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Voronoi  diagrams of multiply-connected 
polygonal  domains  (polygons  with  holes)  can be 
of use  in  computer-aided  design.  We  describe  a 
simple  algorithm  that  computes  such  Voronoi 
diagrams  in  O(N(log,N + H ) )  time,  where N is 
the  number of edges and H is the  number of 
holes. 

1. Introduction 
Voronoi  diagrams  have been an active research topic in 
computational geometry for the past decade. Much of the 
earlier work, and  some of the  current work, concerns  the 
Voronoi  diagrams  of  a set of  discrete  points. This  domain 
has been extended by Kirkpatrick [ 1 1 ,  Lee and Drysdale [ 2 ] ,  
Lee [ 3 ] ,  Yap [4], and others to cover  a  collection  of two- 
dimensional  objects  such as line segments, circular arcs, and 
polygons. 

Several applications based on two-dimensional  geometric 
modeling  require the  computation of Voronoi  diagrams  of 
boundaries  of  multiply-connected domains.  Geometrical 
modelers usually provide a boundary description  of two- 
dimensional,  multiply-connected polygonal domains 
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(“polygons with holes”) as a tree of loops, in which each loop 
is a list of edges. If N is the total number of edges on  the 
boundary of  a  multiply-connected polygonal domain,  then 
algorithms of O(N log, N )  time complexity are known 
[ 1, 2, 41 to  compute  the Voronoi  diagram, but they are  too 
complex  for  practical implementation.  In this  paper, we 
propose  a  simpler  algorithm to  compute  the Voronoi 
diagram  of  a  multiply-connected polygonal domain. (Here 
and henceforth, we shall drop  the use of the  term  “boundary 
of” and refer to  the Voronoi  diagram  of the  boundary of  a 
domain  as  the Voronoi  diagram of the  domain itself.) 
If H is the  number of holes, the algorithm  requires 
O(N(log, N + H ) )  time. An implementation  and application 
of the algorithm to a VLSI problem is presented in a 
companion  paper [ S I .  

The algorithm  described  in this paper computes  the 
Voronoi  diagram  of  multiply-connected polygonal domains. 
Informally,  a  multiply-connected polygonal domain is a 
planar  domain with holes in which all boundaries  are 
polygons (see Figure 1). A formal definition follows. 

Definition I 
A closed  line  segment [a, b] is the  union of  two endpoints a 
and b and  the open  line  segment (a, 6). Points or open  line 
segments are called elements. 0 

Definition 2 
A multiply-connected  polygonal domain 52 is the closure  of  a 
nonempty,  bounded,  connected, open (in the relative 
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are open line segments  [Figure 2(d)], the bisector consists of 
five connected pieces: two parabolic arcs, a line segment, and 
two half-lines. 

Definition 9 
Let SI and S, be two disjoint sets of elements. The Voronoi 
region V(S,, S,) of SI with respect to S, is the set of all 
points closer to SI than  to S,. 0 

Lemma 1 

W , ,  S,) = U n Me,, e,). 
P,€SI  C,ES2 

Proof Let p be in V(S,, S,). By definition, p is closer to 
some  element e, in SI than  to  any  element  in S,. Therefore 
p is in h(e,, e,), for all el in S,. Hence, p is in 
U,,Es,nl;Es, h(e,, el). By a  similar argument, it is easy to show 
the converse. 0 

Two corollaries follow immediately. 

Corollary 1 

V(e,, S )  = n h(e,, e,). 0 
‘;€S 

Corollary 2 

V(S,, SJ = U V e , ,  S,). 0 
‘.,€SI 

Since the  boundary of the  union (intersection) of a finite 
number of  sets is a  subset  of the  union of their boundaries, 
the  boundary of a  Voronoi region consists of pieces of 
straight  lines and parabolas  (as  illustrated  in  Figure 2). Each 
such piece is called a Voronoi edge of the  Voronoi region; 
the  endpoints of a  Voronoi edge are called Voronoi vertices. 

Dejnition 10 
The Voronoi diagram, VOD(S), of a set of elements S = {e,] 
is U,,,, V(e,, S - e,). 0 

IBM J. RES. DEVELOP VOL. 31 NO. 3 MAY 1987 VIJAY SRlNlVASAN AND LEE R. NACKMAN 



L861 hVW E 'ON I E  '10A 'd013A3a 'S3B 'I WaI NVWX3VN 'X 331 a N V  NVSVAINIBS hVnA 

P98 

............... .............. ....... ... ......................... 
.... ...................... 

............... 

. .  . .  . .  ............... ............... 

.............. amn3 a%aN 

............... ............... . .  i ;  

................. ............... 

'. I ............... 



c.  Discard the extraneous portions of the original 
Voronoi diagrams, thus obtaining the new  merged 
Voronoi diagram. 

The heart of the algorithm, and the fundamental 
difference  between this algorithm and those described  in 
[2, 31, is the way in  which the merge curve is computed. All 
of these algorithms compute the merge curve by  first finding 
a starting point on  the curve and then traversing the merge 
curve starting from that point. We propose a simple method 
for  finding a starting point by exploiting properties of 
Voronoi diagrams of multiply-connected polygonal domains 
(as distinguished from arbitrary sets of points and open line 
segments). The following section describes properties of 
Voronoi diagrams that we shall need to develop the 
algorithm. 

4. Properties of Voronoi diagrams 
For our purposes, the most important property of Voronoi 
diagrams of multiply-connected polygonal domains is that, 
under certain conditions, merge curves are simple, closed 
curves. This result,  which is stated below  in Theorem 1, is 
proved by showing that certain Voronoi regions are simply- 
connected, path-connected, and bounded. 

Definition I 1  
A planar region R is generalized-star-shaped with nucleus N,  
N C R ,  if  for any point r E R there exists a point n E N such 
that the closed line segment [r,  n] lies completely in R. 

Lemma 2 
The Voronoi region V(e,, S )  is generalized-star-shaped, with 
nucleus e,. 

Proof Lemma 1 of [2]. 0 

Lemma 3 
V(S,, S,) is  generalized-star-shaped,  with nucleus SI. 

Proof Let p be a point in V(S,, S,). By Corollary 2, p is in 
?‘(e,, S,) for some e, in SI. Therefore, by Lemma 2, there is a 
closed  segment  between p and e, which  is contained entirely 
in V(e,, S,) and hence in V(S,, S,). 0 

Proof Let us denote the kth element of the boundary af2i+l 
by e:+,. We  first prove that V(e:+,, U;=, anj) is bounded. We 
prove this by contradiction. Assume that the region  is 
unbounded. Since the region  enclosed by the  outer boundary 
an, is bounded, there must exist a point p that lies outside 
an, but in the Voronoi region V(e:+,, U;=, aQ,). See Figure 4. 
Furthermore, e:+, is an element of an,+,, and therefore lies 
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inside aQ,. But, since p is outside an,, it must be closer to a 
point on an, than to any point contained in the region 
enclosed by an,. Therefore, p is  closer to aQ, than  to e:, . 
This contradicts the assumption that p is in V(e:+,, U:=, aaj), 
proving that V(e:+,, U;=, an,) is bounded. From Corollary 2, 
we know that V(aQ,+,, U:=, anj) = U52: V(e,+,, U;=, an,). 
Hence, V(dQ,+,, U:=, anj) is bounded. 0 

k 

Lemma 5 
V(an,+,, u:=, an,) is path-connected. 

Proof A path can be constructed between any two points 
p and q in V(dQi+,, Ui=, anj), as illustrated in Figure 5. The 
path begins at p ,  goes to its image on dQi+,,  then  to  the 
image  of q on aO,+,, ending at q. The portions of the path 
between p and an,+, and between q and aQ,+, lie entirely 
within V(aQi+,, Ui=, anj) by Lemma 3. The portion of the 
path between the images o fp  and q on an,, is path- 
connected because, by definition, an,+, is path-connected. 0 

Let CH(aQ,) denote the interior of the convex  hull  of an,. 

Lemma 6 
Let an, and an, be two polygonal  hole boundaries. If 
CH(an,) does not completely contain an,, then there exist a 
vertex v E an, and a half-line I, starting at v,  such that 1, is 
completely contained in V(aQj, aQj). 
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Let p be any  point  in 1,. Since 1, is  perpendicular to  the 
boundary of h, p is closer to v than  to  any  element  in dof 
Hence p E V(dQ,, doJ). Since the choice  of p on I ,  is 
arbitrary, I ,  is  completely contained  in V(da,, 80,). 0 

Lemma 7 
If CH(dQ,+,) does  not completely contain  any doj,  
j = 1, . . ., i, then V(dQ,,, Ui=, do,) is simply  connected. 

\ h l  

Proof Since CH(dfl,) does not completely contain dQ,, 
there  must exist a vertex u E dQ, that lies outside of CH(dQJ). 
Also, there  must exist an edge e on  the  boundary of CH(dflJ) 
such that a half-plane h constructed on e completely 
contains CH(dQJ) but  not v.  See Figure 6. Construct a half- 
line /, in h such that 1, starts at u and is  perpendicular to e. 

VIJAY SRINIVASAN AND LEE R. NACKMAN 

Proof We must show that  any simple, closed curve in 
V(dQ,,,, U:=, 80,) can be shrunk  to a point without leaving 
V(dO,,,, U:=, doj). Let C be such a curve and let R, denote 
the region enclosed by C. To show that C can be shrunk  to a 
point without leaving V(dRi+l, U:=, do,), we must show that 
all points in R, are also in V(dQ,+,, Uj=, do,). We show this 
by contradiction. Let p be any  point  in R,. Assume that p is 
not in V(dQi+l, U:=, do,). Then p E cl V(U;=, doj, 
and, by the  argument used in  the proof  of Lemma 3, 
there must exist a do,, 0 5 k 5 i, such that  the line  segment 
from p to  its image on do, is  completely contained  in 
cl V(Ui=o dQ,, dQ,+J. Also, since CH(dn,,) does  not 
completely contain do,, by Lemma 6 there  must exist a 
vertex u E do, and a half-line 1, such that 1, is completely 
contained in V(dQ,, do,,,). We can now construct a 
continuous  path C, from p to its  image I @ ,  dok) ,  to vertex 
v E do,, and  to infinity along I,. See Figure 7. Note  that C, 
is completely contained  in cl V(U& doJ, do,,,), and since 
p E R, and C, is unbounded, C, must intersect C at, say, q. 
Since q E C,, q must be contained in cl V(U:=o do,, dQ,+,). 
This contradicts the  assumption  that C is in 
V(dfi,+I, u;=, doJ). 0 

Note that  the  condition stated in  Lemma 7 is a sufficient 
but  not a necessary condition for the  Voronoi region to  be 
simply-connected. We now show that given H polygonal 
holes, we can always sort the holes so that  the  condition 
stated in  Lemma 7 is satisfied. 

Lemma 8 
Let Y, be  the y-coordinate  of the  topmost vertex on do,. If 
the hole boundaries have been sorted  such that Y,+, 5 q, 
then CH(dQ,+,) does  not completely contain  any doJ2,, 
j =  1 . . .  i, 

1 ,  

Proof We prove  this by contradiction.  Assume that 
CH(dQ,+,) completely contains a doJ,  1 5 j 5 i. Then 
Y,+, > Y,. This  contradicts  the sort  criterion that q+, 5 Y,. 0 

Henceforth, we assume  that  the holes have  been  sorted so 
that  the  condition stated in  Lemma 7 is satisfied. 

Corollary 3 
 do^+^, u:=, do,) is bounded, path-connected, and simply- 
connected. 

Proof Follows immediately from  Lemmas 4, 5, and 7. 0 
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Theorem I 
The  boundary of V(aa,+,, U:=, an,) is a  simple, closed curve. 

Proof As noted in  the discussion following Corollary 2, the 
boundary of V(aa,+,, U:=, doJ) consists of the  union of 
connected portions of half-plane boundaries,  each of which 
we call a half-plane boundary segment. We now  argue that 
the  boundary consists  of one or more cycles of such half- 
plane boundary segments. Pick a point  on  the  boundary 
and traverse the  boundary  in  some direction. Since 
V(dQ,+,, U:,, doJ) is bounded  (Lemma 4) and  no half-plane 
boundary closes on itself, the traversal can  neither go to 
infinity nor close on itself in  the  same half-plane boundary 
segment.  Hence, it  must reach an  endpoint of the half-plane 
boundary segment.  But,  as  illustrated  in Figure 8, an 
endpoint  can only be created by the intersection with 
another half-plane boundary. At such an intersection, the 
traversal continues  on a  segment of the second  half-plane 
boundary. Since, by reversing the direction  of traversal, the 
same  argument applies to  the  other  endpoint of the half- 
plane boundary segment, we conclude that each half-plane 
boundary segment is connected to  at least one  other half- 
plane boundary segment at each endpoint.  Thus, each half- 
plane boundary segment  is contained in  a boundary cycle. 
Since, by Corollary 3, V(aQ,+,, U:=, an,) is both path- 
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connected and simply-connected, there can  only be one such 
boundary cycle. 0 

DeJnition 12 
The bisector B(an,+,, U:=, 82,) is called a merge curve. 0 

Note that  the merge curve is also the  boundary  of 
v ( ~ Q , + ~ ,  u;=, an,). 

Lemma 9 
VOD(UiLi an,) consists of the  union of that  portion 
of VOD(U:=, aa,) lying outside the merge curve 
B(aQ,+,, u:=, an,) and  that portion of VOD(an,+,) lying 
inside the merge curve. 

Proof Let us first establish some simple  notations. Let 

Definition 10, 
sold = u;=, an,, ahole = an,,,, and anew = u;:: an,. BY 

We can expand  the first subexpression as 367 
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Similarly, we can expand the second subexpression as 

The result  follows immediately. 0 
Our goal  is to obtain VOD(U:LA X I J )  from VOD(U:=, aQ,) 

and VOD(dQ,+,). We do this by constructing the merge curve 
and using Lemma 9 to discard unwanted portions of 
VOD(U:=, aQJ) and VOD(an,+,). The first step is to obtain a 
starting point, which is any point on the merge  curve. Once 
a starting point is found, the entire merge curve is 
constructed by using a merge algorithm. We  shall  need the 
following lemmas. 

Lemma 10 
Let v be a vertex on  the convex  hull  of an  inner boundary 
an,+,, and h, be a half-plane such that h, completely contains 
the convex  hull and  the boundary of h, contains the vertex v.  
Also,  let I ,  be a half-line in the complement of h, such that I, 
starts at v and is perpendicular to the boundary of h, (see 
Figure 9). Then I, is completely contained in the closure of 
the Voronoi region V(v, an,+, - v )  of this vertex. 

Proof Since h, completely contains the convex hull, it  also 
contains an,,,. Let p be a point on I,. Since lu is 
perpendicular to the boundary of h, and h, completely 
contains p is no farther from v than from any other 
element of an,,,. Hence, p is contained completely inside or 
on  the boundary of V(v, ani+, - v) .  Since the choice of p in 
I, is arbitrary, it  follows that I ,  is completely contained in the 
closure of V(v, aQi+, - v).  0 
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Lemma 11 
I, of Lemma 10 intersects the merge curve B(aQ,+,, U:=, ~34). 

Proof Since v E &,+,, u is contained inside the merge 
curve. I ,  is a half-line that starts at v ,  and, by Theorem 1, the 
merge curve is a  simple closed curve.  Therefore, I ,  must 
intersect the merge curve. 0 

Any  point on  the intersection between I ,  and  the merge 
curve can be a  starting point.  In  an  implementation, we can 
pick v to be the  topmost vertex (i.e., having the largest 
y-coordinate), or one of the  topmost vertices, of an,+,. This 
will ensure  that v is on  the convex hull of aQ,+,. 
5. Algorithm 
The algorithm  for computing  the Voronoi  diagram  of  a 
multiply-connected polygonal domain is shown in Figure 10. 
The algorithm first computes  the Voronoi  diagram of the 
outer  boundary (step I) ,  sorts the hole boundaries (step 2), 
and  then  computes  and merges in  the Voronoi  diagrams  of 
the  inner  boundaries (step 3). The Voronoi  diagrams of the 
individual boundaries can be computed using an extension 
of Lee's algorithm (31. [Lee's algorithm computes  the  inner 
Voronoi  diagram  of  a  simply-connected polygon (i.e., a 
polygon without holes). In other words, his algorithm 
computes  the  portion of the Voronoi  diagram that is  inside 
the polygon. An extended version of his algorithm  also 
computes  the  outer Voronoi  diagram of a simply-connected 
polygon.] An algorithm  for finding a  starting point  on  the 
merge curve  (step  3b)  is described in  the following and is 
shown  in  Figure 1 1. An algorithm  for computing  the merge 
curve and merging in the Voronoi diagram of an  inner 
boundary (step  3c)  is then described and is  shown in 
Figure 12. 

determine. Lee has shown [3]  that VOD(aQ,) can be 
computed in O(n, log, n,) time.  Thus,  the worst-case 
execution time for  step I is O(no logzno). Sorting  of the hole 
boundaries in step 2 simply  reorders the sequence in which 
the holes are inserted. The sorting can be done by first 
computing  the largest y-coordinate among  the vertices of 
each  hole boundary, which can totally take O(cE, ni) time, 
and  then sorting  these  y-coordinates in descending  order, 
which can  take O(H log, H )  time.  Therefore, the total time 
taken  for the execution of step 2 is O(H log,H + cfl, ni). 
The worst-case execution time for step 3a is O(n,+, log,ni+,). 
We show below that a  starting point  can  be  found (step  3b) 
in O(c:Li n,) time  and  that  the merge (step 3c) can also be 
done in O(ciIA n,) time.  Therefore, an iteration  of step 3 
takes at most O(n,+, logZni+, + n,) time. 

The total worst-case time is thus O(no log,no) + 
O(H log,H + e$, ni) + e;"=, O(n, log,n, + X:=, n,). This  can 
be written as zEo O(n, log,n,) + O(c;=, n,). Let 
N = c,to n,, that is, the total number of elements  to be 
processed. The total time  can  then  be written as  O(N log,N) 
+ e:, O(c;=, nJ), which simplifies to O(N(log,N + H)). 

The worst-case execution time of this algorithm  is easy to 
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Input: u aq .  
i - o n  

output: VOD(U aQj). 
1. Compute vozI(ano). 
2. Sort the  hole boundaries. 
3. For i = 0 to H - 1 do Begin 

H 

J - 0  

a. Compute VOD(aQi+,). I 

b. Find a starting  point so E B(aQi+l, U &,), along with 
j-0 

I 

vertex u E an,, and  element e, E U anj that define so. 
I 

P O  

c. Merge VOQU anj) and VOQaQ,,,) to  obtain 
j-0 

i+ 1 

VOQU anj). 
j - 0  

End 

Finding a starting point 
Recall that we  wish to  obtain a  starting point  on  the merge 
curve and  then  to  construct  the merge curve  through that 
point.  Any point  on  the merge  curve will  suffice. By Lemma 
I 1 we know that if  we pick a vertex u, which is the  topmost 
vertex or one of the  topmost vertices on  the  inner boundary, 
the half-line I", which starts at u and is directed vertically 
upwards, intersects the merge curve. That  point of 
intersection will be our starting  point.  However,  since the 
merge curve is not yet known, we need some  other test that 
will determine where 1, intersects the merge curve. 

The merge curve  is the  boundary of the Voronoi region 
V(dQ,+,, U:=, dQ,), and therefore consists of the  union of 
portions  of bisectors. The starting  point must  then be the 
intersection  of I, with some (yet to be determined) bisector. 
Observe that  the starting point  must be contained in 
cl V(e,, U:=, aQ, - e,), for some e, E U:=, aa,. We claim that 
B(v, e,), the bisector between u and e,, is the desired bisector. 
This is proved in  the following lemma. 

Lemma 12 
Let so be a point. Then, so E B(v, e,) r l  I,, n 
cl V(e,, U:=, aOJ - e,) if and  only if so E B(dQ,+l, u;=~ de,) n 
I, n cl V(e,, a q  - e,). 

Proof Assume so E B(v, e,) n I ,  n cl V(e,, u;=o deJ - e,). 
We must show that so E B(dQi+,, U;=o ag), that is, that so is 
equidistant  from ani+, and U;=, ail,. Since so E B(u, e,), it is 
equidistant  from u and e,. Moreover,  since so E I,,, there is 
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Input: vowu an,),  vOD(ani+,),  an,,. 
Output: so, u, e,. 

i-0 

Find  the  topmost vertex (or  one  of  the  topmost vertices) 
u on an,,,. 
Find ek E U anj such that u is contained  in  the closure  of 

V(ek, u an, - a). 
While true do Begin; 

I 

i-0 
I 

1-0 

a. 

b. 
C. 

I, + I, n cIv(e,, U anj - ek). 

so c I, n B(u, ek). 
If so # 6 then return so, u, e, 
else Begin 
I )  Find e, E U anj such  that 1, enters  into 

J-0  

j-Q 
I I 

V(e,, u anJ - e,) from V(ek, u an, - ek). 
1 4  J'o 

2) e k c e , .  
End 

End 

no  element of dQ,,, that is closer to so than v is. Similarly, 
since so E cl V(e,, U;=, do, - e,), there is no  element of 
Ui=, dQ, that is closer to so than e, is. Hence, so is equidistant 
from dQ,,, and U;=, dQ,. Thus, so E B(dQ,,,, U:=, dQ,). 

cl V(e,, U:=, dQ, - e,). We must show that so E B(v, e,), that 
is, that s, is equidistant  from v and e,. Since so is in 
cl V(e,, U:=, 130, - e,), there is no  element in U:=, 80, which 
is closer to so than  to e,. Also, since so is in lu, there is no 
element of dQ,,, that is closer to so than v.  Therefore,  since so 
is equidistant  from dQ,,, and Ui=, dQ,, it must be equidistant 
between v and e,. Thus, so E B(v, e,). 

V(e,, U:=, dQ, - e,) in which the starting point lies, the 
algorithm  scans  along I ,  starting from v and  determines for 
each Voronoi region encountered whether the starting point 
lies on 1, in that region. By Lemma 12, this is equivalent to 
determining whether or  not  the bisector B(v, e,) intersects 1, 
in the region V(e,, U:=, dQ, - e,). 

A detailed algorithm for finding  a  starting point is shown 
in Figure 11. The algorithm begins (step 1)  by finding the 
topmost vertex (or one of the  topmost vertices) on do,,,. 

Now assume so E B(dQ,,,, ui=, do,) rl 1, n 

Since the desired bisector depends  on  the region 
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This  can be done in O(n,+,) time by finding the vertex u of 
dQ,,, with the largest y-coordinate. 

Step 2 finds the  element e, in U:=, do, whose Voronoi 
region V(e,, Uf=o dQ, - e,) contains  the vertex v.  (When v lies 
on  the  common  boundary of two  or  more Voronoi regions, 
the algorithm can choose any  element such that I, enters  that 
element's  Voronoi region.) This  can be done  in O(c:,, n,) 
time by scanning all the  elements  in UJ=, aQ, and finding that 
particular element e, which is the closest to v.  

Step 3 implements  the scanning process to  determine  the 
starting  point. Step 3a computes  the intersection of the half- 
line I., and  the Voronoi region of e,. This involves finding the 
intersection  of 1, with the edges of the  Voronoi region of e,, 
and in the worst case, we may have to  do  this for all the 
elements in U:=, do,. Since there  are O ( N )  Voronoi edges in 
the Voronoi regions of N elements [2], the total time  taken 
to execute step 3a (Le., over all iterations) is O(c:=, n,). 

Step 3b can be executed in  constant  time. Since this step 
can potentially be executed O(ci=, n,) times, the total time 
taken to execute  this  step is O('j$=, n,). 

Execution of step 3cl  on subsequent loop iterations 
usually takes constant  time because the  termination  point 
(i.e., the last point in the direction of 1,) on ls lies on a 
Voronoi edge. As a  result, the region into which 1, enters 
must be the  other Voronoi region that shares this edge. 
However, in  the worst case, all  of the  termination  points 
could fall on Voronoi vertices. For each  such  occurrence,  all 
of the Voronoi edges incident  upon  the Voronoi vertex must 
be examined  to  determine e,. Since there  are a  total  of 
O(ci,, n,) edges in VOD(U:=, do,) and step 3c2 can be done 
in constant  time,  the total time taken to execute  step 3c (i.e., 
over all iterations) is O(c:=, n,). 

Hence, the total time  taken  to execute  step  3 is O(c:=, n,). 
The algorithm terminates because, by Lemma 1 1, there  must 
be a  starting point  on 1". Since  step 3 scans  along I", it must 
eventually find the starting point  and  terminate.  Thus  the 
time complexity  of the algorithm to find the starting point is 
ac;=, n,). 

Merging Voronoi diagrams 
Once  a  starting point  on  the merge curve  is found,  the next 
step is to traverse the  entire merge curve. Recall that  the 
merge curve consists of pieces of bisectors between pairs of 
elements. The strategy we adopt is to identify element pairs 
(one element belonging to dQ,+,, the  other  to U;=, dQ,), whose 
bisectors contribute  to  the merge curve. Efficiency requires 
that  the merge algorithm  exploit the  continuity of the merge 
curve to avoid  exhaustive searching. The  same  approach  to 
merging two Voronoi  diagrams has been used by Shamos 
and Hoey [6] ,  Lee and Drysdale  [2], and Lee [3]. The 
algorithm  for computing  the merge curve  is  shown  in Figure 
12. The algorithm given here  has  a  simple termination 
condition based on  the fact that  the merge curve is a  simple 
closed curve. 
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After the initializations in step I ,  step 2 computes  the 
merge curve. In step 2a I ,  5 inherits  the direction from  the 
oriented bisector B(I, r). Since B(/, r)  has a direction, we can 
identify the “first” continuous piece, b,, of the indicated 
intersection. (Since the bisectors can involve  parabolas, and 
the Voronoi regions are  not always convex, the indicated 
intersections can  be a set of discontinuous pieces, hence the 
need to identify the first continuous piece.) We can also 
easily determine  the  termination  point p (i.e., the last point 
on b , )  along the direction of 6,. When  step 2a is executed for 
the first time, it may take,  in the worst case, O(c:zA nj) time. 
But in subsequent  iterations of step  2a, we can use the 
tactics  of Lee and Drysdale [2], where the  boundary of 
V(/, do,,, - I )  is traversed in the counterclockwise  direction 
from the last examined Voronoi edge, and  the  boundary of 
V(r, Ui=, do, - r) is traversed in  the clockwise direction from 
the last examined edge, to  obtain their  intersection with 
&I, r). This avoids  backtracking, and Lee and Drysdale have 
shown that two  Voronoi  diagrams, one of m elements, the 
other of n elements, can  be merged in O(m + n) time in this 
manner.  Their analysis  holds  here as well. Therefore, the 
total time  taken  to execute  step 2a (i.e., over all iterations) is 
OCC~’: n,). 

Execution  of  steps 2b  and  2c  on subsequent loop 
iterations usually takes constant  time because the 
termination  point p [i.e., the last point  on b, in the direction 
of E(/,  r)]  on SI usually lies on a Voronoi edge. As a result, 
the region which b, tries to  enter  must be the  other Voronoi 
region that shares  this edge. However, in the worst case, all 
of the  termination points  could fall on Voronoi vertices. For 
each  such  occurrence, all of the Voronoi edges incident upon 
the Voronoi vertex must  be  examined  to  determine X or p. 

Since there  are a total of O(CiI: n,) edges in VOD(Ui=, do,) 
and VOD(dO,+,), the total time taken to execute  steps 2b  and 
2c (i.e., over all iterations) is o(z~’: n,). 

Hence, the total time taken to execute step 2 is O(ZiLA n,). 
Step 2 terminates because, by Theorem I ,  the merge curve 
must close on itself. 

Once  the merge curve itself is constructed, the new 
Voronoi  diagram is obtained  (step 3) by discarding  portions 
of the original Voronoi  diagrams as described in  Lemma 9. 
In an  implementation, this step  can be camed  out 
simultaneously with step 2 by proper updating of the 
Voronoi regions of various elements involved. Therefore, the 
merge algorithm  (Figure 12) can be executed in O(ci2; n,) 
time. 

6. Concluding remarks 
We have  presented an O(N(log, N + H ) )  algorithm to 
compute  the Voronoi  diagram of a multiply-connected 
polygonal domain. It is not  an  optimal algorithm, but it is 
simple and implementable.  Moreover,  in  most practical 
applications the  number of holes is far less than  the  number 
of edges in the  input  domain, which brings the worst-case 
efficiency of our algorithm closer to  the  optimum.  This is an 

I 

Input: VOD(U an,), voo(an,+,), so, U, e,. 

Output: voD(u anj). 
J’o 

i+ I 

J’o 
1. 1 c u, r c e,, and initialize the merge curve. 
2. Repeat  Begin 

1) F+ IV(I, an,, - I) n B(I, t-11 n Iv(r, L anj - r) 

2) F, + first continuous piece of 6 and  add Fl to  the 

j-0 

n B(I, r)]. 

merge curve. 
p c termination  point  of 5,. 

If p is on a Voronoi edge or on a Voronoi vertex of 
V(1, an,, - I) 
then  Begin 

1) Find X E aili+, such  that 6, tries to enter  into 

2) I c X .  
End 
If p is on a Voronoi edge or on a Voronoi vertex of 

V(r, U anj - r) 
J - 0  

then  Begin 

1) Find p E ail, such  that 5, tries to enter  into 

V(X, an,, - X) from V(l, an,+, - I). 

1 

J-0 
I I 

V(p, U anj - p )  from V(r, U anj - r). 
J - 0  i-0 

2) r e p .  
End 

3. 

End  Until I = u and r = e,. 

Discard all portions  of VOD( U an,) that lie within 

B(dQi+,, 6 anj) and all portions of VOD(aQ,,) that lie 

outside  of B(aQi+,, U anj). 

I 

J - 0  

J 4  I 

J-Q 

example of an algorithm  in which we have traded worst-case 
complexity for simplicity. 

The algorithm  has  been implemented  and applied by 
Meshkat and Sakkas [ 5 ]  to solve an  important problem in 
VLSI design. After we completed the theoretical work on  the 
algorithm [7] and  the  implementation was well under way, 
we came across a sweepline algorithm by Fortune [8] which 
computes  the  Voronoi diagram  of points  and line  segments 371 
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in O(N log,N) time. If Fortune’s algorithm can be Received October I, 1986; accepted for publication January 
implemented to include both points and line segments 6, 1987 
and if the sweepline technique is implemented to handle I 
degeneracies ( k  many vertices  lying on the same sweepline, Vijay  Srinivasan IBM Thomas J. Watson Research Center, P. 0. 
as  is the case in VLSI applications), it should also be Box 218, Yorktown Heights, New York 10598. Dr. Srinivasan joined 
applicable to such VLSI problems. IBM in 1983 as a Research  Staff Member and currently manages the 

Design Automation Science  Project at the IBM Thomas J. Watson 
The paper by Meshkat and Sakkas [SI reports some Research Center. He received his B. Tech. degree in 1976 and his 

experimental data on the run-time efficiency of our Ph.D.  in 1980, both in mechanical engineering,  from the Indian 
algorithm. A theoretical average-case analysis of the Institute of  Technology, Madras, India. His research interests include 

algorithm would be  very useful to compare with such 
finite-element  modeling, dynamics of  flexible  systems, geometric 
modeling, theory of  tolerances, and mechanical design theory. 

experimental data. This wguld entail defining some Dr. Srinivasan is a member of the Design Automation Committee of 
practically useful notion of what GGaverage33 in, for the American  Society  of  Mechanical  Engineers, and is an adjunct 

example, VLSI applications. Another useful exploration 
faculty member of the Department of Mechanical  Engineering at 
Columbia University, New York. 

would be to find some way  of quantifying the above- 

It is reasonable to expect that with modest additional been a Research  Staff Member at the IBM Thomas J. Watson 
Research Center since 1982 and is now manager of the Design 
Automation Systems project. He  received an Sc.B.  degree  in effort one can compute Voronoi diagrams of multiply- 

segments  as well. A more challenging task is to find in 1976 and a Ph.D. degree  in computer science  from the University 
algorithms that handle higher-dimensional spaces, i.e., of North Carolina at Chapel  Hill  in 1982. In 1983, he was also an 

polyhedra, where important applications can be found. 
adjunct assistant professor of computer science at the Manhattanville 
campus of  New  York University. His current research  is  in 
geometric algorithms and software  system structures for computer- 
aided  design  systems,  especially  solid  modeling  systems. 

connected domains whose boundary consists of curvilinear computer science from Brown  University,  Providence, Rhode Island, 
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