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In geometrical computations it is often 
necessary to  find  two unit vectors  such  that 
they and a  given  vector  form an orthogonal 
basis.  Computationally  simple  forms for the two 
unit vectors are clearly  useful. We show that 
they  cannot always be chosen to have rational 
coordinates,  but  that  in general the  simplest 
possible  vectors can be chosen to involve only 
one  square  root. We develop number-theoretic 
criteria for the existence of a  rational  vector and 
an effective algorithm  for  calculation of one if it 
exists.  We  also  discuss  storage and time 
requirements of the  algorithm. 

1. Introduction 
In calculations  in  descriptive  geometry  a seemingly 
innocuous subproblem  often occurs: Given  a nonzero vector 
v in R’, find two vectors u and u’, such that u and u’ are 
unit vectors and v, u, and u’ are mutually  orthogonal. For 
example, if one  must intersect two quadric surfaces, by using 
Levin’s method [ I ]  the problem is frequently reduced to 
intersecting  a cone or cylinder with one of the original 
surfaces. To accomplish this, one  treats  the  cone or cylinder 
as  a ruled surface parameterized by a  conic on  the surface 
and in  a  plane  orthogonal to  the axis of the  cone or cylinder. 
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The conic is then usually parameterized  in terms of two 
vectors u and u’ as  above. In graphics the  same problem of 
parameterizing  a  conic arises in the production of a wire 
frame  drawing of a  sphere,  cylinder,  cone, or torus. In 
geometrical modeling  a standard feature of many systems is 
the ability to design in  a  plane  in 3-space by using a local 
two-dimensional coordinate system, which again  reduces to 
choosing u and u’. 

We previously described the problem of finding u and u’ 
as seemingly innocuous. In fact, if  we impose no further 
constraints,  it is completely innocuous. For if  we choose w to 
be any vector not parallel to v [at least one of w = ‘ ( I ,  0, 0) 
or w = ‘(0, 0, 1) will do], then 

v x w   v x w  

clearly satisfy all the requirements on u and u’. However, if 
we add  the  constraint  that we wish to use these vectors in 
computer calculations, the problem  becomes much  more 
interesting, since all vectors are  not created  equal. In a 
standard  computational  environment, where irrationalities 
can  only be  approximated,  the two  square roots in u and u’ 
imply a necessary loss of accuracy and require time  to 
approximate  them. Even if  we assume access to a symbol 
manipulator, since the complexity tends  to be exponential in 335 
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the  number of  symbols, the  two irrationalities come  at a 
price. In symbol manipulation storage size and  the length of 
calculation  increase with the size of the integers involved, so 
that vectors with few rational numbers with small 
numerators  and  denominators  are preferable. Such vectors 
can also increase the precision of floating-point calculations. 
With  these  observations  in mind we will say that a vector u 
is simpler than a vector v in these three cases: first, if u 
involves fewer algebraically independent square  roots than v; 
second, if u and v involve the  same  number of algebraically 
independent  square roots, but u has fewer occurrences of 
them;  and  third, if u and v involve the  same  number of 
algebraically independent  square roots and occurrences  of 
them,  but it  requires less storage to represent all of the 
rational numbers  occumng in u than in v. (A more precise 
definition can be found in the  appendix of this paper.) Most 
often  in  applications v itself has  rational  coordinates, that is, 
v E Q3. Thus we are led to  the  main question  of this article: 
How  simple can we choose u and u’ when v E Q3? 

Simplest  would be when we can find u and u‘ with 
rational  coordinates. For v = t(nl, n,, n,) E Z3, that is, when 
v has  integer  coordinates, we obtain  the  Diophantine 
equation 

(n: + n;).x2 - (n: + n: + nt)y2 - z’ = o (2) 

and show that its solvability is  a necessary and sufficient 
condition for the existence  of  a  rational u. Along the way  we 
obtain several simple equations  for possible choices  of u and 
u’, one of which shows that  in general we can choose u and 
u’ involving only  one square  root, 11 v I I ,  thus reducing the 
complexity of the obvious  initial  choice (Section 2). In  order 
to  obtain  more explicit conditions  on  the existence of a 
rational u [2], we require several results from elementary 
number theory, which in the interest of making  the  paper 
self-contained we list in  Section 3. Next we present several 
examples, one of which shows that  in general the simplest 
unit vectors that always exist are  the previously mentioned 
ones involving  only llvll. Now by utilizing a closer study  of 
Equation (2) we obtain a number-theoretic condition  on 
11 v 11 which is a necessary and sufficient condition for the 
existence  of  a  rational u. Then we present  a  solution  for u 
which is determined by a  solution to (2) that requires only a 
decomposition  of IIvII’. We close the section with several 
applications to  questions of  rational rigid motions between 
lines and planes. Section 5 discusses requirements of the 
algorithm  of the previous  section in  terms of assumed 
programming facilities, space, and  time requirements, and 
the  paper  ends by recapitulating the  main results and 
discussing several possible extensions. 

2. Preliminary results 
In  the following v = ‘(v,,  v2,  v,) is a nonzero vector  in 
Q3, and u and u’ are a pair  of vectors in R3 such  that 
‘uv = ‘U’V = ‘uu’ = 0 and llull = IIu’II = 1. 336 

MICHAEL A. OCONNOR AND  GRAZIANO  GENTILI 

The simplest case would obviously have u and u’ 
expressed in rational  coordinates, so we begin with this. 
The following is no  more  than  the recognition that  the 
calculation  in (1)  imposes  constraints. 

Proposition 1 
Assume that u E Q3 exists. u’ E Q3 exists if and only if 
llvll E Q. 

Proof 

We could now search for a u E Q3, given that llvll E Q, but 
the trivial calculation  in the proof shows that if u E Q3 
exists, we can find u’ E llvll Q3 = (llvllw : w E Q3) in  any 
case. Since this is simpler than  (l), we instead investigate 
when u E Q3 can exist in general. 

Clearly, if v I  = 0, then ‘( 1, 0, 0) is a trivial solution to  the 
problem, so we would lose little by assuming that v ,  # 0. For 
the ease it affords in  stating  subsequent results and formulas, 
we hereafter make  this  assumption. Multiplying v by any 
nonzero integer cannot affect the existence of u, so without 
loss of generality we assume  hereafter that 
v = ‘(n,, n2, n,) E 2,. With these  reductions we are 
ready to state the following proposition. 

Proposition 2 
Let v = ‘(nl, n,,  n,) E 2,. Set p = n, + n2, and 
q = n ,  + n2 + n:. A  vector u E Q3 exists if and only if the 
Diophantine  equation 

2 2  

2 2  

2 2  px2 - qy - z = 0 (3) 

has  a  solution (xo, yo, zo) E Z3\‘(0, 0,  0). 

Proof u = ‘(u,, u2, u,) by definition  is  orthogonal to v, that 
is, 

and is  a unit vector, that is, 
2 2 2  u, + u2 + u3 = 1. 

By substituting the first equation in the second, 

and  then 

and solving for u2, 

“2 
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Hence, if u3 E Q, then u, E Q, if and only i f p  - qut = r‘ for 
some r E Q. Multiplication by the  denominators squared of 
u3 and r establishes the claim. 0 

Corollary I 
If (xo, yo, zo) is a nontrivial  solution ofpx  - qy - z = 0, 
then 

2 2 2  

solves ‘uv = 0 and llull = 1. 

Proof Proposition 2, substitution, and simplification 
suffice. 0 

As a simple  corollary we can now complete discussion of 
the existence  of  rational u and u’. 

Corollary 2 
Vectors u and u’ E Q3 exist if and  only if llvll E Q. 

Proof Necessity is implied by Proposition 1. Since 
= llvll E Q andpl’  - q(n,/di)2 - ni = 0, then u E Q’ 

exists, and Proposition 1 implies the existence of u’ E Q3. 0 
When Corollary 1 is used, the solution in  the proof yields 

u = PJ~ (-n,n3,  -n2n3, P) * - (nz,  -n,, 01, n,  t n2 1 

P 

Clearly, if di E 9, u and u’ are rational, but even if 
4 Q, we have found a simpler expression than (1). If we 
extend the field 8 to  contain IIvII, and  denote it as Q( IIvll), 
then we can formalize this  as  the following corollary. 

Corollary 3 
Vectors u and u‘ always exist in Q( II vII 1’ 

Proof See (6). 0 
The discussion following Proposition 1 and  the last two 

corollaries  limit our search to investigating when u E Q’ 
exists, so that u’ E llvll Q’, that is, when (3) has a solution. 
Two obvious special cases are when & E 8, so that 
( 1, 0, &) solves (3) and yields 

u’ = - ‘(-nln3, -nzn3, p), 1 
6 

which corresponds to choosing w = ‘(0, 0, 1)  in  (l), or when 
@q E 9, so that ( 1, 6 , O )  solves (3) and yields 

Thus solutions exist when 4 4 Q. To show that (6) is  often 
the simplest possible choice, that is, (3) may  not have a 
solution, and  to  determine precise conditions  for  the 
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solvability of (3), we require  certain  number-theoretic results 
of the next section. 

3. A little number theory 
We make use of several results from  elementary number 
theory which can be found  in most  introductory texts, but  to 
keep this  article self-contained we list these results with 
references in  this section. 

The first result, due  to Legendre, and  the second, due  to 
Holzer [3], can be found in pages 46  and 47 of [4]. 

Definition I 
For integers rn and n, n is said to be a quadratic residue of rn 
if an integer  solution of x’ = n mod(rn) exists, and a 
quadratic nonresidue otherwise. 0 

Result I 
If integers a, h, c are square-free, pairwise relatively prime, 
and  not all of the  same sign, then ax’ + by2 + cz2 = 0 has 
nontrivial  integer  solutions, if and only if -hc is a quadratic 
residue of each prime factor of a, -ac is a quadratic residue 
of each prime factor of b, and -ab is a quadratic residue of 
each prime factor of c. cl 

Result 2 
If a x z  + by2 + cz2 = 0 has a nontrivial  integer  solution  for 
square-free and pairwise relatively prime integers a, 6, c, 
then  it has a nontrivial  integer  solution satisfying 
1x1 5 m, I yl 5 m, and IzI 5 Jlabl, with equality 
occurring  only if two  of a, b, and c equal f 1. 

All of the following results can be found  in [5]. The first 
group is the body  of  Part One,  Chapter VI, and  the last 
result that of Part  Three,  Chapter 111. In order  to clearly 
phrase this first group, we define a limited version of the 
Legendre symbol that will suffice for our purposes and  then 
present the results as facts about  the symbol. 

Definition 2 
If p is an  odd  prime  and p is not a divisor  of n, define the 
Legendre symbol, (:), as 

(;) = 

1 if n is a quadratic residue of p, 
- 1 if n is a quadratic nonresidue  of p. 

Thus, by the definition  of a quadratic residue, the Legendre 
symbol is * 1, depending on whether x’ = n mod(p)  can be 
solved. A short  study shows that  the positive integers less 
than p form a cyclic group  under multiplication  mod(p), and 
that  the Legendre symbol is in fact a group  homomorphism 
from this group  to  the  group k 1. These two observations in 
fact prove  most of the following results. 

Result 3 
If p and p’ are  odd  primes  and p does  not divide integers n, 
a, or b, then 
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($1 = I ,  

1 if p = 1 mod(4), 

- 1 if p = 3 mod(4), 

1 if p = f l  mod(8), 

-1 if p = f 3  mod(8), 

‘ (:) if either p or p’ = 1 mod(4), 

- (:) if both p and p’ = 3 mod(4), 

(quadratic reciprocity). 0 

The final result we require  deals with the possibility of 
decomposing  a number in  a sum of two  squares. 

Result 4 
For  any integer n,  there exist integers a and b  such that 
n = a2 + b2, if and only if 

n = 2”m2 n p, ,  

with p,’s being  distinct  primes equal  to I mod(4),  m an 
integer, and N = 0 or I .  0 

1 

,=I 

4. The  main results 
Integers p and q of the  Diophantine  equation (3) in general 
do  not satisfy the hypothesis  of  Result I ,  but we can easily 
produce an equivalent equation  that does. Let p = ta2r  and 
q = tb2s  where r, s, and t are square-free and pairwise 
relatively prime.  Then  the solvability in  nontrivial integers of 

px - qy - z = rt(ax)’ - st(by2) - z2 = 0 (8) 

clearly implies that of 

rtu2 - stv - z = o 
if  we define u = ax  and u = by,  and  the solvability of (9) 
upon multiplication by a2b2 clearly implies the solvability of 
(8). If (9) is solvable, then z must equal tw, since the  other 
two terms  are divisible by t ,  which upon dividing by t shows 
the equivalence of the solvability of 

ru -so - tw = 0. 

This  equation satisfies the hypothesis of Result 1. Working 
backwards, one finds that if 

338 ru - m - tw = 0, ( 1  1) 

2 2 2  

2 2  
(9) 

2 2 2  (10) 

2 2 2  
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then 

p(bu)’ - q(au)’ - (abtw)’ = 0. 

We now consider several examples. 

Example I 
If v = ( I ,  I ,   I ) ,  then u E Q3 exists, if and only if 2x2 - 3y2 - 
z2 = 0 is solvable in  nontrivial integers. Since - = - I  by 

Result 3, then no solution exists by Result 1. Thus  no 
u E Q3 exists. This example  implies that  in general radicals 
may be required, so that (6) is the simplest choice  for u. 0 

Example 2 
If v = ( I ,  2, 6), then u E Q3 exists, if and only if 5x2 - 4 ly2 
- z2 = 0 is solvable in nontrivial integers. Since (;I = = 

($ = I and - = 1 = I by Result 3, then by Result 1 a 

solution exists. Using  Result 2 by trial and  error,  one finds 
that (3, I ,  2 )  solves the  equation,  and so u = 1/3 ‘ ( -2 ,  -2, 1) 
or u = I /  I5 ‘(-2, - 14, 5 )  by Corollary 1. 0 

Example 3 
If v = (3, 9, 2 ) ,  then u E Q3 exists, if and  only if 90x2 - 94y2 
- z2 = 0 is solvable in nontrivial integers. Since 90 = 3’. 2.5  
and 94 = 2.47,  then by the reductions described earlier the 
solvability of  this equation is equivalent to  that of 5x2 - 47: 
- 2z2 = 0. Since by Result 3 (z)  = (i) (i) = 1 = - 1, 

no solution exists by Result 1. 0 
Since di e Q, di e Q, and d s  Q in Example 2, we 

see that  there exist vectors with rational u which possess no 
obvious  properties for sufficiency and  in particular are  not 
among  the special cases of  Section 2. We use the following 
lemma  in  the proof of a  proposition yielding an explicit and 
necessary condition for the existence of u E Q3. 

Lemma 1 
If p and q are integers that  can be written as  the  sum of 
squares of two integers, then px’ - qy2 - z2 = 0 has  a 
nontrivial  integral  solution, if and only if one exists for 

(:I 

( - 3  i I 

qx - p y  - z  = o .  2 2 2  

Proof Result  4 allows us to factor p and q as 
p = 2*’a2 Ik:=l p,’ and q = 2’ b2 q,‘ where a’, a, p,!, 
p’, b,  and q,’ are as in  Result 4. If  we define 
t = gcd(2“’ II:=, p,!, 2’ 4,’) then we can further  factor 
p and q a s p  = t2”a2 II:=, p ,  and q = t2’b2 nf=, q,, where a 
and p are  equal  to 0 or I ,  but  not  both I ,  and 
(p,l:=, C {p,’l{=, and (s,l:=, C (q:lf=,. For simplicity we write 
r = 2“ Ik{=l p ,  and s = 2’ nf=, 9,. Now, by the discussion at 
the beginning of the section, the solvability in nontrivial 
integers of 

rx - sy - tz = 0 (13) 

is equivalent to  that of (3), and this equation satisfies the 
assumptions of Result 1. By Result 1 ( 13) is solvable in 

2 2 2  
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nontrivial integers, if and  only if -st is a quadratic residue of 
2“, -st is a quadratic residue of p ,  for 1 I i I j ,  rt  is  a 
quadratic residue  of 28, rt is a quadratic residue of q, for 
1 5 i I k, and rs is a quadratic residue of t .  By Result 3, 
since each p, and q, = 1 mod(4), and since any integer is a 
quadratic residue of 2, these statements  about  quadratic 
residues are  true if  we change the signs of st  and -rt; that is. 
st is a quadratic residue of 2“, st is a quadratic residue of p, 
for 1 I i ~ j ,  -rt is a quadratic residue of 2’, -rt is a 
quadratic residue of q, for 1 I i I k. Now by Result 1 again, 
these statements  are  true if and only if -rx2 + sy2 - tz2 = 0 
is solvable in  nontrivial integers. But the solvability of this 
equation is equivalent to  that of -px2 + qy2 - z2 = 0 by the 
reductions at  the beginning of the proof [6]. 0 

Theorem I 
u E Q’ exists if and only if I I v ~ ~ ~  = m2 + n2 for some integers 
m and n. 

Proof Necessity. Since I( u I I  = I ,  then by Corollary  2 there 
exist w and w’ in Q3 with 11 w 11 = llw’ll = 1 and ‘wu = ‘w’u = 

‘ww’ = 0. v is orthogonal to u, and so belongs to  the span  of 
w and w’, so that llvll’ = (fwv), + (‘w’v)’. If (Y is the  product 
of the  denominators of ‘wv and ‘w’v, then o1211vl12 is the  sum 
of the squares  of two integers, and so by Result  4 11 V I [  * itself 
is the  sum of the squares of two integers as claimed. 

Suficiency. By Proposition  2 we need only  show that (3) 
has  a  nontrivial  solution in the integers. By assumption q is 
the  sum of the squares of two integers and by definition  p is, 
so that by Lemma 1, the solvability of (3) in nontrivial 
integers is equivalent to  that of qx’ - py’ - z2 = 0 in 
nontrivial integers, but ( 1, I ,  n,) clearly solves this 
equation. 0 

In fact we could  have  avoided use of the  lemma by use of 
the following proposition, which has the advantage of 
yielding an almost-closed-form solution of (3). The 
proposition’s statement agrees with Theorem 1 due  to  the 
following simple lemma [7]. 

Lemma 2 
If a and b are  the  sums of two squares, so is ab. If a and  ab 
are  the  sums of two  squares, so is b. 

Proof Result  4 makes the  claims  obvious. 

Proposition 3 
Ifpq = r2 + s2, then (q  + r, p + r, n,s) solves (3). 

Proof dq + rf - 4 ( ~  + rl2 = pq2 + pr‘ - qp2 - qr2 = 
q(pq - r2) - p(pq - r‘) = n:s2, which verifies the claim [8]. 0 

We can express this  in terms  more similar to those of 
Theorem 1 by applying the well-known identity 

(a2 + b2) (c2 + d2)  = (ac + + (ad - bcf .  
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Corollary 4 
If llv112 = a’ + b2, then ( q  - an, - bn,, p - an, - bn,, 
n,(an, - bn,)) solves (3). 

Proof (14) and Proposition  3 suffice. 0 

Example 4 
I fv=‘(II ,   17,24) , thenp= 1 1 2 +  172=410andllv112= 
q = p + 24, = 986. Since 986 = 2.17.29,  then llv112 is the 
sum of two  squares by Result 4, so that by Theorem I 
u E Q3 exists. Since 25’ + 19, = 986, then (14)  implies 
thatpq=qp=(25’+  192)(112+  172)=5982+2162,so 
that by Proposition  3 we have that (986 + 598, 410 + 598, 
24.2 16) = ( 1  584, 1008, 5 184) = 144( I I ,  7, 36) solves the 
equation,  and by the homogeneity  of the  equation so does 
(1  1, 7, 36). 0 

lead immediately to  information  about rational maps 
between vectors. This in turn  has implications regarding 
maps of many objects commonly  occumng  in modeling. 
Before stating them we need several terms. 

Although not  the purpose of this investigation, the results 

Definition 3 
Let g(3, W) be the algebra of all 3 by 3  matrices with real 
components,  and let g(3, Q) be the subalgebra with 
components  in Q. Let G(3, R) be the  group of 3 by 3 
invertible  matrices with real components,  and let G(3, Q) be 
the subgroup with components in Q. Let O(3, W) C G(3, R) 
be the subgroup of orthogonal matrices, and O(3, Q) the 
corresponding subgroup with rational components. 0 

Lemma 3 
v E Q3 admits  unit u and u‘ in Q3 with (v, u, u‘) forming an 
orthogonal basis if and only if there exists 0 E O( 3, 8) such 
that (O‘(1, 0, O), O‘(0, I ,  O), O‘(O,O, 1)) = {v/llvll, u, u’). 
v E Q3 has  rational unit orthogonal u if and only if there 
exists ‘(a, b, 0) E Q3 with I I V ~ ~ ~  = a2 + b2 and for  each  such 
‘(a. b, 0) there exists 0 E O(3, Q) such that O‘(a, 6, 0 )  = v 
and O‘(0, 0, 1) = u. 

Proof In each of the claims sufficiency is obvious. 
In the first claim, since u and u‘ exist, then Proposition 1 

implies that 11 V I [  E Q. Matrix 0 with columns v/llvll, u, u’ is 
the matrix which establishes the necessity of the claim. 

Now we turn  to  the necessity of the second  claim. By 
Theorem 1 there exist rational a and b with a2 + b2 = I I v ~ ~ ~ .  
If  we define 0 by extending linearly from the  map which 
takes ‘(a, b, 0 )  to v, ‘(0,  0, I )  to u, and ‘(4, a, 0 )  to v X u, 
then we see quickly that 0 E G(3, R). Since a2 + b2 = 
IIv X u = 11 v1I2, 0 maps  an orthogonal basis to  an 
orthogonal basis and preserves the lengths of the basis 
vectors, so that we also have that 0 E O(3, W). For 

6,: w E W3 + (7 I (a, b, 0 ) ~ )  - 
V 

a2 + b2 llvll ’ 
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f#J2: w E R3 4 ((0, 0, l)w)u, 

we have @,, d2, @3 E g(3,Q). Now  since 6, + @2 + @3 = 0, 
then 0 E O(3, Q) as  claimed. 0 

Definition 4 
For v, p E R3 let P(v, p )  = (x  E R3:‘v(x - p )  = 0), that is, the 
plane  orthogonal to v and  containing p. Let L(v, p) = 

(fv + p : t  E R), that is, the line parallel to v and  containing p .  
We say that P(v, p )  [or L(v, p ) ]  is rational if v, p E Q3. 0 

Corollary 5 
Let P = P(v, 0) and P‘ = P(v’, 0) be rational, and  further let 
llvll = r‘ + s2 for r, s E 8. There exists 0 E O(3, Q) such 
that O(P) = P’ if and only if  IIv’ 11 = qllvll for some q E Q. 

Proof If 0 exists, then Ov = qv’ for some q E Q, since 
Ov, v’ E Q3 and  are parallel. On  the  other  hand, if 11 v’ 11’ = 
(qr)2 + (qs)2, then  Lemma 3 implies the existence  of 
orthogonal 0, mapping ‘(r, s, 0 )  to v and orthogonal 0, 
mapping ‘(qr, qs, 0 )  to v’, so that O,O;l(P) = P’. 0 

motion  and a  translation, the above  implies that  not all 
rational  planes can be mapped  to  one  another by rigid 
motions. The obvious  generalization to lines  implies that  the 
same is true for lines. The implications of these  simple 
observations are far-reaching. In  the  common robotics 
problem  of putting a block on a  table,  they mean  that  the 
rigid motion required may  not be able to be represented  in 
Cartesian coordinates with rational numbers. For example, if 
the table  is  assumed to lie in the x-y plane and  the block has 
a face in  a  plane  orthogonal to (1, I ,  I ) ,  then  the rigid 
motion is of this  type. In geometrical  modeling one would 
like to believe that a rigid motion moving  a  cylinder to  an 
identical  cylinder can always be provided, but again  this may 
not be so in  the world of rational rigid motions. It seems, 
then,  that extensions of the rationals,  leading to symbol 
manipulation, or approximations, or a severe limitation of 
the  domain of  applicability, are  the only recourses. 

Since a rigid motion is decomposable into  an orthogonal 

5. Discussion of the algorithm 
At this  point we have  reduced the problem of determining 
whether a rational orthonormal vector exists to factoring an 
integer and calculating the factors  mod(4), and  the problem 
of  finding  a vector when  a  solution exists to decomposing an 
integer as  sum of the squares  of two integers. Since the 
problems  arise  in  a computational setting, any  estimation of 
the usefulness of the reductions must be determined by the 
difficulty of implementation  and space and  time 
requirements  of an  implementation. 

Implementation of the  technique presents  little difficulty 
340 for a symbol manipulator. Infinite-precision integer 

arithmetic  in a language would suffice, while the availability 
of arithmetic mod(4), greatest common divisor, 
factorization, and  an  implementation of  decomposition into 
a sum of  squares  would clearly ease the programming 
task [9]. 

For ease of exposition  let us  make  the following definition. 

Definition 5 
For n E Z let bit(n) denote  the  minimal m E Z with 
I n 1 < 2”, that is, the  number of bits needed to represent n, 
and for s/t E Q let bit(s/t) = bit(s) + bit(t). 0 

Now, in order  to discuss the space requirements for 
representing  a  solution vector u E Q3, we consider an 
estimate. The vector  is found by applying the solution to (3) 
given in Proposition 3 to  the  formula  in Corollary 1. 

Proposition 4 
If v = ‘(n,, n2, n,) E Z3 and I I v ~ ~ ~  = a2 + b2 for a, b E Z, then 
for 

u = ‘(u,,  u2,  u3) = - (n3(a - n,), n3(b - n2), P - r) 1 ‘  
q - r  

with 

p = n, + n2, q = llv112, and r = n,a + n2b, 

we have that u is a  rational unit vector orthogonal to v, and 
if bit(n,) 5 n for all 1 5 i 5 3, then bit(u,) 5 4n + 4  for all 
I s i s 3 .  

2 2  

Proof For s = n,b - n2a by ( 14) we have 

pq  = (n: + n:)(u2 + b2) = (n ,a + n2b)2 + (n,b - n2a)’ 

= r2 + s2 = ( -r)2 + s2, 

so that by Proposition 3 (q  - r, p - r, n,s) solves (3). Since 

n,n3(p  - r) + n2n3s = n,n3(n, + nz - r) + n2njs 2 2  

= n,n3(n: + n:) + n3(n2s - n,r) 

= n,n3(n: + n:) + n,n2n3b - n3n:a 

- n3n:a - n,n2n3b 

= n3(n,  - a)(n: + n:), 

and similarly 

-n2n,(p - r) + nln3s = n3(b - n2) (n: + n:), 

Corollary 1 implies that u defined as above  is unit  and 
orthogonal to v. The claims on bit  length now follow 
trivially from  the definition  of u and simple  obvious 
estimates  of the length of products and  square roots. 0 

The  method of Proposition 3 is thus seen to produce 
vectors u requiring at most four  times  the storage of v plus 
12 bits. For some applications  this may seem too costly, but 
in general it  seems quite reasonable, and  in fact agrees 
almost exactly with the storage requirements of the cross 
product  and  norm of (1). 
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The only  time-intensive parts of the above method are the 
factorization of an integer and  the decomposition  of an 
integer into  the  sum of  the  squares of  two integers. 
Factorization  is  known to be hard. In fact, its difficulty is the 
basis of many  modern cryptographic schemes. Probabilistic 
algorithms exist which run in average time  proportional  to 
the  fourth root of the integer. For  the decomposition 
problem the  situation is  better.  Probabilistic  algorithms exist 
which run in average time proportional to a  polynomial  of 
the logarithm of  the integer [IO]. Since  factorization is 
necessary for  deciding  whether  a  rational  orthogonal unit 
vector exists, the  method is always dominated by the 
factorization  when the  constants of proportionality are 
comparable. Because we have  shown that a  rational 
orthogonal unit vector does not always exist, it will  be 
necessary in any case to have recourse to  solutions of the 
form of ( I )  or better, (6), so that  it seems  reasonable and 
prudent  to restrict application  of  these methods  to vectors 
v E Q3 which are parallel to vectors w E Z3 such that )lw11* is 
not  too large. Unfortunately, this  “not  too large” is difficult 
to define precisely, since it is dependent  on  the  constant of 
proportionality in the  time estimation  of  factorization, the 
computational resources  available, and  the needs of the 
applications [ I  I]. These, however, are typically problems 
only  in very special cases. 

6. Concluding  remarks 
In this paper we have examined  the problem of finding 
computationally simple  unit vectors orthogonal to a given 
rational vector, v. We have shown that  the  unit vectors can 
be chosen to be rational, if and only if llvll is rational, while 
in general they can be chosen to involve only (Iv(( and 
rational  numbers. We have  shown that  the existence of one 
rational vector is equivalent to  the solvability of a 
Diophantine  equation,  and have developed  a method  to 
decide the solvability of  this equation. When the  equation is 
solvable, we have  presented  a specific solution. The solution 
leads directly to a  rational  unit vector orthogonal to  the 
given vector, and we have  estimated the storage 
requirements of this  unit  vector. 

In a sense we have  completely answered the original 
question, but  as often  happens, this leads to new questions. 
The  time  and space  estimates are worst-case. Average-case 
estimates are also needed. Result 2 provides a sharp  estimate 
for the solution  of the controlling Diophantine  equation. Is 
there  a comparable estimate  for the  components of a 
rational unit vector? Lemma 3 and Corollary 5 can be 
viewed as determining sets of equivalence classes of vectors 
or planes or lines under O(3, Q). Can we extend  this  to  more 
general vectors, planes, or lines? More generally, what can be 
said about extensions to O(3, Q) that allow an  arbitrary 
plane  to be mapped  to  another? 

Appendix 
In the introduction, we presented an intuitive  definition of 
one expression being simpler than  another.  It seems precise 
enough to allow understanding of and agreement with the 
claims of relative simplicity of expressions found elsewhere 
in the paper. However, in order  to remove any possible 
ambiguity we present  a more  formal definition here. It is 
convenient to pose it in a  greater  generality than is necessary 
in the paper. Elsewhere nothing more complex  appears  in 
any expression than a few simple  square roots. The 
definition, however, remains valid over expressions involving 
nth roots and nesting of roots. In fact, its natural setting is 
algebraic numbers. For more information on the  terms  and 
constructs we use and for proofs of the claims we make, 
almost any textbook on  modern algebra would suffice. For 
example see Chapter 5 of [ 121. 

Let F = Q(x,, . . . , xn) be  the field of rational functions  in 
n indeterminates with rational coefficients. IfJis a  function 
and p ( y )  is a nonzero univariate  polynomial  in y with 
coefficients in F such that p ( f )  = 0, then we  say thatfis 
algebraic over F. If each element of { A ,  . . . , f , ]  is algebraic 
over F, then F( A,  . . , f,) (the field generated by adjoining 
{ A ,  . . . , jJ to F )  forms  a  finite-dimensional vector space 
over F, whose dimension we denote as ( F (  f; . . . ,A): F) .  
Given two sets of vectors, A = {a’ t ( u l ,  u,, u3), . . ., 
a (u l ,  ut, & and B = IP’ t(u:, ui, u l ) ,  . . ., B ( u , ,  u2, u3)l 
with each of a‘, . . ., 01 , u l ,  u,, . . ., u2, u3, (3 , . . ., oh, u:, 
v i ,  . . . , v2, v3  being algebraic over F, we say that A is 
algebraically simpler than B if (F(cY’,  . . ., 01 , u I ,  . . ., u;): F) 
< (F@, . . . , ok, u : ,  . . ., u$: F ) ,  or if 

I l l  

k t  k I t  k h k 

i l l  h h l  

h k  

h l  

and 
k 3 

c ((F(O1’): F )  + c ( F ( u L ) :  F ) )  
,=I m= I 

k 3 

C ((F(@’): F )  + (F(uJ,): F ) ) .  
, = I  m= I 

If neither A is algebraically simpler than B, nor B 
algebraically simpler than A, A and B have the  same 
algebraic complexity. 

Each of the vectors appearing  in this paper can be shown 
to satisfy the  assumptions of this  definition; that is, all their 
expressions are algebraic over F for n = 3. In terms of these 
vectors, the first condition implies that A has fewer 
algebraically independent  square roots, while the second 
condition  implies that A and B have the  same  number  but 
there are fewer occurrences of square roots  in A. 

Finally, we  say that A is simpler  than B, if A is 
algebraically simpler than B, or if they have the  same 
algebraic complexity, and  the  sum of the bits  needed to 
represent the rational coefficients of A is less than  that of B. 

IBM J.  RES. DEVELOP. VOL. 31 NO. 3 MAY 1987 MICHAEL A. OCONNOR AND GRAZIANO GENTlLl 



Acknowledgment 
The  authors  are  grateful  to  the  Scuola  Normale  Superiore, 
Pisa,  Italy, for its  partial  support of the  work reported in this 
paper. 

References and notes 
I .  J. Levin, “A Parametric Algorithm for  Drawing of Solid Objects 

Composed  of  Quadric Surfaces,” Commun. ACM 19, No. 10, 
555-563 (October 1976). 

problem of  the existence of  rational  points  on algebraic curves, 
but we do not  pursue  this. 

3. L. Holzer, “Minimal  Solutions to Diophantine  Equations,” Can. 
J.  Math. 11, 238-244 (1950). 

4. L. J .  Mordell, Diophantine Equations, Academic Press, Inc., 
New York, 1969. 

5 .  E. Landau, Elementary Number Theory, Chelsea Publishing 
Company, New York, 1966. 

6 .  Although it is unnecessary here, the  reductions we have 
presented are  a subset of  a fuller set that serves to show that 
Result I is in fact a completely general solution to  the 
solvability of an  equation  of  the  form r.u’ + syz + tz’ = 0 (see 
pp. 43-44  of [4]). This more general set of  reductions  and  the 
Same ideas  as  in  the proof of the  lemma suffice to  shop  that for 
p and q the  sums of two squares  and a, h integers apx’ - aqy’ - 
bz’ = 0 is solvable if and  only if aqx’ - apy2 - bz2 = 0 is 
solvable. - 

7. Clearly Jp E Q and E Q are covered by Theorem 1. The 
lemma also implies that  the  other case we considered earlier, 
J p q  E Q, is covered by the  theorem,  as of course all subcases 
must  be. 

Equazione u2 = AX’ f B J ~ , ”  Giornale di Matematiche VIII, 
28-34 ( 1  870). 

example. 
IO. Each of these algorithms is available in  the  current 

implementation of Scratchpad 11. 
1 1. In  the  current  Scratchpad I1 implementation, this “not  too 

large” leads to restricting JJwIJ’ 5 IOzo; that is, w is a vector 
whose components  are  approximately single-precision 32-bit 
integers. 

Company,  London, 1970. 

2. This  problem  can be considered a special case of the general 

8. For a result similar to this see L. Calzolari, “Nota Sull’ 

9. Each of these facilities currently exists in Scratchpad 11, for 

12. J .  K. Goldhaber  and G. Ehrlich, Algebra, The  Macmillan 

Received  October 20, 1986; accepted for publication  January 
9, 1987 

342 

MICHAEL A. 1 3’CONNOR AND CRAZIANO GENTlLl 

Michael A. O’Connor IBM Thomas J. Watson Research Center. 
P.O. Box 218, Yorktown Heights, New York 10598. Dr. OConnor 
received his  Ph.D.  in  mathematics  in 1980 from  the University of 
Maryland, College Park. Until 1983 he was a Staff Fellow at  the 
Division of  Computer Research and Technology of  the  National 
Institutes  of  Health, Bethesda, Maryland, where he conducted 
research in  invariant metrics, differential geometry,  and  applications 
of geometry. Dr. OConnor  joined IBM in 1983 as a  Research staff 
member in Manufacturing Research at  the  Thomas J. Watson 
Research Center.  During  the spring of 1986  he was a visiting 
assistant professor at  the  Scuola  Normale  Superiore, Pisa, Italy, 
where the research reported  in this paper was completed.  His  current 
research interests  include  robust geometrical modeling, geometrical 
algorithms, and  the use of  computer algebra systems in geometry. 

Graziano  Gentili Scuola Nomale Superiore, Piazza dei Cavalieri 
7, 56100 Pisa, Italy. Dr. Gentili received his Ph.D.  in  mathematics 
at  the  Scuola  Normale  Superiore, Pisa, Italy, in 1981, with a 
dissertation in  Riemannian geometry. His  main research interests are 
in differential and  Riemannian  geometry,  invariant metrics on 
complex domains,  and  the  theory  of  functions of several complex 
variables. He has been a visiting assistant professor at  the 
Department of Mathematics of the University of Maryland, College 
Park, where he has  strong  connections with the researchers in 
geometry-topology and  complex analysis. Since 198 I he has been an 
assistant professor in geometry at  the Scuola Normale Superiore. 

IBM I. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987 


