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Voronoi diagrams have many  novel  applications 
in computer-aided design. In this paper, an 
implementation of a  Voronoi  diagram  algorithm 
described in  a  companion paper by  Srinivasan 
and Nackman is presented. This  Voronoi 
diagram  is  then used for an application in which 
equivalent resistance networks are derived from 
a  boundary representation of a  two-dimensional 
VLSl  geometry. 

1. Introduction 
Voronoi  diagrams  have  interesting  geometrical  properties 
that  make  them attractive  for many computer-aided design 
applications. In particular, an  important problem in  the 
electrical analysis of VLSI designs is the extraction  of an 
equivalent resistance network from a polygonal 
representation  of  its geometry. This problem can be 
solved efficiently by generating the skeleton  of the polygon 
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and converting the skeleton directly into  an electrical 
network graph with the  appropriate  branch resistances. 
Interestingly, the skeleton (also called the symmetric axis) of 
a given domain is a subset of the corresponding  Voronoi 
diagram [ 11; hence the network can be extracted by  first 
obtaining the Voronoi  diagram. 

There  are theoretical  Voronoi  diagram  algorithms 
reported  in the literature that  handle general cases of discrete 
points and line  segments in a  plane [2-41, and  subsume  the 
case of  multiply-connected polygons that  are of interest to 
us. However, these  algorithms are  too complex for 
implementation,  and  to  our knowledge no details of their 
implementation exist. Only  one,  due  to Lee [ 11, shows an 
implementation of a  Voronoi  diagram  algorithm for simply- 
connected polygonal domains.  The algorithm due  to 
Srinivasan and  Nackman [SI, described in a companion 
paper, is applicable to  our multiply-connected polygonal 
domains, efficient in terms of  its time complexity, and 
relatively simple to  implement. 

In Section 2, the  data  structures  and basic geometrical 
computations involved in our implementation of that 
algorithm are discussed. Section 3 gives important details  of 
our  implementation  and  compares  the theoretical upper 
bound for the  time complexity with experimental data 
derived from our program  execution. We describe in Section 
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4 how an equivalent resistance network can be derived using 
the Voronoi diagram of a two-dimensional VLSI geometric 
specification. In Section 5 ,  an approach for obtaining the 
branch resistances  of the resistance  network  is presented. 

2. Data structures and geometrical 
computations 
The choice of data structures is one of the most critical 
decisions in designing a geometrical algorithm. To make this 
choice, one must first derive data abstractions for the objects 
to be modeled and their relationships. There are three basic 
objects that can represent a Voronoi diagram-the same 
objects that describe a polygon:  regions,  edges, and vertices. 

is shared by exactly  two  regions.  Each  edge is bounded by 
two  vertices (one of them could be at infinity), and each 
vertex can be shared by many edges.  It  is convenient to 
represent an edge by two directed edges that oppose each 
other, and to associate  each directed edge  with a region that 
lies to the left  of it. These two directed edges are twins. Note 
that each Voronoi region is associated  with a vertex or an 
edge of the original polygon, and it is convenient to refer to 
these  regions in terms of the corresponding vertex or edge. 
This model  is  essentially equivalent to the winged-edge data 
structure [6] or the doubly-chained edge  list (DCEL) [7]. 
Figure 1 summarizes the edge data structure that we have 
adopted. 

In addition to the incidence and connectivity relations 
described above, some geometrical data should be stored. 
The boundary edges  of our Voronoi regions are line 
segments, parabolic arcs, or half-lines. In processing 

Each  region  is bounded by a chain of edges, and each  edge 

374 intermediate data, there is also a need to represent entire 
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lines. One field called STYLE in the  data structure for an 
edge can take on a value STRAIGHT or PARABOLA, and 
another field TYPE can take on a value OPEN, OPENTO, 
OPENFROM, or CLOSED to represent the geometric form 
of an edge. 

The endpoints of the edges are  the vertices that can be 
stored in the fields FROM and TO, one or both of which can 
be at infinity. A line segment is completely determined by its 
endpoints. A half-line  is determined by one of its endpoints 
and by a direction which can be inferred from the THIS and 
the  OTHER fields,  which  give the elements whose directed 
bisector contains the half-line. A line is also similarly 
determined by the THIS and the  OTHER fields. In the case 
of a parabolic arc, FROM and TO fields  give the endpoints, 
and  THIS and OTHER fields  give the directrix and  the focus 
of the directed parabola that contains the arc. Optional 
geometric information can also be stored to speed up the 
processing. For example, coefficients  of the line equation 
associated  with lines, half-lines, and line segments can be 
stored with a straight edge. Three optional parameters stored 
with a parabolic edge can speed up certain linear 
transformations needed in geometric calculations. 

The most frequently encountered geometric calculation in 
the Voronoi algorithm is the intersection of bisectors. 
Intersection of lines can be computed simply by solving  two 
linear equations. Intersection computation of a line and a 
parabola involves  solving a quadratic equation, which  is 
easily  available in closed form. Intersection of  two arbitrary 
parabolas involves the solution of a fourth-degree 
polynomial equation. However, the parabolas which are 
required to intersect in the Voronoi algorithm have the 
interesting property that they share either the directrix or the 
focus. This reduces the problem to one of computing the 
intersection of one of the parabolas and a line (which  is the 
bisector  between the unshared directrices or foci), which can 
be done easily in closed form. 

Another important geometric computation is to determine 
whether a bisector enters a Voronoi region, or, equivalently, 
whether a bisector enters the positive  side  of an edge.  If the 
bisector and the edge are linear, this computation is trivial. If 
the bisector or the edge or both are parabolic, we  use the 
tangent@) at the point of intersection to answer this 
geometric question. 

using floating-point numbers, and we compared two floating- 
point numbers to within a small value e .  The choice of e can 
be made relative to the coordinate ranges  in the problem 
space.  In our implementation, c was chosen to be 10-4u, 
where u is the smallest unit of coordinates. In most cases 
u =  1. 

All  of our geometrical computations were carried out 

3. Algorithm  implementation and performance 
The Srinivasan-Nackman algorithm [SI for multiply- 
connected polygonal domains uses the internal and external 
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Voronoi  diagrams  of  simply-connected polygonal domains, 
and  then merges them  in a specific sequence. We 
implemented  the O(n log,n) algorithm due  to Lee [ 11, which 
uses a divide and  conquer strategy, to  compute these internal 
Voronoi  diagrams  of  simply-connected domains.  We also 
extended Lee’s algorithm to  compute  the external  Voronoi 
diagrams of simply-connected domains. A major  part of the 
implementation of Lee’s algorithm was the merge procedure, 
which merges the Voronoi  diagrams  of  two chains of edges. 
In fact, much of  this  code was also used in  computing  the 
merge curve in  the Srinivasan-Nackman  algorithm. 

Srinivasan and  Nackman have  outlined a procedure to 
compute  the starting point on their merge curve (see [5] for 
details). In a part of  this  procedure  they obtain a segment of 
a half-line 1, that lies in  the closure of a Voronoi region, and 
then intersect this segment with a bisector. In our 
implementation, we first computed  the intersection between 
the half-line 1, and  the bisector, and  then checked  whether 
this intersection  is contained  in  the closure  of the Voronoi 
region. This change was made  in  order  to  economize  on new 
code, and it does  not change the worst-case complexity  of 
the algorithm. 

The procedure to  obtain  the merge curve  outlined by 
Srinivasan and  Nackman was implemented using essentially 
the  same code that was used in  the merge step  of Lee’s 
algorithm, with some  additional code  for the  termination 
condition  and postprocessing. The  quantity of  code added 
for the  termination  condition is relatively small. A 
postprocessing step was needed for the following reason. In 
Lee’s algorithm the starting point  on  the merge curve is also 
a Voronoi vertex, and it lies on  the  boundary of two of the 
unmerged  Voronoi regions. Starting at this point, we 
computed which of the two  Voronoi regions was exited first 
by the bisector between the  elements  that own the Voronoi 
regions. The Voronoi region that we exited first was updated 
by including new edges and vertices and discarding  old edges 
and vertices. In the Srinivasan-Nackman  algorithm, the 
starting  point usually lies in the interior  of  two  Voronoi 
regions, and  upon exiting any of  these  Voronoi regions we 
could not  update  the Voronoi region that we exited. We kept 
the  information regarding the first two  Voronoi regions and 
updated them in the postprocessing step. 

implementation since we allocate and free a very large 
number of objects in our VLSI applications. On  the basis of 
theoretical upper limits, storage pools were obtained  for 
objects  such as vertices and edges. Then each area was 
managed by a storage management subsystem. This 
subsystem provided services such as allocating and freeing 
each object as well as keeping track of the usage of  these 
objects. In the worst case, our scheme  might use slightly 
more storage than allocation and deallocation  for  each  object 
instance,  but  it improves performance and prevents internal 
storage fragmentation. 

Storage management was quite critical in our 

We  implemented  the algorithm in PL/I in  about 4000 
lines  of  code  organized  in 73 procedures. The procedures 
were grouped into algorithmic,  geometric, arithmetic, storage 
management,  and  input/output subsystems. The algorithmic 
subsystem is a collection of modules  that  implement  the Lee 
and Srinivasan-Nackman  algorithms. It governs the flow of 
control  and  the  termination conditions. The geometric 
subsystem performs all of the  manipulations  on vertices, 
edges, and regions. Its  tasks include  the following: the 
computation of bisectors, distance between edges and 
vertices, and  point of  intersection between straight and 
parabolic bisectors; and  the linear transformation of 
coordinate systems. The  arithmetic subsystem performs tests 
for approximate equality  of floating-point values. The 
storage management subsystem  is a specialized set of 
routines to allocate, replace, free, and  monitor  the usage of 
points  and edges. The  input/output subsystem reads and 
sorts the vertices of the  input polygons and creates  printable 
and plot-ready output. It also contains  optional plotting of 
intermediate results for debugging and step-by-step 
demonstration.  The work from initial  understanding  of the 
algorithm to producing a running code was done in four 
person-months. 

Examples  of output  from our implementation  are 
presented in several figures. Figure 2 shows the Voronoi 
diagram  of a simply-connected  nonorthogonal shape. The 
boundary edges of the Voronoi  diagram are color-coded. 
The edges of the  input polygon are shown in blue, and  the 
interior is lightly shaded in blue. Each bisector of  adjacent 
vertices is green, while bisectors  of nonadjacent edges are 
red. The bisectors of a vertex and its  adjacent edges are 
depicted  in  turquoise. The  pink bisectors lie between a 
vertex and its nonadjacent edges. 
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Figure 3 displays the Voronoi  diagram of a simply- 
connected  orthogonal polygon. In this figure parabolic (pink) 
Voronoi edges exist at concave vertices of the original 
polygon. We can associate two  “widths,” one in  each  of the 
two  orthogonal  directions, with each  concave vertex. If X is 
the  ratio of the smaller width to  the larger width at each 
concave vertex, the concave vertices in  this figure have h 
values of I.0,0.5, 0.33, and 0.25. For 0.5 < X I 1.0, there 
are two  parabolic  arcs associated with the corresponding 
concave vertex. For X I 0.5, there is only one parabolic arc 
associated with the corresponding  concave vertex. This 
property can easily be proveq theoretically. 

Figure 4 shows  a  multiply-connected polygonal domain 
with one hole. The hole boundary is blue, and  the interior  of 
the hole is heavily shaded in blue. In this figure we have an 
additional class of bisectors, namely the bisector between 
two vertices, which are shown in yellow. Figure 5 shows a 
nonorthogonal case with a  hole placed very close to  one of 
the exterior edges. The closed merge curve is very evident  in 
this figure as  the closed set of red and pink edges 
surrounding  the hole. Inside the closed merge curve  only the 
external  Voronoi  diagram  of the hole is present. Outside the 
merge curve,  only the  internal Voronoi  diagram  of the  outer 
boundary is present. 

Figure 6 shows  a  multiple hole mix of orthogonal and 
nonorthogonal  geometries which occur  in real cases. Each 
hole has  a closed merge curve associated with it, but  some of 
the edges of the merge curve may be shared with other holes. 
Figure 7 is the  complete Voronoi  diagram  of the  outline of  a 
human figure. 

Experimental timing  data  support  the worst-case analysis 
[ 5 ]  while pointing out their  conservative nature.  There  are 
two main variables that  control  the run-time:  total number 
of vertices ( N )  and  number of holes ( H ) .  The theoretical 
time complexity  of the algorithm is O(N(log,N + H ) ) .  It is 
always true  that H < N/3  and for orthogonal  geometries 
H < N/4 .  The  upper  bound O(NH) seems to be too 
conservative  in practice, due  to  the fact that holes are 
processed in a  sorted order  as  demanded  in [ 5 ] ,  which often 
has the beneficial side effect of reducing redundant or 
(eventually) useless computation. 

Table 1 presents some collected data.  In  some cases 
H = N/3 ,  which was close to  the worst case. We did  not 
attempt  to find the worst possible hole-insertion sequence. 
Analysis of these and  other collected data shows the 
following: 

I .  For given H and values of N between 4 and 2000, the 
run-time  variation is practically linear, with no  trace of 
log, N factor (which should contribute  at least one order 
of  decimal magnitude in that range). 

respect to H .  The reason (or speculation)  for  this was 
given earlier. 

2.  For a given N, the  run-time variation is sublinear with 

1 

3 4 

4. Equivalent  resistance  network 
An important part  of a dc electrical analysis of  a VLSI 
design is to  compute its equivalent resistance network  from 
the physical description  of the design. This network, 
representing the design, consists  of ports (contacts or 
terminals)  as the nodes and resistors as  the edges of the 
network. Given a set {pi] of P ports, the  complete resistance 
matrix will consist of elements R,,, where 1 5 i < j I P. 
Figure 8(a) Qows  the  complete network computed in this 
manner for  a  simple design. The most common  approach  to 377 
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Input:  Voronoi  diagram of multiply-connected polygonal 
domain. 
Output: Electrical network  graph. 

1 .  Create  pseudoports at  junctions. 
a. Identify Voronoi edges (“branches”) that  are bisectors 

of nonadjacent edges of the  input polygons. 
b. Collect groups of ordered  Voronoi vertices, such that 

each group defines a  pseudoport and  the ordered 
vertices within the  group define  a polygon for the 
pseudoport. 

2. Locate real ports within  Voronoi regions. For each real 
port, 
a. If it  coincides with a  pseudoport, flag the pseudoport 

b.  Else move the real port  to  the nearest branch,  and split 

3. Convert the branches and  the ports  (pseudo and real) into 

as a real port. 

the  branch  into two. 

edges and vertices of an electrical network graph. 

[ Algorithm to extract  electrical network from Voronoi diagram 

Branch  resistance  between ports 

deriving  such complete resistance networks is the use of the 
finite-element method [8]. In this approach  the  domain is 
divided into  many finite  elements, and  the global electrical 
conductivity  matrix  for the  entire  domain is obtained by 
assembling the elemental  conductivity  matrices. If M is the 
number of nodes in  the finite-element  discretization, then by 
proper node  numbering  one  can  obtain  the global 
conductivity  matrix  having M rows and V% bandwidth. 
This banded  matrix can  be triangulated in O(Mz) time.  The 

triangulated  matrix also has a bandwidth of 4% by use of 
which one solution  vector can be obtained in O(M3’2) time. 
For P ports, P - 1 independent solutions must be obtained 
in order  to  compute  the total resistance matrix,  and  this 
takes O(M312P) time. Hence  the total resistance matrix can 
be obtained in O(M2 + M3/’P) time. This resistance matrix 
is then used in further electrical simulation  calculations. 

The above-mentioned approach is very accurate  and  can 
handle  any kind  of  geometric design. However, the 
computational  time  can be quite large, especially when 
complex  geometries and  many ports are involved.  Moreover, 
the complete resistance matrix is not necessary for  most 
applications. In Figure 8(b) we propose an equivalent 
resistance network  for the  same design. This network  is 
produced using the idea  of  Voronoi  diagrams.  Additional 
ports, called pseudoports (5 and 6), are placed in every 
location  of  geometric irregularity (corners,  T-junctions, etc.) 
in the design. Then all real ports and pseudoports that lie 
along the  same  conducting  path  are  connected  to produce 
the resistance network. The  introduction of  pseudoports 
considerably simplifies the resistance network and  permits 
the calculation of the resistive elements by the use of a 
simple formulation described in  the next  section. In 
addition,  the solution  of this network  provides more 
information  about  the design, since every resistance element 
is related to a particular path of the design. Current densities 
of the  conducting paths, voltage drops, and so on  can easily 
be obtained  and interpreted. 

There have been attempts  in  the past [9] to develop 
algorithms that produce an equivalent resistance network 
given a design consisting  of  long  rectangular shapes. They 
employ  a pattern recognition approach with a time 
complexity O(N2), where N is the  number of vertices. A 
major disadvantage of this approach is its  inability to deal 
with multiply-connected  geometries  (shapes with holes) or 
even geometries with general irregularities  such as 
nonorthogonal  corners. Our approach  exploits the power of 
the Voronoi  diagram and solves the problem  of arbitrary 
geometric  complexity of the physical design. The  time 
needed to  obtain  the solution is wholly based on  the 
Voronoi  algorithm and is independent of the geometric 
complexity  of the design. 

An algorithm for computing  an electrical network  graph 
from the Voronoi  diagram  is  shown  in Figure 9. Only the 
Voronoi edges that  are bisectors of nonadjacent edges in  the 
input polygons are considered as branches in  the electrical 
network.  These  Voronoi edges are line-segments which are 
connected by parabolic  arcs (bisectors between edges and 
vertices) and line-segments (bisectors between vertices). The 
branches are identified (step 1 a  in  Figure 9) by examining 
the Voronoi edges of each of the Voronoi regions; their 
connectivity is also determined (step lb)  in  this process. 
Since there  are O(N) Voronoi edges in  a  Voronoi  diagram 
and each Voronoi edge is examined only twice in this 
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process, the  entire  step 1 takes O(N) time. At the  end of step 
1,  we have the branches and  the pseudoports in  our network. 

Step 2 locates the real port within  this  network. Each real 
port is considered to be a point,  and this point  can be 
located  within  a  Voronoi region in O(log,N) time.  Since 
there  are P ports, all of them  can be located  in O(P log,N) 
time. If a real port  coincides with a  pseudoport  (within  a 
small  distance  metric) the pseudoport is  flagged as a real 
port. Otherwise, the real port is moved to  the nearest point 
on a  branch associated with the Voronoi region, and  the 
branch is split into two  branches  meeting at a real port. 

information  into a network  graph having edges and vertices. 
With  proper data structuring, we can achieve  this trivially 
at  the completion  of  steps 1 and 2; hence the total time 
taken is O(N + P log,N)  for the algorithm  shown  in 
Figure 9. Usually P << N, and  the Voronoi  algorithm  takes 
O(N(log,N + H ) )  time.  The total time taken  for the entire 
process is usually O(N(log2N + H ) ) .  

In addition  to  the network graph information, we also 
need the branch resistance values for the electrical network 
simulation. We address  this  in the next  section. 

The final step, 3, converts the  branch  and port 

5. Branch resistances 
The resistance R of  a long rectangular conductor of length I 
and width w is simply  represented by R = (//w)R,, where R, 
is the square resistance. This relation  assumes that  the two 
ends of the  conductor  are completely  covered by existing 
ports. As the width of  a  port decreases in relation to  the 
width of the  conductor, its resistance increases. Table 2, 
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,i Comer conditions with (a) acute and (b) obtuse angles. 

Table 2 Correction  factor  due to ports as a  function of width 
ratio. 

1 .o 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0.0000 
0.0028 
0.0083 
0.0 170 
0.0294 
0.0455 
0.0667 
0.0932 
0.1272 
0.1737 

which was obtained  through  numerous  runs of  a finite- 
element  program, gives a  correction  factor C as  a  function 
of the  ratio of the port width wp to  the line  width w,. Thus, 
the resistance of the line  shown  in Figure 10 would be 
R = {(//w/) + CJR,, where C is the correction  factor  for 

The effect of a corner  on two branch resistances is 
w p / .  

considered  next. It was observed  through numerous  runs of  a 
finite-element program that  the resistances of two branches 
shown  in Figure 11 were affected only by the  ratio of the 
lengths /,,, and /,, to  the  sum of the widths. Here a and b are 
the feet of the perpendiculars  from the concave corner  to  the 
axes of the two  branches, is the distance between o and a, 
and l,,h is the distance between o and b. Note  that a and b are 
also Voronoi vertices. I,,, and /,,b are  not always half of the 
widths of the branches because they depend  on  the angle 
between the branches. For example, in Figure 12(a) the two 
branches  meet at  an  acute angle, and I,, and lob are larger 
than  the semi-widths. Similarly,  in Figure 12(b) the  two 
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Table 3 Correction  factor due to comer as a function of width 
ratio. 

1 .o 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0.568 
0.570 
0.576 
0.589 
0.612 
0.652 
0.713 
0.823 
0.996 
1.362 

branches meet at an obtuse angle,  resulting in smaller values 
for 1, and I,, than  the semi-widths. Table 3 gives the 
correction factor C for the branch resistances as a function 
of the ratio of the branch widths. The two  resistances are 
calculated as 

R ,  = l ( I l /WI)  + 2Cl,,/(W, + w,)l%, 

R, = {(12/w2) + 2Cl,/(w, + wJ&, 

where C is the correction factor for wI/wz from Table 3. 
These equations are also applicable for branches that meet at 
angles other than 90”. 

Using Tables 2 and 3, we can derive all branch resistances 
after the introduction of pseudoports. As an example, 380 
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consider a T-shaped junction, as shown  in Figure 13. We 
can calculate four resistances as 

R~ = wu/wo)  + ~ C I ~ , / ( W ,  + 0.5wb)14,,  

Rc = l(lc/wc) + 2c1k,/(wc + 0.5wb)lR,  > 

Rbl = {(2lb/wb) + 2clom/(w, + 0.5wb)lRn > 

R,, = l(21b/w/,) + 2clk”/(wc + 0.5wb)l%. 

The final equation for the resistance  of the horizontal branch 
is  derived by adding Rb, and R,, in  parallel,  giving 

= RhlRb2/(Rbl + Rb2). 

6. Conclusions 
Voronoi diagrams are practical and valuable tools for 
performing a variety  of geometric tasks. The algorithms 
proposed by  Lee [ 11 and by Srinivasan and Nackman [ 5 ]  
have  proven to have industrial strength and practicality. The 
run-times of  these algorithms are quite satisfactory. 

A Voronoi diagram of  VLSI geometry can be  used to 
obtain extremely accurate information about  the nature of 
the layout and the terrain changes: e.g., to reduce a typical 
VLSI cell layout to its equivalent resistance network. The 
accuracy  of this approach for designs  with many thin 
rectangular segments compares well with that of  finite- 
element analysis,  while the computational time and the 
main memory requirements are reduced considerably. 

Our experience with Voronoi diagrams indicates that they 
should be integrated into  the  data model  of any CAD/CAM 
database. This will require development and implementation 
of Voronoi diagram algorithms for more general  objects. 
Once the Voronoi diagrams of all the objects are computed, 
it should be  possible to answer just  about any geometric 
query in linear time with  respect to the number of Voronoi 
edges. 
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