Simple unit
vectors
orthogonal

to a given vector

by Michael A. O'Connor
Graziano Gentili

In geometrical computations it is often
necessary to find two unit vectors such that
they and a given vector form an orthogonal
basis. Computationally simple forms for the two
unit vectors are clearly useful. We show that
they cannot always be chosen to have rational
coordinates, but that in general the simplest
possible vectors can be chosen to involve only
one square root. We develop number-theoretic
criteria for the existence of a rational vector and
an effective algorithm for calculation of one if it
exists. We also discuss storage and time
requirements of the algorithm.

1. Introduction

In calculations in descriptive geometry a seemingly
innocuous subproblem often occurs: Given a nonzero vector
v in R’, find two vectors uw and w’, such that u and u’ are
unit vectors and v, u, and u’ are mutually orthogonal. For
example, if one must intersect two quadric surfaces, by using
Levin’'s method [1] the problem is frequently reduced to
intersecting a cone or cylinder with one of the original
surfaces. To accomplish this, one treats the cone or cylinder
as a ruled surface parameterized by a conic on the surface
and in a plane orthogonal to the axis of the cone or cylinder.

©Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

The conic is then usually parameterized in terms of two
vectors u and u’ as above. In graphics the same problem of
parameterizing a conic arises in the production of a wire
frame drawing of a sphere, cylinder, cone, or torus. In
geometrical modeling a standard feature of many systems is
the ability to design in a plane in 3-space by using a local
two-dimensional coordinate system, which again reduces to
choosing u and v’.

We previously described the problem of finding u and u’
as seemingly innocuous. In fact, if we impose no further
constraints, it is completely innocuous. For if we choose w to
be any vector not parallel to v [at least one of w = (1, 0, 0)
or w = (0, 0, 1) will do}, then

VX W VX W
u = =
v X wl —
Iviiwi \/ 1 —( At )
vl
vVXW

VIVIPIwD® = (vw)

_{vxwXxv (vXw)Xv

VWYL v ViviZiwi® = Cvwy?

’

u

(H

clearly satisfy all the requirements on u and u’. However, if
we add the constraint that we wish to use these vectors in
computer calculations, the problem becomes much more
interesting, since all vectors are not created equal. In a
standard computational environment, where irrationalities
can only be approximated, the two square roots in u and u’
imply a necessary loss of accuracy and require time to
approximate them. Even if we assume access to a symbol

manipulator, since the complexity tends to be exponential in 335
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the number of symbols, the two irrationalities come at a
price. In symbol manipulation storage size and the length of
calculation increase with the size of the integers involved, so
that vectors with few rational numbers with small
numerators and denominators are preferable. Such vectors
can also increase the precision of floating-point calculations.
With these observations in mind we will say that a vector u
is simpler than a vector v in these three cases: first, if u
involves fewer algebraically independent square roots than v;
second, if u and v involve the same number of algebraically
independent square roots, but u has fewer occurrences of
them; and third, if uw and v involve the same number of
algebraically independent square roots and occurrences of
them, but it requires less storage to represent all of the
rational numbers occurring in u than in v. (A more precise
definition can be found in the appendix of this paper.) Most
often in applications v itself has rational coordinates, that is,
v € @°. Thus we are led to the main question of this article:
How simple can we choose u and u’ whenv € Q*

Simplest would be when we can find u and u’ with
rational coordinates. For v = '(nl, n,, n,) € Z°, that is, when
v has integer coordinates, we obtain the Diophantine
equation

(nf + ni)x2 - (nf + n§ + ni)y2 -Z7=0 2)

and show that its solvability is a necessary and sufficient
condition for the existence of a rational u. Along the way we
obtain several simple equations for possible choices of u and
u’, one of which shows that in general we can choose u and
u’ involving only one square root, | v|, thus reducing the
complexity of the obvious initial choice (Section 2). In order
to obtain more explicit conditions on the existence of a
rational u [2], we require several results from elementary
number theory, which in the interest of making the paper
self-contained we list in Section 3. Next we present several
examples, one of which shows that in general the simplest
unit vectors that always exist are the previously mentioned
ones involving only | v||. Now by utilizing a closer study of
Equation (2) we obtain a number-theoretic condition on
lvII* which is a necessary and sufficient condition for the
existence of a rational u. Then we present a solution for u
which is determined by a solution to (2) that requires only a
decomposition of ||v||>. We close the section with several
applications to questions of rational rigid motions between
lines and planes. Section 5 discusses requirements of the
algorithm of the previous section in terms of assumed
programming facilities, space, and time requirements, and
the paper ends by recapitulating the main results and
discussing several possible extensions.

2. Preliminary results

In the following v = ‘(vl, v,, v;) is a nonzero vector in
@’ anduandu’ are a pair of vectors in R’ such that
t t ., oy, ’

uw=u'v=uw =0and |Ju|| = v =1.
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The simplest case would obviously have u and u’
expressed in rational coordinates, so we begin with this.
The following is no more than the recognition that the
calculation in (1) imposes constraints.

Proposition 1
Assume that u € Q’ exists. u’ € Q” exists if and only if

vl € Q.

Proof

W=t vXu =ivxu.D
v X ul vl

We could now search for a u € Q’, given that [|v|| € Q, but
the trivial calculation in the proof shows that if u € Q°
exists, we can find u’ € ||v]| @’ = {||v|lw : w € @’} in any
case. Since this is simpler than (1), we instead investigate
when u € Q" can exist in general.

Clearly, if v, = 0, then (1, 0, 0) is a trivial solution to the
problem, so we would lose little by assuming that v, # 0. For
the ease it affords in stating subsequent results and formulas,
we hereafter make this assumption. Multiplying v by any
nonzero integer cannot affect the existence of u, so without
loss of generality we assume hereafter that
v ='(n,, n,, n,) € T’. With these reductions we are
ready to state the following proposition.

Proposition 2

Letv="(n, n,n) EZ. Setp = r + n3, and

g=n +n+ . A vector u € Q’ exists if and only if the
Diophantine equation

px -yt =2 =0 3)
has a solution (x,, y,, z,) € Z\Y0, 0, 0).

Proof u= t(ul, U,, u,) by definition is orthogonal to v, that
is,

Myl + Ny,
Uy =—-———-, 4
nl

and is a unit vector, that is,

uf + u§ + u§ = 1.

By substituting the first equation in the second,
ngui + 2nynu,u, + n§u§ + nfu; + nfui = nf,

and then

(nf + ni)ui + 2nnusu, + ((nf + ni)uﬁ - nf) =0,

and solving for u,,

2 2 2. 2 2y, 2 2.
—myngu, = Vngu)’ — (n + ) ((n) + m — my)

u, = 3 3
n + n;

2 2 2 2 2y 2
—nymuy + n V(T + 1) — (1 + )y + Y

®

2 2
nl+n2
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Hence, if u, € Q, then u, € Q, if and only if p — qu§ =/ for
some r € Q. Multiplication by the denominators squared of
u, and r establishes the claim. [J

Corollary 1
If (x,, ¥, 2,) is @ nontrivial solution of px2 - qy2 -7 =0,
then

>

t
< Ny £ My,

B —nN.Yy 1,2, &>
2 2
(n, + my)x,

2 2. ’
(n, + m)x, Xy

solves 'uv = 0 and |uj| = 1.

Proof Proposition 2, substitution, and simplification
suffice. O

As a simple corollary we can now complete discussion of
the existence of rational u and u’.

Corollary 2
Vectors u and v’ € Q° exist if and only if ||v| € Q.

Proof Necessity is implied by Proposition 1. Since

Vg = vl € Qand p1* — g(n,/Vay — n; =0, thenu € Q’

exists, and Proposition 1 implies the existence of u’ &€ Q.0
When Corollary 1 is used, the solution in the proof yields

w=—k (=1, —nyny, p) £ e (ny, —n,, 0),
pVq P

’

u' =2y, =y, 0) F = Yy, =y, ). ©
P pVq

Clearly, if Vg € Q, u and w’ are rational, but even if

Vg & @, we have found a simpler expression than (1). If we
extend the field @ to contain |[v], and denote it as Q(||v()),
then we can formalize this as the following corollary.

Corollary 3
Vectors u and uw’ always exist in Q(||v]|)’.

Proof See (6).00

The discussion following Proposition 1 and the last two
corollaries limit our search to investigating when u € Q’°
exists, so that u’ € ||v|| 03, that is, when (3) has a solution.
Two obvious special cases are when \/; € Q, so that
(1, 0, Vp) solves (3) and yields

1 , 1
u= ‘/_; t(nza —hn,, 0), u = 7’—5[_1 ‘(_nlnp —n,n,, D), (7)

which corresponds to choosing w = (0, 0, 1) in (1), or when
vp/q € Q, so that (1, Vp/q, 0) solves (3) and yields

1 t r 1 t 0
u= Tra (=nmny, —nny, p), W' = 7 (1, —n,, 0).
Thus solutions exist when «/t} & Q. To show that (6) is often
the simplest possible choice, that is, (3) may not have a
solution, and to determine precise conditions for the
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solvability of (3), we require certain number-theoretic results
of the next section.

3. Alittle number theory
We make use of several results from elementary number
theory which can be found in most introductory texts, but to
keep this article self-contained we list these results with
references in this section.

The first result, due to Legendre, and the second, due to
Holzer [3], can be found in pages 46 and 47 of [4].

Definition 1

For integers m and n, n is said to be a quadratic residue of m
if an integer solution of x* = n mod(m) exists, and a
quadratic nonresidue otherwise. [1

Result 1

If integers a, b, ¢ are square-free, pairwise relatively prime,
and not all of the same sign, then ax’ + by + ¢z* = 0 has
nontrivial integer solutions, if and only if —bc is a quadratic
residue of each prime factor of @, —ac is a quadratic residue
of each prime factor of b, and —~ab is a quadratic residue of
each prime factor of ¢. [J

Result 2

If ax’ + by’ + ¢z” = 0 has a nontrivial integer solution for
square-free and pairwise relatively prime integers a, b, c,
then it has a nontrivial integer solution satisfying

[x] < Y1bel, |y| = Vlacl, and |z| < V|ab|, with equality
occurring only if two of @, b, and c equal 1.

All of the following results can be found in [5]. The first
group is the body of Part One, Chapter VI, and the last
result that of Part Three, Chapter IIL In order to clearly
phrase this first group, we define a limited version of the
Legendre symbol that will suffice for our purposes and then
present the results as facts about the symbol.

Definition 2
If p is an odd prime and p is not a divisor of », define the
Legendre symbol, (,";)’ as

<'_1> _ {1 if n is a quadratic residue of p,

p) — |—! if n is a quadratic nonresidue of p.

Thus, by the definition of a quadratic residue, the Legendre
symbol is +1, depending on whether X=n mod(p) can be
solved. A short study shows that the positive integers less
than p form a cyclic group under multiplication mod(p), and
that the Legendre symbol is in fact a group homomorphism
from this group to the group +1. These two observations in
fact prove most of the following results.

Result 3
If p and p’ are odd primes and p does not divide integers »,

a, or b, then 337
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) ()
#-(0

- Lif p= 1 mod(4),
<'> ={ ~1if p = 3 mod(4),
2 1 if p = £1 mod(8),
(E) —1if p = +3 mod(8),

’

B

- (—) if both p and p’ = 3 mod(4),

<-Il> if either p or p’ = 1 mod(4),

’

D

(quadratic reciprocity). O

The final result we require deals with the possibility of
decomposing a number in a sum of two squares.

Result 4

For any integer n, there exist integers a and b such that
2 2 . .

n=a + b, if and only if

J
n=2m I D

i=1
with p;’s being distinct primes equal to 1 mod(4), m an
integer, and « = 0 or 1.0

4. The main results

Integers p and g of the Diophantine equation (3) in general
do not satisfy the hypothesis of Result 1, but we can easily
produce an equivalent equation that does. Let p = ta’r and

g = th’s where r, 5, and 1 are square-free and pairwise
relatively prime. Then the solvability in nontrivial integers of

X —qft — 2 = ri{ax)’ = st(by’) — 2 =0 8)
clearly implies that of
it~ st — 22 =0 ©)

if we define u = ax and v = by, and the solvability of (9)
upon multiplication by a’b” clearly implies the solvability of
(8). If (9) is solvable, then z must equal tw, since the other
two terms are divisible by ¢, which upon dividing by ¢ shows
the equivalence of the solvability of

rd — s’ — ' =0, (10)
This equation satisfies the hypothesis of Result 1. Working
backwards, one finds that if

nd — sv — W =0, (11)
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then
plbuy — q(au)2 - (abtw)2 = 0. (12)

We now consider several examples.

Example 1
Ifv=(1, 1, 1), then u € @’ exists, if and only if 2x* — 3)* —
7% = 0 is solvable in nontrivial integers. Since G) =—1 by

Result 3, then no solution exists by Result 1. Thus no
u € @’ exists. This example implies that in general radicals
may be required, so that (6) is the simplest choice for u. O

Example 2
Ifv=(l, 2, 6), then u € Q" exists, if and only if 5% — 41y

— 22 = 0 is solvable in nontrivial integers. Since (%) = (351) =

(é) =1and (_—:—1) = <:51> = 1 by Result 3, then by Result 1 a

solution exists. Using Result 2 by trial and error, one finds
that (3, 1, 2) solves the equation, and so u = 1/3 (-2, =2, 1)
oru= 1/15'(=2, —14, 5) by Corollary 1.

Example 3

Ifv=(3,9,2), thenu e Q° exists, if and only if 90x" — 94y2
— 2> = 0 is solvable in nontrivial integers. Since 90 = 3%.2.5
and 94 = 2.47, then by the reductions described earlier the
solvability of this equation is equivalent to that of 5x° — 47 y2

~ 222 = 0. Since by Result 3 (;—‘7’) = (4—27) (%) =1 @ =1,

no solution exists by Result 1. O

Since vp ¢ Q, Vg & Q, and vp/q & Q in Example 2, we
see that there exist vectors with rational u which possess no
obvious properties for sufficiency and in particular are not
among the special cases of Section 2. We use the following
lemma in the proof of a proposition yielding an explicit and
necessary condition for the existence of u € Q.

Lemma 1

If p and q are integers that can be written as the sum of
. 2 2 2

squares of two integers, then px” — gqy” —z" =0 hasa

nontrivial integral solution, if and only if one exists for

qx2 —py2 -7 =0.

Proof  Result 4 allows us to factor p and ¢ as
p=2d II’,;] p,and g=2° b’ Hf;l g} where o', a, p;,
8’, b, and g are as in Result 4. If we define

1= ged(2” w_ p, 2 Hf;l q;) then we can further factor
pand gasp=12°a" II’,:=l p;and g = 2°y Hf;l g, where «
and g are equal to 0 or 1, but not both 1, and

{p,}’,;l C {pi’}’,:=1 and {q,.}f.;l c {q[}f;r For simplicity we write
r=2°1r_, p,and s = 2’ II'_, g, Now, by the discussion at
the beginning of the section, the solvability in nontrivial

integers of
sy -1 =0 (13)

is equivalent to that of (3), and this equation satisfies the
assumptions of Resuit 1. By Result 1 (13) is solvable in
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nontrivial integers, if and only if —s is a quadratic residue of
2% —st is a quadratic residue of p,for | =i =< j, rtisa
quadratic residue of 2° rtis a quadratic residue of g, for

1 < i<k, and rs is a quadratic residue of . By Result 3,
since each p; and g, = 1 mod(4), and since any integer is a
quadratic residue of 2, these statements about quadratic
residues are true if we change the signs of sz and —rt; that is,
st is a quadratic residue of 2°% st is a quadratic residue of p,
for 1 = [ = j, —rt is a quadratic residue of 2’ —rrisa
quadratic residue of ¢, for 1 = i < k. Now by Result 1 again,
these statements are true if and only if —rx* 4+ sv° — 122 =0
is solvable in nontrivial integers. But the solvability of this
equation is equivalent to that of —px” + ¢° — z* = 0 by the
reductions at the beginning of the proof [6]. O

Theorem 1
u € @ exists if and only if (IvlI> = m" + # for some integers
m and n.

Proof Necessity. Since |u|| = 1, then by Corollary 2 there
exist w and w’ in @ with [w = [lw']| = | and ‘wu = ‘wu =
'ww’ = 0. v is orthogonal to u, and so belongs to the span of
wand w’, so that ||v|> = (‘wv)’ + (‘w’'v)". If o is the product
of the denominators of ‘'wv and ‘w’v, then o”||v|” is the sum
of the squares of two integers, and so by Result 4 ]|v||2 itself
is the sum of the squares of two integers as claimed.

Sufficiency. By Proposition 2 we need only show that (3)
has a nontrivial solution in the integers. By assumption g is
the sum of the squares of two integers and by definition p is,
so that by Lemma 1, the solvability of (3) in nontrivial
integers is equivalent to that of q)c2 - py2 —Z=0in
nontrivial integers, but (1, 1, n,) clearly solves this
equation. (1

In fact we could have avoided use of the lemma by use of
the following proposition, which has the advantage of
yielding an almost-closed-form solution of (3). The
proposition’s statement agrees with Theorem 1 due to the
following simple lemma [7].

Lemma 2
If a and b are the sums of two squares, so is ab. If a and ab
are the sums of two squares, so is b,

Proof Result 4 makes the claims obvious. []

Proposition 3
Ifpg=1r" + §, then (g +r, p+r, nys) solves (3).

Proof plg+r—qp+r'=pg +pr—qp' —q’=

a(pq — ') — ppg — r*) = ns", which verifies the claim [8]. O
We can express this in terms more similar to those of

Theorem 1 by applying the well-known identity

(@ + B) (& + d°) = (ac + bdY + (ad — bc). (14)

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

Corollary 4
If |v|)* = a" + b, then (¢ — an, — bn,, p — an, — bn,,
ny(an, — bn,)) solves (3).
Proof (14) and Proposition 3 suffice. O
Example 4
Ifv="(11,17,24), then p= 11> + 17° = 410 and ||v|* =
g=p+ 24" = 986. Since 986 = 2-17-29, then ||v||” is the
sum of two squares by Result 4, so that by Theorem 1
u € @’ exists. Since 25° + 19° = 986, then (14) implies
that pg = gp = 25° + 19°) (117 + 17°) = 598" + 216°, s0
that by Proposition 3 we have that (986 + 598, 410 + 598,
24.216) = (1584, 1008, 5184) = 144(11, 7, 36) solves the
equation, and by the homogeneity of the equation so does
(11,7, 36).0

Although not the purpose of this investigation, the results
lead immediately to information about rational maps
between vectors. This in turn has implications regarding
maps of many objects commonly occurring in modeling.
Before stating them we need several terms.

Definition 3

Let g(3, R) be the algebra of all 3 by 3 matrices with real
components, and let g(3, Q) be the subalgebra with
components in Q. Let G(3, R) be the group of 3 by 3
invertible matrices with real components, and let G(3, Q) be
the subgroup with components in Q. Let O(3, R) C G(3, R)
be the subgroup of orthogonal matrices, and O(3, Q) the
corresponding subgroup with rational components. O

Lemma 3

v € @’ admits unit u and v’ in @ with {v, u, u’} forming an
orthogonal basis if and only if there exists O € O(3, Q) such
that {0'(1, 0, 0), O'(0, 1, 0), 0'0, 0, 1)} = {v/||¥|, u, w’}.

v € @ has rational unit orthogonal u if and only if there
exists '(a, b, 0) € @ with ||v|* = &’ + b” and for each such
‘(a. b, 0) there exists O € O(3, Q) such that O'(a, b, 0) = v
and 00,0, 1) = u.

Proof In each of the claims sufficiency is obvious.

In the first claim, since u and u’ exist, then Proposition 1
implies that ||v|| € Q. Matrix O with columns v/||v||, u, u’ is
the matrix which establishes the necessity of the claim.

Now we turn to the necessity of the second claim. By
Theorem 1 there exist rational a and b with & + 5° = ||v}>.
If we define O by extending linearly from the map which
takes '(a, b, 0) to v, (0, 0, 1) to u, and (=5, @, 0} to v X u,
then we see quickly that O € G(3, R). Since @* + b =
[[lvxu ||2 = ||v||2, O maps an orthogonal basis to an
orthogonal basis and preserves the lengths of the basis
vectors, so that we also have that O € O(3, R). For

d)l:wEIR}—)(

1 v
L on) s
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¢ W € R > ((0, 0, Dwu,

vXu

1
L a,0w>—,
i e

we have ¢, ¢,, ¢, € g(3, Q). Now since ¢, + ¢, + ¢, = O,
then O € O(3, Q) as claimed. O

¢3:weR3_><

Definition 4

For v, p € R let P(v, p) = {x € R*:'¥(x — p) = 0}, that is, the
plane orthogonal to v and containing p. Let L(v, p) =

{tv + p:t € R}, that is, the line parallel to v and containing p.
We say that P(v, p) [or L(v, p)] is rational if v, p € Q.0

Corollary 5

Let P = P(v, 0) and P’ = P(v’, 0) be rational, and further let
Ivll> = # + 5 for r, s € Q. There exists O € O(3, Q) such
that O(P) = P’ if and only if ||[v'|| = ¢|/v| for some ¢ € Q.

Proof 1If O exists, then Ov = gv’ for some g € Q, since
Ov, v' € @° and are parallel. On the other hand, if ||v’ ||2 =
(gr’ + (qs)z, then Lemma 3 implies the existence of
orthogonal O, mapping Y(r, s, 0) to v and orthogonal 0,
mapping (g, gs, 0) to v', so that 0,0;'(P) = P’. 00

Since a rigid motion is decomposable into an orthogonal
motion and a translation, the above implies that not all
rational planes can be mapped to one another by rigid
motions. The obvious generalization to lines implies that the
same is true for lines. The implications of these simple
observations are far-reaching. In the common robotics
problem of putting a block on a table, they mean that the
rigid motion required may not be able to be represented in
Cartesian coordinates with rational numbers. For example, if
the table is assumed to lie in the x-y plane and the block has
a face in a plane orthogonal to (1, 1, 1), then the rigid
motion is of this type. In geometrical modeling one would
like to believe that a rigid motion moving a cylinder to an
identical cylinder can always be provided, but again this may
not be so in the world of rational rigid motions. It seems,
then, that extensions of the rationals, leading to symbol
manipulation, or approximations, or a severe limitation of
the domain of applicability, are the only recourses.

5. Discussion of the algorithm
At this point we have reduced the problem of determining
whether a rational orthonormal vector exists to factoring an
integer and calculating the factors mod(4), and the problem
of finding a vector when a solution exists to decomposing an
integer as sum of the squares of two integers. Since the
problems arise in a computational setting, any estimation of
the usefulness of the reductions must be determined by the
difficulty of implementation and space and time
requirements of an implementation.

Implementation of the technique presents little difficulty
for a symbol manipulator. Infinite-precision integer
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arithmetic in a language would suffice, while the availability
of arithmetic mod(4), greatest common divisor,
factorization, and an implementation of decomposition into
a sum of squares would clearly ease the programming
task [9].

For ease of exposition let us make the following definition.

Definition 5
For n € Z let bit(n) denote the minimal m € Z with
|7} < 27, that is, the number of bits needed to represent #,
and for s/t € Q let bit(s/f) = bit(s) + bit(z). O

Now, in order to discuss the space requirements for
representing a solution vector u € @, we consider an
estimate. The vector is found by applying the solution to (3)
given in Proposition 3 to the formula in Corollary 1.

Proposition 4
Ifv = ‘(n,, ny, n) € Z’ and ||v))> = @* + b for a, b € Z, then
for

u=(u, U, ;) = (nfa —n), nyb— ), p—1n

qg-—r

with

p=n +n,q=|vl’, and r = na + n,b,

we have that u is a rational unit vector orthogonal to v, and
if bit(n,) < n for all 1 <i =< 3, then bit(x,) < 4n + 4 for all
l=i=3.

Proof For s = n b — n,a by (14) we have

pq (nf + ng)(a2 + )= (na+ nzb)2 + (n,b - f12a)2

F+s=(=r+5,

so that by Proposition 3 (g — r, p — r, n,s) solves (3). Since

mny(p — ) + nynys = n,n3(nf + ni — 1)+ nyn,s

n,n3(nf + ) + ny(n,s — nyr)

2 2 2
nny(ny + ny) + nnynb — nynsa

— nyia — nmnb
2 2
= ny(n, — a)(n; + n3),
and similarly
2 2.
—mnp — r) + nns = ny(b — n,) () + 1),

Corollary 1 implies that u defined as above is unit and
orthogonal to v. The claims on bit length now follow
trivially from the definition of u and simple obvious
estimates of the length of products and square roots. [J

The method of Proposition 3 is thus seen to produce
vectors u requiring at most four times the storage of v plus
12 bits. For some applications this may seem too costly, but
in general it seems quite reasonable, and in fact agrees
almost exactly with the storage requirements of the cross
product and norm of (1).
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The only time-intensive parts of the above method are the
factorization of an integer and the decomposition of an
integer into the sum of the squares of two integers.
Factorization is known to be hard. In fact, its difficulty is the
basis of many modern cryptographic schemes. Probabilistic
algorithms exist which run in average time proportional to
the fourth root of the integer. For the decomposition
problem the situation is better. Probabilistic algorithms exist
which run in average time proportional to a polynomial of
the logarithm of the integer [10]. Since factorization is
necessary for deciding whether a rational orthogonal unit
vector exists, the method is always dominated by the
factorization when the constants of proportionality are
comparable. Because we have shown that a rational
orthogonal unit vector does not always exist, it will be
necessary in any case to have recourse to solutions of the
form of (1) or better, (6), so that it seems reasonable and
prudent to restrict application of these methods to vectors
v € @’ which are parallel to vectors w € Z such that ||w]|’ is
not too large. Unfortunately, this “not too large” is difficult
to define precisely, since it is dependent on the constant of
proportionality in the time estimation of factorization, the
computational resources available, and the needs of the
applications [11]. These, however, are typically problems
only in very special cases.

6. Concluding remarks

In this paper we have examined the problem of finding
computationally simple unit vectors orthogonal to a given
rational vector, v. We have shown that the unit vectors can
be chosen to be rational, if and only if | v|| is rational, while
1n general they can be chosen to involve only || v|| and
rational numbers. We have shown that the existence of one
rational vector is equivalent to the solvability of a
Diophantine equation, and have developed a method to
decide the solvability of this equation. When the equation is
solvable, we have presented a specific solution. The solution
leads directly to a rational unit vector orthogonal to the
given vector, and we have estimated the storage
requirements of this unit vector.

In a sense we have completely answered the original
question, but as often happens, this leads to new questions.
The time and space estimates are worst-case. Average-case
estimates are also needed. Result 2 provides a sharp estimate
for the solution of the controlling Diophantine equation. Is
there a comparable estimate for the components of a
rational unit vector? Lemma 3 and Corollary 5 can be
viewed as determining sets of equivalence classes of vectors
or planes or lines under O(3, Q). Can we extend this to more
general vectors, planes, or lines? More generally, what can be
said about extensions to O(3, Q) that allow an arbitrary
plane to be mapped to another?
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Appendix
In the introduction, we presented an intuitive definition of
one expression being simpler than another. It seems precise
enough to allow understanding of and agreement with the
claims of relative simplicity of expressions found elsewhere
in the paper, However, in order to remove any possible
ambiguity we present a more formal definition here. It is
convenient to pose it in a greater generality than is necessary
in the paper. Elsewhere nothing more complex appears in
any expression than a few simple square roots. The
definition, however, remains valid over expressions involving
nth roots and nesting of roots. In fact, its natural setting is
algebraic numbers. For more information on the terms and
constructs we use and for proofs of the claims we make,
almost any textbook on modern algebra would suffice. For
example see Chapter 5 of [12].

Let F = Q(x,, - -, x,) be the field of rational functions in
n indeterminates with rational coefficients. If /is a function
and p(y) is a nonzero univariate polynomial in y with
coefficients in F such that p( f) = 0, then we say that fis
algebraic over F. If each element of { £, - - -, £} is algebraic
over F, then F(f, -- -, f,) (the field generated by adjoining
{fi» - -+, [} to F) forms a finite-dimensional vector space
over F, whose dimension we denote as (F(f, - - -, ) F).
Given two sets of vectors, A = {a' t(u:, u;, u;), RN

o 'y, 1y, )} and B = {8' (v, vy, v). -+, B ', v )
with each of o', - - -, &, ui, u;, sy u;, u§ gl .., 8 v],,
v;, ceey v;‘, v§ being algebraic over F, we say that A is
algebraically simpler than B if (F(a', - - -, o, u:, . uﬁ): F)
<(F@, -, B vy, e, v F), o if
(Fa, -, a uy, - uy): F)

= (F(B'. -+, 8 0, o, vk F),
and

k 3
T (F(y: FY+ ¥ (Fu): F))

=1 m=

k 3
< XY (F@B): F)+ X (F@,). F)).
j=1 m=1
If neither A is algebraically simpler than B, nor B
algebraically simpler than A, A and B have the same
algebraic complexity.

Each of the vectors appearing in this paper can be shown
to satisfy the assumptions of this definition; that is, all their
expressions are algebraic over F for n = 3. In terms of these
vectors, the first condition implies that A has fewer
algebraically independent square roots, while the second
condition implies that A and B have the same number but
there are fewer occurrences of square roots in A.

Finally, we say that A is simpler than B, if A is
algebraically simpler than B, or if they have the same
algebraic complexity, and the sum of the bits needed to
represent the rational coeflicients of A is less than that of B.
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