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This  paper  introduces  the  cumulative 
translational  sweep (CTS) as a tool for  shaping 
geometric  objects. It describes how it may be 
applied, in combination  with  Boolean  operations, 
to  stimulate  growth  and  shrinking  over  the 
boundary  regions of polyhedral  models,  and 
how, by  creating  additional  facets, it may be 
used to achieve  global  rounding effects along 
model  edges  and  around  their  vertices. CTSs 
are  examined in terms  of  a  conceptual 
framework  that  describes  their  effects  as 
Minkowski sums-of the  polyhedra  to  be  swept, 
with  convex  polyhedra  from  the  class  of 
mathematical  objects  known  as  zonotopes. 
Included is a  discussion  of  applications in the 
OYSTER program, a CAD system  for  the 
simulation of semiconductor  wafer  fabrication. 

Introduction 
Techniques described in this paper introduce a new 
method-and its first disciplined use-for the shaping of 
polyhedral models. It is based upon  the theoretical construct 
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of a cumulative translational sweep (CTS), and its 
application achieves shaping effects that  are interpretable in 
terms of Minkowski  sums. 

Our interest  in  this  subject reflects an effort to  enhance  the 
capabilities of the  OYSTER system [ I ] ,  which strives to 
realistically represent  device  fabrication process effects in 
terms of polyhedra of the GDP modeler [2, 31. We have 
considered some shaping techniques alternative to  the  one 
described here, including general offsetting techniques 
leading beyond the polyhedral domain [4-61, polyhedral 
offsetting applied to convex  polyhedra [7], and a method for 
splitting general polyhedra into convex components  that  are 
separately shaped and reassembled [8]. The  method we 
present is applicable to general polyhedra, makes  no 
demands for  partition and reassembly, and generates 
polyhedral results. 

“Shaping” has  many senses, such  as growing, shrinking, 
rounding, filleting, faceting, blending, and smoothing. It is a 
generic term in  geometric  modeling, encountered in such 
applications  as growing and shrinking to solve the collision- 
avoidance  problem [9]: growing and shrinking for the 
generation of blends [4, 51: sweeping to  compute  the  shape 
of various  space regions [ IO ,  1 I ] ;  and offsetting as  a means of 
defining  mechanical  tolerance.’ 

sense to  the tracking  of  a body’s motion in space. Most 
Sweeping, as  a  geometric  modeling  tool, refers in its  broad 
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modelers can compute the swept volume, or sweptspace, of a 
moving  body  which does not tumble, i.e.,  which has only 
translational freedom; this is the region of space through 
which the moving body  has  passed, or, quite informally, its 
“ghost.” Some modelers, such as the GDP modeler 
supporting OYSTER, can approximate tumbling motions 
(rotational freedom) as well.2 No modelers we know of 
construe a sweeping operation as  effecting motion not only 
in the body but also  in  its ghost; however, if the ghost is 
deemed to be carried along with the body and so to spawn 
its own  ghost of a ghost (and so on, and so forth, . . .), then 
there is  effected a much larger  sweptspace than is  usually 
conceived-one that we call cumulative to contrast it with 
the familiar tubular sweptspace. Cumulative sweeping 
without tumbling serves our shaping needs; as noted above, 
we call such an operation a cumulative translational sweep, 
or CTS. We interpret motion curves as prescriptions for CTS 
shaping operations that may be performed upon an input 
body, interpreting sweptspaces  as shaped output bodies. 

The CTS method may be related to a general offsetting 
operation known as  Minkowski summation-and also as  set 
convolution [ I2l”that shapes a set of points by adding 
(vector summing) to each of them, in all  possible  pairings, 
each  of the points of another selected shaping body. The 
effect  of CTS prescriptions that we apply in our work  is to 
develop around any input polyhedron a polyhedral 
sweptspace  which  is the Minkowski sum of the  input with a 
shaping polyhedron from the polytope subfamily of 
zonotopes [ 13-1  61. 

Serra [ 171 develops the algebraic properties of “dilation” 
and “erosion”-shaping operations based on neighborhood 
rules applicable over discrete domains (such as the 
arrangement of pixels in an image). Some sequences of  these 
operations are expressible as Minkowski sums and were 
implemented in image processing architectures [ 181. 

types,  using a classification scheme that includes the CTS; 
we then describe the particular CTS type  developed  for 
OYSTER, sections follow that give theoretical justifications 
and present some examples of zonotope shaping bodies; 
there follows a discussion  of CTS applications in OYSTER; 
and, in a final section, we consider a theory for the general 
CTS. 

In the first section of the paper we describe various sweep 

Sweep  types in general 
A sweep may be generally  defined as any function S that 
maps a time t E [0, TI, a motion F(t), and a body B to a 
sweptspace S( F, t, B )  that depends on both B and its motion 
history. To avoid encumbering notation, we often suppress 
explicit  reference to F when  referring to the sweptspace and 
use S(t, B )  as its designator. 
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Important uses  of the term “sweep” (within the topic of 
generalized cylinders) admit motions F that involve  scaling. 
For our purposes, F is not allowed such freedom but is 
constrained to be a rigid motion. It  is taken as a time- 
parameterized frame transformation having translation 
vector f ( t )  as  its translational component and rotation matrix 
M ( t )  as its rotational component. It  associates  with any 
point, b, a trajectory curve, f ( t )  + M ( t ) b .  We assume that 
M(0) is the identity frame and that both f and M are 
continuous and piecewise-differentiable. 

Various sweep  types are definable  in terms of motion F 
and  the rules that determine sweptspace membership. After 
making some broad distinctions on these bases,  we  will 
consider all  rigid motion sweeps to be either tubular or 
cumulative. 

The trajectory, or tube, of B under sweep S is the union of 
all trajectory curves of points in B:  

tube(S(F, t ,  B ) )  = I f ( ( . )  + M(a)b: b E B, 0 I a 5 t )  

U(F(a)B:  a E [0, t ] ] .  

This coincides with the tubelike space  region that 
accommodates B’s passage. 

If sweptspace S(F, t ,  B )  coincides with tube (S(F,  t ,  B ) ) ,  
we call both S and the sweptspace tubular. Points in such a 
sweptspace  clearly originate in B, in the sense that the tube is 
the union over all b-trajectories, b E B. 

The sweep curve is the translation curve, it is identifiable 
as the trajectory, or tube, of  {O)-i.e., as the image set, 
f([O, t ] ) ,  of [0, t]. A related subset of the sweptspace  is the set 
S(t, IO]), or, by understanding, S(t,  0); we call this set the 
swell. It is the swept image of the singleton set, { O ) ,  and for a 
tubular sweep  it  agrees  with the sweep curve, but for 
cumulative sweeps (below) it is more extensive. 

S is a translational sweep if M(t )  = M(0) = the identity 
matrix; a rotational sweep if f ( t )  = f(0); and a mixed sweep if 
both M and f vary. If S is translational and tubular, then its 
sweptspace  is the Minkowski sum, S(t, B )  = f ( [ O ,  t ] )  + B = 
S(t, 0) + B = swell + B; in fact, this decomposition applies 
to all translational sweeps,  even nontubular ones (below). 

We describe  sweep S as cumulative, and say it has a 
memory, if the sweptspace at any time t is more extensive 
than  the corresponding tube. This is made exact by 
membership rules to be developed; informally, it means that 
points may enter a sweptspace at time t not only along point 
trajectories that have originated in B but also along point 
trajectories that have originated in any earlier sweptspace. 
For example, a point x belonging to S(F, t,, B )  may be 
permitted to spawn member x’ = F(t2)F(tl)”x of a later 
sweptspace, S(F, t,, B ) .  It is possible to place time limits in 
such origination rules in a manner  that gives exact sense to 
the notion of a memory of  specified duration; we return to 
this matter in our final section. 
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Sweep types in OYSTER 
The preceding  indicates that a very broad  study of sweeps 
entails  consideration  of  rotational,  translational, and mixed 
sweep types, and of sweptspaces which are  either  tubular or 
cumulative  and which, if cumulative,  may  have varying 
durations of memory.  For  the modeling  needs  of OYSTER, 
the focus is narrower. 

polyhedral approximation,  under  tubular mixed sweep, for 
the  tube of a polyhedral  body; by restriction, this algorithm 
makes  available a precise representation  for the polyhedral 
sweptspace that results from the  tubular translational sweep 
of a polyhedron along a single line-segment sweep curve; and 
by iterating the  latter process along finitely many  line 
segments  of a piecewise-linear sweep curve,  taking the 

The GDP modeler  has an algorithm that creates a 

output sweptspace from  each stage (line  segment) as  the 
input body to  the next, we achieve the special CTS used in 
OYSTER  simulations. 

An example is given by the Figure 1 sequence, which 
shows the generation  of an octagonal from a square prism. 
In Figure l(a), the sweep curve is seen as a simple two- 
segment  curve in proximity to  the  input prism; the first 
curve  segment prescribes a tubular sweep that develops the 
sweptspace of  Figure l(b), shown  extending the original 
prism; sweeping this result  along the second  segment then 
determines  the  output  prism, Figure I(c), by inclusion  of a 
new extension. In such a manner, by iterating the  tubular 
translational sweep (TTS), one achieves a single CTS. 

Figure  I(d)  indicates another way of  conceptualizing the 
result. It shows the rays of the sweep, i.e., the separate sweep 
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curve  segments  treated (and stored by OYSTER) as vectors, 
and  the swell-in this case a  shaded parallelogram 
identifiable with the effect of the sweep upon a single point. 
The figure suggests how the  output prism  derives from  the 
Minkowski sum of the swell and  input prism-informally, 
by sliding the swell around  the  boundary of the  input prism 
while maintaining  the swell’s orientation  and (with respect to 
the swell) the  point of  coincidence. 

To clearly understand  the  CTS  as a  Minkowski sum, 
consider the rays of the sweep to be given by vectors 
r , ,  . . . , rn ( 1  5 n I N ) ;  that is, suppose the  time  parameter 
values associated with endpoints of the linear  segments 
of f  are 0 = to 5 t ,  5 . . . I t N ,  and define r,, = f(t,) - f(t,-,). 
Then, retaining the distinctions based on index, call set 
R = (r, ,  . . ., rN), the ruyset of the sweep. The first ray then 
prescribes a sweep that creates sweptspace 

S(t,,  B )  = Slrll(B) = (art  + b: 0 I 01 I 1, b E B )  

= qr,l(o) + B. 

And, i f f  has more  than  one linear  segment,  a  second ray 
iterates the process, developing 

w , ,  B )  = S{rI.r21(B) = S,,21(o) + SIr1{(O) + B. 

Continuing  in this manner, it is apparent  that  the final CTS 
sweptspace is 

S(tN3 B,  E s{rl,. . . , r N { ( B )  E S R ( B )  

= Sl,,l(0) + . . . + S,,Nl(0) + B SR(0) + B. 

Observe of this CTS  that swell S(t,, 0) has been given a new 
denotation, SR(0); we abbreviate  this to SR; and if R has only 
one ray, r, we abbreviate further still, to ?, since the swell is 
then  the line  segment given by i = (ar: 0 5 a 5 11. 

j Octagonal prism resulting from subsequent sweep along  the second seg- 

1 ment of sweep curve. 
i Conceptualizing the octagonal prism as a Minkowski sum of the square 

prism with a parallelogram swell. 
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As indicated, one may express sweptspace S(t,, B )  as a 
sum which separates the  contributions of the swell from 
those  of the body-as S,(B) = S, + B. This extends an 
observation made earlier about  the  TTS  to  one  that applies 
to a ray-based CTS;  it is true of every translational sweep, S, 
that S ( t ,   B )  = S(t, 0) + B, and  one  may study  translational 
shaping processes-disregarding the bodies to which they 
may be applied-by examining  the  shape of the swells that 
represent  their effects. 

of rays reflecting the  order of line  segments  along sweep 
curve f, it is identified with the  commutative set sum, 
S, = i., + . . . + ?,, and  thus is order-independent. It  may be 
associated with any sweep curve  derived from f by 
permuting  the  order of  its  linear  segments;  when computing 
sweptspace S,(B), we are free to choose the  permutation  of 
rays that will minimize cost. 

involving finitely many  line segments. Such sets are known 
in mathematics  as zonotopes [ 13- 161; limits  of zonotope 
sequences are called zonoids-they appear  in  some 
surprisingly different contexts [ 191. 

A polytope is the convex  hull  of a finite set of points. An 
alternative  definition of a zonotope  that de-emphasizes  its 
line  segment basis is that  it is a centrally symmetric polytope 
having centrally symmetric facets of every order, where a set 
is centrally symmetric, or centered, if it reflects through  one 
of its  own points  onto itself, in  this exact sense: X is 
centered at c E X i f  p E X implies  segment E’ C X, where 
p’ = 2c - p is the reflection of p through c. In  other words- 
and  this is a characterization we later employ-X is centered 
at c iff for every p E Xand a E [0, 21, p + ( ~ ( c  - p) E X .  

Starting with a rayset, one  may produce the  zonotope 
which is its  associated swell  by applying the rayset, as a CTS 
prescription, to  the origin. To go in the reverse direction, 
from an initial zonotope  to a rayset which generates  it, one 
may determine rays in this manner: Call the zonotope’s 
edges equivalent if they are parallel; let one ray (directed 
either way, by choice)  represent  each  such  equivalence class; 
the rayset so determined generates a translationally 
congruent zonotope (its  location being influenced by the 
direction  choices made-see discussion  of ray reversal 
below). 

Although swell S, was introduced with regard to  an  order 

The preceding exhibits swells as  Minkowski sums 

Swells as shaping tools 
Notation S, and  terms such as “swell” call attention  to  the 
underlying rays and  the growth dynamic  that  may be 
associated with zonotopes. We now return  to  that focus- 
natural  to  the  study of sweeping as a growth process. 

When  point x is subjected to  the  CTS  determined by 
rayset R ,  it “swells” into  zonotope x + S,, and  thus  into 
swell S, if x is 0. This image set may be of surprising  beauty. 
An example is the 56-faced swell shown  in Figure 2. Based 
upon eight rays, this  shaper  has  been used in some  OYSTER 
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1 Depicted in the foreground are eight radially directed rods, one hidden 
f from view,  which indicate rays  that define a set of translational sweeps. 

If applied in cumulative sequence to any initial point-such  that each 1 successive sweep is  used to enlarge the  swept volume passed  to  it by its 
2 predecessor-they produce a  multifaceted zonotope that is translation- 
$ ally congruent to the background figure. 
i 

applications. As instanced in  this case, the  number of faces 
developing from N (23) rays in 3D is N(N - 1)-provided 
no  three of the rays are linearly dependent. 

by swells which approximate a circle, first roughly and  then 
more accurately. A four-element planar rayset develops the 
octagonal swell shown  in  Figure 3(a), and  an eight-element 
one develops the sixteen-sided polygonal swell shown in 
Figure 3(b). The results show that  the L develops a cover, 
S,(L), that  has new edges around each original  convex 
vertex-a simple approximation  to rounding. The figure also 
illustrates the relations between swells as shapers and  the 
grown or shrunken bodies that  CTS creates. Output 
sweptspaces are shown in relation to  the swells, in a manner 
that clarifies the Minkowski summation involved; swells 
seem to have acted upon  input polygon L by sliding around 
its boundary,  oL, and displacing  it into a new position- 
determined with respect to  the original by the shape of the 
swell. 

That a sweptspace, S,(L), is describable in  terms of 
activity  along boundary  OL is evident from  the observation 
that  points of the interior, Lo, cannot be swept into new 
temtory without first crossing the frontier; to decide  what 
new temtory is to be annexed, it suffices to follow the 
frontier-crossing points, i.e., the points of oL. This 
observation  is formally derivable as  an  argument parallel to 

Figure 3 illustrates CTS  rounding of an  L-shaped polygon 
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Properties of ray-based  swells 
As a  zonotope, swell S, is known  to be convex,  centered, 
and  compact (for Euclidean space, read closed and 
bounded)-say a 3C set. We suggest here how  these 
properties  may be established as consequences of attribute 
preservation under set summation. Readers  familiar with 
these arguments  may wish to skip ahead  to  the discussion on 
the  shape of planar swells. 

S, is convex 
Line  segments are convex, so it suffices to show that set 
summing preserves convexity, i.e., that if A and B are 
convex, so is A + B. Let x, = a, + b, and x, = a, + b, 
be any two points of A + B, and consider an  arbitrary 
convex combination of them, say x, = ax, + (1 - a)x2 
Then x, is clearly re-expressible as [aa, + (1 - a)a2] + 
[abl + ( 1  - a)b,] = a, + b,. As a convex combination of 
A-points,  a,  is in A, and similarly, as a  convex combination 
of B-points, b, is in B; hence x, E a, + b, is in A + B. 

S, is centered, at (Zr,)/2 
Observe first the effect of  set-summing two centered sets: If 
set A is centered at c,, and B is centered at ch, then A + B is 

centered at c, + cb. For if a + b is a  representative point of 
A + B, with a E A, and b E B, then c, + ch proves to be a 
center, because for any a E [0, 21, point (a + b) + a((c, + cb) 
- (a + b)) = [a + a(c, - a)] + [b + a(cb - b)] is expressed 
on  the right side of  this  identity as a member of A + B. 

Then, since line segment i is clearly centered at r/2, it 
follows that S, = i, + . . . + iN is centered at 

N 

(112) C rn .  
"=I  

We note as  a  corollary that S, is centered at  the origin iff its 
rays sum  to 0; this is of interest when considering the 
distribution  of new material that a body acquires during 
cumulative sweep. 

S, is closed 
More strongly, we show that if B is closed, so is S,(B); the 
particular result comes by taking  B = { O ) .  We assume,  since 
the  argument is finitely repeatable, that R is the singleton, 
(r); then S, is 7 = (ar: 0 5 a 5 l ) ,  and we show that set 
B' = B + i is closed, i.e., that if x 4 B', then x is not a  limit 
point of B+:  Take x B+ and consider  line  segment 
seg = z, where p = x - r; it clearly avoids B, and since seg 
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is a compact set outside the closed set B, there is an t > 0 
such that set F g  = E(t ,  seg) avoids B. Now, is a sausage- 
shaped set that covers on one  end  an e-neighborhood of p, 
E(t ,  p), and  on  the  other  an t-neighborhood of x, E(t ,  x) = 
r + E(e, p). So i@ is of sufficient size that every line  segment 
parallel to r which spans its interior has  length > I r 1; it 
follows, if b E B, that b + kr can lie in E(t ,  x) for no 
positive k I 1, and  thus  that x is not a  limit point of B+. 

S, is bounded 
Since x E S, is expressible as a sum of rays with coefficients 
from [0, I], I x I is bounded by Z: I rn 1, summed over all rays 
in R. 

A tighter  directional bound is available. For a  convex 
body  K that  contains 0, the normalized support  function of 
K, in  direction p, is defined by h(K, p )  = max (x, p ) ,  x E K ;  
this value represents the directional  extent  of K in the p 

direction, i.e., the distance between 0 and  that  support plane 
of K which has  its  outward normal p pointing into  the 
non-K halfspace. When  refemng  to  zonotope S,, in  order  to 
emphasize the relationship to rayset R, we denote  this 
support  function by H R ( p )  and  term it the height of the swell 
in  direction p. If the swell is centered at 0, this is one half the 
convex set width in  the p direction; in general, the width of 
the swell in the p direction is H R ( p )  + H R ( - p ) .  

S, attains its height, H R ( p ) ,  at  the  point which is the  sum 
of the rays, if any,  that  point  into  the p halfspace-or at 0 if 
there  are none. For if R has no ray pointing  into  the p 

halfspace, then clearly (x, p )  is maximized, x E S,, by 

x = 0; otherwise the  maximum is sought with respect to 
representative points of form x = Z:a,r,, with coefficients 
a,, E [0, I], and for  such a point, (x, p )  I (y, p ) ,  where 
y = Zr! summed over exactly those rays for which 
(r,, P )  > 0. 

We also remark that HR completely determines S,. 
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The shape of planar  swells 
We later  observe a simple result-that reversing a ray’s 
direction  translates a swell without  altering  its  shape; also, 
since rays may be applied in  any  order, we may  determine 
the  shape of a swell by studying  whatever sweep curve 
(among all those which differ only by the ordering or 
direction  of  their  segments)  most easily reveals it. In  the 
planar case, there is always among such  equivalent  curves 
one whose discrete turnings  are all in  the  same angular 
direction and of cumulative  amount  at  most 180”. When 
we have chosen  such a representative  curve, the central 
symmetry  property allows us  to invert it  tbrough  the  center 
of symmetry  and so exhibit  as  subset  of the swell a simple 
closed curve formed of that representative and its  inverted 
image; convexity then establishes the inclusion  of the  planar 
region inside the closed curve; and  an  argument based on 
swell heights, HR(p) ,  establishes the exclusion of the  planar 
region outside it, completing the swell’s characterization. As 
an example, any sweep curve which polygonally inscribes a 
semicircle generates a swell that inscribes the corresponding 
circle. 

For a swell in a higher-dimensional space, the above 
technique permits  determination of the  shape of any of its 
planar projections by consideration  of the projected planar 
raysets. 

Behavior  of  swells  under afine transformations 
If L is a linear  transformation  and A is a subset  of  its 
domain,  denote by LA the image set {L(a): a E A ) .  Then  the 
fact that everything is additively defined and L is linear 
results in this immediate conclusion: 

R. C. EVANS, G. KOPPELMAN, AND V. T. RAJAN 

LS, = s,,. 
If sweptspaces are considered, the corresponding result is 

LS,(B) = S,,(LB). 

These  observations  have useful consequences: 

Approximations by  swells. If R is a known rayset such that 
S, approximates A (perhaps a sphere), then LR is a rayset 
such that S,, approximates LA (perhaps  an ellipsoid). As a 
2D example, see Figure 8. A rayset comprising 16 rays 
originally equally  spaced around a circle-and which, if 
taken  as  such, would have  generated an approximately 
circular swell-has been  transformed so that its swell 
approximates a sheared ellipse. 

dimension [ 161. The HausdoriT distance between 
sets X and Y is p(X, Y) = max  (supxExinfyErl x - y 1 ,  
sup,,,inf,, I y - x I ). Using  this metric  in a d-dimensional 
space, Betke and McMullen ([20], Section 4) bounded  the 
infimum  distance between the class of n-rayed zonotopes 
and  the  unit ball, B ;  the inf lies between values Pdn-’ and 

3D, the principal author tested spherical approximations 
based upon two  experimental rayset sequences, one  that 
employed rays pointing toward  mesh points of an ever- 
refined geodesic dome,  another whose rays pointed  in 
ever-tighter spiral patterns  around a “northern” 
hemisphere. The  number of rays needed to achieve 
(statistically tested)  aspect  ratios less than 1 .O 1 was 
determined-approximately 2500 under either  sequence. 
Determination of the  shape of a swell. If L projects into a 
plane, then  the earlier remarks  on  determining  the  shape 
of planar swells apply to SLR, permitting the full 
determination of the  shape of this  planar projection of S,, 
and providing a very helpful aid to its full 
conceptualization. We have used such  projections to 
design raysets that achieve  particular  growth profiles in 
each of three mutually  orthogonal  directions. 
Changing the shape of a swell to vary the thickness  of 
deposited layers. The thickness of a deposited layer 
cumulatively  grown under  the prescription  of rayset R is 
directionally dependent  and given by the height function, 
H,. If R were designed to  induce  unit thickening in each 
of three orthogonal  directions, say the cardinal ones of xyz 
space, but different directional heights were preferred, such 
as 3, 45, and 100 (while preserving the faceting pattern 
characteristic  of R),  they  might be obtained by 
transforming the rays of R by application  of a diagonal 
matrix  having as diagonal  entries  those three values; use of 
this  observation in  the  OYSTER application  area  often 
involves the  same scalar at each  diagonal entry, entailing 
straightforward scaling of  each  of the rays. 

To scale the thickness by k in  the  arbitrary direction  of 
unit  column vector p (using p7 for  its row transpose), and 

There  are also swells to  approximate  the  unit ball in any 

ydn-2/‘d-” , for constants Pd and yd independent of n.  In 
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to  do so without altering  thicknesses in directions 
orthogonal to p, one  may apply transformation 
I - (1  - k)pp’ .  To independently scale the thicknesses in 
three orthogonal  directions given by the  columns of 
orthonormal matrix U-and by three  amounts given along 
the  main diagonal  of  diagonal  matrix D-one may apply 
UDU’. 

It remains  to consider  translations. The basic observation 
is that translating a swept body is equivalent to sweeping a 
translated  body; v + S,(B) = S,(v + B), or, in expanded 

Ordering the  latter  sum as (v + S,) + B suggests the 
interpretation that body B has been  acted upon by a 
translated swell, an effect that  may be grasped in  terms of 
shift of hangpoint, i.e., in terms of an origin shift that creates 
a new eflective hangpoint. Thus, translating a swell by v 
creates an effective hangpoint  at -v, indicating a distribution 
of  deposited  material  corresponding to a shifted point of 
conceptual  coincidence between the swell and  the  boundary 
track  of the body. 

If S,, were to have the  shape of S, but  an effective 
hangpoint at v rather  than 0, its  layering effect would be 
given by lay,@) = gr,.(B) - B = gr,(B - v) - B, and  as 
such  could be readily achieved. 

achieved by translating by v = (-2r)/2.  One  at swell 
boundary  point w is achieved by translating by -w; it is 
sometimes useful to choose  such a boundary  point with 
respect to a given direction, I.C, as a point  at which height 
H R ( p )  is attained. 

Figure 9 shows the effects described. A layer  has  been 
grown  from a rectangular slab, Figure 9(a), in  two different 
ways that use the  same swell but  treat it in  terms of a 
different hangpoint.  When the effective hangpoint is taken at 
the swell’s center of  symmetry, we consider that  it 
determines a balanced swell; it induces growth layers that 
have a balanced  appearance, as  in Figure 9(b). When  the 
effective hangpoint is  taken  somewhat “beneath”  the  center 
of  symmetry,  deposits occur somewhat  “above” the body 
and we call the swell a climber; in Figure 9(c) the hangpoint 
has  been placed at  the lower boundary of the swell, raising 
the developed layer to  the high point shown. When  the 
effective hangpoint is taken  above the  center of  symmetry, 
we call the swell a digger. 

form, v + (S, + B )  = S, + (v + B). 

An effective hangpoint at  the swell’s center of symmetry is 

Reversal of ray direction 
Reversal of ray direction effects a translation. For if R ‘ is 
produced from R by the reversal of a single ray, r, then  the 
associated swells differ by translation  vector r, i.e., 
r + S,, = S,. In  other words, r + (7 + X )  = (F + X ) ;  but 
this is obvious,  since 

r + ” r = ( r + a ( - r ) : O s a s  1 } = { ( 1  -a)r: . . .  } 
= ( O r : O s P s  1 ) = F .  

That ray reversal reduces to translation has  important 
consequences: 

Shift of hangpoint.  Since a translation is involved, the 
previous  section  shows that ray reversal effects a hangpoint 
shift. For example,  imagine in xyz coordinates  that 353 
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S, as a convex hull 
It is  of  interest to  note  that  the vertices of a swell, and hence 
the swell itself (as  convex  hull  of the vertex set), are 
expressible as a special sum over selected subsets of the rays. 

We call X C R a strong subset of R, and v = x a 
strong sum, if for  some  unit vector p, (x, 1) > 0 for every 
x E X ,  and (r, p )  < 0 for every r E R - X .  

Vector 0 is not a  strong sum, because for every vector p, 

Every strong sum is  a vertex of S,, and every vertex other 
than 0 is a  strong sum.  This follows from an  argument, using 
the H R ( p )  formulation,  that shows  a 140-1 correspondence 
between strong sums  and  support planes  of S, that  contain 
exactly one (non-0) point.  The above shows that  zonotope 
S, is the convex  hull  of { O )  U (strong  sums). 

We note,  marginally, that 0 is a vertex of S, iff R is  a 
strong  subset, and is a boundary  point of S, iff R is  “almost 
strong,” i.e., satisfies the strong conditions if the strict 
“greater than” (>) is replaced by “greater than or 
equal to” (2). 

0 = (0, cc). 

OYSTER CTS  applications 
Recent developments in  integrated  circuit  technology and 
predicted future  trends  point  to  the need  for  better  modeling 
tools to help link  a technology’s design and  manufacturing 
phases. The  aim of  fabrication  modelers  such as OYSTER is 
to model the geometric form of silicon devices at each stage 
of their  manufacture,  in  order  to  aid device designers, who 
may  derive operating characteristics  from the models, and 
manufacturing  engineers, who may use them  to investigate 
allowable tolerance bounds. 

OYSTER  takes the designer’s mask  artwork and  the 
manufacturing engineer’s step-by-step description of the 
fabrication process as its inputs. It requires the  same Boolean 
engine as more typical mechanical CAD/CAM applications, 
but  must deal with more  unusual shapes. In  the silicon 
process world, the forms of materials that  take  shape  on  the 
wafer are  continuous in layer-by-layer conforming  patterns, 
suggestive of geological strata  that flow and twist in 
unexpected and irregular ways. OYSTER  attempts  to 
capture  the  roundness of the layers and  to accurately reflect 
their varying thicknesses, which depend  upon  the directional 
orientations of the various  device  elements. 

A process step  that occurs  repeatedly is the deposition of a 
new layer of material upon  an old. Although different 
methods of deposition and different material  types effect 
distinctive layer shapes, all deposited layers do  conform in 
shape  to their  underlying  support. OYSTER achieves such 
new layers by applying the grow operation to a  composite 
union of underlying layers and  then Boolean differencing the 
result and underlying  composite. 

Figure 10 provides an example.  Figure lO(a) shows  a 
cutout view of an OYSTER  model,  representing  a  device 
which, during its manufacture.  has  developed several layers. 

The fabrication  step to be illustrated  is  a  uniform  coating  of 
the device by a new blanket  material layer of specific 
thickness. To model the step,  a union is created of all 
existing device components,  as shown  in  Figure 10(b). The 
composite union might then be swept (in the simplest case) 
along three orthogonal  directions and a new layer then be 
derived by a Boolean difference which removes the 
composite  from the swept composite,  Figure IO(c); the 
derived layer is shown  in place, above the original layers, in 
Figure lO(d). Square edges and corners  in the layer reflect 
the box-shaped swell employed. The  combined use of 
Boolean and sweep operations illustrated  in this example is 
typical of OYSTER algorithms which model  fabrication 
steps. 

account  the shape rounding  due  to  the lithography steps. 
The mask  defining the L-shaped gate region layer used in 
Figure 10 can be considered  a typical lithography  mask 
shape  as  drawn by a device designer. Because of  exposure 
tooling effects and material effects during  the chemical 
development of the photoresist that has been exposed with 
the mask, the  square  corners become rounded, with a  radius 
that is generally technology-dependent. The  CTS sweep 
techniques permit us to facet around  the  corners  and 
simultaneously grow or shrink the mask to  compensate for 
fabrication effects. Figure 11 shows how an  appropriate 
combination of grow and shrink operations with the rayset 
of Figure 5(a) is used to grow the original mask  uniformly 
over the  boundary while inducing faceting at  both convex 
and concave  corners. 

Figure 12 shows the effect of combining  planar mask 
faceting and deposition faceting to achieve more realistic 

In modeling silicon fabrication, it is important  to  take  into 
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Deposition steps performed by OYSTER with edge and mask faceting: (a) Deposited layers with one  edge  facet. (b) Depositedlayers with two 
edge  facets. 

device shaping. Both  masks that were used, to define the well 
area and  the gate shape, have been rounded, as may be seen 
in  Figure I I .  A transmitted rounding is  seen in 
corresponding faceted shapes in the device,  as  shown in 
Figure 12(a). Compare the shapes in  Figure  12(a) to those of 
Figure 10(a). The well has  been etched vertically downward 
in both figures, but  the material layer beneath the gate has 
been  deposited  with one edge  facet by using the rayset of 
Figure 5(a). The L-shaped gate  region  has  been applied in a 
blanket layer and vertically etched as in  Figure 10(a), but 
note that its shape, when dipping into  the well, conforms to 
the edge  faceting  of the material layer beneath. 

Figure I2(b) was created using the same rounded masks  as 
in Figure 12(a), but the depositions were done with two edge 
factts instead of one, using a swell designed  for double 
faceting, that of Figure 2. Details of  rayset construction and 
swell hangpoints are made transparent to the OYSTER user, 
who  merely  selects the number of facets by setting a global 
parameter. 

Further applications occur in other OYSTER fabrication 
step simulations. Thus, for etching, a very thin blanket layer 
is  first  grown and then intersected with the complement of 
the composite union; this identifies which portions of the 
device are exposed to  the etchant. Similar methods, which 
create and use temporary intermediate layers, give OYSTER 
an ability to simulate growth  of thermal oxides. Other 
applications of CTS are being considered for modeling 
effects particular to the type of deposition. 

356 advantages.  However, the method does raise  issues of 
We chose to apply sweeping techniques for their many 
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complexity that we have  yet to fully explore; we observe  here 
only that CTS is a good candidate for parallel  processing, 
since particular “forward components” of a solid  may be 
swept in parallel and then subjected to a summarizing 
Boolean union. 

CTS for general curves 
We  have  discussed applications of the ray-based CTS, which 
is  based on sweeps along piecewise-linear  curves. Families of 
such curves provide the limit sequences that establish the 
general  class  of  rectifiable  curves. Any particular such limit 
sequence, say  of piecewise-linear curves C, to establish the 
rectifiability of curve C,  would  carry  with  it a natural 
sequence of zonotopes, Z, = SR,, say, and the Z,  sets  would 
approach (under the HausdorfT metric) a limiting zonoid, Z ,  
which  is the obvious choice among sets to define as swell S,. 
Below,  we develop this idea in terms of our earlier notation 
and usage. 

Consider a rectifiable curve in Euclidean N-space, 
parameterized over [0, 11 by a continuous function, C; 
let { .  . . , (a,, b,), . . . )  be a finite sequence of disjoint [0, 11 
subintervals and let R = {C(bi) - C(a,): i = I ,  . . be its 
corresponding rayset. We say that C supports R,  or that R is 
based on C (is C-based), and, if the association with C is 
understood, we say that R is  based on ( .  . . , (ai, bi), . . . }. 
Then the swell  of C (or C-swell)  is  defined  by 

S, = closure(U ISR: C supports R } ) .  

Under this definition, there are infinitely many ray-based 
swells contained in &--any parallelogram generated from 
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two supported rays, any parallelepiped generated from three, 
etc. Figure 13 illustrates a curve, C, and  one  such 
parallelepiped. 

sequence S,,, having  taken rayset R, in  association with the 
ith partition of [0, I ]  in  any refinement  sequence that 
establishes C's arclength. 

Swell-equivalence is  introduced to identify curves, under 
this  choice  of  equivalence relations: S,  - S, if swells S,  and 
S, differ at most by translation and rotation: and C, - C, if 

We remark,  without proof, that S, is the limit set of 

- Sc; 
We say a collection of disjoint domain subintervals, 

{ .  . . , (a,, b,), . . .], may be refined by splitting one  or  more of 
its members into several; it may be completed, extended to 
fully span  the [0, I ]  domain, by adjoining  each missing 
subinterval. Thus ((0,  0.2), (0.3,0.7))  may be refined in 
many ways, perhaps  to ((0, O.l), (0.1, 0.2), (0.3, 0.7)),  but 
may  be completed  in  only one,  as ((0,0.2), (0.2,0.3), 
(0.3,0.7), (0.7, 1)). 

If rayset R is C-based with respect to  an incomplete 
sequence and is extended by adjoining the missing rays from 
its  completed  sequence, then  the extended rayset, denoted by 
R*, is called complete, or the R completion. If R '  is based on 
a refinement  of the  domain subintervals  associated with R, it 
is called an R rejnement. 

We make  these observations: 

The new notation extends the old consistently: if C is any 
one of the curve  segments  obtainable by stringing  together, 
start-to-end in  any order, all directed  line  segments 
associated with the rays of R, then S, = S,. 
One curve  equivalent to C is the translate, 
c = C - C(O), having c(0) = 0. 
Since each singleton, (C(t) - C(O)], is clearly a C-based 
rayset, C? c s,. 

0 Operations  on curve  segments that preserve swell- 
equivalence  include  translation;  rotation:  repositioning, 
start-to-end, the  members of a finite family of 
C-subsegments that span C: first reversing the direction of 
some, and  then repositioning the  members of  such a 
family. To briefly elaborate: 

The affine behavior is this: for a linear transformation, L, 

LS, = S L C ,  

and for a translation, 

v + s, = s("+o. 
Reversal of direction  [assuming,  without loss of generality, 
that C(0) = 0 and c(t) = -C(t)]: 

s,=-sc=-C(1)+S,=C(1)+S,. 

Segmentation into subsegments C,, . . ., C,,: 

s,=s,, + . ' .  + S,", 

A general sweep curve and one of the infinitely many parallelepipeds 
contained by its swell. 

The nesting of  completed refinements. 
If R* completes R, then, clearly, S, C S,. C S,: and if 

R '  refines R, then S, C S,. C S,. The latter follows from 
the fact that, using the refinement  structure,  each ray r, of 
R may  be re-expressed as a sum, 

kt 

C r?, 
, = I  

over rays of R ', representative sums  from S, being 
similarly re-expressed as belonging to S,,. 

If R,  and R, are C-based,  they  have a common 
completed  refinement R: it may be constructed  in a 
unique way  by completing that refinement of [0, I ]  which 
involves exactly the division  points associated with either 
R,  or R,. Then, for i = 1 or 2, S,, C S, C S,. 
S, is convex. 

Let p and q be points of S,, and a E [0, I]. We must 
show that x = a p  + (1 - a)q E S,. Take p, + p and 
q, + q, with pi and qi  in a common C-based rayset R,. 
Since p, and q, belong to  the convex zonotope, SRl, so does 
the  point x, = ap, + ( 1  - a)q,: and x, + x; thus, since S, 
is closed, x E S,. 
S, is centered, at c = (C( I )  - C(0))/2. 

Note first that for any complete  C-based R, S, is 
centered at (C( 1) - C(0))/2, since  it  is  centered at half the 
sum of its rays, which for a complete rayset telescopes to 
the stated value. Then,  to complete the proof, we show 
that, if p E S, and (Y E [0, 21, then p + a(c - p) E S,: If p 
lies in  some  complete C-based R, then  the observation 
above gives the result; otherwise, an  argument strictly 
parallel to  the  above convexity argument shows that 
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q = p + 01(c - p) is approached, through S,, by q, = p, + 
~ ( c  - p,) and hence lies in Sc. 

As corollary, S, is centered at  the origin iff C is a closed 

The above  two  properties  (convexity and centrality 
curve. 

at . . .) are helpful in understanding  what regions S,. must 
include. Assume, for  convenience, that C(0) = 0, and  note 
that when p is taken  as C(t),  it reflects through  the C( 1)/2 
center  into q = C( 1) - C(t),  and as p describes the C 
curve q describes the reflected curve e. Then  the swell of 
rayset R = { p,  q] is bounded by the parallelogram having 
vertices at 0, p, p + q = C( I ) ,  and q, and as t varies it 
moves through  space “annexing territory  for” S,.. (For 
planar  curve C that  turns in one direction  through at most 
180”, these observations  confirm one  made previously: that 
S,. consists of that  planar region bounded by the closed 
curve  formed  from C and its  central  inversion.) 
S,. is  closed-by definition. 

If closure were not part of the definition, then such  a 
curve  as the following would not have a closed swell (in 
fact its S,. would contain only  two of its boundary points): 
In the xy plane, let the x-axis  interval I ,  = [ 1 - 2-,, 

1, k 2 0, be the  domain of C,, a diameter 1 - 2 - ( h + 1 )  

2 - ( h + l )  semicircle (say in the y 2 0 halfplane if k 
is even, and in the y 5 0 halfplane if k is odd), and let C 
be Uy=o Ch together with point ( 1 ,  0). Without closure, the 
swell  of this  snakelike  curve would be the open disk of 
radius 0.5 centered at (0.5, 0) together with two boundary 
points, (0,O) and ( I ,  0); closure brings in the  entire 
boundary. 

p is its unit vector, we have 
S,. is bounded by the arclength  of C. If p E S, is not 0 and 

I PI 5 f R ( 4  = c ( P ,  rz), 

where the  sum is taken  over the rays in R that  point  into 
the p halfspace. Expressing this sum in terms of the C 
parameterization, as 

C (LC, C(b,) - C(a,)), 

exhibits p as  bounded by C’s arclength, the least upper 
bound  (lub) over all C-based finite sums 

C I C(b,) - C(a,,) I .  

This arclength bound clearly applies to arbitrary  points  in 
S,., as  limit  points of such p’s. 

The p-height of S,. may be defined, for  a unit vector p, 

by H, . (p )  = lub H R , ( p ) ,  where the least upper  bound is 
taken  over all C-based R,. This is the total  variation of 
function 

Y 

also expressible as 358 

R. C I 

$’ max{O, ( p ,  dC/dt )]d t .  

S,. has been observed to be a 3C set. convex,  centered, and 
compact. Are 3C sets always derivable  as swells? No. One 
example of a  three-dimensional 3C set which is not a swell 
is the regular octahedron: All 3D  zonotopes have faces 
with evenly many sides, but  the octahedron’s faces are 
triangular. In 0-, I- ,  or 2-space, however, one can find a 
swell to generate any 3C set: 

A zero-dimensional 3C set is a point,  and is swell- 

A one-dimensional  3C set is a closed line segment, say 
equivalent to s,. for C( t )  = 0. 

of length k. It is swell-equivalent to S,. for C( t )  = t ( k p ) ,  
any  unit vector p. 

A two-dimensional  3C set, A ,  has any semi-perimeter, C, 
as  a  generating  curve; i.e., A = S,.. This may be shown 
as follows: 

Assume,  without loss of generality, that C(t). t E [0, I ] ,  
parameterizes  a  semi-perimeter beginning at C(0) = 0. 

To show A C S,.: If 0 # x E A and y E (uA)  f l  (half- 
line extension of segment *), then for some 01 and  some 
t ,  both E [0, I ] ,  x = ay, and either y = C( t )  = p or 
y = C( 1) - C(t)  = q; this establishes x E S,,,I C S,.. 

Finally, to show complement ( A )  C complement (S,.): 
If x A ,  then let p be its unit vector and let a, be its 
nearest point in A (which exists, because A is compact). 
Because of its convexity, A has a support plane, P, which 
passes through a,, is perpendicular to p, and locates x in 
the  open non-A halfspace, {p: ( p ,  p)  > ( p ,  a,)]. P may 
be assumed to  support curve C, say at a., = C(t,); if P 
supports C’s centrally reflected image, the  argument 
might be rephrased in terms of the central reflection of 
x. Then  the directional  variation of C in the p direction 
is realized by I ( p ,  C(t,)) I = H, . (p ) .  Combining these 
observations, we have ( p ,  x)  > ( p ,  a,) = lub { (  v, p):v E 
S,.l, hence x 4 S,.. 

The above  completes  a  phase of discussion that has 
associated general curves with zonoids, just as an earlier 
phase associated piecewise-linear curves with zonotopes; the 
key to  the association in each case has been the use of a new 
sweep type-the cumulative translational sweep-that 
directly links  a  curve to a “swell” (read zonoid). 

We mention a further generalization before concluding: 
A limited-memory CTS, having  memory of duration d, may 
be defined with clear intuitive sense in terms of a sweep 
curve, C(t),  that has been parameterized by arclength, say  by 
t E [O, TI: Let d be a continuous real-valued function on 
[O,T], satisfying 0 5 d ( t )  5 t. [for the simplest case-memory 
of fixed duration-d(t)  might be min ID, t ] ,  for some 
constant, Dl. Let Cfd,,] be the segment of C defined over 
parameter subinterval t E [s - d(s), x]. The  CTS with 
memory of duration d that is defined under these 
circumstances is that sweep which generates  as its swell 
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the permutability of curve  subsegments and  the expressibility 
of the swell as a Minkowski sum of subordinate swells 
associated with a curve  partitioning. In spite of these 
“failings,” which make the  limited-memory CTS  more 
difficult to analyze than its unlimited  correspondent, we 
believe the sweep type has considerable  theoretical interest- 
that it may provide a  conceptual  tool for thinking  about 
(even  simulating)  those phenomena in which temporal 
events may be associated with limited spatial effects. The 
richness of the constructs involved-permitting, for 
example.  time-varying duration functions, d-suggests to us 
an  area worthy of further  study. 
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