
Voronoi diagram Lee R. Nackman
by Vijay Srinivasan

for multiply-
connected
polygonal
domains
I : Algorithm

Voronoi diagrams of multiply-connected
polygonal domains (polygons with holes) can be
of use in computer-aided design. We describe a
simple algorithm that computes such Voronoi
diagrams in O(N(log,N + H)) time, where N is
the number of edges and H is the number of
holes.

1. Introduction
Voronoi diagrams have been an active research topic in
computational geometry for the past decade. Much of the
earlier work, and some of the current work, concerns the
Voronoi diagrams of a set of discrete points. This domain
has been extended by Kirkpatrick [1 1 , Lee and Drysdale [2] ,
Lee [3] , Yap [4], and others to cover a collection of two-
dimensional objects such as line segments, circular arcs, and
polygons.

Several applications based on two-dimensional geometric
modeling require the computation of Voronoi diagrams of
boundaries of multiply-connected domains. Geometrical
modelers usually provide a boundary description of two-
dimensional, multiply-connected polygonal domains

“Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

(“polygons with holes”) as a tree of loops, in which each loop
is a list of edges. If N is the total number of edges on the
boundary of a multiply-connected polygonal domain, then
algorithms of O(N log, N) time complexity are known
[1, 2, 41 to compute the Voronoi diagram, but they are too
complex for practical implementation. In this paper, we
propose a simpler algorithm to compute the Voronoi
diagram of a multiply-connected polygonal domain. (Here
and henceforth, we shall drop the use of the term “boundary
of” and refer to the Voronoi diagram of the boundary of a
domain as the Voronoi diagram of the domain itself.)
If H is the number of holes, the algorithm requires
O(N(log, N + H)) time. An implementation and application
of the algorithm to a VLSI problem is presented in a
companion paper [S I .

The algorithm described in this paper computes the
Voronoi diagram of multiply-connected polygonal domains.
Informally, a multiply-connected polygonal domain is a
planar domain with holes in which all boundaries are
polygons (see Figure 1). A formal definition follows.

Definition I
A closed line segment [a, b] is the union of two endpoints a
and b and the open line segment (a, 6). Points or open line
segments are called elements. 0

Definition 2
A multiply-connected polygonal domain 52 is the closure of a
nonempty, bounded, connected, open (in the relative

IBM I. RES. DEVELOP. \ rOL. 31 NO. 3 MAY 1987 VIJAY SRINlVASAN A

36 1

LND LEE R. NACKMAN

La61 h V W E ‘ON I E ‘ 1 0 A ‘ d 0 1 3 A 3 a 538 ‘I WE1 N V W H X N ‘8 331 a N V NVSVAINIXS hVIIA

Z9E

e

are open line segments [Figure 2(d)], the bisector consists of
five connected pieces: two parabolic arcs, a line segment, and
two half-lines.

Definition 9
Let SI and S, be two disjoint sets of elements. The Voronoi
region V(S,, S,) of SI with respect to S, is the set of all
points closer to SI than to S,. 0

Lemma 1

W , , S,) = U n Me,, e,).
P,€SI C,ES2

Proof Let p be in V(S,, S,). By definition, p is closer to
some element e, in SI than to any element in S,. Therefore
p is in h(e,, e,), for all el in S,. Hence, p is in
U,,Es,nl;Es, h(e,, el). By a similar argument, it is easy to show
the converse. 0

Two corollaries follow immediately.

Corollary 1

V(e,, S) = n h(e,, e,). 0
‘;€S

Corollary 2

V(S,, SJ = U V e , , S,). 0
‘.,€SI

Since the boundary of the union (intersection) of a finite
number of sets is a subset of the union of their boundaries,
the boundary of a Voronoi region consists of pieces of
straight lines and parabolas (as illustrated in Figure 2). Each
such piece is called a Voronoi edge of the Voronoi region;
the endpoints of a Voronoi edge are called Voronoi vertices.

Dejnition 10
The Voronoi diagram, VOD(S), of a set of elements S = {e,]
is U,,,, V(e,, S - e,). 0

IBM J. RES. DEVELOP VOL. 31 NO. 3 MAY 1987 VIJAY SRlNlVASAN AND LEE R. NACKMAN

L861 hVW E 'ON I E '10A 'd013A3a 'S3B 'I WaI NVWX3VN 'X 331 a N V NVSVAINIBS hVnA

P98

...............
....

...............

.

.............. amn3 a%aN

............... i ;

.................

'. I

c. Discard the extraneous portions of the original
Voronoi diagrams, thus obtaining the new merged
Voronoi diagram.

The heart of the algorithm, and the fundamental
difference between this algorithm and those described in
[2, 31, is the way in which the merge curve is computed. All
of these algorithms compute the merge curve by first finding
a starting point on the curve and then traversing the merge
curve starting from that point. We propose a simple method
for finding a starting point by exploiting properties of
Voronoi diagrams of multiply-connected polygonal domains
(as distinguished from arbitrary sets of points and open line
segments). The following section describes properties of
Voronoi diagrams that we shall need to develop the
algorithm.

4. Properties of Voronoi diagrams
For our purposes, the most important property of Voronoi
diagrams of multiply-connected polygonal domains is that,
under certain conditions, merge curves are simple, closed
curves. This result, which is stated below in Theorem 1, is
proved by showing that certain Voronoi regions are simply-
connected, path-connected, and bounded.

Definition I 1
A planar region R is generalized-star-shaped with nucleus N,
N C R , if for any point r E R there exists a point n E N such
that the closed line segment [r, n] lies completely in R.

Lemma 2
The Voronoi region V(e,, S) is generalized-star-shaped, with
nucleus e,.

Proof Lemma 1 of [2]. 0

Lemma 3
V(S,, S,) is generalized-star-shaped, with nucleus SI.

Proof Let p be a point in V(S,, S,). By Corollary 2, p is in
?‘(e,, S,) for some e, in SI. Therefore, by Lemma 2, there is a
closed segment between p and e, which is contained entirely
in V(e,, S,) and hence in V(S,, S,). 0

Proof Let us denote the kth element of the boundary af2i+l
by e:+,. We first prove that V(e:+,, U;=, anj) is bounded. We
prove this by contradiction. Assume that the region is
unbounded. Since the region enclosed by the outer boundary
an, is bounded, there must exist a point p that lies outside
an, but in the Voronoi region V(e:+,, U;=, aQ,). See Figure 4.
Furthermore, e:+, is an element of an,+,, and therefore lies

IBM 1. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

inside aQ,. But, since p is outside an,, it must be closer to a
point on an, than to any point contained in the region
enclosed by an,. Therefore, p is closer to aQ, than to e:, .
This contradicts the assumption that p is in V(e:+,, U:=, aaj),
proving that V(e:+,, U;=, an,) is bounded. From Corollary 2,
we know that V(aQ,+,, U:=, anj) = U52: V(e,+,, U;=, an,).
Hence, V(dQ,+,, U:=, anj) is bounded. 0

k

Lemma 5
V(an,+,, u:=, an,) is path-connected.

Proof A path can be constructed between any two points
p and q in V(dQi+,, Ui=, anj), as illustrated in Figure 5. The
path begins at p , goes to its image on dQi+,, then to the
image of q on aO,+,, ending at q. The portions of the path
between p and an,+, and between q and aQ,+, lie entirely
within V(aQi+,, Ui=, anj) by Lemma 3. The portion of the
path between the images o fp and q on an,, is path-
connected because, by definition, an,+, is path-connected. 0

Let CH(aQ,) denote the interior of the convex hull of an,.

Lemma 6
Let an, and an, be two polygonal hole boundaries. If
CH(an,) does not completely contain an,, then there exist a
vertex v E an, and a half-line I, starting at v, such that 1, is
completely contained in V(aQj, aQj).

VIJAY SRINIVASAN AND LEE R. NACKMAN

366

f

Let p be any point in 1,. Since 1, is perpendicular to the
boundary of h, p is closer to v than to any element in dof
Hence p E V(dQ,, doJ). Since the choice of p on I , is
arbitrary, I , is completely contained in V(da,, 80,). 0

Lemma 7
If CH(dQ,+,) does not completely contain any doj,
j = 1, . . ., i, then V(dQ,,, Ui=, do,) is simply connected.

\ h l

Proof Since CH(dfl,) does not completely contain dQ,,
there must exist a vertex u E dQ, that lies outside of CH(dQJ).
Also, there must exist an edge e on the boundary of CH(dflJ)
such that a half-plane h constructed on e completely
contains CH(dQJ) but not v. See Figure 6. Construct a half-
line /, in h such that 1, starts at u and is perpendicular to e.

VIJAY SRINIVASAN AND LEE R. NACKMAN

Proof We must show that any simple, closed curve in
V(dQ,,,, U:=, 80,) can be shrunk to a point without leaving
V(dO,,,, U:=, doj). Let C be such a curve and let R, denote
the region enclosed by C. To show that C can be shrunk to a
point without leaving V(dRi+l, U:=, do,), we must show that
all points in R, are also in V(dQ,+,, Uj=, do,). We show this
by contradiction. Let p be any point in R,. Assume that p is
not in V(dQi+l, U:=, do,). Then p E cl V(U;=, doj,
and, by the argument used in the proof of Lemma 3,
there must exist a do,, 0 5 k 5 i, such that the line segment
from p to its image on do, is completely contained in
cl V(Ui=o dQ,, dQ,+J. Also, since CH(dn,,) does not
completely contain do,, by Lemma 6 there must exist a
vertex u E do, and a half-line 1, such that 1, is completely
contained in V(dQ,, do,,,). We can now construct a
continuous path C, from p to its image I @ , dok) , to vertex
v E do,, and to infinity along I,. See Figure 7. Note that C,
is completely contained in cl V(U& doJ, do,,,), and since
p E R, and C, is unbounded, C, must intersect C at, say, q.
Since q E C,, q must be contained in cl V(U:=o do,, dQ,+,).
This contradicts the assumption that C is in
V(dfi,+I, u;=, doJ). 0

Note that the condition stated in Lemma 7 is a sufficient
but not a necessary condition for the Voronoi region to be
simply-connected. We now show that given H polygonal
holes, we can always sort the holes so that the condition
stated in Lemma 7 is satisfied.

Lemma 8
Let Y, be the y-coordinate of the topmost vertex on do,. If
the hole boundaries have been sorted such that Y,+, 5 q,
then CH(dQ,+,) does not completely contain any doJ2,,
j = 1 . . . i,

1 ,

Proof We prove this by contradiction. Assume that
CH(dQ,+,) completely contains a doJ, 1 5 j 5 i. Then
Y,+, > Y,. This contradicts the sort criterion that q+, 5 Y,. 0

Henceforth, we assume that the holes have been sorted so
that the condition stated in Lemma 7 is satisfied.

Corollary 3
 do^+^, u:=, do,) is bounded, path-connected, and simply-
connected.

Proof Follows immediately from Lemmas 4, 5, and 7. 0

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

Theorem I
The boundary of V(aa,+,, U:=, an,) is a simple, closed curve.

Proof As noted in the discussion following Corollary 2, the
boundary of V(aa,+,, U:=, doJ) consists of the union of
connected portions of half-plane boundaries, each of which
we call a half-plane boundary segment. We now argue that
the boundary consists of one or more cycles of such half-
plane boundary segments. Pick a point on the boundary
and traverse the boundary in some direction. Since
V(dQ,+,, U:,, doJ) is bounded (Lemma 4) and no half-plane
boundary closes on itself, the traversal can neither go to
infinity nor close on itself in the same half-plane boundary
segment. Hence, it must reach an endpoint of the half-plane
boundary segment. But, as illustrated in Figure 8, an
endpoint can only be created by the intersection with
another half-plane boundary. At such an intersection, the
traversal continues on a segment of the second half-plane
boundary. Since, by reversing the direction of traversal, the
same argument applies to the other endpoint of the half-
plane boundary segment, we conclude that each half-plane
boundary segment is connected to at least one other half-
plane boundary segment at each endpoint. Thus, each half-
plane boundary segment is contained in a boundary cycle.
Since, by Corollary 3, V(aQ,+,, U:=, an,) is both path-

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

connected and simply-connected, there can only be one such
boundary cycle. 0

DeJnition 12
The bisector B(an,+,, U:=, 82,) is called a merge curve. 0

Note that the merge curve is also the boundary of
v (~ Q , + ~ , u;=, an,).

Lemma 9
VOD(UiLi an,) consists of the union of that portion
of VOD(U:=, aa,) lying outside the merge curve
B(aQ,+,, u:=, an,) and that portion of VOD(an,+,) lying
inside the merge curve.

Proof Let us first establish some simple notations. Let

Definition 10,
sold = u;=, an,, ahole = an,,,, and anew = u;:: an,. BY

We can expand the first subexpression as 367

VlJAY SRINIVASAN AND LEE R. NACKMAN

368

\

Similarly, we can expand the second subexpression as

The result follows immediately. 0
Our goal is to obtain VOD(U:LA X I J) from VOD(U:=, aQ,)

and VOD(dQ,+,). We do this by constructing the merge curve
and using Lemma 9 to discard unwanted portions of
VOD(U:=, aQJ) and VOD(an,+,). The first step is to obtain a
starting point, which is any point on the merge curve. Once
a starting point is found, the entire merge curve is
constructed by using a merge algorithm. We shall need the
following lemmas.

Lemma 10
Let v be a vertex on the convex hull of an inner boundary
an,+,, and h, be a half-plane such that h, completely contains
the convex hull and the boundary of h, contains the vertex v.
Also, let I , be a half-line in the complement of h, such that I,
starts at v and is perpendicular to the boundary of h, (see
Figure 9). Then I, is completely contained in the closure of
the Voronoi region V(v, an,+, - v) of this vertex.

Proof Since h, completely contains the convex hull, it also
contains an,,,. Let p be a point on I,. Since lu is
perpendicular to the boundary of h, and h, completely
contains p is no farther from v than from any other
element of an,,,. Hence, p is contained completely inside or
on the boundary of V(v, ani+, - v) . Since the choice of p in
I, is arbitrary, it follows that I , is completely contained in the
closure of V(v, aQi+, - v). 0

WAY SRlNlVASAN AND LEE R. NACKMAN IBM J. RES, DEVELOP. VOL. 31 NO. 3 MAY 1987

Lemma 11
I, of Lemma 10 intersects the merge curve B(aQ,+,, U:=, ~34).

Proof Since v E &,+,, u is contained inside the merge
curve. I , is a half-line that starts at v , and, by Theorem 1, the
merge curve is a simple closed curve. Therefore, I , must
intersect the merge curve. 0

Any point on the intersection between I , and the merge
curve can be a starting point. In an implementation, we can
pick v to be the topmost vertex (i.e., having the largest
y-coordinate), or one of the topmost vertices, of an,+,. This
will ensure that v is on the convex hull of aQ,+,.
5. Algorithm
The algorithm for computing the Voronoi diagram of a
multiply-connected polygonal domain is shown in Figure 10.
The algorithm first computes the Voronoi diagram of the
outer boundary (step I) , sorts the hole boundaries (step 2),
and then computes and merges in the Voronoi diagrams of
the inner boundaries (step 3). The Voronoi diagrams of the
individual boundaries can be computed using an extension
of Lee's algorithm (31. [Lee's algorithm computes the inner
Voronoi diagram of a simply-connected polygon (i.e., a
polygon without holes). In other words, his algorithm
computes the portion of the Voronoi diagram that is inside
the polygon. An extended version of his algorithm also
computes the outer Voronoi diagram of a simply-connected
polygon.] An algorithm for finding a starting point on the
merge curve (step 3b) is described in the following and is
shown in Figure 1 1. An algorithm for computing the merge
curve and merging in the Voronoi diagram of an inner
boundary (step 3c) is then described and is shown in
Figure 12.

determine. Lee has shown [3] that VOD(aQ,) can be
computed in O(n, log, n,) time. Thus, the worst-case
execution time for step I is O(no logzno). Sorting of the hole
boundaries in step 2 simply reorders the sequence in which
the holes are inserted. The sorting can be done by first
computing the largest y-coordinate among the vertices of
each hole boundary, which can totally take O(cE, ni) time,
and then sorting these y-coordinates in descending order,
which can take O(H log, H) time. Therefore, the total time
taken for the execution of step 2 is O(H log,H + cfl, ni).
The worst-case execution time for step 3a is O(n,+, log,ni+,).
We show below that a starting point can be found (step 3b)
in O(c:Li n,) time and that the merge (step 3c) can also be
done in O(ciIA n,) time. Therefore, an iteration of step 3
takes at most O(n,+, logZni+, + n,) time.

The total worst-case time is thus O(no log,no) +
O(H log,H + e$, ni) + e;"=, O(n, log,n, + X:=, n,). This can
be written as zEo O(n, log,n,) + O(c;=, n,). Let
N = c,to n,, that is, the total number of elements to be
processed. The total time can then be written as O(N log,N)
+ e:, O(c;=, nJ), which simplifies to O(N(log,N + H)).

The worst-case execution time of this algorithm is easy to

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

Input: u aq .
i - o n

output: VOD(U aQj).
1. Compute vozI(ano).
2. Sort the hole boundaries.
3. For i = 0 to H - 1 do Begin

H

J - 0

a. Compute VOD(aQi+,). I

b. Find a starting point so E B(aQi+l, U &,), along with
j-0

I

vertex u E an,, and element e, E U anj that define so.
I

P O

c. Merge VOQU anj) and VOQaQ,,,) to obtain
j-0

i+ 1

VOQU anj).
j - 0

End

Finding a starting point
Recall that we wish to obtain a starting point on the merge
curve and then to construct the merge curve through that
point. Any point on the merge curve will suffice. By Lemma
I 1 we know that if we pick a vertex u, which is the topmost
vertex or one of the topmost vertices on the inner boundary,
the half-line I", which starts at u and is directed vertically
upwards, intersects the merge curve. That point of
intersection will be our starting point. However, since the
merge curve is not yet known, we need some other test that
will determine where 1, intersects the merge curve.

The merge curve is the boundary of the Voronoi region
V(dQ,+,, U:=, dQ,), and therefore consists of the union of
portions of bisectors. The starting point must then be the
intersection of I, with some (yet to be determined) bisector.
Observe that the starting point must be contained in
cl V(e,, U:=, aQ, - e,), for some e, E U:=, aa,. We claim that
B(v, e,), the bisector between u and e,, is the desired bisector.
This is proved in the following lemma.

Lemma 12
Let so be a point. Then, so E B(v, e,) r l I,, n
cl V(e,, U:=, aOJ - e,) if and only if so E B(dQ,+l, u;=~ de,) n
I, n cl V(e,, a q - e,).

Proof Assume so E B(v, e,) n I , n cl V(e,, u;=o deJ - e,).
We must show that so E B(dQi+,, U;=o ag), that is, that so is
equidistant from ani+, and U;=, ail,. Since so E B(u, e,), it is
equidistant from u and e,. Moreover, since so E I,,, there is

VIJAY SRINIVASAN AND LEE R. NACKMAN

I

Input: vowu an,), vOD(ani+,), an,,.
Output: so, u, e,.

i-0

Find the topmost vertex (or one of the topmost vertices)
u on an,,,.
Find ek E U anj such that u is contained in the closure of

V(ek, u an, - a).
While true do Begin;

I

i-0
I

1-0

a.

b.
C.

I, + I, n cIv(e,, U anj - ek).

so c I, n B(u, ek).
If so # 6 then return so, u, e,
else Begin
I) Find e, E U anj such that 1, enters into

J-0

j-Q
I I

V(e,, u anJ - e,) from V(ek, u an, - ek).
1 4 J'o

2) e k c e , .
End

End

no element of dQ,,, that is closer to so than v is. Similarly,
since so E cl V(e,, U;=, do, - e,), there is no element of
Ui=, dQ, that is closer to so than e, is. Hence, so is equidistant
from dQ,,, and U;=, dQ,. Thus, so E B(dQ,,,, U:=, dQ,).

cl V(e,, U:=, dQ, - e,). We must show that so E B(v, e,), that
is, that s, is equidistant from v and e,. Since so is in
cl V(e,, U:=, 130, - e,), there is no element in U:=, 80, which
is closer to so than to e,. Also, since so is in lu, there is no
element of dQ,,, that is closer to so than v. Therefore, since so
is equidistant from dQ,,, and Ui=, dQ,, it must be equidistant
between v and e,. Thus, so E B(v, e,).

V(e,, U:=, dQ, - e,) in which the starting point lies, the
algorithm scans along I , starting from v and determines for
each Voronoi region encountered whether the starting point
lies on 1, in that region. By Lemma 12, this is equivalent to
determining whether or not the bisector B(v, e,) intersects 1,
in the region V(e,, U:=, dQ, - e,).

A detailed algorithm for finding a starting point is shown
in Figure 11. The algorithm begins (step 1) by finding the
topmost vertex (or one of the topmost vertices) on do,,,.

Now assume so E B(dQ,,,, ui=, do,) rl 1, n

Since the desired bisector depends on the region

370

VlJAY SRlNlVASAN A

This can be done in O(n,+,) time by finding the vertex u of
dQ,,, with the largest y-coordinate.

Step 2 finds the element e, in U:=, do, whose Voronoi
region V(e,, Uf=o dQ, - e,) contains the vertex v. (When v lies
on the common boundary of two or more Voronoi regions,
the algorithm can choose any element such that I, enters that
element's Voronoi region.) This can be done in O(c:,, n,)
time by scanning all the elements in UJ=, aQ, and finding that
particular element e, which is the closest to v.

Step 3 implements the scanning process to determine the
starting point. Step 3a computes the intersection of the half-
line I., and the Voronoi region of e,. This involves finding the
intersection of 1, with the edges of the Voronoi region of e,,
and in the worst case, we may have to do this for all the
elements in U:=, do,. Since there are O (N) Voronoi edges in
the Voronoi regions of N elements [2], the total time taken
to execute step 3a (Le., over all iterations) is O(c:=, n,).

Step 3b can be executed in constant time. Since this step
can potentially be executed O(ci=, n,) times, the total time
taken to execute this step is O('j$=, n,).

Execution of step 3cl on subsequent loop iterations
usually takes constant time because the termination point
(i.e., the last point in the direction of 1,) on ls lies on a
Voronoi edge. As a result, the region into which 1, enters
must be the other Voronoi region that shares this edge.
However, in the worst case, all of the termination points
could fall on Voronoi vertices. For each such occurrence, all
of the Voronoi edges incident upon the Voronoi vertex must
be examined to determine e,. Since there are a total of
O(ci,, n,) edges in VOD(U:=, do,) and step 3c2 can be done
in constant time, the total time taken to execute step 3c (i.e.,
over all iterations) is O(c:=, n,).

Hence, the total time taken to execute step 3 is O(c:=, n,).
The algorithm terminates because, by Lemma 1 1, there must
be a starting point on 1". Since step 3 scans along I", it must
eventually find the starting point and terminate. Thus the
time complexity of the algorithm to find the starting point is
ac;=, n,).

Merging Voronoi diagrams
Once a starting point on the merge curve is found, the next
step is to traverse the entire merge curve. Recall that the
merge curve consists of pieces of bisectors between pairs of
elements. The strategy we adopt is to identify element pairs
(one element belonging to dQ,+,, the other to U;=, dQ,), whose
bisectors contribute to the merge curve. Efficiency requires
that the merge algorithm exploit the continuity of the merge
curve to avoid exhaustive searching. The same approach to
merging two Voronoi diagrams has been used by Shamos
and Hoey [6] , Lee and Drysdale [2], and Lee [3]. The
algorithm for computing the merge curve is shown in Figure
12. The algorithm given here has a simple termination
condition based on the fact that the merge curve is a simple
closed curve.

,ND LEE R. NACKMAN IBM I. RES. DEVELOP. \ 'OL. 31 NO. 3 MAY 1987

After the initializations in step I , step 2 computes the
merge curve. In step 2a I , 5 inherits the direction from the
oriented bisector B(I, r). Since B(/, r) has a direction, we can
identify the “first” continuous piece, b,, of the indicated
intersection. (Since the bisectors can involve parabolas, and
the Voronoi regions are not always convex, the indicated
intersections can be a set of discontinuous pieces, hence the
need to identify the first continuous piece.) We can also
easily determine the termination point p (i.e., the last point
on b ,) along the direction of 6,. When step 2a is executed for
the first time, it may take, in the worst case, O(c:zA nj) time.
But in subsequent iterations of step 2a, we can use the
tactics of Lee and Drysdale [2], where the boundary of
V(/, do,,, - I) is traversed in the counterclockwise direction
from the last examined Voronoi edge, and the boundary of
V(r, Ui=, do, - r) is traversed in the clockwise direction from
the last examined edge, to obtain their intersection with
&I, r). This avoids backtracking, and Lee and Drysdale have
shown that two Voronoi diagrams, one of m elements, the
other of n elements, can be merged in O(m + n) time in this
manner. Their analysis holds here as well. Therefore, the
total time taken to execute step 2a (i.e., over all iterations) is
OCC~’: n,).

Execution of steps 2b and 2c on subsequent loop
iterations usually takes constant time because the
termination point p [i.e., the last point on b, in the direction
of E(/, r)] on SI usually lies on a Voronoi edge. As a result,
the region which b, tries to enter must be the other Voronoi
region that shares this edge. However, in the worst case, all
of the termination points could fall on Voronoi vertices. For
each such occurrence, all of the Voronoi edges incident upon
the Voronoi vertex must be examined to determine X or p.

Since there are a total of O(CiI: n,) edges in VOD(Ui=, do,)
and VOD(dO,+,), the total time taken to execute steps 2b and
2c (i.e., over all iterations) is o(z~’: n,).

Hence, the total time taken to execute step 2 is O(ZiLA n,).
Step 2 terminates because, by Theorem I , the merge curve
must close on itself.

Once the merge curve itself is constructed, the new
Voronoi diagram is obtained (step 3) by discarding portions
of the original Voronoi diagrams as described in Lemma 9.
In an implementation, this step can be camed out
simultaneously with step 2 by proper updating of the
Voronoi regions of various elements involved. Therefore, the
merge algorithm (Figure 12) can be executed in O(ci2; n,)
time.

6. Concluding remarks
We have presented an O(N(log, N + H)) algorithm to
compute the Voronoi diagram of a multiply-connected
polygonal domain. It is not an optimal algorithm, but it is
simple and implementable. Moreover, in most practical
applications the number of holes is far less than the number
of edges in the input domain, which brings the worst-case
efficiency of our algorithm closer to the optimum. This is an

I

Input: VOD(U an,), voo(an,+,), so, U, e,.

Output: voD(u anj).
J’o

i+ I

J’o
1. 1 c u, r c e,, and initialize the merge curve.
2. Repeat Begin

1) F+ IV(I, an,, - I) n B(I, t-11 n Iv(r, L anj - r)

2) F, + first continuous piece of 6 and add Fl to the

j-0

n B(I, r)].

merge curve.
p c termination point of 5,.

If p is on a Voronoi edge or on a Voronoi vertex of
V(1, an,, - I)
then Begin

1) Find X E aili+, such that 6, tries to enter into

2) I c X .
End
If p is on a Voronoi edge or on a Voronoi vertex of

V(r, U anj - r)
J - 0

then Begin

1) Find p E ail, such that 5, tries to enter into

V(X, an,, - X) from V(l, an,+, - I).

1

J-0
I I

V(p, U anj - p) from V(r, U anj - r).
J - 0 i-0

2) r e p .
End

3.

End Until I = u and r = e,.

Discard all portions of VOD(U an,) that lie within

B(dQi+,, 6 anj) and all portions of VOD(aQ,,) that lie

outside of B(aQi+,, U anj).

I

J - 0

J 4 I

J-Q

example of an algorithm in which we have traded worst-case
complexity for simplicity.

The algorithm has been implemented and applied by
Meshkat and Sakkas [5] to solve an important problem in
VLSI design. After we completed the theoretical work on the
algorithm [7] and the implementation was well under way,
we came across a sweepline algorithm by Fortune [8] which
computes the Voronoi diagram of points and line segments 371

WAY SRlNlVASAN AND LEE R. NACKMAN IBM 1. RES. DEVELOP. VOL. 31 NO. 3 MAY I 987 \

in O(N log,N) time. If Fortune’s algorithm can be Received October I, 1986; accepted for publication January
implemented to include both points and line segments 6, 1987
and if the sweepline technique is implemented to handle I
degeneracies (k many vertices lying on the same sweepline, Vijay Srinivasan IBM Thomas J. Watson Research Center, P. 0.
as is the case in VLSI applications), it should also be Box 218, Yorktown Heights, New York 10598. Dr. Srinivasan joined
applicable to such VLSI problems. IBM in 1983 as a Research Staff Member and currently manages the

Design Automation Science Project at the IBM Thomas J. Watson
The paper by Meshkat and Sakkas [SI reports some Research Center. He received his B. Tech. degree in 1976 and his

experimental data on the run-time efficiency of our Ph.D. in 1980, both in mechanical engineering, from the Indian
algorithm. A theoretical average-case analysis of the Institute of Technology, Madras, India. His research interests include

algorithm would be very useful to compare with such
finite-element modeling, dynamics of flexible systems, geometric
modeling, theory of tolerances, and mechanical design theory.

experimental data. This wguld entail defining some Dr. Srinivasan is a member of the Design Automation Committee of
practically useful notion of what GGaverage33 in, for the American Society of Mechanical Engineers, and is an adjunct

example, VLSI applications. Another useful exploration
faculty member of the Department of Mechanical Engineering at
Columbia University, New York.

would be to find some way of quantifying the above-

It is reasonable to expect that with modest additional been a Research Staff Member at the IBM Thomas J. Watson
Research Center since 1982 and is now manager of the Design
Automation Systems project. He received an Sc.B. degree in effort one can compute Voronoi diagrams of multiply-

segments as well. A more challenging task is to find in 1976 and a Ph.D. degree in computer science from the University
algorithms that handle higher-dimensional spaces, i.e., of North Carolina at Chapel Hill in 1982. In 1983, he was also an

polyhedra, where important applications can be found.
adjunct assistant professor of computer science at the Manhattanville
campus of New York University. His current research is in
geometric algorithms and software system structures for computer-
aided design systems, especially solid modeling systems.

connected domains whose boundary consists of curvilinear computer science from Brown University, Providence, Rhode Island,

7. Acknowledgments
We are indebted to two of our colleagues who helped us with
the algorithm reported in this paper. Michael A. OConnor
suggested Lemma 10 and its use in finding a starting point;
this simplified considerably an earlier starting-point
algorithm. V. Thomas Rajan carefully read a draft of this
paper and pointed out a major flaw in an earlier version of
Lemma 7. He also suggested a proof for the current version
of the same lemma, and the sorting of the hole boundaries.

References
I . D. G. Kirkpatrick, “Efficient Computation of Continuous

Skeletons,” IEEE 20th Annual Symposium on Foundations of
Computer Science, 1979, pp. 18-27.

Diagrams in the Plane,” SIAM J. Computing 10, No. 1, 73-87
(February 1981).

IEEE Trans. Pattern Anal. & Machine Intell. PAMI-4, No. 4,
363-369 (July 1982).

4. C. K. Yap, “An O(n log n) Algorithm for the Voronoi Diagram
of a Set of Simple Curve Segments,” preliminary version of a
report, Courant Institute of Mathematical Sciences, New York
University, New York, October 1984.

5. Siavash N. Meshkat and Constantine M. Sakkas, “Voronoi
Diagram for Multiply-Connected Polygonal Domains 11:
Implementation and Application,” IBM J. Res. Develop. 31, No.
3, 373-381 (May 1987, this issue).

6. M. I. Shamos and D. Hoey, “Closest-Point Problems,” IEEE 16th
Annual Symposium on Foundations of Computer Science, 1975,
pp. 151-162.

7. V. Srinivasan and L. R. Nackman, “An Algorithm to Compute
the Voronoi Diagram of a Multiply Connected Polygonal
Domain,” Research Report RC-11605, IBM Thomas J. Watson
Research Center, Yorktown Heights, N Y , December 1985.

8. S. Fortune, “A Sweepline Algorithm for Voronoi Diagrams,”
Proceedings of the Second Annual Symposium on Computational

372 Geometry, Yorktown Heights, N Y , June 1986, pp. 313-322.

2. D. T. Lee and R. L. Drysdale, “Generalization of Voronoi

3. D. T. Lee, “Medial Axis Transformation of a Planar Shape,”

VlJAY SRlNlVASAN AND LEE R. NACKMAN IBM 3. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

