterative  solution  of  implicit 
equations. 

At least three questions remain  to be answered: 

1. Can  the given algorithm be extended to  treat  the  more 
general R-field problem? More specifically, can  the 
restriction on  multiport R nodes  within an implicit 
R-field having  mixed  causality be relaxed? And can 
gyrators be included in  the field junction structure? 

2. Within the framework  of the given algorithm,  what  is the 
numerically  most  robust set of  iteration variables to use? 
No attention has  been given to  that  important issue in 
this paper. 

3. Should systems with modulated  transformer  and gyrator 
nodes be treated differently from  current practice? 

Summary We look  forward to  continued progress in  obtaining 
In  this  paper we have introduced  the  bond  graph maximum efficiency from  bond graph computing methods, 
representation for physical (i.e., energy-based) systems and as a step  toward the goal of  completely automated solution. 
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