Voronoi diagram
for multiply-
connected
polygonal
domains

|: Algorithm

by Vijay Srinivasan
Lee R. Nackman

Voronoi diagrams of multiply-connected
polygonal domains (polygons with holes) can be
of use in computer-aided design. We describe a
simple algorithm that computes such Voronoi
diagrams in O(N(log, N + H)) time, where N is
the number of edges and H is the number of
holes.

1. Introduction

Voronoi diagrams have been an active research topic in
computational geometry for the past decade. Much of the
earlier work, and some of the current work, concerns the
Voronoi diagrams of a set of discrete points. This domain
has been extended by Kirkpatrick [1], Lee and Drysdale [2],
Lee [3], Yap [4], and others to cover a collection of two-
dimensional objects such as line segments, circular arcs, and
polygons.

Several applications based on two-dimensional geometric
modeling require the computation of Voronoi diagrams of
boundaries of multiply-connected domains. Geometrical
modelers usually provide a boundary description of two-
dimensional, multiply-connected polygonal domains

©Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

(“polygons with holes™) as a tree of loops, in which each loop
is a list of edges. If NV is the total number of edges on the
boundary of a multiply-connected polygonal domain, then
algorithms of O(N log, N) time complexity are known

[1, 2, 4] to compute the Voronoi diagram, but they are too
complex for practical implementation. In this paper, we
propose a simpler algorithm to compute the Voronoi
diagram of a multiply-connected polygonal domain. (Here
and henceforth, we shall drop the use of the term “boundary
of” and refer to the Voronoi diagram of the boundary of a
domain as the Voronoi diagram of the domain itself.)

If H is the number of holes, the algorithm requires

O(Mlog, N + H)) time. An implementation and application
of the algorithm to a VLSI problem is presented in a
companion paper [5].

The algorithm described in this paper computes the
Voronoi diagram of multiply-connected polygonal domains.
Informally, a multiply-connected polygonal domain is a
planar domain with holes in which all boundaries are
polygons (see Figure 1). A formal definition follows.

Definition 1

A closed line segment [a, b] is the union of two endpoints a
and b and the open line segment (a, b). Points or open line
segments are called elements. O

Definition 2

A multiply-connected polygonal domain is the closure of a
nonempty, bounded, connected, open (in the relative 361

VIJAY SRINIVASAN AND LEE R. NACKMAN

1861 AVIW € ON It "IOA 'dOTIAIA 'STH ' WAl

SIUQWIILA Y10q Uay Ay 1uawdas ur uado sy 03 Jemnorpuddiad
pue jutod oy y3noay) Suissed suif 1ySiens e s1 10103819 Y1
‘[(2) 2an814] Jusw3as aur usdo ay3 Jo spurodpus Jy) Jo Juo
s1jutod 213 219YMm 3SBD [B10adS 3Y3 104 ‘SIUI[-J[ey Om] pue dIe
Jrjoqered duo :$3031d P3IDAUUOD 3AIY) JO SISISUOD JOYISI Y}
‘[(Q)z a1314] 1uawiBas surf uado ue st 19Y10 Y1 pue 1uiod
B SI SJUSWA[I Y} JO AUO U\ "dUl[IY3IeIIS B SI 1010351
) ‘[(e)z 21n31] syutod e ‘> pue '2 y10q USYM 181 J1ON
-su08Ajod JO SIOTIIA pue $IZP2 0] JUBAJ[DL
$1012351q pajerdosse pue saued-jiey dqissod [[e sajensnyL
T 3an31, "10103S1q SIY) Sapnour e “a)y pue ‘([a “2)g 1019351q
ayr st (2 “a)y oued-jjey e jo Arepunoq ay3 18y} 910N
0 2 1uswsa 01 ueYl 2 WAWA[S 01 19500 Jou spurod
Joesayl st ‘(fa “a)y uswrardwod s) /3 yuswspe 01 uey)
'2 Juawa 01 Jasop syutod Jo 195 Y SI (> “a)y aupjd-fiy 2y
8§ uonuyoq

O “Apre[ruais pauyap st ({ x)g 101038Iq PAIUALIO Uy I JO
Y314 Y1 01 pue 127 Y1 01 A[2ANDadsa1 A1 ‘> pue 2 syuowspR
Jey) 0s U uodn pasodull UOTIIAMIP €)M (2 “a)g 10103819 o3
st (2 “a)g 1010081q pauatio 341 "4 PUB Y WOl ueIsipmnbo
syurod Jo snoo[3y} ST { PUB Y SIUIWA[D JO $19S OM]

Jo (L ‘x)g 10109s1q 9y L 5 pue 2 woy yueisipmbo syurod

JO Snoo[9y} ST 2 pue ‘2 syuswape 0m Jo (2 a)g 40109519 YL
£ wonmyoq

0 ‘uswidas
aur uado ue uo agewr Ay} 10J SPjoY uonNIUYap snoojeue uy
‘uonodaford ayy 01 153500 {g ‘v] Jo 1urodpus 3y SI 31 ISIMIYI0

‘[g ‘p] ur st uonoaford ays Ji ([‘v] ‘b)d uonoaloid ay) st
[g ‘p] yuowdas pasord & uo b utod e jo ([‘p] *b)f a8vuir 3y,
9 uonmuyoq

SIMIYO (¢ D)p ‘(v P)p)unu

st puE (¢ ‘p) 01 s3uojeq (¢ “v) ‘) ji (q ‘P) 010

uonoafoid s)1 pue b jutod Y] UIMIIQ DUBISIP Y] SI (§ ‘D)

Judws3as aurl uado ue pue b jurod e usamiaq ((q@ ‘v) ‘b)p

90UBISIP Ay} “AHR[IWIS "381IaYI0 ((¢ D)p ‘(v “b)p)uiwt

s1 pue ‘[q ‘v] 01 s3uopaq ([¢ ‘v] ‘b)d j1 [q ‘v] oo uonodaloid

$)1 pue b jutod ay) uaam1dq dueISIp Y1 St [g ‘v] 1udwgas
pasopd & pue b utod B usamiaq ([q ‘v] ‘b)p duelsip ayJ,

O (g ‘) *b)d 10 spjoy uontuyap

Ienruns v b ysnoay) Suissed pue [g ‘v] o1 remorpusdiad dury

3yl pue ¢ pue v Y3noIy} SUI| Y] JO UONIASIdIUL Y1 ST [q ‘D]

Judwidas pasord e oyuo b jutod e Jo ([q ‘v] ‘b)d uotdaloid Y],

S uontutfoq

O°x 2 b:(b ‘d)p}ais = (x ‘d)p st ‘(x ‘d)p parouap y
198 Aidwduou g pue d urod B udamiaq aouvjsip YL (b ‘dp
patouap st b jurod e pue d juiod e Udamiaq 2oupvisip ayJ,

¥ uonufoq

(‘{€] wt suontuyap 03 ‘rednIuap!
10U 1N “Ie[IWIS dIe § YSNOIY) { SUONIUYS(]) "UONIIS STY)

NVIDIOVN o d3T ANV NVSVAINRIS AVIIA

JO 102[qns a2y} aIe asay] ‘saueld-Jiey PUE SIOUEISIP SNOLIBA JO
SULIS) UT POUYAP ST SJUSWID JO 13§ B JO WelSeIp 10U0I0A Y]
uoniuyap weisbeip I0UCIOA 2

‘Arepunoq a1y}
JO 1J31 241 0 S| UrRWIOP Y] “J19pIo SulseAIdUI UI AIRpUNOq
3y} SUISIdARI] J[TYM JBY) OS PAIAqUUNU JIB SIUIWID
oy aroym “u = (= 1 ¥ 2 Aq parouap s1'5e Jo JuaWIpd

y Ay “u Aq ‘pe ur $JUSWYd JO Jaquinu 3y} 2J0UIP M
["5@ AIMITSUOD YoIym SIuUdW3ds ul[PIsold
2y} jo syurodpua 2y} Sunop Aq paureiqo siudwidss aul| uado
) 1k 5@ JO $a8pa YL (3@ ANIISUOD YoIym suawdos aury
Paso[d 3yl Jo uonasidul Jo siurod ay3 axe 5@ JO $a01144 Y L
§ uonuifoq

‘1 21n8ig

ur pajensny[I SI uorelou InQ (S90Y) sauepuUNoq Iduul Jo

IaqUINU 3Y) SAJ0UIP 7 219YM ‘I = 1 = [“pe Aq paroudp are

PUE §§ JO S21DpUNOq L2uut 3Y) pa[[ed Ik s1asqns ururewal

Yy e £q PAIOUIP ST PUE LiDpUnOq 42110) PI[Ed st

PUE ‘5 SUTBIUOD S13sQNS ISAY) JO ‘OUO ATUO pue ‘duo Jo uordal

JouRul Y | "(uorSal JOLIDIXA 3Y}) papunoqun Idyo Y}

pue (U01331 IOLIdIUT AY}) PAPUNOQ JUO ‘SUOIFAI 0Mm] OJUT A

suonnted sjasqns 3say] Jo yorq 's3asqns JuIolSIp a1ow 10 U0
JO SISISU0D ‘5p AQ PAIOUIP ST YOIyM 35 JO AIepunoq Sy

O "sluawdas Ul Pasod JO Iaquinu jIuy

B JO UOIUN 3Y) ST ATRpUNOq ISOYM Al Jo 1esqns (A8o10d0o1

‘Terdew Jo 9oudsaid
sajedipul Surpeys urewop feuo3Ajod v 10) UonRIOU AIRpUNOY

4:14

oe. Ble, €

(@

(b

©

B(ei, ej,)

@

Half-planes and bisectors. The construction lines are shown as dotted lines, and they are not parts of the bisectors. (a) Both elements are
points; the bisector is a line. (b) One element is a point and the other is an open line segment; the bisector consists of a parabolic arc and two half-
lines. (¢} As in (b}, but the point is an endpoint of the line segment; the bisector is a line perpendicular to the line segment. (d) Both elements are
open line segments; the bisector consists of two parabolic arcs, a line segment, and two half-lines.

are open line segments [Figure 2(d)], the bisector consists of
five connected pieces: two parabolic arcs, a line segment, and
two half-lines.

Definition 9

Let S, and S, be two disjoint sets of elements. The Voronoi
region V(S,, S,) of S| with respect to S, is the set of all
points closer to S, than to S,. [

Lemma 1

MS.S)= U N ke, e).

€,ES8, e}Eé‘z
Proof Let pbein V(S,, S,). By definition, p is closer to
some element ¢, in S, than to any element in S,. Therefore
pisin hle, e), for all ¢;in S,. Hence, pis in

i

Yees,Nees, h(e,, e). By a similar argument, it is easy to show

the converse. (J

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

Two corollaries follow immediately.
Corollary 1
Ve, S)= N ke, e).0
=y

Corollary 2
S, Sy = U Ve,S,).O0

€ES|
Since the boundary of the union (intersection) of a finite
number of sets is a subset of the union of their boundaries,
the boundary of a Voronoi region consists of pieces of
straight lines and parabolas (as illustrated in Figure 2). Each
such piece is called a Voronoi edge of the Voronoi region;
the endpoints of a Voronoi edge are called Voronoi vertices.

Definition 10
The Voronoi diagram, VOD(S), of a set of elements S = {e}
isU, s Ve, S—¢).0

€ES

VIJAY SRINIVASAN AND LEE R. NACKMAN

363

L861 AV £ 'ON If "IOA 'dOTIAZA 'SIY T Wil

“Iej sny) paindwiod weidelp 1I0U0I0A
pagiow ay) pue Arepunoq Jauur 3y} Jo urergerp
IOUOIOA JY} UaMIQ dAIND 1w oy} andwo) "q
*AIepunoq Jouui dY) Jo weIderp 10uoIoA dyl ndwio) e
:BUIMO[J0J 9Y) Op ‘SaLIEpUNO(JSUUT Y} JO YO8 10 °¢
*SaLIRPUNO(JoUUl dY) HOS T
"Arepunoq J31no 3y3 Jo weIderp 1uoIoA Ay Andwo) |

:sdays

BuIMOT[0J 91 JO SISISUOD WYILIOT[e Y ‘A[[eIdudd 1o
*dAIND 93I0W JY) IPISUL
$31] Je1)) AIRpUnOq Jduul 9Y) JO WeISeIp I0UOI0A Y} JO
uonuod 18yl YIm J3Y1980) 9AIND 2813UI 9Y) IPISINO SI[Jey)
Arepunoq 19)no 3y} Jo weiderp 10u0I0A a1 jJo uoruod jeyy
JO $IS1SU0D 4(3)¢ N3y, Ul UMOYS ‘WeISeIp I0UOIOA padiow
dY "SoLIepUNOq INO PUB IdUUT Y] Uaam)aq Jueisipinbs
sjurod Jo snodoj 9y} St 3AIND 2810w Y} ‘ojduwrexas syl
uj ‘pagrowr Sulaq aIe SWEIFBIP IOUOIOA 3SOYM SILBPUNO]G

NVIADIOVN d 39T ANV NVSVAINISS AVIIA

Y] U3IM]3q 10103SIq oY) ST SAIND IFIdW Y ‘dadnd
234w 1Y) Y 19419301 pasodiodns umoys are swerderp
TOUOIOA [eNPIAIPUL OM]) 3} {(p)¢ danB1q u] ‘urewop
reuo84jod parosuuos-A[dwis € Jo weIderp 10UOI0A Y}
Sunndwoo 10 [¢] Ul paquUISIp WILIOZ[E SY) JO UOISUI)XS
ardurs & Suisn paindwod aq ued 3say L *(3)€ pue (q)¢ sy
Ul UMOUS dIe SILIEPUNO(JoUUl pue IdNo 3y} Jo swerdep
IOUOIOA [ENPIAIPUL OY] *(B)€ dInB1f Ul UMOYS UleWOp
Teuo34jod pajosuuoo-Adinu 3y} 1opIsuod ‘oidwiexs 10
“way) Surdow
uayy pue ‘g7 - - - ‘0 = £ (50)qOA sweiderp 0UOIOA
[enpiarpur 3y3 Sunndwod Aq SIYl SOOP IQLIOSIP IM WYILOo[e
aqL (e *; N0 ‘urewop [euos£jod peroauuos-Adnnuw
B JO WeISeIp 10U0I0A 31 Anduwiod 01 SI 3AR2(QO InQ
maluano wyuobly ‘g

"ATejuswd[dwod J1e SUOTIIUYIP OM] 3] °S JO wm4Soip
10U040,4 34} SE 01 PALIAPAI I (2 — § “a)10 52°N uayo

-urewop [euogAjod pajosuuos-L[dnnur oY) Jo WeIZeIp I0UOIOA (J) "2AIND 3ZISW 3Y) PUR SWRISRIP I0UOIOA [ENPIAIPU! JO
uonisodiadng (p) -suregerp 10UOI0A [enPIAIPY] (9) pue (q) “urewop [euo3A[od parosuuod-Aidninix (8) swiptode oy Sunensap sjdwexa sydung |

®

"

Y -

JLATTS TYTPICITEPPIP TP PT LI Ay

®

AIN0 VN

.
NITTe STTTTTTTITEe
‘.' LIYTEYT] "" “'l
o .

Vo€

c. Discard the extraneous portions of the original
Voronoi diagrams, thus obtaining the new merged
Voronoi diagram.

The heart of the algorithm, and the fundamental
difference between this algorithm and those described in
[2, 3], is the way in which the merge curve is computed. All
of these algorithms compute the merge curve by first finding
a starting point on the curve and then traversing the merge
curve starting from that point. We propose a simple method
for finding a starting point by exploiting properties of
Voronoi diagrams of multiply-connected polygonal domains
(as distinguished from arbitrary sets of points and open line
segments). The following section describes properties of
Voronoi diagrams that we shall need to develop the
algorithm.

4. Properties of Voronoi diagrams

For our purposes, the most important property of Voronoi
diagrams of multiply-connected polygonal domains is that,
under certain conditions, merge curves are simple, closed
curves. This result, which is stated below in Theorem 1, is
proved by showing that certain Voronoi regions are simply-
connected, path-connected, and bounded.

Definition 11

A planar region R is generalized-star-shaped with nucleus N,
N C R, if for any point r € R there exists a point n € N such
that the closed line segment [7, n] lies completely in R. [0

Lemma 2
The Voronoi region Ve, S) is generalized-star-shaped, with
nucleus e,

Proof Lemma 1 of [2].00

Lemma 3
V(S,, S,) is generalized-star-shaped, with nucleus S,.

Proof Let p be a point in W(S,, S,). By Corollary 2, p is in
Ve, S,) for some e, in S,. Therefore, by Lemma 2, there is a
closed segment between p and e, which is contained entirely
in Ve, S,) and hence in 1(S,, S;). O

Lemma 4

(39, U, 3Q) is bounded.

Proof Let us denote the kth element of the boundary 42,
by efﬂ. We first prove that V(efH, UJ':=0 8Q)) is bounded. We
prove this by contradiction. Assume that the region is
unbounded. Since the region enclosed by the outer boundary
49, is bounded, there must exist a point p that lies outside
49, but in the Voronoi region V(efH, szo 3Q). See Figure 4.

Furthermore, ¢%,, is an element of 4,,,, and therefore lies

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY {987

k
i+

A point p outside d(}, and inside V(e

inside 89,. But, since p is outside 8%, it must be closer to a
point on 89, than to any point contained in the region
enclosed by d9,. Therefore, p is closer to 9%, than to ef.‘ﬂ.
This contradicts the assumption that p is in V(efﬂ, U;=o a9),
proving that V(efﬂ, U;=o 9% is bounded. From Corollary 2,

we know that V(92,,, U, 8Q) = Ui Vek,,, Ui, 09).

Mjr1s Yj=0

Hence, V(89,,,, U,_, 82) is bounded. O

Lemma 5
62, ,, U,_, 82) is path-connected.

Proof A path can be constructed between any two points
pand gin V(0Q,,,, U;=O dQ), as illustrated in Figure 5. The
path begins at p, goes to its image on 32, ,, then to the
image of ¢ on 82, ,, ending at g. The portions of the path
between p and 89, , and between g and 92,, | lie entirely
within 189, ,, U;=0 82) by Lemma 3. The portion of the
path between the images of p and ¢ on 8Q,, , is path-
connected because, by definition, 92,,, is path-connected. [
Let CH(92,) denote the interior of the convex hull of 39,

Lemma 6

Let 3Q, and 3Q, be two polygonal hole boundaries. If
CH(3%) does not completely contain 4Q,, then there exist a
vertex v € 99, and a half-line /, starting at v, such that /, is
completely contained in ¥(3Q,, 92).

VIJAY SRINIVASAN AND LEE R. NACKMAN

365

366

ep

1+1)

Connected path between points p and g.

29, and CH(3Q).

Proof Since CH(92,) does not completely contain 92,
there must exist a vertex v € 39, that lies outside of CH(59).
Also, there must exist an edge e on the boundary of CH (anj)
such that a half-plane 4 constructed on e completely
contains CH(4Q,) but not v. See Figure 6. Construct a half-
line Z, in /4 such that [, starts at v and is perpendicular to e.

VIJAY SRINIVASAN AND LEE R. NACKMAN

Let p be any point in /,. Since /, is perpendicular to the
boundary of 4, p is closer to v than to any element in 49,
Hence p € V(8Q,, 42). Since the choice of pon [, is
arbitrary, /, is completely contained in V(8Q, 42). L1

Lemma 7
If CH(99,,,) does not completely contain any 9%,
Jj=1,---,ithen V(6Q,,, U ,_o 9Q) is simply connected
Proof We must show that any simple, closed curve in
V(eQ,,,, Y J_o 4Q)) can be shrunk to a point without leaving
V(9Q;,,» Uiy 82)). Let C be such a curve and let R, denote
the region enclosed by C. To show that C can be shrunk to a
point without leaving V(3%,,,, U, an) we must show that
all points in R are also in V(82,,,, U,_, 82). We show this
by contradiction. Let p be any point in R.. Assume that p is
not in ¥(69,,,, U,_, 2). Then p € cl V(UJ_0 09, 8%,,),
and, by the argument used in the proof of Lemma 3,
there must exist a %, 0 < k < J, such that the line segment
from p to its image on 9<, is completely contained in
(U, 92, 9,,,). Also, since CH(d,,,) does not
completely contain 8Q,, by Lemma 6 there must exist a
vertex v € 89, and a half-line /, such that /, is completely
contained in V{(8Q,, 92,,,). We can now construct a
continuous path C, from p to its image I(p, 6Q,), to vertex
v € 3%, and to infinity along /.. See Figure 7. Note that C,
is completely contained in cl V(U,-a 99, 02, ,), and since
p € R and C, is unbounded, C, must 1ntcrsect C at, say, g.
Since g € C,, ¢ must be contained in cl V(UJ',=0 9%, 89,,)).
This contradicts the assumption that Cis in
Ve, U /—o 00). 00

Note that the condition stated in Lemma 7 is a sufficient
but not a necessary condition for the Voronoi region to be
simply-connected. We now show that given H polygonal
holes, we can always sort the holes so that the condition
stated in Lemma 7 is satisfied.

Lemma 8

Let Y, be the y-coordinate of the topmost vertex on 9Q,. If
the hole boundaries have been sorted such that Y, , < Y,
then CH(39,,,) does not completely contain any 9%,
j=1,]

Proof We prove this by contradiction. Assume that

CH(09,,) completely contains a 92, 1 < j < /. Then

Y,,, > Y, This contradicts the sort criterion that Y,,, < Y. O
Hencefonh, we assume that the holes have been sorted so

that the condition stated in Lemma 7 is satisfied.
Corollary 3
V(99 ,, Ui, 92)) is bounded, path-connected, and simply-

connected.

Proof Follows immediately from Lemmas 4, 5, and 7. O

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

Intersection of C and Cp. Dotted curve is Cp.

Theorem 1 ‘
The boundary of ¥(8Q,, . UJ'.=0 9% is a simple, closed curve.

Proof As noted in the discussion following Corollary 2, the
boundary of V(32,,,, U;=o 3Q,) consists of the union of
connected portions of half-plane boundaries, each of which
we call a half-plane boundary segment. We now argue that
the boundary consists of one or more cycles of such half-
plane boundary segments. Pick a point on the boundary
and traverse the boundary in some direction. Since

Ve, ,, U;=0 %) is bounded (Lemma 4) and no half-plane
boundary closes on itself, the traversal can neither go to
infinity nor close on itself in the same half-plane boundary
segment. Hence, it must reach an endpoint of the half-plane
boundary segment. But, as illustrated in Figure 8, an
endpoint can only be created by the intersection with
another half-plane boundary. At such an intersection, the
traversal continues on a segment of the second half-plane
boundary. Since, by reversing the direction of traversal, the
same argument applies to the other endpoint of the half-
plane boundary segment, we conclude that each half-plane
boundary segment is connected to at least one other half-
plane boundary segment at each endpoint. Thus, each half-
plane boundary segment is contained in a boundary cycle.
Since, by Corollary 3, V(39,,,, U,_, 32 is both path-

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

Intersection of half-plane boundaries.

connected and simply-connected, there can only be one such
boundary cycle. [J

Definition 12

The bisector B(99,, ,, U;=o 9Q)) is called a merge curve. [
Note that the merge curve is also the boundary of

o, ,, U 69).

Lemma 9

VOD(U;::) Q) consists of the union of that portion

of VOD(U_, 62 lying outside the merge curve
B(3Q,,,, U,., 82 and that portion of YOD(39,,,) lying

inside the merge curve.

Proof Let us first establish some simple notations. Let

dya = Ui 0, 8, = 09, and d,, = U, 692, By
Definition 10,

i+

VOD(a) = U V(ek’ 8new - ek)

new.
€E ew

[U W, 0,0, — ek)]

€01
U [U We,d,. — ek)}.
“4EBhole

We can expand the first subexpression as

VIJAY SRINIVASAN AND LEE R. NACKMAN

367

368

(@

i i

U We, 8, — €

L= €0y €/€0en—€x

U N hle,e)

U H N ke, ej)}

L= €Edgg—ey

ﬂ{ N ke, ej)}’]

€3 hole

[U Ve, 9,4 — ek)]

&Edyg

n [V(aold’ aholc)]

VOD (aold) n V(aold’ ahole)'

Similarly, we can expand the second subexpression as

U Ve, 0, — €) U N hie, e)

S hole €S Bnote €/ 0new %

U H N hie, ej)}

€4Ehole €€d01q

n{ N ke, ej)H

€S 8ol €%k

[V(ahole’ aold)]

N l: U Ve, 0y — ek):l

24EBhoic

= V(ahole’ aold) nvobD (6hole)‘

VUAY SRINIVASAN AND LEE R. NACKMAN

Two possible cases for the inclusion of /,: (a) [, is completely contained in V(v, a2,

V(v, aﬂm —)

(b)

— v). (b) I, is on the boundary of V(v, 9§}, , — v).

The result follows immediately. O

Our goal is to obtain VOD(UJ':;'('J Q) from VOD(UJ':=0 oQ)
and VOD(82,,,). We do this by constructing the merge curve
and using Lemma 9 to discard unwanted portions of
VOD(UJ':=0 8Q)) and VOD(0Q,,,). The first step is to obtain a
starting point, which is any point on the merge curve. Once
a starting point is found, the entire merge curve is
constructed by using a merge algorithm. We shall need the
following lemmas.

Lemma 10

Let v be a vertex on the convex hull of an inner boundary
49;,,, and A, be a half-plane such that 4, completely contains
the convex hull and the boundary of 4, contains the vertex v.
Also, let /, be a half-line in the complement of 4, such that /,
starts at v and is perpendicular to the boundary of 4, (see
Figure 9). Then /, is completely contained in the closure of
the Voronoi region V(v, 8Q,,, — v) of this vertex.

Proof Since h, completely contains the convex hull, it also
contains 4%, ,. Let p be a point on /.. Since /, is
perpendicular to the boundary of 4, and A, completely
contains 42,, ,, p is no farther from v than from any other
element of 2, ,. Hence, p is contained completely inside or
on the boundary of V(v, 4Q,,, — v). Since the choice of p in
1, is arbitrary, it follows that /, is completely contained in the
closure of V(v, 8Q,,, —v). O

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

Lemma 11
[, of Lemma 10 intersects the merge curve B(9%,,,, U,_, 42).

Proof Since v € 49, ,, v is contained inside the merge
curve. /, is a half-line that starts at v, and, by Theorem 1, the
merge curve is a simple closed curve. Therefore, /, must
intersect the merge curve. O

Any point on the intersection between /, and the merge
curve can be a starting point. In an implementation, we can
pick v to be the topmost vertex (i.e., having the largest
y-coordinate), or one of the topmost vertices, of 82, ,. This
will ensure that v is on the convex hull of 32,,,

5. Aigorithm
The algorithm for computing the Voronoi diagram of a

multiply-connected polygonal domain is shown in Figure 10.

The algorithm first computes the Voronoi diagram of the
outer boundary (step 1), sorts the hole boundaries (step 2),
and then computes and merges in the Voronoi diagrams of
the inner boundaries (step 3). The Voronoi diagrams of the
individual boundaries can be computed using an extension
of Lee’s algorithm [3]. [Lee’s algorithm computes the inner
Voronoi diagram of a simply-connected polygon (i.e., a
polygon without holes). In other words, his algorithm
computes the portion of the Voronoi diagram that is inside
the polygon. An extended version of his algorithm also
computes the outer Voronoi diagram of a simply-connected
polygon.] An algorithm for finding a starting point on the
merge curve (step 3b) is described in the following and is
shown in Figure 11. An algorithm for computing the merge
curve and merging in the Voronoi diagram of an inner
boundary (step 3c) is then described and is shown in

Figure 12.

The worst-case execution time of this algorithm is easy to
determine. Lee has shown [3] that VOD(3Q) can be
computed in O(#; log, n) time. Thus, the worst-case
execution time for step 1 is O(n, log, n,). Sorting of the hole
boundaries in step 2 simply reorders the sequence in which
the holes are inserted. The sorting can be done by first
computing the largest y-coordinate among the vertices of
each hole boundary, which can totally take O(ng n) time,
and then sorting these y-coordinates in descending order,
which can take O(H log, H) time. Therefore, the total time
taken for the execution of step 2 is O(H log, H + ZZI n).
The worst-case execution time for step 3a is O(n,,, log,n,,).
We show below that a starting point can be found (step 3b)
in 0(2 o 1) time and that the merge (step 3c) can also be
done in O(Ej'ié n;) time. Therefore, an iteration of step 3
takes at most O(n,_, log,n,,, + Z'i(l) n;) time.

The total worst-case time is thus O(n,, log, n,) +
O(H log,H + 2 n) + Z,_ O(n, logzn, + E, n;). This can
be written as Z, o O(n log,n,) + Z,= o) ~o 1) Let
N= 2j=0 n,, that is, the total number of elements to be
proccssed The total time can then be written as O(J log, N)
+ 2 ox o 1), which simplifies to O(N(log, N + H)).

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

Input: U a%,;.
Output VOD(U).

1. Compute VOD(OQO).
2. Sort the hole boundaries.
3. Fori=0to H — 1 do Begin
a. Compute VOD(3Q,,.,).
b. Find a starting point 55 € B(3%;,1, U a9), along with

vertex v € aﬂ,ﬂ and element ¢, € U 9, that define s,
c. Merge VOD(U a%) and VOD(()QM) to obtain

i+

YoD(u 62).
Jj=0
End

H
Algorithm for computing VOD(U 9(}).

e Finding a starting point

Recall that we wish to obtain a starting point on the merge
curve and then to construct the merge curve through that
point. Any point on the merge curve will suffice. By Lemma
11 we know that if we pick a vertex v, which is the topmost
vertex or one of the topmost vertices on the inner boundary,
the half-line /,, which starts at v and is directed vertically
upwards, intersects the merge curve. That point of
intersection will be our starting point. However, since the
merge curve is not yet known, we need some other test that
will determine where /, intersects the merge curve.

The merge curve is the boundary of the Voronoi region
V(9Q;,, U, 99)), and therefore consists of the union of
portions of bisectors. The starting point must then be the
intersection of /, with some (yet to be determined) bisector.
Observe that the starting point must be contained in
cl Ve, Uj_0 00, — ¢,), for some ¢, € U;=0 8%, We claim that
B(v, e,), the blsector between v and ¢, is the desired bisector.
This is proved in the following lemma.

Lemma 12
Let s, be a point. Then, s, € B(v, ¢) N [, N
clVie, U}_o 69 e,) if and only if 5, € B(6Q

LNclV(e, U. 09, — e,).

=0

Q) N

i+1° j—O

Proof Assume s, € B(v, e,) N I, ﬂ Ve, U V0 00, — €,).
We must show that s, € B(aﬂ,+ p» Ujp 092), that is, that 5o 18
equidistant from 82,,, and U_, 8Q,. Since 5, € B(v, e,), it is

equidistant from v and e,. Moreover, since s, € /,, there is 369

VIJAY SRINIVASAN AND LEE R. NACKMAN

370

Input: VOI(jL_Jo 89), VOD(39,,,), 32, .
Output: 5, v, e,.

1. Find the topmost vertex (or one of the topmost vertices)
vonadq,, .

i
2. Finde € ,L.':, 8, such that v is contained in the closure of

V(ek, U aQJ - ek).
J=0
3. While true do Begini
a. k—1,NcWe, U 0, — e,).
J=0

b. 5, N By, e).
c. If s, # ¢ then return s, v, ¢,
else Begin
1) Finde, € ,Eo 84, such that /, enters into

i i
We,, ,-L=Jo 0Q, - e, from Ve, ,&{) 09, - ¢,).

2) e e,
End
End

Algorithm for finding a starting point.

no element of 42

.+, that is closer to s, than v is. Similarly,
since s, € cl Ve, U;=0 99, — ¢,), there is no element of
U,_, 9%, that is closer to s, than e, is. Hence, 5, is equidistant
from 8Q,,, and U, 92, Thus, 5, € B(3Q,,,, U,_, 62).

Now assume s, € B39, ,, U, 92) N [, N
cV(e, U, 82, — e,). We must show that s, € B(v, e,), that
is, that s, is equidistant from v and e,. Since s, is in
V(e U, 32, — e,), there is no element in Uj"=0 8, which
is closer to s, than to e,. Also, since s, is in /,, there is no
element of 82, , that is closer to s, than v. Therefore, since s,
is equidistant from 9%, , and Uj'.=0 9%, it must be equidistant
between v and e,. Thus, s, € B(v, e,). O

Since the desired bisector depends on the region
Ve, U,';o 39, — ¢,) in which the starting point lies, the
algorithm scans along /, starting from v and determines for
each Voronoi region encountered whether the starting point
lies on /, in that region. By Lemma 12, this is equivalent to
determining whether or not the bisector B(v, e,) intersects /,
in the region Ve, U,l:=o 99, — €).

A detailed algorithm for finding a starting point is shown
in Figure 11. The algorithm begins (step 1) by finding the
topmost vertex (or one of the topmost vertices) on 9%, ,.

VIJAY SRINIVASAN AND LEE R. NACKMAN

This can be done in O(n,,,) time by finding the vertex v of
49, , with the largest y-coordinate.

Step 2 finds the element ¢, in U;=0 8Q, whose Voronoi
region V{(e,, UJ'.=0 9, — ¢,) contains the vertex v. (When v lies
on the common boundary of two or more Voronoi regions,
the algorithm can choose any element such that /, enters that
element’s Voronoi region.) This can be done in O(ZJLO n;)
time by scanning all the elements in UJ’.=0 89, and finding that
particular element e, which is the closest to v.

Step 3 implements the scanning process to determine the
starting point. Step 3a computes the intersection of the half-
line /, and the Voronoi region of e,. This involves finding the
intersection of /, with the edges of the Voronoi region of ¢,,
and in the worst case, we may have to do this for all the
elements in U;=0 4%, Since there are O(N) Voronoi edges in
the Voronoi regions of N elements [2], the total time taken
to execute step 3a (i.e., over all iterations) is O(Z,Lo n).

Step 3b can be executed in constant time. Since this step
can potentially be executed 0(2;_:0 n;) times, the total time
taken to execute this step is 0(2}=0 n).

Execution of step 3¢l on subsequent loop iterations
usually takes constant time because the termination point
(i.e., the last point in the direction of /,) on /, lies on a
Voronoi edge. As a result, the region into which /, enters
must be the other Voronoi region that shares this edge.
However, in the worst case, all of the termination points
could fall on Voronoi vertices. For each such occurrence, all
of the Voronoi edges incident upon the Voronoi vertex must
be examined to determine e,. Since there are a total of
0(2,;0 n;) edges in VOD(UJ’:=0 dQ) and step 3¢2 can be done
in constant time, the total time taken to execute step 3c (i.c.,
over all iterations) is O(Z,Lo).

Hence, the total time taken to execute step 3 is 0(21'.=0 n).
The algorithm terminates because, by Lemma 11, there must
be a starting point on /,. Since step 3 scans along /,, it must
eventually find the starting point and terminate. Thus the
time complexity of the algorithm to find the starting point is

O(3,-o 1)

o Merging Voronoi diagrams

Once a starting point on the merge curve is found, the next
step is to traverse the entire merge curve. Recall that the
merge curve consists of pieces of bisectors between pairs of
clements. The strategy we adopt is to identify element pairs
(one element belonging to 0Q,, ,, the other to U;=0 4%, whose
bisectors contribute to the merge curve. Efficiency requires
that the merge algorithm exploit the continuity of the merge
curve to avoid exhaustive searching. The same approach to
merging two Voronoi diagrams has been used by Shamos
and Hoey [6], Lee and Drysdale [2], and Lee [3]. The
algorithm for computing the merge curve is shown in Figure
12. The algorithm given here has a simple termination
condition based on the fact that the merge curve is a simple
closed curve.

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY (987

After the initializations in step 1, step 2 computes the
merge curve. In step 2al, b inherits the direction from the
oriented bisector B(/, r). Since B(/, r) has a direction, we can
identify the “first” continuous piece, 51, of the indicated
intersection. (Since the bisectors can involve parabolas, and
the Voronoi regions are not always convex, the indicated
intersections can be a set of discontinuous pieces, hence the
need to identify the first continuous piece.) We can also
easily determine the termination point p (i.e., the last point
on 5,) along the direction of 5,. When step 2a is executed for
the first time, it may take, in the worst case, O(Zj':(') n;) time,
But in subsequent iterations of step 2a, we can use the
tactics of Lee and Drysdale [2], where the boundary of
WU, 6Q,,, — 1) is traversed in the counterclockwise direction
from the last examined Voronoi edge, and the boundary of
Vr, U;=0 89, — r) is traversed in the clockwise direction from
the last examined edge, to obtain their intersection with
B(l, r). This avoids backtracking, and Lee and Drysdale have
shown that two Voronoi diagrams, one of m elements, the
other of elements, can be merged in O(m + n) time in this
manner. Their analysis holds here as well. Therefore, the
total time taken to execute step 2a (i.e., over all iterations) is
0T n).

Execution of steps 2b and 2¢ on subsequent loop
iterations usually takes constant time because the
termination point p [i.e., the last point on El in the direction
of B(/, r)] on b, usually lies on a Voronoi edge. As a result,
the region which b, tries to enter must be the other Voronoi
region that shares this edge. However, in the worst case, all
of the termination points could fall on Voronoi vertices. For
each such occurrence, all of the Voronoi edges incident upon
the Voronoi vertex must be examined to determine A or p.
Since there are a total of 0(2]':(1, n,) edges in VOD(U;=0 Q)
and YOD(92,,,), the total time taken to execute steps 2b and
2¢ (i.e., over all iterations) is O(Zj':(', n).

Hence, the total time taken to execute step 2 is O(Zj':é n).
Step 2 terminates because, by Theorem 1, the merge curve
must close on itself.

Once the merge curve itself is constructed, the new
Voronoi diagram is obtained (step 3) by discarding portions
of the original Voronoi diagrams as described in Lemma 9.
In an implementation, this step can be carried out
simultaneously with step 2 by proper updating of the
Voronoi regions of various elements involved. Therefore, the
merge algorithm (Figure 12) can be executed in O(ZI':(I) n)
time.

6. Concluding remarks

We have presented an O(N(log, N + H)) algorithm to
compute the Voronoi diagram of a multiply-connected
polygonal domain. It is not an optimal algorithm, but it is
simple and implementable. Moreover, in most practical
applications the number of holes is far less than the number
of edges in the input domain, which brings the worst-case
efficiency of our algorithm closer to the optimum. This is an

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

Tnput: VOD(U 49), VOD@R,.), 5, v» €,
=

i+1
Output: VOD(L.:) aQ).
i
1. /e v, r« e, and initialize the merge curve.
2. Repeat Begin
a. .
1) b (W d2,, -)N Bd, n}n (W, U 60, - 1)
J=

N B(n).
2) b, « first continuous piece of b, and add b, to the
merge curve.
p « termination point of b,.
b. If pis on a Voronoi edge or on a Voronoi vertex of
Wi, 09,,— 1)

then Begin

1) Find X € 8Q,,, such that b, tries to enter into
VA, 892, — A) from W, 69, —).

2) le A

End

c. If pis on a Voronoi edge or on a Voronoi vertex of

Wr, U 92, - 1)
Jj=0

then Begin

i _
1) Find p € L_)o 99, such that b, tries to enter into
7

Vs, U 32, — p) from W, U 32, = 1.
Jj=0 j=0

2) rep.
End
End Until/=vandr=e,

3. Discard all portions of VOD(L_'J0 4Q)) that lie within
7
B(oQ

i+1

90 42) and all portions of VOD(3Q,,,) that lie
7

outside of B(69,, U ae).
j=0

=

Algorithm for merging VOD(_U()&Q/.) and VOD(a1), _).
j=o

i

example of an algorithm in which we have traded worst-case
complexity for simplicity.

The algorithm has been implemented and applied by
Meshkat and Sakkas [5] to solve an important problem in
VLSI design. After we completed the theoretical work on the
algorithm [7] and the implementation was well under way,
we came across a sweepline algorithm by Fortune [8] which
computes the Voronoi diagram of points and line segments

VIJAY SRINIVASAN AND LEE R. NACKMAN

371

372

in O(N log, N) time. If Fortune’s algorithm can be
implemented to include both points and line segments

and if the sweepline technique is implemented to handle
degeneracies (i.., many vertices lying on the same sweepline,
as is the case in VLSI applications), it should also be
applicable to such VLSI problems.

The paper by Meshkat and Sakkas [5] reports some
experimental data on the run-time efficiency of our
algorithm. A theoretical average-case analysis of the
algorithm would be very useful to compare with such
experimental data. This wguld entail defining some
practically useful notion of what “average” means in, for
example, VLSI applications. Another useful exploration
would be to find some way of quantifying the above-
mentioned trade-off between the complexity of an algorithm
and the simplicity of its implementation.

It is reasonable to expect that with modest additional
effort one can compute Voronoi diagrams of multiply-
connected domains whose boundary consists of curvilinear
segments as well. A more challenging task is to find
algorithms that handle higher-dimensional spaces, i..,
polyhedra, where important applications can be found.

7. Acknowledgments

We are indebted to two of our colleagues who helped us with
the algorithm reported in this paper. Michael A. O’Connor
suggested Lemma 10 and its use in finding a starting point;
this simplified considerably an earlier starting-point
algorithm. V. Thomas Rajan carefully read a draft of this
paper and pointed out a major flaw in an earlier version of
Lemma 7. He also suggested a proof for the current version
of the same lemma, and the sorting of the hole boundaries.

References

1. D. G. Kirkpatrick, “Efficient Computation of Continuous
Skeletons,” IEEE 20th Annual Symposium on Foundations of
Computer Science, 1979, pp. 18-27.

2. D.T. Lee and R. L. Drysdale, “Generalization of Voronoi
Diagrams in the Plane,” SIAM J. Computing 10, No. 1, 73-87
(February 1981).

3. D. T. Lee, “Medial Axis Transformation of a Planar Shape,”
IEEE Trans. Pattern Anal. & Machine Intell. PAMI-4, No. 4,
363-369 (July 1982).

4. C. K. Yap, “An O(n log n) Algorithm for the Voronoi Diagram
of a Set of Simple Curve Segments,” preliminary version of a
report, Courant Institute of Mathematical Sciences, New York
University, New York, October 1984,

5. Siavash N. Meshkat and Constantine M. Sakkas, “Voronoi
Diagram for Multiply-Connected Polygonal Domains II:
Implementation and Application,” IBM J. Res. Develop. 31, No.
3, 373-381 (May 1987, this issue).

6. M. L. Shamos and D. Hoey, “Closest-Point Problems,” IEEE 16th
Annual Symposium on Foundations of Computer Science, 1975,
pp. 151-162.

7. V. Srinivasan and L. R. Nackman, “An Algorithm to Compute
the Voronoi Diagram of a Multiply Connected Polygonal
Domain,” Research Report RC-11605, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, December 1985.

8. S. Fortune, “A Sweepline Algorithm for Voronoi Diagrams,”
Proceedings of the Second Annual Symposium on Computational
Geometry, Yorktown Heights, NY, June 1986, pp. 313-322.

VIJAY SRINIVASAN AND LEE R. NACKMAN

Received October 1, 1986, accepted for publication January
6, 1987

Vijay Srinivasan IBM Thomas J. Watson Research Center, P. O.
Box 218, Yorktown Heights, New York 10598. Dr. Srinivasan joined
IBM in 1983 as a Research Staff Member and currently manages the
Design Automation Science Project at the IBM Thomas J. Watson
Research Center. He received his B. Tech. degree in 1976 and his
Ph.D. in 1980, both in mechanical engineering, from the Indian
Institute of Technology, Madras, India. His research interests include
finite-element modeling, dynamics of flexible systems, geometric
modeling, theory of tolerances, and mechanical design theory.

Dr. Srinivasan is a member of the Design Automation Committee of
the American Society of Mechanical Engineers, and is an adjunct
faculty member of the Department of Mechanical Engineering at
Columbia University, New York.

Lee R. Nackman IBM Thomas J. Watson Research Center, P.O.
Box 218, Yorktown Heights, New York 10598. Dr. Nackman has
been a Research Staff Member at the IBM Thomas J. Watson
Research Center since 1982 and is now manager of the Design
Automation Systems project. He received an Sc.B. degree in
computer science from Brown University, Providence, Rhode Island,
in 1976 and a Ph.D. degree in computer science from the University
of North Carolina at Chapel Hill in 1982. In 1983, he was also an
adjunct assistant professor of computer science at the Manhattanville
campus of New York University. His current research is in
geometric algorithms and software system structures for computer- °
aided design systems, especially solid modeling systems.

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

