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This paper introduces the cumulative
translational sweep (CTS) as a tool for shaping
geometric objects. It describes how it may be
applied, in combination with Boolean operations,
to stimulate growth and shrinking over the
boundary regions of polyhedral models, and
how, by creating additional facets, it may be
used to achieve global rounding effects along
model edges and around their vertices. CTSs
are examined in terms of a conceptual
framework that describes their effects as
Minkowski sums—of the polyhedra to be swept,
with convex polyhedra from the class of
mathematical objects known as zonotopes.
Included is a discussion of applications in the
OYSTER program, a CAD system for the
simulation of semiconductor wafer fabrication.

Introduction

Techniques described in this paper introduce a new
method—and its first disciplined use—for the shaping of
polyhedral models. It is based upon the theoretical construct
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of a cumulative translational sweep (CTS), and its
application achieves shaping effects that are interpretable in
terms of Minkowski sums.

Our interest in this subject reflects an effort to enhance the
capabilities of the OYSTER system [1], which strives to
realistically represent device fabrication process effects in
terms of polyhedra of the GDP modeler [2, 3]. We have
considered some shaping techniques alternative to the one
described here, including general offsetting techniques
leading beyond the polyhedral domain [4-6], polyhedral
offsetting applied to convex polyhedra [7], and a method for
splitting general polyhedra into convex components that are
separately shaped and reassembled [8]. The method we
present is applicable to general polyhedra, makes no
demands for partition and reassembly, and generates
polyhedral results.

“Shaping” has many senses, such as growing, shrinking,
rounding, filleting, faceting, blending, and smoothing. It is a
generic term in geometric modeling, encountered in such
applications as growing and shrinking to solve the collision-
avoidance problem [9]; growing and shrinking for the
generation of blends [4, 5]; sweeping to compute the shape
of various space regions [ 10, 11]; and offsetting as a means of
defining mechanical tolerance.'

Sweeping, as a geometric modeling tool, refers in its broad
sense to the tracking of a body’s motion in space. Most

'V, Srinivasan and R. Jayaraman, IBM Research Division, Yorktown Heights, NY; private
communications.
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modelers can compute the swept volume, or sweptspace, of a
moving body which does not tumble, i.e., which has only
translational freedom; this is the region of space through
which the moving body has passed, or, quite informally, its
“ghost.” Some modelers, such as the GDP modeler
supporting OYSTER, can approximate tumbling motions
(rotational freedom) as well.” No modelers we know of
construe a sweeping operation as effecting motion not only
in the body but also in its ghost; however, if the ghost 1s
deemed to be carried along with the body and so to spawn
its own ghost of a ghost (and so on, and so forth, .. .), then
there is effected a much larger sweptspace than is usually
conceived—one that we call cumulative to contrast it with
the familiar tubular sweptspace. Cumulative sweeping
without tumbling serves our shaping needs; as noted above,
we call such an operation a cumulative translational sweep,
or CTS. We interpret motion curves as prescriptions for CTS
shaping operations that may be performed upon an input
body, interpreting sweptspaces as shaped output bodies.

The CTS method may be related to a general offsetting
operation known as Minkowski summation-—and also as set
convolution [12]—that shapes a set of points by adding
(vector summing) to each of them, in all possible pairings,
each of the points of another selected shaping body. The
effect of CTS prescriptions that we apply in our work is to
develop around any input polyhedron a polyhedral
sweptspace which is the Minkowski sum of the input with a
shaping polyhedron from the polytope subfamily of
zonotopes [13-16].

Serra [17] develops the algebraic properties of “dilation”
and “erosion”—shaping operations based on neighborhood
rules applicable over discrete domains (such as the
arrangement of pixels in an image). Some sequences of these
operations are expressible as Minkowski sums and were
implemented in image processing architectures [18].

In the first section of the paper we describe various sweep
types, using a classification scheme that includes the CTS;
we then describe the particular CTS type developed for
OYSTER; sections follow that give theoretical justifications
and present some examples of zonotope shaping bodies;
there follows a discussion of CTS applications in OYSTER;
and, in a final section, we consider a theory for the general
CTS.

Sweep types in general

A sweep may be generally defined as any function S that
maps a time ¢ € [0, T'], a motion F(¢), and a body Bto a
sweptspace S(F, t, B) that depends on both B and its motion
history. To avoid encumbering notation, we often suppress
explicit reference to F when referring to the sweptspace and
use S(¢, B) as its designator.

23, Meyer and M. Lavin, “Swept Volume of Polyhedral Models” (unpublished manuscript),
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Important uses of the term “sweep” (within the topic of
generalized cylinders) admit motions F that involve scaling.
For our purposes, F is not allowed such freedom but is
constrained to be a rigid motion. It is taken as a time-
parameterized frame transformation having translation
vector (1) as its translational component and rotation matrix
M) as its rotational component. It associates with any
point, b, a trajectory curve, f(t) + M(t)b. We assume that
M(0) is the identity frame and that both f and M are
continuous and piecewise-differentiable.

Various sweep types are definable in terms of motion F
and the rules that determine sweptspace membership. After
making some broad distinctions on these bases, we will
consider all rigid motion sweeps to be either tubular or
cumulative.

The trajectory, or tube, of B under sweep S is the union of
all trajectory curves of points in B:

tube(S(F, ¢, B))

{a) + M(a)b: bE B, 0 < a =t}

U{F(a)B: a € [0, t]}.

This coincides with the tubelike space region that
accommodates B’s passage.

If sweptspace S(F, t, B) coincides with tube (S(F, ¢, B)),
we call both .S and the sweptspace tubular. Points in such a
sweptspace clearly originate in B, in the sense that the tube is
the union over all b-trajectories, b € B.

The sweep curve is the translation curve, f; it is identifiable
as the trajectory, or tube, of {0}—i.c., as the image set,

([0, t]), of [0, t]. A related subset of the sweptspace is the set
S(z, {0}), or, by understanding, S(z, 0); we call this set the
swell. It is the swept image of the singleton set, {0}, and for a
tubular sweep it agrees with the sweep curve, but for
cumulative sweeps (below) it is more extensive.

S'is a translational sweep if M(t) = M(0) = the identity
matrix; a rotational sweep if f(¢) = £(0); and a mixed sweep if
both M and f vary. If S is translational and tubular, then its
sweptspace is the Minkowski sum, S(¢, B) = ([0, ¢]) + B=
S(t, 0) + B = swell + B; in fact, this decomposition applies
to all translational sweeps, even nontubular ones (below).

We describe sweep S as cumulative, and say it has a
memory, if the sweptspace at any time ¢ is more extensive
than the corresponding tube. This is made exact by
membership rules to be developed; informally, it means that
points may enter a sweptspace at time ¢ not only along point
trajectories that have originated in B but also along point
trajectories that have originated in any earlier sweptspace.
For example, a point x belonging to S(F, ,, B) may be
permitted to spawn member X’ = F(1,)F (t,)_'x of a later
sweptspace, S(F, t,, B). It is possible to place time limits in
such origination rules in a manner that gives exact sense to
the notion of a memory of specified duration; we return to
this matter in our final section.
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Sweep types in OYSTER

The preceding indicates that a very broad study of sweeps
entails consideration of rotational, translational, and mixed
sweep types, and of sweptspaces which are either tubular or
cumulative and which, if cumulative, may have varying
durations of memory. For the modeling needs of OYSTER,
the focus is narrower.

The GDP modeler has an algorithm that creates a
polyhedral approximation, under tubular mixed sweep, for
the tube of a polyhedral body; by restriction, this algorithm
makes available a precise representation for the polyhedral
sweptspace that results from the tubular translational sweep

of a polyhedron along a single line-segment sweep curve; and

by iterating the latter process along finitely many line
segments of a piecewise-linear sweep curve, taking the

Square prism from which an octagonal prism is to be generated by means of

a two-segment sweep curve.

R
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output sweptspace from each stage (line segment} as the
input body to the next, we achieve the special CTS used in
OYSTER simulations.

An example is given by the Figure 1 sequence, which
shows the generation of an octagonal from a square prism.
In Figure 1(a), the sweep curve is seen as a simple two-
segment curve in proximity to the input prism; the first
curve segment prescribes a tubular sweep that develops the
sweptspace of Figure 1(b), shown extending the original
prism; sweeping this result along the second segment then
determines the output prism, Figure 1(c), by inclusion of a
new extension. In such a manner, by iterating the tubular
translational sweep (TTS), one achieves a single CTS.

Figure 1(d) indicates another way of conceptualizing the
result. It shows the rays of the sweep, i.e., the separate sweep
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curve segments treated (and stored by OYSTER) as vectors,
and the swell—in this case a shaded parallelogram
identifiable with the effect of the sweep upon a single point.
The figure suggests how the output prism derives from the
Minkowski sum of the swell and input prism—informally,
by sliding the swell around the boundary of the input prism
while maintaining the swell’s orientation and (with respect to
the swell) the point of coincidence.

To clearly understand the CTS as a Minkowski sum,
consider the rays of the sweep to be given by vectors
r, ---, I, (1 =n < N)thatis, suppose the time parameter
values associated with endpoints of the linear segments
offare0 =t, <1 =< --- <t and definer, =f(r) — f(z,_).
Then, retaining the distinctions based on index, call set
R=1{r, ---,r,}, the rayset of the sweep. The first ray then
prescribes a sweep that creates sweptspace

.
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Octagonal prism resulting from subsequent sweep along the second seg-
ment of sweep curve.
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S(, B)= S, (B)=lar, +b: 0= a<1,b€E Bl
= 5, (0) + B.

And, if f has more than one linear segment, a second ray
iterates the process, developing

S(t,, By =S, ,(B)= S0 + S, 0+ B.
Continuing in this manner, it is apparent that the final CTS
sweptspace 1s

Sty BY = S, (B) = Su(B)

= 8,,@ + -+ + 5, (0) + B =S,0) + B.

Observe of this CTS that swell S(z,,, 0) has been given a new
denotation, S,(0); we abbreviate this to Si; and if R has only
one ray, r, we abbreviate further still, to 7, since the swell is
then the line segment given by 7= {ar: 0 < a < 1}.

Conceptualizing the octagonal prism as a Minkowski sum of the square
prism with a parallelogram swell.

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987




As indicated, one may express sweptspace S(¢,, B) as a
sum which separates the contributions of the swell from
those of the body—as S,(B) = S, + B. This extends an
observation made earlier about the TTS to one that applies
to a ray-based CTS; it is true of every translational sweep, .S,
that S(z, B) = S(¢, 0) + B, and one may study translational
shaping processes—disregarding the bodies to which they
may be applied—by examining the shape of the swells that
represent their effects.

Although swell S, was introduced with regard to an order
of rays reflecting the order of line segments along sweep
curve f, it is identified with the commutative set sum,
Sg=F + --- + Iy, and thus is order-independent. It may be
associated with any sweep curve derived from f by
permuting the order of its linear segments; when computing
sweptspace S,(B), we are free to choose the permutation of
rays that will minimize cost.

The preceding exhibits swells as Minkowski sums
involving finitely many line segments. Such sets are known
in mathematics as zonotopes [13-16]; limits of zonotope
sequences are called zonoids—they appear in some
surprisingly different contexts [19].

A polytope is the convex hull of a finite set of points. An
alternative definition of a zonotope that de-emphasizes its
line segment basis is that it is a centrally symmetric polytope
having centrally symmetric facets of every order, where a set
is centrally symmetric, or centered, if it reflects through one
of its own points onto itself, in this exact sense: X is
centered at ¢ € X if p € X implies segment pp’ C X, where
p’ = 2¢ — p is the reflection of p through ¢. In other words—
and this is a characterization we later employ—JX is centered
atciffforeverypeE Xanda €[0,2],p+ alc—p)EX.

Starting with a rayset, one may produce the zonotope
which is its associated swell by applying the rayset, as a CTS
prescription, to the origin. To go in the reverse direction,
from an initial zonotope to a rayset which generates it, one
may determine rays in this manner: Call the zonotope’s
edges equivalent if they are parallel; let one ray (directed
either way, by choice) represent each such equivalence class;
the rayset so determined generates a translationally
congruent zonotope (its location being influenced by the
direction choices made—see discussion of ray reversal
below).

Swells as shaping tools

Notation Sy, and terms such as “swell” call attention to the
underlying rays and the growth dynamic that may be
associated with zonotopes. We now return to that focus—
natural to the study of sweeping as a growth process.

When point x is subjected to the CTS determined by
rayset R, it “swells” into zonotope x + S, and thus into
swell S, if x is 0. This image set may be of surprising beauty.
An example is the 56-faced swell shown in Figure 2. Based
upon eight rays, this shaper has been used in some OYSTER
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Depicted in the foreground are eight radially directed rods, one hidden
from view, which indicate rays that define a set of translational sweeps.
If applied in cumulative sequence to any initial point—such that each
successive sweep is used to enlarge the swept volume passed to it by its
predecessor—they produce a multifaceted zonotope that is translation-
ally congruent to the background figure.

SRR S

applications. As instanced in this case, the number of faces
developing from N (=3) rays in 3D is N(N — |)—provided
no three of the rays are linearly dependent.

Figure 3 illustrates CTS rounding of an L-shaped polygon
by swells which approximate a circle, first roughly and then
more accurately. A four-element planar rayset develops the
octagonal swell shown in Figure 3(a), and an eight-element
one develops the sixteen-sided polygonal swell shown in
Figure 3(b). The results show that the L develops a cover,
Sk(L), that has new edges around each original convex
vertex—a simple approximation to rounding. The figure also
illustrates the relations between swells as shapers and the
grown or shrunken bodies that CTS creates. Output
sweptspaces are shown in relation to the swells, in a manner
that clarifies the Minkowski summation involved; swells
seem to have acted upon input polygon L by sliding around
its boundary, ¢, and displacing it into a new position—
determined with respect to the original by the shape of the
swell.

That a sweptspace, S,(L), is describable in terms of
activity along boundary ¢L is evident from the observation
that points of the interior, L°, cannot be swept into new
territory without first crossing the frontier; to decide what
new territory is to be annexed, it suffices to follow the
frontier-crossing points, i.e., the points of ¢L. This
observation is formally derivable as an argument parallel to
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directed in the x, y, or z directions.

Four-rayed swell used for single faceting: (a) Orientation of the four rays. {b) The generated swell, a rhombic dodecahedron, creates one new facet around edges

Properties of ray-based swells

As a zonotope, swell S, is known to be convex, centered,
and compact (for Euclidean space, read closed and
bounded)—say a 3C set. We suggest here how these
properties may be established as consequences of attribute
preservation under set summation. Readers familiar with
these arguments may wish to skip ahead to the discussion on
the shape of planar swells.

Sy is convex

Line segments are convex, so it suffices to show that set
summing preserves convexity, i.e., that if 4 and B are
convex,sois 4+ B. Letx, =a, +b andx,=a, + b,

be any two points of 4 + B, and consider an arbitrary
convex combination of them, say X, = ax, + (1 — a)x,
Then x, is clearly re-expressible as [aa, + (1 — a)a,] +

[ab, + (1 — a)b,] = a, + b,. As a convex combination of
A-points, a, is in A, and similarly, as a convex combination
of B-points, b, is in B; hence x, =a, + b, isin 4 + B.

Sy is centered, at (Zr,)/2

Observe first the effect of set-summing two centered sets: If
set A is centered at ¢, and B is centered at ¢,, then 4 + B is
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centered at ¢, + ¢,. For if a + b is a representative point of
A+ B, witha € 4, and b € B, then ¢, + ¢, proves to be a
center, because for any « € [0, 2], point (a + b) + a((c, + ¢,)
—(a+b))=[a+ afc,—a)] + [b+ alc, — b)] is expressed
on the right side of this identity as a member of 4 + B.

Then, since line segment 7 is clearly centered at r/2, it
follows that S, =7, + - .. + 7 is centered at

N
(12) T r,.

n=1
We note as a corollary that S, is centered at the origin iff its
rays sum to 0; this is of interest when considering the
distribution of new material that a body acquires during
cumulative sweep.

Sy is closed

More strongly, we show that if B is closed, so is S,(B); the
particular result comes by taking B = {0}. We assume, since
the argument is finitely repeatable, that R is the singleton,
{r}; then S, is 7 = {ar: 0 = « = 1}, and we show that set

B = B + Fisclosed, i.e., that if x € B”, then x is not a limit
point of B": Take x & B" and consider line segment

seg = px, where p = x — r; it clearly avoids B, and since seg
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is a compact set outside the closed set B, there is an ¢ > 0
such that set seg = E(e, seg) avoids B. Now, seg is a sausage-
shaped set that covers on one end an e-neighborhood of p,
E(e, p), and on the other an e-neighborhood of x, E(e, x) =

r + E(e, p). So seg is of sufficient size that every line segment
parallel to r which spans its interior has length > |r|; it
follows, if b € B, that b + kr can lie in E(e, x) for no
positive k < 1, and thus that x is not a limit point of B”.

Sy is bounded

Since x € Sy is expressible as a sum of rays with coefficients
from [0, 1], | x| is bounded by Z|r, [, summed over all rays
in R.

A tighter directional bound is available. For a convex
body K that contains 0, the normalized support function of
K, in direction g, is defined by A(K, 1) = max(x, u), x € K;
this value represents the directional extent of K in the u
direction, i.e., the distance between 0 and that support plane
of K which has its outward normal u pointing into the
non-K halfspace. When referring to zonotope S, in order to
emphasize the relationship to rayset R, we denote this
support function by H(x) and term it the height of the swell
in direction u. If the swell is centered at 0, this is one half the
convex set width in the u direction; in general, the width of
the swell in the p direction is H,(u) + Hy(—p).

Sy attains its height, H,(u), at the point which is the sum
of the rays, if any, that point into the u halfspace—or at 0 if
there are none. For if R has no ray pointing into the u
halfspace, then clearly (x, p) is maximized, x € Sy, by

x = {); otherwise the maximum is sought with respect to
representative points of form x = Za,r,, with coefficients
a, € [0, 1], and for such a point, (x, ) < (y, n), where
y = Zr, summed over exactly those rays for which
(r,, u) > 0.

We also remark that H, completely determines S,.
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Dodecahedral shaping of a lattice of cubes: (a) Input lattice. (b) Shaped output.
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£ Swell approximating a sheared ellipse (outermost boundary), show-
§ ing rays (center) and approximating polygonal swell (inscribing the
i ellipse).

The shape of planar swells

We later observe a simple result—that reversing a ray’s
direction translates a swell without altering its shape; also,
since rays may be applied in any order, we may determine
the shape of a swell by studying whatever sweep curve
(among all those which differ only by the ordering or
direction of their segments) most easily reveals it. In the
planar case, there is always among such equivalent curves
one whose discrete turnings are all in the same angular
direction and of cumulative amount at most 180°. When
we have chosen such a representative curve, the central
symmetry property allows us to invert it through the center
of symmetry and so exhibit as subset of the swell a simple
closed curve formed of that representative and its inverted
image; convexity then establishes the inclusion of the planar
region inside the closed curve; and an argument based on
swell heights, H,(u), establishes the exclusion of the planar
region outside it, completing the swell’s characterization. As
an example, any sweep curve which polygonally inscribes a
semicircle generates a swell that inscribes the corresponding
circle.

For a swell in a higher-dimensional space, the above
technique permits determination of the shape of any of its
planar projections by consideration of the projected planar
raysets.

Behavior of swells under affine transformations
If L is a linear transformation and A is a subset of its

domain, denote by L4 the image set {L(a): a € A}. Then the

fact that everything is additively defined and L is linear
results in this immediate conclusion:
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LS,= S, ..
If sweptspaces are considered, the corresponding result is
LS, (B) = S, (LB).

These observations have useful consequences:

e Approximations by swells. If R is a known rayset such that
S, approximates A4 (perhaps a sphere), then LR is a rayset
such that S, , approximates L4 (perhaps an ellipsoid). As a
2D example, see Figure 8. A rayset comprising 16 rays
originally equally spaced around a circle—and which, if
taken as such, would have generated an approximately
circular swell—has been transformed so that its swell
approximates a sheared ellipse.

There are also swells to approximate the unit ball in any
dimension [16]. The Hausdorff distance between
sets X and Y'is p(X, Y) = max{sup,_,inf ., |x - y|,
sup,.yinf .|y — x[}. Using this metric in a d-dimensional
space, Betke and McMullen ([20], Section 4) bounded the
infimum distance between the class of n-rayed zonotopes
and the unit ball, B; the inf lies between values 6dn—2 and
¥ dn_zl @1 for constants B, and v, independent of 7. In
3D, the principal author tested spherical approximations
based upon two experimental rayset sequences, one that
employed rays pointing toward mesh points of an ever-
refined geodesic dome, another whose rays pointed in
ever-tighter spiral patterns around a “northern”
hemisphere. The number of rays needed to achieve
(statistically tested) aspect ratios less than 1.01 was
determined—approximately 2500 under either sequence.

e Determination of the shape of a swell. If L projects into a
plane, then the earlier remarks on determining the shape
of planar swells apply to S, ,, permitting the full
determination of the shape of this planar projection of Sy,
and providing a very helpful aid to its full
conceptualization. We have used such projections to
design raysets that achieve particular growth profiles in
each of three mutually orthogonal directions.

s Changing the shape of a swell to vary the thickness of
deposited layers. The thickness of a deposited layer
cumulatively grown under the prescription of rayset R is
directionally dependent and given by the height function,
H,. If R were designed to induce unit thickening in each
of three orthogonal directions, say the cardinal ones of xyz
space, but different directional heights were preferred, such
as 3, 45, and 100 (while preserving the faceting pattern
characteristic of R), they might be obtained by
transforming the rays of R by application of a diagonal
matrix having as diagonal entries those three values; use of
this observation in the OYSTER application area often
involves the same scalar at each diagonal entry, entailing
straightforward scaling of each of the rays.

To scale the thickness by & in the arbitrary direction of
unit column vector g (using g’ for its row transpose), and
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to do so without altering thicknesses in directions
orthogonal to u, one may apply transformation

I— (1 — k)uy’. To independently scale the thicknesses in
three orthogonal directions given by the columns of
orthonormal matrix U~—and by three amounts given along
the main diagonal of diagonal matrix D—one may apply
Ubnu'.

It remains to consider translations. The basic observation
is that translating a swept body is equivalent to sweeping a
translated body; v + Si(B) = Si(v + B), or, in expanded
form, v + (S; + B) =S, + (v + B).

Ordering the latter sum as (v + S,,) + B suggests the
interpretation that body B has been acted upon by a
translated swell, an effect that may be grasped in terms of
shift of hangpoint, i.e., in terms of an origin shift that creates
a new effective hangpoint. Thus, translating a swell by v
creates an effective hangpoint at —v, indicating a distribution
of deposited material corresponding to a shifted point of
conceptual coincidence between the swell and the boundary
track of the body.

If S,. were to have the shape of S, but an effective
hangpoint at v rather than 0, its layering effect would be
given by lay,(B) = grp{B) — B = gry(B — v) ~ B, and as
such could be readily achieved.

An effective hangpoint at the swell’s center of symmetry is
achieved by translating by v = (—Zr)/2. One at swell
boundary point w is achieved by translating by —w; it is
sometimes useful to choose such a boundary point with
respect to a given direction, u, as a point at which height
H_(p) is attained.

Figure 9 shows the effects described. A layer has been
grown from a rectangular slab, Figure 9(a), in two different
ways that use the same swell but treat it in terms of a
different hangpoint. When the effective hangpoint is taken at
the swell’s center of symmetry, we consider that it
determines a balanced swell; it induces growth layers that
have a balanced appearance, as in Figure 9(b). When the
effective hangpoint is taken somewhat “beneath” the center
of symmetry, deposits occur somewhat “above” the body
and we call the swell a climber; in Figure 9(c) the hangpoint
has been placed at the lower boundary of the swell, raising
the developed layer to the high point shown. When the
effective hangpoint is taken above the center of symmetry,
we call the swell a digger.

Reversal of ray direction

Reversal of ray direction effects a translation. For if R’ is
produced from R by the reversal of a single ray, r, then the
associated swells differ by translation vector r, i.e.,

r + S, = Sg. In other words, r + (=7 + X) = (7 + X); but
this is obvious, since

r+—r={r+a(-nN0<a<li={l—-aoy - ..}

={fr0=p=<l}=r
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Varied layering dependent upon hangpoint location: (a) Underlying
rectangular slab. (b) Balanced layer determined by a balanced swell
(swell having hangpoint at the center of symmetry). (c) Rising layer
determined by a ‘‘climber’” (swell having hangpoint below the cen-
ter of symmetry).

That ray reversal reduces to translation has important
consequences:

& Shift of hangpoint. Since a translation is involved, the
previous section shows that ray reversal effects a hangpoint

shift. For example, imagine in xyz coordinates that 353

R. C. EVANS, G. KOPPELMAN, AND V. T. RAJAN




1861 AVIN € 'ON 1f "TOA 'dOTIA3A 'STH ‘T WAL

‘sdaams [euonjRISURI) dANB[NUIND

£q paonpoid sadeys 3y} 191[e 10U S90P—UOIIIIP

ansoddo oy ut ‘1514 S3UTY] ISe] SUTOP—[EBSISAX JW}

‘asUAS B UI ‘U £ay) yoIym Ul Uond3IIp Yl pue sjuawdas
I1941 JO I3PIO Y1 UT A[UO JSYIP YOIy ISOYL I8 SIAIND
doams jusgeamnbe Y3 Suowy ‘(UONEIOI pue UoNB[SURI)

10} InQ [BOTIUIPI) S[[OMS JUSNIZUOD A[[EILIIOWO0T

sonpoid A3y} J1 1US[BAINDS 3q 01 $oAIND doams el ap
‘(uonelsuer} Aq ‘uonisod sit s191[e 1snl pue) 1[nsaz 3yl Jo
adeys 9y} 01 JUBAI[ALIT ST UOTIOAIIP ARI JO [BSIOASI S} 18Ul
995 MOU 9M PUE ‘1[NSaI 3y} O JuBA[aLI ST sAex Juif[dde jo
JI9pI0 3} 1By} ISI[IBI PIAIISQO SN SOAIND JO 20udeAINby
“dALSAQ ut pajerodiodut

SL1eyl J + 4 = (J + 4—) + 1 A;Mudpt jo uonesidde ue

st s1y3 ‘(sdoams ueyl Jadeayo Jej aIe SUOIIB[SUBI) J0UIS) 1 AQ
1[NS3I Y} JB[SURI) PUB UONIAUIP I— 3Y) ul doams 01 sAed 1t
‘uonoaIp ‘1— ‘ausoddo ay3 ur uraned spdwis e Inq ‘1 ‘Aer
€ JO UOTIONIIP Y} UT 2INIONIS 30e) paredidwod e syussard

NV(VY "L A ANV ‘NVWTIddON 'O 'SNVAT D ¥

‘d ‘uoipayAjod e J1 “suonoarp dooms 19deayd Jjo aoioy) e
-aoeld 381y o3 Ul )1 3ndwod o3 sdaams Jpdnnu
Suisn uey) arnpadsod 1adeayd yonw e—pandwod st i
I3yJe yoeq aoedsidoms ay1 Junersuery Aq suopun Ajdeaydp aq
ued 1eYy) Inq ‘102[qo 1doms Jo soedsidams ay) ur uonesueiy
© sordur juswase|dal S1y) (Ael J[3uls ® Aq paserdaz
3utaq uay} 19 PAISAIP-03 Y} ‘UONIAIIP JWeS Y} Ul
jurod [[B 03 PISIaAaL A[RATIOI[AS aq ued suonoaxp isoddo
ur sAe1 apdnnui 18y} 9A135QO UIY ] "WIns IdY) AQ pauysp
AelI 2[3uls 3] SB 1999 dwWes Y} dAeY pinom uonedsrdde
[enuanbas 119y) (UOTOAIIP UOWWOD € Ul sAel J[dn[nw 21018
0] [NJaISeM SI 11 JRY] 210U ISI1] "3eI01s ABI JO AWIOUOD] e
Jurod3uey JOUSUL UB 1M [[oms
' 20npoad pnom sAel s,y JO [[B 10U Ing WOS SUISIdAI
:doy uo jurod3uey yum [[oms e pue adedsjiey z sanedsu
Y] uI SABI SI1 JO [[e yim Y — ‘19331p © soonpoid uayj} sel
S, ¥ JO [1e SuIsiaaal 1 yieauaq (@) 1urod3uey yum jams sey
Jouay ‘doedsyrey z aanisod 9y} ur sKeI i1 [[e Sey Y Ioquird

[ — . " o g 5

@

“s10Ae] snotaaid 0y Sutuuojuos soeid ur umoys ()1 2SI Jo Iake] UmoIn (P) "19sKRI JUSUIS[S-331Y) [RUOSOUNO
£q umoid 13Ke] (o) “s1ohe] 20149p Jo uorun isodwo)) (q) "sIoKe] [RIDAIS IIM (AP UODITIS (B) :YALSAO Aq pourroprad sdais uonisodog

A - -

iy s 5 i Tk o

(®)

141




S as a convex hull

It is of interest to note that the vertices of a swell, and hence
the swell itself (as convex hull of the vertex set), are
expressible as a special sum over selected subsets of the rays.

We call X C R a strong subset of R,andv=73 _ xa
strong sum, if for some unit vector u, (x, u) > 0 for every
XE X, and (r, u) <O foreveryr€ R — X.

Vector 0 is not a strong sum, because for every vector g,
0=1(0,u).

Every strong sum is a vertex of S, and every vertex other
than 0 is a strong sum. This follows from an argument, using
the H,(r) formulation, that shows a 1-to-1 correspondence
between strong sums and support planes of S, that contain
exactly one (non-0) point. The above shows that zonotope
S, is the convex hull of {0} U {strong sums}.

We note, marginally, that 0 is a vertex of S; iff Ris a
strong subset, and is a boundary point of Sy iff R is “almost
strong,” i.e., satisfies the strong conditions if the strict
“greater than” (>) is replaced by “greater than or
equal to” ().

OYSTER CTS applications

Recent developments in integrated circuit technology and
predicted future trends point to the need for better modeling
tools to help link a technology’s design and manufacturing
phases. The aim of fabrication modelers such as OYSTER is
to model the geometric form of silicon devices at each stage
of their manufacture, in order to aid device designers, who
may derive operating characteristics from the models, and
manufacturing engineers, who may use them to investigate
allowable tolerance bounds.

OYSTER takes the designer’s mask artwork and the
manufacturing engineer’s step-by-step description of the
fabrication process as its inputs. It requires the same Boolean
engine as more typical mechanical CAD/CAM applications,
but must deal with more unusual shapes. In the silicon
process world, the forms of materials that take shape on the
wafer are continuous in layer-by-layer conforming patterns,
suggestive of geological strata that flow and twist in
unexpected and irregular ways. OYSTER attempts to
capture the roundness of the layers and to accurately reflect
their varying thicknesses, which depend upon the directional
orientations of the various device elements.

A process step that occurs repeatedly is the deposition of a
new layer of material upon an old. Although different
methods of deposition and different material types effect
distinctive layer shapes, all deposited layers do conform in
shape to their underlying support. OYSTER achieves such
new layers by applying the grow operation to a composite
union of underlying layers and then Boolean differencing the
result and underlying composite.

Figure 10 provides an example. Figure 10(a) shows a
cutout view of an OYSTER model, representing a device
which, during its manufacture, has developed several layers.
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Original mask shape

Enlarged border
(surrounding original mask
grown by two-element rayset)

Sweptspace addition
with faceting

Outer border
(bounds area grown
by eight-element rayset)

Inner shape
(bounds area shrunk back
by eight-clement rayset)

Mask shaping by repeated CTS operations.

The fabrication step to be illustrated is a uniform coating of
the device by a new blanket material layer of specific
thickness. To model the step, a union is created of all
existing device components, as shown in Figure 10(b). The
composite union might then be swept (in the simplest case)
along three orthogonal directions and a new layer then be
derived by a Boolean difference which removes the
composite from the swept composite, Figure 10(c); the
derived layer is shown in place, above the original layers, in
Figure 10(d). Square edges and corners in the layer reflect
the box-shaped swell employed. The combined use of
Boolean and sweep operations illustrated in this example is
typical of OYSTER algorithms which model fabrication
steps.

In modeling silicon fabrication, it is important to take into
account the shape rounding due to the lithography steps.
The mask defining the L-shaped gate region layer used in
Figure 10 can be considered a typical lithography mask
shape as drawn by a device designer. Because of exposure
tooling effects and material effects during the chemical
development of the photoresist that has been exposed with
the mask, the square corners become rounded, with a radius
that is generally technology-dependent. The CTS sweep
techniques permit us to facet around the corners and
simultaneously grow or shrink the mask to compensate for
fabrication effects. Figure 11 shows how an appropriate
combination of grow and shrink operations with the rayset
of Figure 5(a) is used to grow the original mask uniformly
over the boundary while inducing faceting at both convex
and concave corners.

Figure 12 shows the effect of combining planar mask
faceting and deposition faceting to achieve more realistic
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S as a convex hull

It is of interest to note that the vertices of a swell, and hence
the swell itself (as convex hull of the vertex set), are
expressible as a special sum over selected subsets of the rays.

We call X C R a strong subset of R,andv=73 _ xa
strong sum, if for some unit vector u, (x, u) > 0 for every
XE X, and (r, u) <O foreveryr€ R — X.

Vector 0 is not a strong sum, because for every vector g,
0=1(0,u).

Every strong sum is a vertex of S, and every vertex other
than 0 is a strong sum. This follows from an argument, using
the H,(r) formulation, that shows a 1-to-1 correspondence
between strong sums and support planes of S, that contain
exactly one (non-0) point. The above shows that zonotope
S, is the convex hull of {0} U {strong sums}.

We note, marginally, that 0 is a vertex of S; iff Ris a
strong subset, and is a boundary point of Sy iff R is “almost
strong,” i.e., satisfies the strong conditions if the strict
“greater than” (>) is replaced by “greater than or
equal to” ().

OYSTER CTS applications

Recent developments in integrated circuit technology and
predicted future trends point to the need for better modeling
tools to help link a technology’s design and manufacturing
phases. The aim of fabrication modelers such as OYSTER is
to model the geometric form of silicon devices at each stage
of their manufacture, in order to aid device designers, who
may derive operating characteristics from the models, and
manufacturing engineers, who may use them to investigate
allowable tolerance bounds.

OYSTER takes the designer’s mask artwork and the
manufacturing engineer’s step-by-step description of the
fabrication process as its inputs. It requires the same Boolean
engine as more typical mechanical CAD/CAM applications,
but must deal with more unusual shapes. In the silicon
process world, the forms of materials that take shape on the
wafer are continuous in layer-by-layer conforming patterns,
suggestive of geological strata that flow and twist in
unexpected and irregular ways. OYSTER attempts to
capture the roundness of the layers and to accurately reflect
their varying thicknesses, which depend upon the directional
orientations of the various device elements.

A process step that occurs repeatedly is the deposition of a
new layer of material upon an old. Although different
methods of deposition and different material types effect
distinctive layer shapes, all deposited layers do conform in
shape to their underlying support. OYSTER achieves such
new layers by applying the grow operation to a composite
union of underlying layers and then Boolean differencing the
result and underlying composite.

Figure 10 provides an example. Figure 10(a) shows a
cutout view of an OYSTER model, representing a device
which, during its manufacture, has developed several layers.
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Mask shaping by repeated CTS operations.

The fabrication step to be illustrated is a uniform coating of
the device by a new blanket material layer of specific
thickness. To model the step, a union is created of all
existing device components, as shown in Figure 10(b). The
composite union might then be swept (in the simplest case)
along three orthogonal directions and a new layer then be
derived by a Boolean difference which removes the
composite from the swept composite, Figure 10(c); the
derived layer is shown in place, above the original layers, in
Figure 10(d). Square edges and corners in the layer reflect
the box-shaped swell employed. The combined use of
Boolean and sweep operations illustrated in this example is
typical of OYSTER algorithms which model fabrication
steps.

In modeling silicon fabrication, it is important to take into
account the shape rounding due to the lithography steps.
The mask defining the L-shaped gate region layer used in
Figure 10 can be considered a typical lithography mask
shape as drawn by a device designer. Because of exposure
tooling effects and material effects during the chemical
development of the photoresist that has been exposed with
the mask, the square corners become rounded, with a radius
that is generally technology-dependent. The CTS sweep
techniques permit us to facet around the corners and
simultaneously grow or shrink the mask to compensate for
fabrication effects. Figure 11 shows how an appropriate
combination of grow and shrink operations with the rayset
of Figure 5(a) is used to grow the original mask uniformly
over the boundary while inducing faceting at both convex
and concave corners.

Figure 12 shows the effect of combining planar mask
faceting and deposition faceting to achieve more realistic
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Deposition steps performed by OYSTER with edge and mask faceting: (a) Deposited layers with one edge facet. (b) Deposited layers with two

edge facets.

device shaping. Both masks that were used, to define the well
area and the gate shape, have been rounded, as may be seen
in Figure 11. A transmitted rounding is seen in
corresponding faceted shapes in the device, as shown in
Figure 12(a). Compare the shapes in Figure 12(a) to those of
Figure 10(a). The well has been etched vertically downward
in both figures, but the material layer beneath the gate has
been deposited with one edge facet by using the rayset of
Figure 5(a). The L-shaped gate region has been applied in a
blanket layer and vertically etched as in Figure 10(a), but
note that its shape, when dipping into the well, conforms to
the edge faceting of the material layer beneath.

Figure 12(b) was created using the same rounded masks as
in Figure 12(a), but the depositions were done with two edge
facets instead of one, using a swell designed for double
faceting, that of Figure 2. Details of rayset construction and
swell hangpoints are made transparent to the OYSTER user,
who merely selects the number of facets by setting a global
parameter.

Further applications occur in other OYSTER fabrication
step simulations. Thus, for etching, a very thin blanket layer
is first grown and then intersected with the complement of
the composite union; this identifies which portions of the
device are exposed to the etchant. Similar methods, which
create and use temporary intermediate layers, give OYSTER
an ability to simulate growth of thermal oxides. Other
applications of CTS are being considered for modeling
effects particular to the type of deposition.

We chose to apply sweeping techniques for their many
advantages. However, the method does raise issues of
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complexity that we have yet to fully explore; we observe here
only that CTS is a good candidate for parallel processing,
since particular “forward components” of a solid may be
swept in parallel and then subjected to a summarizing
Boolean union.

CTS for general curves
We have discussed applications of the ray-based CTS, which
is based on sweeps along piecewise-linear curves. Families of
such curves provide the limit sequences that establish the
general class of rectifiable curves. Any particular such limit
sequence, say of piecewise-linear curves C; to establish the
rectifiability of curve C, would carry with it a natural
sequence of zonotopes, Z; = Sy , say, and the Z; sets would
approach (under the Hausdorff metric) a limiting zonoid, Z,
which is the obvious choice among sets to define as swell S.
Below, we develop this idea in terms of our earlier notation
and usage.

Consider a rectifiable curve in Euclidean N-space,
parameterized over [0, 1] by a continuous function, C;
let {---, (a; b,), - - -} be a finite sequence of disjoint [0, 1]
subintervals and let R = {C(b,) — C(a,): i= 1, - - -} be its
corresponding rayset. We say that C supports R, or that R is
based on C (is C-based), and, if the association with C is
understood, we say that R is based on {- - -, (a,, b,), - - - }.
Then the swell of C (or C-swell) is defined by

S, = closure (U {S,: C supports R}).

Under this definition, there are infinitely many ray-based
swells contained in S,—any parallelogram generated from
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two supported rays, any parallelepiped generated from three,
etc. Figure 13 illustrates a curve, C, and one such
parallelepiped.

We remark, without proof, that S is the limit set of
sequence S, , having taken rayset R, in association with the
ith partition' of [0, 1] in any refinement sequence that
establishes C’s arclength.

Swell-equivalence is introduced to identify curves, under
this choice of equivalence relations: S, ~ S, if swells S, and
S, differ at most by translation and rotation; and C, ~ C, if

Se. ~Se..

1 2

We say a collection of disjoint domain subintervals,
{+--,(a,b), ---}, may be refined by splitting one or more of

its members into several; it may be completed, extended to
fully span the [0, 1] domain, by adjoining each missing
subinterval. Thus ((0, 0.2), (0.3, 0.7)) may be refined in
many ways, perhaps to ((0, 0.1), (0.1, 0.2), (0.3, 0.7)), but
may be completed in only one, as ((0, 0.2), (0.2, 0.3),
(0.3,0.7), (0.7, 1)).

If rayset R is C-based with respect to an incomplete
sequence and is extended by adjoining the missing rays from
its completed sequence, then the extended rayset, denoted by
R*, is called complete, or the R completion. If R’ is based on
a refinement of the domain subintervals associated with R, it
is called an R refinement.

We make these observations:

e The new notation extends the old consistently; if C is any
one of the curve segments obtainable by stringing together,
start-to-end in any order, all directed line segments
associated with the rays of R, then S, = S,.

e One curve equivalent to C is the translate,

C = C - C(0), having C(0) = 0.

e Since each singleton, {C(¢) — C(0)}, is clearly a C-based
rayset, C C S,.

e Operations on curve segments that preserve swell-
equivalence include translation; rotation; repositioning,
start-to-end, the members of a finite family of
C-subsegments that span C; first reversing the direction of
some, and then repositioning the members of such a
family. To briefly elaborate:

The affine behavior is this: for a linear transformation, L,

LS.=S,.,
and for a translation,
v+ Sc=S.0-

Reversal of direction [assuming, without loss of generality,
that C(0) = 0 and C(t) = —C(?)]:

Se==S.=-C()+ S.=C(1) + S,.
Segmentation into subsegments C,, - -+, C,:

Se=Sc+ - +5.
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Sweep curve

A general sweep curve and one of the infinitely many parallelepipeds
contained by its swell.

o The nesting of completed refinements.
If R* completes R, then, clearly, S, C S+ C S.; and if
R’ refines R, then S, C Si. C S,. The latter follows from
the fact that, using the refinement structure, each ray r, of
R may be re-expressed as a sum,

x~

2
i

r
1

.
Il

over rays of R’, representative sums from S, being

similarly re-expressed as belonging to S,

If R, and R, are C-based, they have a common
completed refinement R; it may be constructed in a
unique way by completing that refinement of [0, 1] which
involves exactly the division points associated with either
R, or R,. Then, for i=1o0r2, S, C Sz CS.

e S, is convex.

Let p and q be points of S, and « € [0, 1]. We must
show that x = ap + (1 — a)q € S.. Take p, — p and
q;— q, with p, and q; in a common C-based rayset R,.
Since p, and q, belong to the convex zonotope, S, so does
the point x, = ap, + (1 — a)q;; and x; — X; thus, since Sc
is closed, x € S_.

S, is centered, at ¢ = (C(1) — C(0))/2.

Note first that for any complete C-based R, S, is
centered at (C(1) — ((0))/2, since it is centered at half the
sum of its rays, which for a complete rayset telescopes to
the stated value. Then, to complete the proof, we show
that, if p € S.and a € [0, 2], then p + a(c — p) E S.: If p
lies in some complete C-based R, then the observation
above gives the result; otherwise, an argument strictly
parallel to the above convexity argument shows that
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q = p + o(c — p) is approached, through S, by q, = p, +
a(c — p;) and hence lies in S,..

As corollary, S is centered at the origin iff C is a closed
curve.

The above two properties (convexity and centrality
at .. .) are helpful in understanding what regions .S.. must
include. Assume, for convenience, that C(0) = 0, and note
that when p is taken as C(¢), it reflects through the C(1)/2
center into q = C(1) — C(2), and as p describes the C
curve q describes the reflected curve C. Then the swell of
rayset R = {p, q} is bounded by the parallelogram having
vertices at 0, p, p + q = C(1), and q, and as ¢ varies it
moves through space “annexing territory for” S, .. (For
planar curve C that turns in one direction through at most
180°, these observations confirm one made previously: that
S, consists of that planar region bounded by the closed
curve formed from C and its central inversion.)

o S is closed—by definition.

If closure were not part of the definition, then such a
curve as the following would not have a closed swell (in
fact its S, would contain only two of its boundary points):
In the xy plane, let the x-axis interval [, = [1 — 27
1 = 27" k = 0, be the domain of C,, a diameter
2% semicircle (say in the y = 0 halfplane if &
is even, and in the y = 0 halfplane if & is odd), and let C
be U;_, C, together with point (1, 0). Without closure, the
swell of this snakelike curve would be the open disk of
radius 0.5 centered at (0.5, 0) together with two boundary
points, (0, 0) and (1, 0); closure brings in the entire
boundary.

¢ S is bounded by the arclength of C. If p € S, is not 0 and
w is its unit vector, we have

Ipl =tz =X (u,r1,),

where the sum is taken over the rays in R that point into
the g halfspace. Expressing this sum in terms of the C
parameterization, as

2 <#9 C(b,) - C(a,')%

exhibits p as bounded by C’s arclength, the least upper
bound (lub) over all C-based finite sums

N

2 |C,) - C,)l.

This arclength bound clearly applies to arbitrary points in
S, as limit points of such p’s.

The p-height of S may be defined, for a unit vector g,
by H(u) = lub H, (1), where the least upper bound is
taken over all C-based R,. This is the total variation of
function

g(1) = max {0, (u, C(N)}.

also expressible as

R. C. EVANS, G. KOPPELMAN, AND V. T. RAJAN

f max {0, {u, dC/dt)}dt.
(V]

¢ S, has been observed to be a 3C set, convex, centered, and
compact. Are 3C sets always derivabie as swells? No. One
example of a three-dimensional 3C set which is not a swell
is the regular octahedron: All 3D zonotopes have faces
with evenly many sides, but the octahedron’s faces are

triangular. In 0-, 1-, or 2-space, however, one can find a

swell to generate any 3C set:

o A zero-dimensional 3C set is a point, and is swell-
equivalent to S,. for C(z) = 0.

o A one-dimensional 3C set is a closed line segment, say
of length k. It is swell-equivalent to S,. for C(¢) = t{ku),
any unit vector u.

o A two-dimensional 3C set, 4, has any semi-perimeter, C,
as a generating curve; i.e., 4 = S,.. This may be shown
as follows:

Assume, without loss of generality, that C(¢), t € [0, 1],
parameterizes a semi-perimeter beginning at C(0) = 0.

Toshow AC S If0#x € Aand y € (c4) N (half-
line extension of segment X), then for some « and some
t, both € [0, 1], x = vy, and eithery = C(1) = p or
y = C(1) ~ C() = g. this establishes x € S}, C S,..

Finally, to show complement(4) C complement (S, ):
If x & A, then let u be its unit vector and let a_be its
nearest point in 4 (which exists, because 4 i1s compact).
Because of its convexity, 4 has a support plane, P, which
passes through a , is perpendicular to x, and locates x in
the open non-4 halfspace, {p: (1, p) > (u, a )}. P may
be assumed to support curve C, say at a, = C(z,); if P
supports C’s centrally reflected image, the argument
might be rephrased in terms of the central reflection of
x. Then the directional vanation of C in the g direction
is realized by | (u, C(¢,)) | = H(1). Combining these
observations, we have (u, x) > (u, a,) =lub{(v, u):v €
St hence x € S,..

The above completes a phase of discussion that has
associated general curves with zonoids, just as an earlier
phase associated piecewise-linear curves with zonotopes; the
key to the association in each case has been the use of a new
sweep type—the cumulative translational sweep—that
directly links a curve to a “swell” (read zonoid).

We mention a further generalization before concluding:
A limited-memory CTS, having memory of duration d, may
be defined with clear intuitive sense in terms of a sweep
curve, C(t), that has been parameterized by arclength, say by
t € [0, T]: Let d be a continuous real-valued function on
[0,T], satisfying O < d(¢) < ¢ [for the simplest case—memory
of fixed duration—d/(¢) might be min {D, ¢}, for some
constant, D]. Let C ds] be the segment of C defined over
parameter subinterval { € [s — d(s), s]. The CTS with
memory of duration ¢ that is defined under these
circumstances is that sweep which generates as its swell
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Sy¢.q; = closure (U 1S :0=s=TY}. 3. R.N. Wolfe, M. A. Wesley, J. C. Kyle, Jr., F. Gracer, and

| tas) W. J. Fitzgerald, “Solid Modeling for Production Design,” /BM
Swells of a limited-memory CTS lack the properties of J. Res. Develop. 31, No. 3, 277-295 (May 1987, this issue).
convexity and central symmetry we have come to expect; 4. J.R. Rossignac and A. A. G. Requicha. “Offsetting Operations

Y . Y 2 L. p in Solid Modelling,” Comput. Aided Geom. Design 3, 129-148
other properties are also lost to the limited memory, such as (1986).
the permutability of curve subsegments and the expressibility 5. J. R. Rossignac, “Blending and Offsetting Solid Models,” TM 54
of the swell as a Minkowski sum of subordinate swells Pro_duclmn Automation Project (also Ph.D. dissertation),
K K L K University of Rochester, New York, June 1985.

associated with a curve partitioning. In spite of these 6. R. T. Farouki, “The Approximation of Non-Degenerate Offset
“failings,” which make the limited-memory CTS more Surfaces,” Comput. Aided Geom. Design 3, 15-43 (1985).
difficult to analyze than its unlimited correspondent, we 7. R.T. Farogkl. “Exact Oﬂsgt Procedures for Simple Solids,”

. . . Comput. Aided Geom. Design 2, 257-279 (1985).
believe the sweep type has considerable theoretical interest— 8. B. Chazelle, “Convex Partitions of Polyhedra: A Lower Bound
that it may provide a conceptual tool for thinking about and Worst-Case Optimal Algorithm,” SIAM J. Comput. 13, No.
(even simulating) those phenomena in which temporal 3. 488-507 (1984). . i

. T . 9. T. Lozano-Perez and M. Wesley, “An Algorithm for Planning
events may be associated with limited spatial effects. The Collision-Free Paths Among Polyhedral Obstacles,” Commun.
richness of the constructs involved—permitting, for ACM 22, 560-570 (1979).
example. time-varying duration functions, d—suggests to us 10 J. U. Korein. “A Geometric Investigation of Reach,” ACM

Distinguished Dissertation, MIT Press, Cambridge, MA, 1985.
an area worthy of further study. 11. T. Lozano-Perez, “Spatial Planning: Configuration Space
Approach,” IEEE Trans. Computers C-32, No. 2, 108-120
Concluding remarks , (Vlv9§3). |
. . o 12. W. J. Dally, W. Donath, and D. Ling, “Fast Convolution
We have described .the _CTS‘ llustrated I.tS importance, .and Operation for Contact Verification in Integrated Circuits,” /BM
discussed many of its significant properties. Here we raise Tech. Disclosure Bull. 28, No. 12, 5588-5594 (May 1986).
some open questions of both theoretical and practical 13. s Sk- 1\14‘;7(;0’(6‘6271363’%14/W Polytopes, Dover Publications, New
. ork, . pp. 27-30.
importance. . . 14. E. S. Fedorov, “Elemente der Gestaitenlehre,”

Our work has shown how CTS curves determine shaping Mineralogicheskoe Obshchestvo Leningrad 21, No. 2, 1-279
bodies that are zonoids, but—except for the zonotope (1885). A .
subclass—it has not solved the equally important problem of 15. gs(r]krulngt;a;m. Convex Polvtopes. Interscience Publishers, New
how a general zonoid may determine an associated CTS 16. P. MéMullén. “On Zonotopes,” Trans. Amer. Math. Soc. 159,
curve. The solution must entail a plan, given a convergent 91-109 (1971). _ _
zonotope sequence, for selecting generating curves for each 17. J. Serra._lmageAna/ysts and Mathematical Morphology,

. . . . R Academic Press, Inc.. New York, 1982.
of its zonotopes (by choices available in a perhaps daunting 18. Stanley R. Sternberg, “An Overview of Image Algebra and
number of ways) in such a manner that the selected curves Related Architectures.” Integrated Technology for Parallel
approach a limit. Thus, we ask: Given convergent zonotope é’;aﬁ;’o}) rocessing, Academic Press. Inc.. New York, 1985, pp.
sequence Z; — zonoid Z, how may one determine a 19. R. Schneider and Wolfgang Weil, “Zonoids and Related
convergent sequence of curves C,such that Z, = S, C, — C, Topics,” Convexity and Its Applications, Peter Gruber and
and SC =79 ! .;c;gg ;&Igls. Eds., Birkhauser, Cambridge, MA, 1983, pp.

Many other interesting questions remain. What zonoids 20. U. Betke and P. McMullen, “Estimating the Sizes of Convex

do various curves generate—e.g., the “pretty” curves such as
a helix? How do other cumulative sweeps behave—the
cumulative rotational sweep (CRS), the cumulative mixed
sweep (CMS)? What are the properties of each of the
cumulative sweeps under constraints of limited memory?
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