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II: Implementation
and application

by Siavash N. Meshkat
Constantine M. Sakkas

Voronoi diagrams have many novel applications
in computer-aided design. In this paper, an
implementation of a Voronoi diagram algorithm
described in a companion paper by Srinivasan
and Nackman is presented. This Voronoi
diagram is then used for an application in which
equivalent resistance networks are derived from
a boundary representation of a two-dimensional
VLSI geometry.

1. Introduction

Voronoi diagrams have interesting geometrical properties
that make them attractive for many computer-aided design
applications. In particular, an important problem in the
electrical analysis of VLSI designs is the extraction of an
equivalent resistance network from a polygonal
representation of its geometry. This problem can be

solved efficiently by generating the skeleton of the polygon
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and converting the skeleton directly into an electrical
network graph with the appropriate branch resistances.
Interestingly, the skeleton (also called the symmetric axis) of
a given domain is a subset of the corresponding Voronoi
diagram [1]; hence the network can be extracted by first
obtaining the Voronoi diagram.

There are theoretical Voronoi diagram algorithms
reported in the literature that handle general cases of discrete
points and line segments in a plane [2-4], and subsume the
case of multiply-connected polygons that are of interest to
us. However, these algorithms are too complex for
implementation, and to our knowledge no details of their
implementation exist. Only one, due to Lee [1], shows an ’
implementation of a Voronoi diagram algorithm for simply-
connected polygonal domains. The algorithm due to
Srinivasan and Nackman (5], described in a companion
paper, is applicable to our multiply-connected polygonal
domains, efficient in terms of its time complexity, and
relatively simple to implement.

In Section 2, the data structures and basic geometrical
computations involved in our implementation of that
algorithm are discussed. Section 3 gives important details of
our implementation and compares the theoretical upper
bound for the time complexity with experimental data
derived from our program execution. We describe in Section 373
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. Edge data structure: Each directed edge is a twin of the other. FROM
and TO are the endpoints of the directed edge. THIS and OTHER are
the elements of the original polygonal boundary whose bisector con-
tains the edge.

4 how an equivalent resistance network can be derived using
the Voronoi diagram of a two-dimensional VLSI geometric
specification. In Section 5, an approach for obtaining the
branch resistances of the resistance network is presented.

2. Data structures and geometrical
computations

The choice of data structures is one of the most critical
decisions in designing a geometrical algorithm. To make this
choice, one must first derive data abstractions for the objects
to be modeled and their relationships. There are three basic
objects that can represent a Voronoi diagram—the same
objects that describe a polygon: regions, edges, and vertices.

Each region is bounded by a chain of edges, and each edge
is shared by exactly two regions. Each edge is bounded by
two vertices (one of them could be at infinity), and each
vertex can be shared by many edges. It is convenient to
represent an edge by two directed edges that oppose each
other, and to associate each directed edge with a region that
lies to the left of it. These two directed edges are twins. Note
that each Voronoi region is associated with a vertex or an
edge of the original polygon, and it is convenient to refer to
these regions in terms of the corresponding vertex or edge.
This model is essentially equivalent to the winged-edge data
structure [6] or the doubly-chained edge list (DCEL) [7].
Figure 1 summarizes the edge data structure that we have
adopted.

In addition to the incidence and connectivity relations
described above, some geometrical data should be stored.
The boundary edges of our Voronoi regions are line
segments, parabolic arcs, or half-lines. In processing
intermediate data, there is also a need to represent entire
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lines. One field called STYLE in the data structure for an
edge can take on a value STRAIGHT or PARABOLA, and
another field TYPE can take on a value OPEN, OPENTO,
OPENFROM, or CLOSED to represent the geometric form
of an edge.

The endpoints of the edges are the vertices that can be
stored in the fields FROM and TO, one or both of which can
be at infinity. A line segment is completely determined by its
endpoints. A half-line is determined by one of its endpoints
and by a direction which can be inferred from the THIS and
the OTHER fields, which give the elements whose directed
bisector contains the half-line. A line is also similarly
determined by the THIS and the OTHER fields. In the case
of a parabolic arc, FROM and TO fields give the endpoints,
and THIS and OTHER fields give the directrix and the focus
of the directed parabola that contains the arc. Optional
geometric information can also be stored to speed up the
processing. For example, coefficients of the line equation
associated with lines, half-lines, and line segments can be
stored with a straight edge. Three optional parameters stored
with a parabolic edge can speed up certain linear
transformations needed in geometric calculations.

The most frequently encountered geometric calculation in
the Voronoi algorithm is the intersection of bisectors.
Intersection of lines can be computed simply by solving two
linear equations. Intersection computation of a line and a
parabola involves solving a quadratic equation, which is
easily available in closed form. Intersection of two arbitrary
parabolas involves the solution of a fourth-degree
polynomial equation. However, the parabolas which are
required to intersect in the Voronoi algorithm have the
interesting property that they share either the directrix or the
focus. This reduces the problem to one of computing the
intersection of one of the parabolas and a line (which is the
bisector between the unshared directrices or foci), which can
be done easily in closed form.

Another important geometric computation is to determine
whether a bisector enters a Voronoi region, or, equivalently,
whether a bisector enters the positive side of an edge. If the
bisector and the edge are linear, this computation is trivial. If
the bisector or the edge or both are parabolic, we use the
tangent(s) at the point of intersection to answer this
geometric question.

All of our geometrical computations were carried out
using floating-point numbers, and we compared two floating-
point numbers to within a small value e. The choice of ¢ can
be made relative to the coordinate ranges in the problem
space. In our implementation, ¢ was chosen to be 107,
where u is the smallest unit of coordinates. In most cases
u=1.

3. Algorithm implementation and performance

The Srinivasan-Nackman algorithm [5] for multiply-
connected polygonal domains uses the internal and external
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Voronoi diagrams of simply-connected polygonal domains,
and then merges them in a specific sequence. We
implemented the O(n log, n) algorithm due to Lee [1], which
uses a divide and conquer strategy, to compute these internal
Voronoi diagrams of simply-connected domains. We also
extended Lee’s algorithm to compute the external Voronoi
diagrams of simply-connected domains. A major part of the
implementation of Lee’s algorithm was the merge procedure,
which merges the Voronoi diagrams of two chains of edges.
In fact, much of this code was also used in computing the
merge curve in the Srinivasan-Nackman algorithm.

Srinivasan and Nackman have outlined a procedure to
compute the starting point on their merge curve (see [5] for
details). In a part of this procedure they obtain a segment of
a half-line /, that lies in the closure of a Voronoi region, and
then intersect this segment with a bisector. In our
implementation, we first computed the intersection between
the half-line /, and the bisector, and then checked whether
this intersection is contained in the closure of the Voronoi
region. This change was made in order to economize on new
code, and it does not change the worst-case complexity of
the algorithm.

The procedure to obtain the merge curve outlined by
Srinivasan and Nackman was implemented using essentially
the same code that was used in the merge step of Lee’s
algorithm, with some additional code for the termination
condition and postprocessing. The quantity of code added
for the termination condition is relatively small. A
postprocessing step was needed for the following reason. In
Lee’s algorithm the starting point on the merge curve is also
a Voronoi vertex, and it lies on the boundary of two of the
unmerged Voronoi regions. Starting at this point, we
computed which of the two Voronoi regions was exited first
by the bisector between the elements that own the Voronoi
regions. The Voronoi region that we exited first was updated
by including new edges and vertices and discarding old edges
and vertices. In the Srinivasan-Nackman algorithm, the
starting point usually lies in the interior of two Voronoi
regions, and upon exiting any of these Voronoi regions we
could not update the Voronoi region that we exited. We kept
the information regarding the first two Voronoi regions and
updated them in the postprocessing step.

Storage management was quite critical in our
implementation since we allocate and free a very large
number of objects in our VLSI applications. On the basis of
theoretical upper limits, storage pools were obtained for
objects such as vertices and edges. Then each area was
managed by a storage management subsystem. This
subsystem provided services such as allocating and freeing
each object as well as keeping track of the usage of these
objects. In the worst case, our scheme might use slightly
more storage than allocation and deallocation for each object
instance, but it improves performance and prevents internal
storage fragmentation.
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Voronoi diagram of a simply-connected nonorthogonal object.

—

We implemented the algorithm in PL/I in about 4000
lines of code organized in 73 procedures. The procedures
were grouped into algorithmic, geometric, arithmetic, storage
management, and input/output subsystems. The algorithmic
subsystem is a collection of modules that implement the Lee
and Srinivasan-Nackman algorithms. It governs the flow of
control and the termination conditions. The geometric
subsystem performs all of the manipulations on vertices,
edges, and regions. Its tasks include the following: the
computation of bisectors, distance between edges and
vertices, and point of intersection between straight and
parabolic bisectors; and the linear transformation of
coordinate systems. The arithmetic subsystem performs tests
for approximate equality of floating-point values. The
storage management subsystem is a specialized set of
routines to allocate, replace, free, and monitor the usage of
points and edges. The input/output subsystem reads and
sorts the vertices of the input polygons and creates printable
and plot-ready output. It also contains optional plotting of
intermediate results for debugging and step-by-step
demonstration. The work from initial understanding of the
algorithm to producing a running code was done in four
person-months.

Examples of output from our implementation are
presented in several figures. Figure 2 shows the Voronoi
diagram of a simply-connected nonorthogonal shape. The
boundary edges of the Voronoi diagram are color-coded.
The edges of the input polygon are shown in blue, and the
interior is lightly shaded in blue. Each bisector of adjacent
vertices is green, while bisectors of nonadjacent edges are
red. The bisectors of a vertex and its adjacent edges are
depicted in turquoise. The pink bisectors lie between a
vertex and its nonadjacent edges.
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Figure 3 displays the Voronoi diagram of a simply-
connected orthogonal polygon. In this figure parabolic (pink)
Voronoi edges exist at concave vertices of the original
polygon. We can associate two “widths,” one in each of the
two orthogonal directions, with each concave vertex. If X is
the ratio of the smaller width to the larger width at each
concave vertex, the concave vertices in this figure have A
values of 1.0, 0.5, 0.33, and 0.25. For 0.5 < X = 1.0, there
are two parabolic arcs associated with the corresponding
concave vertex. For A < (.5, there is only one parabolic arc
associated with the corresponding concave vertex. This
property can easily be proven theoretically.

Figure 4 shows a multiply-connected polygonal domain
with one hole. The hole boundary is blue, and the interior of
the hole is heavily shaded in blue. In this figure we have an
additional class of bisectors, namely the bisector between
two vertices, which are shown in yellow. Figure 5 shows a
nonorthogonal case with a hole placed very close to one of
the exterior edges. The closed merge curve is very evident in
this figure as the closed set of red and pink edges
surrounding the hole. Inside the closed merge curve only the
external Voronoi diagram of the hole is present. Outside the
merge curve, only the internal Voronoi diagram of the outer
boundary is present.

Figure 6 shows a multiple hole mix of orthogonal and
nonorthogonal geometries which occur in real cases. Each
hole has a closed merge curve associated with it, but some of
the edges of the merge curve may be shared with other holes.
Figure 7 is the complete Voronoi diagram of the outline of a
human figure.

Experimental timing data support the worst-case analysis
[5] while pointing out their conservative nature. There are
two main variables that control the run-time: total number
of vertices (V) and number of holes (H). The theoretical
time complexity of the algorithm is O(N(log, N + H)). It is
always true that H < N/3 and for orthogonal geometries
H < N/4. The upper bound O(NH) seems to be too
conservative in practice, due to the fact that holes are
processed in a sorted order as demanded in [5], which often . Two resistance networks: (a) Equivalent resistance network for a

L . . simple VLSI cell; (b) alternate equivalent resistance network for the
has the beneficial side effect of reducing redundant or same cell.
(eventually) useless computation.

Table 1 presents some collected data. In some cases
H = N/3, which was close to the worst case. We did not
attempt to find the worst possible hole-insertion sequence.

Analysis of these and other collected data shows the 4. Equivalent resistance network
following: An important part of a dc electrical analysis of a VLSI
design is to compute its equivalent resistance network from
. For given H and values of N between 4 and 2000, the the physical description of the design. This network,
run-time variation is practically linear, with no trace of representing the design, consists of ports (contacts or

log, N factor (which should contribute at least one order terminals) as the nodes and resistors as the edges of the

of decimal magnitude in that range). network. Given a set { p} of P ports, the complete resistance

. For a given N, the run-time variation is sublinear with matrix will consist of elements R, where 1 </ <j=<P.
respect to H. The reason (or speculation) for this was Figure 8(a) shows the complete network computed in this
given earlier. manner for a simple design. The most common approach to

Internal and external Voronoi diagrams of a human figure.
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Input: Voronoi diagram of multiply-connected polygonal
domain.
Output: Electrical network graph.

1. Create pseudoports at junctions.
a. Identify Voronoi edges (“branches™) that are bisectors
of nonadjacent edges of the input polygons.

. Collect groups of ordered Voronoi vertices, such that
each group defines a pseudoport and the ordered
vertices within the group define a polygon for the
pseudoport.

. Locate real ports within Voronoi regions. For each real
port,
a. Ifit coincides with a pseudoport, flag the pseudoport
as a real port.
b. Else move the real port to the nearest branch, and split
the branch into two.
. Convert the branches and the ports (pseudo and real) into
edges and vertices of an electrical network graph.

Branch resistance between ports.

deriving such complete resistance networks is the use of the
finite-element method [8]. In this approach the domain is
divided into many finite elements, and the global electrical
conductivity matrix for the entire domain is obtained by
assembling the elemental conductivity matrices. If M is the
number of nodes in the finite-element discretization, then by
proper node numbering one can obtain the global
conductivity matrix having M rows and VM bandwidth.
This banded matrix can be triangulated in O(M?) time. The
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triangulated matrix also has a bandwidth of VM by use of
which one solution vector can be obtained in O(M” ?) time.
For P ports, P — 1 independent solutions must be obtained
in order to compute the total resistance matrix, and this
takes O(M*P) time. Hence the total resistance matrix can
be obtained in O(M T4 MY 2P) time. This resistance matrix
is then used in further electrical simulation calculations.

The above-mentioned approach is very accurate and can
handle any kind of geometric design. However, the
computational time can be quite large, especially when
complex geometries and many ports are involved. Moreover,
the complete resistance matrix is not necessary for most
applications. In Figure 8(b) we propose an equivalent
resistance network for the same design. This network is
produced using the idea of Voronoi diagrams. Additional
ports, called pseudoports (5 and 6), are placed in every
location of geometric irregularity (corners, T-junctions, etc.)
in the design. Then all real ports and pseudoports that lie
along the same conducting path are connected to produce
the resistance network. The introduction of pseudoports
considerably simplifies the resistance network and permits
the calculation of the resistive elements by the use of a
simple formulation described in the next section. In
addition, the solution of this network provides more
information about the design, since every resistance element
is related to a particular path of the design. Current densities
of the conducting paths, voltage drops, and so on can easily
be obtained and interpreted.

There have been attempts in the past [9] to develop
algorithms that produce an equivalent resistance network
given a design consisting of long rectangular shapes. They
employ a pattern recognition approach with a time
complexity O(N°), where N is the number of vertices. A
major disadvantage of this approach is its inability to deal
with multiply-connected geometries (shapes with holes) or
even geometries with general irregularities such as
nonorthogonal corners. Qur approach exploits the power of
the Voronoi diagram and solves the problem of arbitrary
geometric complexity of the physical design. The time
needed to obtain the solution is wholly based on the
Voronoi algorithm and is independent of the geometric
complexity of the design.

An algorithm for computing an electrical network graph
from the Voronoi diagram is shown in Figure 9. Only the
Voronoi edges that are bisectors of nonadjacent edges in the
input polygons are considered as branches in the electrical
network. These Voronoi edges are line-segments which are
connected by parabolic arcs (bisectors between edges and
vertices) and line-segments (bisectors between vertices). The
branches are identified (step la in Figure 9) by examining
the Voronoi edges of each of the Voronoi regions; their
connectivity is also determined (step 1b) in this process.
Since there are O(N) Voronoi edges in a Voronoi diagram
and each Voronoi edge is examined only twice in this
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Branch resistances in an L-shaped design.

process, the entire step 1 takes O(N) time. At the end of step
1, we have the branches and the pseudoports in our network.

Step 2 locates the real port within this network. Each real
port is considered to be a point, and this point can be
located within a Voronoi region in O(log, V) time. Since
there are P ports, all of them can be located in O(P log, N)
time. If a real port coincides with a pseudoport (within a
small distance metric) the pseudoport is flagged as a real
port. Otherwise, the real port is moved to the nearest point
on a branch associated with the Voronoi region, and the
branch is split into two branches meeting at a real port.

The final step, 3, converts the branch and port
information into a network graph having edges and vertices.
With proper data structuring, we can achieve this trivially
at the completion of steps 1 and 2; hence the total time
taken is O(N + P log, N) for the algorithm shown in
Figure 9. Usually P <« N, and the Voronoi algorithm takes
O(N(log, N + H)) time. The total time taken for the entire
process is usually O(N(log, N + H)).

In addition to the network graph information, we also
need the branch resistance values for the electrical network
simulation. We address this in the next section.

5. Branch resistances

The resistance R of a long rectangular conductor of length /
and width w is simply represented by R = (//w)R_, where R,
is the square resistance. This relation assumes that the two
ends of the conductor are completely covered by existing
ports. As the width of a port decreases in relation to the
width of the conductor, its resistance increases. Table 2,
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@ (b)

Corner conditions with (a) acute and (b) obtuse angles.

Table 2 Correction factor due to ports as a function of width
ratio.

w,/w, C
1.0 0.0000
0.9 0.0028
0.8 0.0083
0.7 0.0170
0.6 0.0294
0.5 0.0455
0.4 0.0667
0.3 0.0932
0.2 0.1272
0.1 0.1737

which was obtained through numerous runs of a finite-
element program, gives a correction factor C as a function
of the ratio of the port width w, to the line width w,. Thus,
the resistance of the line shown in Figure 10 would be
R={(l/w) + CIR_, where C is the correction factor for

w p/w,.

The effect of a corner on two branch resistances is
considered next. It was observed through numerous runs of a
finite-element program that the resistances of two branches
shown in Figure 11 were affected only by the ratio of the
lengths / , and / , to the sum of the widths. Here ¢ and b are
the feet of the perpendiculars from the concave corner to the
axes of the two branches, /_, is the distance between o0 and a,
and /, is the distance between o and 5. Note that g and b are
also Voronoi vertices. /,, and / , are not always half of the
widths of the branches because they depend on the angle
between the branches. For example, in Figure 12(a) the two
branches meet at an acute angle, and /, and /, are larger

than the semi-widths. Similarly, in Figure 12(b) the two
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Branch resistances in a T-shaped design.

o5

Table 3 Correction factor due to corner as a function of width
ratio.

w /W, C
1.0 0.568
0.9 0.570
0.8 0.576
0.7 0.589
0.6 0.612
0.5 0.652
0.4 0.713
0.3 0.823
0.2 0.996
0.1 1.362

branches meet at an obtuse angle, resulting in smaller values
for /,, and [, than the semi-widths. Table 3 gives the
correction factor C for the branch resistances as a function
of the ratio of the branch widths. The two resistances are
calculated as

R, = {(1,/w,) + 2CL,/(w, + w)IR,,
R, = {(L/wy) + 2CL J(w, + w)R.,

where C is the correction factor for w,/w, from Table 3.
These equations are also applicable for branches that meet at
angles other than 90°.

Using Tables 2 and 3, we can derive all branch resistances
after the introduction of pseudoports. As an example,
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consider a T-shaped junction, as shown in Figure 13. We
can calculate four resistances as

R, = {(,/w) + 2CL,,[(w, + 0.5w)IR,,,
R, = {(L/w) + 2CL,/(w, + 0.5W)IR,,
R,, = {21,/w,) + 2CL,/(w, + 0.5w)iR_,
Ry, = 1(21,/w,) + 2Cl J(w, + 0.5W)IR, .

The final equation for the resistance of the horizontal branch
is derived by adding R,, and R,, in parallel, giving

R, = R, Ry,/(Ry + R,).

6. Conclusions

Voronoi diagrams are practical and valuable tools for
performing a variety of geometric tasks. The algorithms
proposed by Lee [1] and by Srinivasan and Nackman [5]
have proven to have industrial strength and practicality. The
run-times of these algorithms are quite satisfactory.

A Voronoi diagram of VLSI geometry can be used to
obtain extremely accurate information about the nature of
the layout and the terrain changes: e.g., to reduce a typical
VLSI cell layout to its equivalent resistance network. The
accuracy of this approach for designs with many thin
rectangular segments compares well with that of finite-
element analysis, while the computational time and the
main memory requirements are reduced considerably.

Our experience with Voronoi diagrams indicates that they
should be integrated into the data model of any CAD/CAM
database. This will require development and implementation
of Voronoi diagram algorithms for more general objects.
Once the Voronoi diagrams of all the objects are computed,
it should be possible to answer just about any geometric
query in linear time with respect to the number of Voronoi
edges.
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