
Trimmed-surface
algorithms
for the evaluation
and interrogation
of solid boundary
representations

by Rida T. Farouki

Although trimmed surfaces play a fundamental
role in the derivation and processing of solid
boundary representations, they have received
little attention to date. We propose a trimmed-
surface formulation appropriate to the Boolean
combination of primitives bounded by a family of
elementary surface patches (e.g., planes,
quadrics, ruled surfaces, surfaces of revolution)
with dual parametric rational polynomial and
implicit algebraic equations. Partial intersections
between pairs of primitive surface patches are
formulated precisely as algebraic curves in the
parameter space of each patch. These curves
are dissected into monotonic branches by the
identification of a characteristic point set. The
consolidation of all partial intersections yields a
system of piecewise-algebraic loops which
define a trimming boundary enclosing a
parametric domain for the trimmed patch. With
few exceptions, the trimmed-surface formulation
is based on precisely defined mathematical

@Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

procedures, in order to achieve maximum
robustness. Some basic interrogation algorithms
for solids bounded by trimmed-surface elements
are also presented, including procedures for
ray-tracing, point/solid classification, sectioning,
and computation of surface area, volume, center
of gravity, moments of inertia, and other mass
properties.

1. Introduction
Considerable effort has recently been directed toward the
development of solid modeling technology [1, 21 as a
framework for formulating and solving complex geometric
problems. The potential applications of these methods range
from mechanical parts and VLSI circuits to geological
formations, a diversity reflected in the current variety of
representational and algorithmic approaches. These
endeavors have been fueled by advances in computer
hardware and software, new mathematical tools, graphical
display techniques, and the resurrection of classical algebraic
geometry. However, it is now widely conceded that
fundamental algorithmic hurdles have impeded the
development of systems with adequate efficiency, robustness,
and versatility to fully realize their practical objectives. This
is perhaps more true of systems restricted to the relatively
modest surface forms (cf. Table 1, shown later) than those
addressing complex or amorphous geometries, since the

IBM J . RES. DEVELOP VOL. 31 NO. 3 MAY 1987 RIDA T. FAROUKI

precision and reliability demanded in the former case
preclude the approximate methods which are generally
suitable for the latter.

The premium placed on robustness has a clear practical
motivation: The executive role proposed for solid modelers
in synthesizing and integrating engineering design, analysis,
manufacturing, assembly, and inspection applications
imposes on such systems an onerous responsibility for
individual or compounded errors, with costly consequences.
Central to the development of a robust modeler
encompassing the family of simpler surfaces commonly
found in manufactured parts is a rigorous trimmed-surface
formulation. A trimmed surface is a finite segment of an
unbounded analytic surface, enclosed within complex
(possibly nested) border curves lying on that surface. These
borders are frequently curves of intersection with other
curved surfaces and, in general, they possess no elementary
parametric representations.

surface equations, and thus the need for trimmed surfaces
arises immediately in the boundary description of solid
models. Given the fundamental importance of trimmed-
surface algorithms, it is remarkable that they are largely
neglected in the geometric modeling literature-see,
however, [3 , 41. Trimmed surfaces are intimately coupled to
the thorny problem of surface-intersection computation, and
published boundary-evaluation procedures which implicitly
process them either bypass the issue of their formal
representation or restrict their attention to simple domains
(e.g., two-dimensional or polyhedral objects) for which
closed-form solutions are available, e.g., [5]. While
boundary-evaluation procedures have actually been
implemented in some existing modelers, their reliability is
apparently less than satisfactory [6].

surface definition. We avoid, as far as possible, heuristic
methods and base the definition on well-defined
mathematical procedures such as the arithmetic operations
and polynomial root-solving. Our emphasis is on the
definition and processing of individual trimmed-surface
elements. Little consideration is given at present to issues
such as computational efficiency, data structures for
organizing the adjacency relationships between trimmed-
surface elements, and the boundary evaluation procedure per
se. These subjects are discussed elsewhere in the literature.

Few three-dimensional objects are representable by single-

In this paper we attempt to formulate a rigorous trimmed-

2. Trimmed surfaces and boundary
representations
An abstract trimmed-surface definition, independent of the
diverse representations of solids and their bounding surfaces
occurring in solid modeling systems, forms a useful point of
departure [7]. Adopting the usual notation of set theory, let
A and B denote regular, compact volumes in R3 and let

A U B , A n B , A - B , B - A (1)

be the volumes generated by the regularized [8] Boolean
operations of union, intersection, and difference on them. If
the volumes A and B under consideration represent
homogeneous solids in a solid modeling system, they are
unambiguously defined by their bounding surfaces S(A) and
S(B). Our principal concern is thus to determine the
boundaries

S(A u B), S(A n B), S(A - B), S(B - A) (2)

of the Boolean combinations (l) , given the input boundaries
S(A) and S(B).

Any compact volume X may be regarded as partitioning
R3 into two regions: a bounded open set I(*, the interior of
X , and an unbounded open set E(X), the exterior or
complement of X . The interior and exterior are separated by
a surface S(*, called the boundary of X . The exterior
trimmed surface of A with respect to B, denoted S(A > B), is
defined as the open subset of S(A) exterior to B:

S(A > B) = S(A) n E(B). (3)

Thus S(A > B) is empty if A C B, is equal to S(A) if B C A
or A and B are disjoint, and is a subset of S(A) otherwise.
The interior trimmed surface of A with respect to B, denoted
S(A < B), is defined as the open subset of S(A) interior to B:

S(A < B) = S(A) n I(B). (4)

Thus S(A < B) is empty if B L A or A and B are disjoint, is
equal to S(A) if A C B, and is a subset of S(A) otherwise.

The exterior and interior trimmed surfaces of B with
respect to A , denoted S(B > A) and S(B < A) respectively,
are defined in a similar manner:

S(B > A) = S(B) n E(A), S(B < A) = S(B) n I(A). (5)

The curve of intersection of A and B, denoted C(A, B), is
defined as the set of points common to S(A) and S(B):

C(A, B) = S(A) n s(B). (6)

Ordinarily, C(A, B) consists of one or more closed, one-
dimensional space curves. However, in exceptional cases
where S(A) and S(B) touch at a point or over a common
area, the curve C(A, B) degenerates and may suffer isolated
points or two-dimensional regions. In such cases a
regularization procedure [9] may be invoked to render the
intersection uniformly one-dimensional, and the trimmed-
surface definitions must then be modified accordingly for the
boundary formulae given below to remain valid.

Assuming regular intersections, the boundaries of the
Boolean combinations (1) are given in terms of the interior
and exterior trimmed surfaces and the intersection curve:

(7) 315

RlDA T. FAROUKI IBM J RES. I IEVELOP. \ iOL. 31 NO. 3 MAY 1987

The four possible combinations of interior and exterior
trimmed surfaces from A and B, respectively, together with
their mutual curve of intersection, thus comprise the
boundaries of the Boolean combinations (I) . The problems
of computing and interrogating boundary representations for
Boolean solid combinations therefore reduce to those of
developing algorithms for deriving and processing trimmed-
surface formulations.

In subsequent discussions it is convenient to define
trimmed surfaces as closed two-dimensional sets,
incorporating the curve-of-intersection boundary as part of
the trimmed-surface definition. Thus, for example,

S(A 2 B) = S(A > B) U C(A, B) (8)

denotes the exterior trimmed surface of A with respect to B
including the regularized intersection boundary. Although
intersection curves are duplicated when such trimmed
surfaces are pieced together, this presents no special
difficulties.

3. Polynomial root determination
The trimmed-surface methods presented below require
procedures for determining the real roots of univariate
polynomials and pairs of simultaneous bivariate polynomials
on specified domains, usually the unit line [0, 11 and the
unit square [0, 11 X [0, I] , respectively. The multiplicities of
these roots must also be recognized. Polynomial roots are
usually irrational numbers, and must therefore be
represented with finite precision. Furthermore, since closed-
form solutions are not available for degrees higher than 4,
the numerical algorithms invoked to solve them introduce
additional errors. A truly robust implementation of the
trimmed-surface algorithms presented here will thus be
realized only in the context of a full theory of imprecise
geometric representation and computation. This matter is
beyond our present scope, and we defer it to a subsequent
study [l o] .

In principle, the numerical root-solving procedures
discussed below are amenable to polynomials of arbitrary
degree. For practical floating-point implementations,
however, severe limitations are imposed by poor accuracy
and efficiency in the evaluation of high-degree polynomials.
The polynomial degrees arising in the intersection and
trimming of a family of simpler surfaces of practical value
(cf. Table 1 , shown later) may nevertheless prove tractable.

The philosophy underlying our trimmed-surface
formulation is to provide, as far as possible, a sound
mathematical foundation for the definition and processing of
trimmed-surface elements, without regard to computational
efficiency. While ultimately we have recourse to numerical
procedures in determining polynomial roots, we wish to
preclude the ab initio heuristic flavor of many current
surface-intersection computations, e.g., [11, 121, where
algorithm deficiency may equal or exceed imprecise 316

RIDA T. FAROUKl

computation as a source of failure. The advantages of our
delaying action in the introduction of numerical procedures
are clear: Any advances in reliability or efficiency in the root
algorithms or in floating-point precision in general are
imported directly into the system.

3. I Univariate polynomials
We require robust algorithms for determining the real roots
ti of a degree-n polynomial

p,(t) = 1 ak t = o (9)

on a bounded interval [t,, tb], to specified precision E (i.e., the
computed roots should lie in the intervals t, k c about the
true roots [131). The interval [t , tb] may be conveniently
transformed to the unit line [0, 11. The procedure should
find all real roots in the specified interval. Furthermore,
there should be no loss of resolution at multiple or nearly
multiple roots, where the problem becomes ill-conditioned

n

k=O

1141.
The polynomial coefficients (ak) in (9) are rarely available

as precise initial data, but result from floating-point
computations themselves (e.g., as in the elimination
procedures described below). Polynomial roots may be ill-
conditioned with respect to perturbation of the coefficients
even with widely separated roots, and therefore thorough
error analyses [141 are required for truly robust
implementation of our trimmed-surface formulations.

The above considerations preclude the simpler iteration
methods based on guessing initial root approximations [151,
unless there is additionally available a root isolation
procedure which furnishes a set of nonoverlapping
subintervals which contain each of the distinct real roots on
the entire interval [161. We outline two possible techniques.

3. I . I Bernstein-Bezier subdivision
The interval [to, tb] is transformed to [0, 1 1 and P,,(t) is
expressed in the Bernstein basis:

on that interval. The coefficients (ck) are obtained from the
{ak) by collating and equating terms of equal power. In the
form (lo) , the polynomial has the convex hull and variation-
diminishing properties of a Bezier curve. These furnish an
iterative subdivision procedure which should isolate and
converge on each real root [171. However, convergence
problems arise at multiple roots, and the technique requires
refinement to process such cases reliably.

3. I .2 Sturrn sequences
A Sturrn sequence for the polynomial P,,(t) on the interval
It,, 4 1 ,

f ;W, . . ., f,(t)> (1 1)

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY I 987

may be generated in the following manner. Setfo(t) = P,(t)
andf;(t) = dPJdt, and denote by R[p(t), q(t)] the polynomial
remainder on dividing p(t) by q(t). Then

J;(t) = -R[J;-#), J;-,(t)I, i = 2 , . . . , m, (12)

where the process is continued until anfm(t) is generated
(m 5 n) which has constant sign on [t,, t,,]. The number N of
real, distinct zeros of P,(t) on [tu, t,,] is then given by

N = W u) - V t h) , (13)

where v(t) denotes the number of sign changes of the Sturm
sequence (1 1) evaluated at t [16, 181. This theorem provides
a means for isolating all real zeros by binary subdivision of
the interval [tu, th] until the number of roots indicated for
each subinterval is 0 or 1.

3.2 Simultaneous bivariate polynomials
Simultaneous bivariate polynomial equations of the form
m n P 4

LZ,~U'V~ = bkp v = 0 k /

t=O J=o k=O /=0

arise frequently in the trimmed-surface procedures described
below. We wish to determine the real roots (u, v) E [0, I] X

[0, I] of (1 4 , which correspond to the intersections of two
algebraic curves within the unit square. The bivariate root-
solving procedure should meet the same criteria as in the
univariate case. All relevant roots must be identified, and
multiple-root cases should be accommodated without
difficulty. To realize these requirements, we employ
elimination techniques to transform the problem (14) into a
univariate polynomial problem, and take advantage of the
robust algorithms of Section 3.1.

The resultant of Equations (14) with respect to either
variable is a univariate polynomial of degree mq + np in the
other variable whose roots are the discrete values for that
variable at which the two curves (14) intersect. The resultant
may be conveniently computed by expanding the Sylvester
or Bezout determinant for the system (14) [191. To each
simple root of the univariate resultant there corresponds a
unique value for the other variable; if the resultant has a root
of multiplicity h, there are h (possibly coincident)
corresponding values for the other variable. Usually only the
real roots on the unit interval [0, 1 1 for each variable are of
interest.

Elimination methods have been successfully implemented
in symbolic computation (computer algebra) systems for
some time, e.g., j20-241, but their application to computer-
aided design problems is relatively recent [25-271. In the
former case, the coefficients of the resultant polynomial may
be computed precisely as symbolic expressions or rational
numbers, while in the latter they suffer errors due to the
imprecise floating-point arithmetic incurred in the
determinant expansion. An ill-conditioned resultant would
then induce gross errors in the estimated roots. Although the

numerical stability of elimination methods in this context
requires further investigation, we have processed
simultaneous bicubic equations to high accuracy in practical
implementations [28].

The geometric problems encountered below which can be
set in the form (14) include the following: constructing the
bounding box around a surface patch; finding the (u, v)

surface coordinates of a Cartesian point (x, y, z) lying on the
parametric surface r = r(u, v) ; determining the intersections
of a three-dimensional ray with a surface patch; identifying a
characteristic point set for an algebraic curve; and
computing the intersections of two monotonic algebraic
curve branches.

4. Surface formulations
We review below elementary features of a dual parametric
and implicit surface patch representation, and propose a
trimmed-surface formulation based on it. The discussion of
algorithms for producing and processing such trimmed
surfaces in specific Boolean solid combinations is deferred to
a subsequent section.

4.1 Parametric equations
We define a surface patch as a mapping of the unit square
(u, v) E [0, 1 1 X [0, I] into R3 by rational polynomial
functions expressed in the Cartesian product form:

m n

Wj!&UJvk

r(u, v) = m n
J=O k=O

(15)
W,kU'vk

J=O k=O

Such patches are inherently four-sided, but may be forced
into three-sided configurations by introducing a parametric
singularity in which one side degenerates to zero length.
Patches arising in a solid modeling context are assumed by
construction to be well formed, i.e., free of discontinuities
such as cusps, ridges, and self-intersections.

The number of coefficients defining the surface (1 5) is
4(rn+l)(n+l), the number of degrees of freedom being one
less, since only the relative magnitudes of the projective
coordinates w , ~ are significant. Familiar elementary
surfaces-planes, quadrics, surfaces of extrusion and
revolution-and other simple swept surfaces possess
parameterizations of the above form [29], although higher-
order algebraic surfaces in general do not.

4.2 Implicit equations
All rational polynomial surfaces of the form (1 5) may be
represented by implicit algebraic equationsf(x, y, z) = 0 of
degree p I 2mn, obtained by eliminating the two parametric
variables (u, v) from the three equations x = x(u, v) ,

y = y(u, v) , z = z(u, v) , a procedure known as implicitization
[26]. In general, a degree-p algebraic surface has the implicit
equation 317

IBM I. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987 RIDA T. FAROUKl

318

Table 1 Elementary surfaces.

Surface type Degree

Plane 1
Quadric 2
Conical or cylindrical surface, degree-n profile curve n
Surface of revolution, degree-n profile curve 2n

P P-1 P-1-J

f (x > y , z , = c,JkX'YJzk = O,
r=O ,=O k=O

defining an unbounded surface (which closes on itself or
extends to infinity). The parametric form (15) represents
only a finite segment on such a surface. All points satisfying
(16) which lie outside the unit parameter square for (15) are
called the algebraic extension of the patch. The number of
distinct terms in (16) is (p + l) (p + 2)(p + 3)/6, the number
of degrees of freedom being one less since the equation may
be divided through by any nonzero coefficient without
material change.

elimination of the parametric variables from Equations (1 5)
is, in general, too complex for practical software
implementation [30] . For the family of low-degree surfaces
shown in Table 1, implicit equations may be generated ab
initio and must be suitably transformed whenever their
parent solid is subjected to rigid-body motions. Although the
trimmed-surface algorithms developed here are in principle
applicable to arbitrary patches having the dual parametric
and implicit equations (1 5) and (16), restricting
consideration to these simpler surfaces constrains the
polynomial degrees arising during trimmed-surface
processing within realistic limits.

The formal implicitization procedure based on

4.3 Solid primitives
A solid primitive P is defined to be the three-dimensional
volume enclosed by a collection of surface patches of the
form (I 5) with matched borders. Each border of every patch
matches precisely a border of one other patch, or is
degenerate (has zero length). The family of primitives
possessing exact definitions in the above form is quite
diverse, incorporating polyhedra and solids of revolution and
extrusion [29] and their offsets [3 1] as well as more general
solids. The basic interrogation function for such solid
primitives, classifying a candidate point p as lying inside, on
the boundary of, or outside the volume of P, is accomplished
by determining the intersections of an arbitrary line through
p with the patches of P. These intersections divide the line
into inside/outside intervals, and the location of p relative to
these intervals provides the required classification.

The intersections of a line and a finite patch may be
determined in one of two ways: (a) from the parametric
equations (1 5) , using elimination methods to obtain a

RlDA T. FAROUKI

univariate polynomial of degree 2mn [25]-this gives the
surface coordinates (u,, v,) of each intersection; or (b) from
the implicit equation (16) [32], which yields a degree-p
polynomial from which the Cartesian coordinates (x,, y,, zi)
of each intersection are obtained-an inversion procedure
(cf. Section 4.5) must then be employed to ensure that these
lie within the parameter domain of the patch. Testing the
line against bounding boxes for the surface patches (see
below) minimizes unnecessary computation.

4.4 Bounding boxes
Testing all patch pairs of two solids for intersection is
inefficient, and Boolean combinations can be accelerated if
bounding boxes are available for each surface patch, allowing
most disjoint pairs to be bypassed immediately [33]. Suppose
r(u, v) is of degree (m, n) in (u, v) . Considering each
coordinate component (x, y , z) individually, the spatial
extent of a patch is determined by comparing corner points,
border extrema, and surface extrema.

The comer points are simply

and the border extrema occur at the roots on [0, I] of

r,(u, 0) = 0, ru(u, 1) = 0, rJ0, v) = 0, ru(l, v) = 0, (18)

which are univariate polynomials of degree m - 1 or
n - 1. Finally, the surface extrema occur at the roots on
[0, I] X [0, I] of the simultaneous equations

ru(u, v) = r,(u, v) = 0.

Eliminating either variable between these equations yields a
univariate polynomial of degree 2mn - m - n + 1. A
bounding box for an entire primitive is defined by the
extremum coordinates of the bounding boxes for its
constituent patches. These boxes allow the Boolean
combination procedure to be bypassed in most instances
where the primitives are disjoint.

4.5 Inversion and imaging
In computing surface intersections and formulating
trimmed-surface representations for patches with the
dual implicit and parametric representation {r = r(u, v) ,

f (x , y, z) = 0), an inversion procedure is required: Given a
Cartesian point r, = (xo, y,, z,) known to lie on the surface,
f(xO, y,, z,) = 0, determine its parametric coordinates
(uo, no). This can be accomplished by elimination of u or v
from any pair of the three equations xO = x(u, v) ,

y, = y(u, v) , zo = z(u, v) which are not both independent of u
or v-consistency is guaranteed by the conditionf(x,, yo, z,,)
= 0. For r(u, v) of degree (m, n) in (u, v) , this incurs a
univariate resultant polynomial of degree 2mn. Once this has
been solved, a corresponding value for the other variable is
readily determined.

IBM I. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

An important application of the inversion procedure is in
imaging points on the intersection of two surfaces between
the parametric spaces of those surfaces. Suppose the point
(uo, uo) of r(u, v) is known to lie on the intersection of the
surfaces r = r(s, t) and r = r(u, v) . We wish to determine the
parametric coordinates (so, to) on r(s, t) corresponding to
(uo, no). This is achieved by projecting to three dimensions,
ro = r(uo, uo), and inverting the Cartesian point ro with
respect to r = r(s, t).

4.6 Parametric surface sections
The intersection of an unbounded algebraic surface (16) with
a parametric surface patch (1 5) is given precisely by an
algebraic curve of the form

pm pn

F(u, Y) = c c a,survs = 0, (20)
F O s=o

obtained by substituting Equation (1 5) directly into (16)
[28]. The curve (20) on (u, v) E [0, I] x [0, I] defines the
intersection of the patch (15) with the entire unbounded
algebraic surface (I 6). This is termed a complete intersection.
If, however, we are interested in the intersection of two finite
parametric patches, Equation (16) (representing the
implicitization of one, then only a segment of the algebraic
surface) participates in the intersection. The portions of
F(u, u) = 0 contributing to the intersection in this case lie

IBM J . RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

within an ambiguous subset of the unit parameter square
and must be identified carefully. With trimmed-surface
patches, the difficulties are even further compounded. We
return to the problem of such partial intersections in
Section 5.

4.7 Characteristic points
In general, high-order algebraic curves of the form (20)
possess complex topological structures [34-361. The
properties of such curves have been studied in depth by the
methods of classical algebraic geometry, eg., [37-391. For
our present purposes, an essential requirement of a surface
intersection algorithm is to recognize each individual loop or
segment of the intersection and to render the complex
structure of the curve tractable. The identification of a set of
characteristic points [28] for the curve (20) accomplishes
these goals by guaranteeing at least one point on each
portion or feature of the curve, and dissecting the curve into
a set of smooth, monotonic branches (Figure 1). For the
complete surface section (20), the characteristic points fall
into three categories:

The border points occur at the roots on [0, I] of

F(u , 0) = 0, F(u, 1) = 0, F(0, Y) = 0, F(1, v) = 0, (21)

where the curve (20) enters or leaves the unit square.
Equations (2 1) are univariate polynomials of degree m or n.

RlDA T. FAROUKI

320

The turning points occur at the roots of

F(u, v) = F"(U, v) = 0, F(u, v) = F, (U, v) = 0, (22)

where the curve tangent is parallel to the axes u = 0 and
v = 0, respectively. Solving Equations (22) by elimination
incurs univariate polynomials of degree 2mn - m and
2mn - n, respectively. Finally, the singular points occur at
the roots of

F(u, v) = F,,(U, v) = FU(u, v) = 0, (23)

where the curve tangent k(Fv, -FU) is not uniquely defined.
A singular point is said to have multiplicity h if all partial
derivatives of F to order h - 1 are zero and at least one
partial derivative of order h is nonzero. Singular points are
identified without further computation by comparing the
roots of the two equations (22).

parametric patches or trimmed-surface patches, a further
characteristic point category must be introduced, the
termination points, to accommodate intersection tracks
which end abruptly within the unit parameter square
(cf. Section 5) .

In processing partial intersections between pairs of finite

4.8 Link multiplicities
Associated with each characteristic point i is a link
multiplicity m,, indicating the number of monotonic
branches entering or leaving that point. The link multiplicity
depends on the type of the characteristic point. For border
points and termination points it is I , and for turning points
it is 2. For a singular point of multiplicity h the link
multiplicity is usually 2t, where t (s h) is the number of real,
distinct tangent directions (X, g) occumng as roots of

E h!
Xkgh-k

ahF
k=O (h - k)!k! dUkdvh-k - O'

For a double point (h = 2), for example, (24) becomes
X2Fu, + 2XpF, + p2F, = 0, and there are three possibilities:
(i) roots real and distinct, t = 2 and mi = 4, a self-
intersection; (ii) roots real and coincident, t = 1 and mi = 2,
a cusp; and (iii) complex conjugate roots, t = 0 and mi = 0,
an isolated point of the curve.

In exceptional situations where one of the tangents at a
singular point is also a singular tangent of the curve, the link
multiplicity rule mi = 2t may fail, however [28]. It is also
possible for a characteristic point to fall into more than one
category; e.g., a turning point or singular point may lie on
the unit square boundary. A more detailed investigation is
then required to ascertain the appropriate link multiplicity.

4.9 Monotonic branches
A monotonic branch C of an algebraic curve F(u, v) = 0 is a
smooth, directed segment of the curve along which a unique
tangent direction +(Fv, -Fu) # (0, 0) is defined, which varies
by not more than 90". Such a branch has definite starting

RIDA T. FAROUKI

and ending points (us, us) and (u,, vJ. The tangent direction
may be parallel to the coordinate axes u = 0 or v = 0
at these endpoints, but not at intermediate points. Note
that the definition of a monotonic branch refers to a definite
coordinate system and is therefore not independent of
orientation.

The specification of an implicit equation and consistent
endpoints,

IF(& 4 = 0: (us, Us) -+ (U e , v,)L (25)

uniquely identifies a monotonic branch C, except under the
exceptional circumstance where several monotonic branches
connect two singular points. If the singular points are
ordinary (i.e., all their tangents are distinct), start and end
tangent directions may be appended to the specification to
resolve the ambiguity.

bounding box
The monotonic branch is entirely enclosed by the

[urnin, urnax1 X [Urnin, vmaxl,

where urnin = min(us, uJ, u,,, = max(u,, u,) and urnin =
min(v,, ne), v,,, = max(v,, v,). The algebraic extension o f a
monotonic branch C given by (25) is defined to be the set of
all points satisfying F(u, v) = 0 which do not belong to C.
Note that elements of the algebraic extension of C may lie
inside its bounding box (26).

4.10 Algebraic curve tracing
The characteristic points (21), (22), and (23) are derived
directly from the algebraic curve definition (20) and are
known to dissect the curve into a set of monotonic branches
of the form (25). However, the identity of these branches
remains to be established; i.e., we must determine which
pairs of characteristic points are indeed connected by a
monotonic branch. To accomplish this, we require a curve-
tracing procedure, i.e., a means of moving along a
monotonic branch, starting at a given characteristic point, to
see which other characteristic point it leads to.

form

(u = u(t), Y = v(t)) , 0 I t 5 1, (27

Ideally, we would like to derive a parameterization of the

for the monotonic branches (25) in terms of elementary
rational functions u(t) and v(t) of a parameter t-this would
automatically solve the curve-tracing problem. A suficient
condition for such a parameterization to exist (i.e., for the
curve to be rational) is that its genus be zero, which implies
an exceptional configuration of singular points [39]. Since
this condition is not realized for algebraic curves in general,
we must resort to numerical procedures for curve tracing
(Figure 2).

on the curve F(u, v) = 0, the change in F is given by
dF = F,du + Fudu = 0. Hence we obtain the expressions

Between two adjacent points (u, v) and (u + du, v + dv)

IBM I. RES, DEVELOP. VOL. 31 NO. 3 MAY 1987

along F(u, v) = 0. Higher-order derivatives along F(u, V) = 0
may be generated by repeated application of the total
derivative operators

to (28); the resulting expressions are rather cumbersome

The total derivatives define a Taylor series giving v in
terms of u, or vice versa, in the neighborhood of any
nonsingular point of the curve. The power series can also be
derived from an algebraic recursion formula [40]. Such local
power series may be employed to trace a monotonic branch
by small steps in u or v. Caution must be exercised in
choosing step size and controlling cumulative error,
especially in the vicinity of near-singular points where there
is danger of migration between branches [28]. Algebraic
curve-tracing is a crucial procedure in our trimmed-surface
formulation, requiring a careful, tolerance-based
implementation. Alternate methods for traversing an
algebraic curve segment in a deterministic manner deserve
further investigation.

4. I 1 Intersection of a line and a monotonic branch
In addition to identifying the monotonic branches of an
algebraic curve, the curve-tracing procedure plays an
important role in computing the intersections of a straight
line and a monotonic branch C (25). Of special interest are
the intersections of the coordinate lines u = u, and u = vo

with C. We illustrate with the case u = u,.
If u, 4 [us, u,], there are no intersections. If u, E [us, ue],

determine the roots of the univariate polynomial
F(u,, v) = 0 on [vs, vel (there must be at least one). If there is
only one root, this gives the desired intersection. If there are
several roots, all but one lie on the algebraic extension of C.
The true intersection with the branch under consideration
must then be selected by tracing the curve branch from us or
u, toward u, (Figure 3). If (u,, v,) is the intersection point
thus determined, we may split the monotonic branch (25) at
u, or v,, into two portions (F(u, v) = 0: (us, us) + (u,, v,)) and
{F(u, v) = 0: (u,, no) + (ue, ne)). A portion of a monotonic
branch is necessarily a monotonic branch itself.

we wish to determine their intersection points, if any. We
begin by determining the bounding boxes (26) for each

A monotonic algebraic curve branch, enclosed by its bounding box,
illustrating the tracing of the curve by small steps in u using local
power-series expansions.

U

branch. If the boxes do not share common area, there are no
intersections of the branches. Otherwise, an overlap box
[u,, ub] X [va, vb] is defined, and the branch intersections
must lie inside it.

Eliminating, say, u from the two equations F,(u, v) = 0
" - - . , and F,(u, U) = 0, we find the real roots vi on [v,, vb] of the

IBM J. RES. DEVELOP. C 'OL. 31 NO. 3 MAY 1987 RI1

321

3A T. FAROUKI

\
G

resultant. Corresponding values ui for u are then determined
and (u , v,) is retained as a candidate intersection if u, lies on
[u,, u,]. The candidate intersections (u,, v i) fall into three
categories: true intersections of the two branches,
intersections of one branch with the algebraic extension of
the other, and intersections of the two algebraic extensions
(Figure 4). To verify a candidate as a true intersection of the
branches, we must be able to trace each branch from one of
its endpoints to the candidate point.

intersections of monotonic branches from distinct curves,
i.e., the discrete points where the branches cross.
Occasionally, however, the two branches (30) may derive
from the same parent curve and their equations F,(u, v) = 0
and F2(u, v) = 0 are identical within a constant nonzero
factor. The elimination procedure then yields an identity,
and the intersection either is empty or degenerates to the
continuous coincident portion of the branches. (Note that
noncoincident branches from the same curve may at most
share an endpoint, since singular points of an algebraic curve
are always endpoints of its monotonic branches.)

The above method serves for determining proper

4.13 Piecewise-algebraic loops
A piecewise-algebraic loop L is defined to be an ordered
sequence of N (12) monotonic algebraic curve branches C,
connecting a set of N nodes (u,, v,):

322 {F,(u, = 0: (ui, v ,) -+ (u , + ~ , vi+,)), i = 1 + N, (31)

RlDA T. FAROUKI

where (u ~ + ~ , uN+J = (u l , u ,) . No restrictions are imposed on
the definition (31) other than that the nodes be all distinct
and that intersections between distinct branches are
prohibited (self-intersections of branches are precluded by
definition).

Piecewise-algebraic loops possess a definite orientation,
clockwise or anticlockwise, as determined by the ordering of
the nodes (u,, u,). The direction of the constituent branches
of a loop is consistent with this orientation. Anticlockwise
loops are denoted positive and clockwise loops negative
(Figure 5) . The piecewise-algebraic loop (31) defines a simply
connected region in the (u , u) plane. By the monotonicity of
the branches, the extent of a loop in the u and u directions is

4.14 Point classijcation and nesting of loops
A point-classification procedure for piecewise-algebraic loops
may be formulated by considering their intersections with
straight lines in the (u , u) plane. First, if the candidate point
(uo, uo) lies outside the bounding box (32) for the entire loop,
it must lie outside the loop itself. Otherwise, we classify
(uo, vo) as lying inside, on the perimeter of, or outside the
area of L, by determining the intersections of the coordinate
lines u = u, or v = v,, with each of the constituent branches
of L (cf. Section 4.1 I) . The bounding boxes (26) minimize
unnecessary computation. The intersections divide the lines
into inside/outside intervals; the location of the candidate
point relative to these intervals gives the desired classification.

Occasionally, a procedure for generating arbitrary points
within a piecewise-algebraic loop is also required. A simple
(though possibly inefficient) method successively produces
points with random distribution inside the bounding box
(32) for the loop, subjecting each to the point/loop
classification procedure and rejecting those which lie outside
the loop.

A loop Lo is said to be nested within another loop L, if the
constituent branches of L, lie entirely inside or on the
perimeter of the area enclosed by L,. To verify this we
classify all the nodes of La with respect to L, and test for
proper intersections of each branch of La with every branch
of L,. If none of the nodes lie outside L, and no proper
intersections are found, the verification is complete.
Similarly, two loops La and L, are said to be disjoint if the
constituent branches of La lie entirely outside or on the
perimeter of the area enclosed by L,, and vice versa. If all
the nodes of each loop lie outside or on the perimeter of the
other loop, and there are no proper intersections of the
branches of the two loops, they are verified to be disjoint.
Note that according to these definitions, loops which share
common elements (nodes, branches, or portions of branches)
may still be regarded as nested or disjoint.

IBM J. RES. DEVELOP. VOL 31 NO. 3 MAY 1987

Schematic illustrations of piecewise-algebraic loops having positive
and negative orientation.

4.15 Trimmed-surface formulation
A trimmed-surface patch is specified by the dual parametric
and implicit equations (1 5) and (16) together with a
trimming boundary, defined as a tree structure of
nonintersecting, nested piecewise-algebraic loops (cf.
Figure 6). There may be one or several loops at the top level
of the tree structure. The branches of the tree issuing from a
given loop point to other loops nested within it. Loops on
the same nesting level are always disjoint. By convention,
the orientation of the outermost or toplevel loops is taken
as anticlockwise in the (u, v) plane, and reverses with each
successive nesting level. The area of the trimmed-surface
patch then lies to the left in traversing any loop.

piecewise-algebraic loop trimming boundaries is called the
parametric domain of the trimmed patch, denoted Q . The
simplest trimmed surface is the entire patch (1 5) with the
trivial trimming boundary

The area of the (u, v) plane contained within the

{v = 0: (0, 0) "f (1, O), u = 1: (I , 0) "., (1, I) ,

v = 1: (1, 1) "f (0, l), u = 0: (0, 1) + (0, 0)) . (33)

We refer to such a surface as a complete patch. General
trimmed-surface elements have more complex trimming
boundaries; often these include portions of the unit square
boundary (33).

4.16 Area integrals over trimmed surfaces
In computing the mass properties of solids bounded by
trimmed surfaces, we require a procedure to integrate a
given function $(u, v) over the parametric domain Q of each
patch:

J-

I = J $(u, v)dudv.
R

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

(34)

8

Numerical cubature formulae for estimating the integral
(34) on elementary domains (e.g., triangles) over which
$(u, V) varies smoothly are well known [41, 421. These
methods have rapid convergence and may be formulated in
an adaptive manner to optimize accuracy versus compute
time, e.g., [43]. Our principal concern is thus to formulate
tesselation algorithms for decomposing a complicated
parametric domain Q , defined by a given trimming
boundary, into well-formed triangles or other elements, to
which a suitable cubature rule may be applied.

We take Q in (34) to be the area enclosed by a single
piecewise-algebraic loop L. For domains defined by nested
loops, we integrate over each loop individually and obtain 323

RlDA T. FAROUKI

the integral (34) by adding the contributions of positive
loops and subtracting those of negative loops. This technique
is algorithmically simpler but perhaps less efficient than
tesselating multiply connected domains. Several approaches
are possible. For example, the curve-tracing procedure
(Section 4.10) may be employed to polygonize L by selecting
ordered sequences of discrete points along each branch;
finite-element meshing algorithms for 2D polygonal
boundaries may then be invoked [44]. The quadtree method
[45] could also be employed to approximate the area of L by
the successive subdivision of square elements.

decomposition of L [46] into strips parallel to, say, the v-axis.
For each node (u,, v i) of the loop (31), we split each branch
C, at its intersections with the line u = ui. The constituent
branches of L may then be arranged in stacks defining
cylindrical regions with vertical sidewalls and monotonic
branches as upper and lower bounds (Figure 7). These
cylindrical regions, together with the curve-tracing
procedure, are relatively simple to process.

In principle, the area integral (34) may be transformed
into a line integral around each circuit of the trimming
boundary defining Q by invoking the Stokes theorem [47].
In the present context, however, this approach has two
drawbacks which render it inferior to direct numerical
cubature-the lack of precise parametric representations (27)
for the constituent branches of the trimming boundary, and
the inability to determine the integrand of the line integral
exactly in most cases.

Another approach is to perform a cylindrical

4.17 Curves on trimmed surfaces
Given a parametric domain Q contained within a trimming

324 boundary of nested piecewise-algebraic loops, and a general

RIDA T. FAROUKl

algebraic curve G(u, v) = 0, we wish to ascertain which
portions of this curve lie within Q and to represent them as
an evaluated system of monotonic branches. This algorithm
forms the basis for computing section cuts through solids
bounded by trimmed-surface elements (cf. Section 6.3).

characteristic points for the complete curve G(u, v) = 0, and
identify the set of monotonic branches they define (cf.
Sections 4.6-4.10). We then compute the intersections of
each monotonic branch of G(u, v) = 0 with each monotonic
branch of the trimming boundary (Section 4.12), and split
the branches of G(u, v) = 0 at these intersections. This
process generates a new set of monotonic branches defining
G(u, v) = 0 with the property that each branch lies entirely
inside or outside the parametric domain Q defined by the
trimming boundary. Those branches lying outside Q must be
identified and discarded. This is accomplished by partially
tracing each branch to a point intermediate between its
endpoints and classifying that point with respect to Q (cf.
Section 4.14 and 6.1 below); if it lies outside the parametric
domain, the branch must be discarded (Figure 8).

curve G(u, v) = 0 defined on a trimmed-surface patch with
parametric domain Q. The representation consists of a
collection of monotonic branches connecting a set of
characteristic points. The characteristic point set comprises a
subset of the border, turning, and singular points for the
complete curve G(u, v) = 0 (Section 4.7), augmented by a
new type of border point-the intersections of the complete
curve G(u, v) = 0 with the trimming boundary for Q. These
new border points also have a link multiplicity of 1. Under
exceptional circumstances, however, they may coincide with

The algorithm proceeds as follows: First, we determine the

We have thus computed the representation of an algebraic

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

turning points or singular points, and the link multiplicity
must be adjusted accordingly.

4.18 Solid boundaryjles
The representation of a solid bounded by trimmed-surface
patches of the form defined above is called a boundaryjile
when at least one of the patch trimming boundaries is not
the trivial case (33). The complex nature of the elements
comprising a boundary file necessitates a sophisticated data
structure for representing the adjacency and incidence
relationships of the faces, edges, and vertices of the solid.
The solid interrogation algorithms (cf. Section 6) also require
such organized representations for their reliable and efficient
operation.

immediate concern of the present study-detailed
discussions are available elsewhere, e.g., [48]-we note that
the boundary-file data structure and trimmed-surface
formulation impose mutual constraints upon each other (see
Section 5.1) which deserve further attention. The trimmed-
surface formulation and algorithms described in this section
lead to the present definition of a boundary file, but do not
describe how it is actually computed in specific Boolean
combination scenarios. That is the subject of the following
section, where the motivation for the present formulation
becomes apparent.

5. Boolean combination
We now outline procedures for deriving the boundary files
arising from Boolean solid combinations. The emphasis here
is on the derivation of representations for the individual

Although boundary-file data structures are not the

IBM J. RES. DEVELOP. 1 [OL. 31 NO. 3 MAY 1987

trimmed-surface elements produced by such combinations,
rather than the data structures expressing their topological
relationships, issues of computational efficiency, or a detailed
enumeration of the various stages of the boundary
evaluation procedure per se (the latter subject is discussed,
independent of any specific trimmed-surface formulation, in
[5]). We consider three solid combination processes of
increasing computational complexity: the combination of
two primitives, the combination of a primitive and a
boundary file, and the combination of two boundary files.

In the first case, only intersections between complete
patches arise. This simplifies the boundary-file computation
and serves to illustrate its salient features. However,
algorithms which perform primitive combination only
cannot be employed in further modifying the solid, and are
therefore of limited practical utility.

and a trimmed patch occur. The solid is successively
modified by unioning, differencing, or intersecting it with a
new primitive at each stage of a linear constructive solid
geometry (CSG) tree [Figure 9(a)]. The first stage
corresponds to case one. This linear process avoids the
difficult combination of two boundary files. Although certain
solids defined by general CSG trees (which require
boundary-file combinations) cannot be created by this
incremental method, many commonly encountered
mechanical components are accommodated.

In the final case one encounters complex intersections
between trimmed-surface pairs. Boundary-file combination
or merging capabilities are required to evaluate solids
defined by a general binary CSG tree [Figure 9(b)], and

In the second case, intersections between a complete patch

325

RIDA T. FAROUKl

provide the greatest flexibility in creating and modifying
solids. However, the algorithms required are substantially
more complex.

5.1 Combination ofprimitives
Let PI and P2 denote two solid primitives as defined in
Section 4.3, bounded by N , and N2 patches, respectively.
The first step in the boundary evaluation of Boolean

326 combinations of these primitives is to compute the partial

RIDA T. FAROUKI

intersections of each patch i of PI with each patch J of P2. Of
the NlN2 possible intersections, a substantial fraction are
expected to be null. Most of these are bypassed by bounding-
box interference tests (Section 4.4).

Let patch i of P, be specified by the dual equations
(r = r(s, t) , f (x , y , -7) = O } and patch j of P2 by (r = r(u, v) ,

g(x, y , z) = 01. Substituting r(s, t) into g(x, y, z) = 0 and
r(u, v) intof(x, y , z) = 0, we obtain the algebraic curve
equations G(s, t) = 0 and F(u, v) = 0 in the unit parameter
squares of patch i of PI and patch; of P2, respectively. The
partial intersection is a subset of these curves. We identify
the correct subsets and evaluate them as collections of
monotonic branches as follows.

Consider the curve C(s, t) = 0 on patch i of PI (symmetric
arguments are employed in processing F(u, v) = 0 on patch J

of P2). First, we identify the characteristic points for the
complete curve G(s, t) = 0-the border, turning, and singular
points-and compute their link multiplicities. We then
determine the monotonic branches delineated by these
characteristic points by the curve-tracing procedure, ensuring
that all link multiplicities are satisfied (cf. Sections 4.6-4.10).

A set of termination points is then identified. These occur
where the border curves of patch; of P2 cross the surface of
patch i of PI within the unit parameter square; i.e., they are
the image points on r(s, t) of the border points of F(u, v) =
0. Only those lying in the unit parameter square for r(s, t)
are retained. These termination points lie on the monotonic
branches of G(s, t) = 0 (Figure 10).

We split each monotonic branch at the termination points
which lie on it. This generates a new set of monotonic
branches defining G(s, t) = 0, with the following property:
Each branch belongs entirely to the intersection of the finite
patches r(s, t) and r(u, v) , or to the intersection of r(s, t) with
the algebraic extension of r(u, v) (cf. Section 4.2). Only the
monotonic branches of the first category should be retained
for the partial intersection.

These are identified as follows. We partially trace each
branch to an intermediate point (s,, t,) between its endpoints,
and compute its image (u,, V I) on r(u, v) . The branch is
retained if (u,, v,) E [0, 11 X [0, 11; otherwise it is discarded.
In the final representation of the partial intersection as a
collection of monotonic branches, termination points may
be regarded as having a link multiplicity of 1.

to evaluate the portions of a general algebraic curve within
the parametric domain fi of a trimmed-surface patch
(Section 4.17). The main difference is that in the present
situation there is no unambiguously defined parametric
domain, and monotonic branches must be retained or
discarded by reference to the other patch participating in the
intersection.

The above process may be repeated to evaluate the partial

The procedure described above is similar to that employed

intersection subset of F(u, v) = 0 in the parameter space of
patch j of Pz. Note that in the partial intersection of two

IBM J . RES. DEVELOP. VOL 31 NO. 3 MAY 1987

patches there is a one-to-one correspondence between border
points and termination points in the respective parameter
spaces of the patches. Such a correspondence also holds for
singular points, but not for turning points. A turning point
of G(s, t) = 0 is not uniquely identified with a turning point
of F(u, v) = 0, and even the number of turning points for the
partial intersection representations in the two parameter
spaces may differ.

A well-structured boundary-file data structure should
allow a unique identification between portions of the
intersection curve, as represented in the parameter space of
each patch. The lack of correspondence between turning
points implies that such an identification does not hold for
the monotonic branches as determined above. However,
there is a simple remedy for this dilemma (Figure 11):

We image the turning points in one parametric space into
the other parametric space and vice versa, splitting the
monotonic branches of the partial intersection
representation in each case. This additional splitting of
monotonic branches guarantees a unique correspondence of
branches for the partial intersection representation in the
two parameter spaces. The splitting introduces redundancy
in the definition of the partial intersection. This does not
necessitate any alteration in the trimmed-surface

Partial intersection of two finite patches r(s, f) and r(u, y). Border
points of the intersection curve representation on r(s, t) are imaged to
termination points of the representation on r(u, u). and vice versa.

formulation or interrogation algorithms, but may induce
some degradation of computational efficiency.

N , of P, with each patch j = 1, 2, . . . , N2 of P2 have been
computed, we consider each patch of the two primitives in
turn. If no partial intersections have been found, the
trimming boundary is the unit square (33). I f partial
intersections do occur, we chain their constituent monotonic
branches together by identifying branches with common
endpoints. Such chains either form closed piecewise-
algebraic loops within the unit square, or open tracks which
terminate at border points on the unit-square boundary.

By ordering the border points around the perimeter of the
unit-square boundary (33), it is possible to construct a set of
piecewise-algebraic loops from the open tracks and portions
of the unit-square boundary which cover the entire area of
the unit square (Figure 12). These are called principal
loops-all other loops in the unit square generated by partial
intersections must be nested within a principal loop. The
nesting relationships of these loops are determined by the
procedures described in Section 4.14. If no border points
occur, there is only a single principal loop, the unit-square
boundary (33).

Once the partial intersections of each patch i = I , 2, . . . ,

327

RlDA T. FAROUKI IBM J . RES. DEVELOP VOL. 31 NO. 3 MAY 1987

The tree structure of piecewise-algebraic loops may now
be assembled. Each principal loop of positive polarity is an
initial node of the tree. For principal loops of negative
polarity, each contained loop at the first nesting level (if any)
is also an initial node of the tree (the principal loop of
negative polarity itself is discarded). Since the nesting
structure for each principal loop has been already
determined, the remaining tree structure is readily available.

We impose positive (anticlockwise) orientation on the
loops at the initial nodes of the tree, and reverse the
orientation with each successive nesting level. This
completes the trimmed-surface definition, which consists of
the implicit and parametric equations (15) and (16), the
specifications (3 1) of a collection of piecewise-algebraic
loops, and the tree structure (Figure 6) describing their
nesting relationships.

Consider a single patch r(s, t) on primitive P,. Each
principal loop is assigned a polarity, positive or negative,
according to whether we wish to retain the interior or
exterior trimmed surface of P, with respect to Pz (cf. Section
2). The polarity is determined by obtaining a point (so, to)
inside the principal loop, but outside all loops nested within
it, projecting it to three dimensions, r,, = r(so, to), and
classifying the Cartesian point ro with respect to primitive P2
(cf. Section 4.3). The polarity is positive when ro is outside
P2 and we want the exterior trimmed surface, or ro is inside
P2 and we want the interior trimmed surface; otherwise it is
negative. Note that adjacent principal loops must have

328 opposite polarity.

and for F(u, u) = 0 as the images of the border points of
G(s, t) = 0 on the unit square. The monotonic branches are
split at these termination points in each case.

After splitting, each monotonic branch of G(s, t) = 0
either belongs entirely to the intersection of the complete
patch r(s, t) and the trimmed patch r(u, u), or to the
intersection of the complete patch r(s, t) with the extensions
of r(u, v) beyond the parametric domain Q. We partially
trace each branch to a point (si, t i) intermediate between its
endpoints, and find its image (u , ut). The branch is retained
only if (uL, u,) E Q.

Similarly, each monotonic branch of F(u, u) = 0 either
belongs entirely to the intersection of the complete patch

RlDA T. FAROUKI IBM J . RES. DEVELOP. VOL 31 NO. 3 MAY 1987

r(s, t) and the trimmed patch r(u, u), or to the intersection of
the trimmed patch r(u, u) with the algebraic extension of the
complete patch r(s, t) . Partially tracing each branch to a
point (u , vi) intermediate between its endpoints, we retain
the branch only if its image point satisfies.(s, ti) E [0, 11 X

[0, 11. As before, we can perform imaging of turning points
between the parameter spaces of the complete and trimmed
patches, and splitting of branches at the image points, if a
unique identification between branches in the two parameter
spaces is desired.

The next step is to form the principal loops and assign
their polarities. For the complete patch, this is done exactly
as described above in the combination of two primitives. For
the trimmed patch, the principal loops are formed from
open tracks of monotonic branches, generated by partial
intersections, plus portions of the trimming boundary (the
branches of the trimming boundary must be split at the
border points where the open tracks meet it). Taken
together, the principal loops cover the entire parametric
domain Q (Figure 13).

The polarities are assigned by taking a parametric point
inside each principal loop (but outside all loops nested
within it), projecting to three dimensions, and classifying the
resulting Cartesian point with respect to the boundary file B
(cf. Section 6.2) or primitive P, as appropriate. The nesting

IBM J. RES. DEVELOP, VOL. 31 NO. 3 MAY 1987

behavior of the piecewise-algebraic loops within each
principal loop is determined as described in Section 4.14,
and the tree structure for the trimmed surface is then derived
from the principal loops as described in Section 5.1. When
each piecewise-algebraic loop has been assigned its canonical
orientation, the trimmed-surface definition is complete.

5.3 Combination of boundaryfiles
Finally, we consider the boundary evaluation of the Boolean
combination of two solid boundary files, B, and B2,
comprising N , and N2 trimmed-surface patches, respectively.
Again, we address only the issues arising in this case which
are significantly different from the procedures described
above.

Consider the partial intersection of patch i of B, , defined
by (r = r(s, t) , f (x , y , z) = 0) and parametric domain a,, and
patch j of B2, defined by (r = r(u, u), g(x, y, z) = 0) and
parametric domain Q2. We must identify the partial
intersection subsets of the algebraic curves G(s, t) = 0 and
F(u, v) = 0 and evaluate them as collections of monotonic
branches.

We consider the curve G(s, t) on patch i of B , (symmetric
arguments are employed in processing F(u, v) = 0 on patch j
of B2). We evaluate G(s, t) = 0 with respect to the parametric
domain Q , (cf. Section 4.17) of the trimmed patch r(s, t) .

RlDA T. FAROUKI

Termination points are then introduced on the resulting
monotonic branches, as the images of the border points of
F(u, u) = 0 evaluated on Q,. The monotonic branches are
split at these termination points.

After splitting, each monotonic branch either belongs
entirely to the intersection of the trimmed patches r(s, t) and
r(u, u), or to the intersection of the trimmed patch r(s, t)
with the extensions of r(u, u) beyond the parametric domain
9,. Partially tracing each branch to a point (sz, t,)
intermediate between its endpoints, we retain the branch
only if its image point satisfies (u,, u,) E Q2.

The above process is repeated to evaluate the partial
intersection subset of F(u, u) = 0 on patch j of B,. Imaging
of turning points between the parametric spaces of the
patches may be performed to establish a unique
correspondence of branches. The identification of the
principal loops and the construction of the tree describing
the nesting behavior of the piecewise-algebraic loops in the
trimming boundary proceed in a manner analogous to that
described previously.

6. Interrogation algorithms
A boundary-file representation for a solid model generated
by Boolean operations is of limited value if interrogation
algorithms, answering elementary queries concerning the
model, cannot be formulated or are too complex to
implement. In this section we outline some basic
interrogation procedures for boundary files derived from the
trimmed-surface formulation presented above. More general
interrogation functions may often be synthesized from these
basic procedures.

The reader should not infer that we advocate boundary
evaluation as a recommended intermediate step in
performing these interrogations. Although empirical
evidence is sparse, it is probable that if the initial solid
specification is a CSG tree, for example, ray-tracing and
point classification may be performed more efficiently and
reliably directly from that representation. However, a
boundary formulation of these algorithms is still important
for cases where no other representation is available.
Additionally, for the case of volumetric or mass properties
integrations, boundary methods offer potentially the most
accurate and systematic approach [49].

6.1 Ray-tracing of boundary files
The intersections of a ray with a solid boundary file are
determined by finding the intersections with each of its
constituent trimmed-surface patches. Testing the ray against
the bounding boxes for the complete patches associated with
each trimmed-surface patch (cf. Section 4.4) minimizes
unnecessary computation. (The problem of computing true
bounding boxes for trimmed patches is quite complex, and
the time saved by having such boxes might not offset the
cost of computing them.) 330

RlDA T FAROUKI

To determine the intersection of a ray with a trimmed-
surface patch, we first determine the intersections (u,, u,) with
the complete patch (cf. Section 4.3). Each of these must then
be classified as lying inside or outside the parametric domain
Q of the trimmed patch. To accomplish this, we classify the
points with respect to each of the piecewise-algebraic loops
of the trimming boundary (cf. Section 4.14). If a candidate
intersection point does not lie inside any of the loops, it is
outside the parametric domain Q. If it lies inside one or
more of the loops, these loops must be nested, and we
determine the orientation of the innermost loop. If this is
clockwise, the candidate intersection is outside Q; if
anticlockwise, it lies inside Q.

An obvious application of the ray-tracing technique for
solid boundary files is the generation of high-resolution
shaded raster images. It should be noted, however, that if the
boundary file results from the evaluation of a Boolean CSG
tree acting on a set of primitives, it is almost certainly more
efficient to ray-trace the primitives directly, and then
perform the Boolean operations on the in/out intervals along
the ray generated by each primitive.

6.2 Point classification for boundary files
A candidate point p may be classified as lying inside, on the
boundary of, or outside the volume V defined by a boundary
file B by considering the intersections of a straight line
through p with the trimmed-surface patches of B. The
procedure is analogous to that for solid primitives (Section
4.3), except that the intersections of the line with trimmed
rather than complete patches must be determined (see the
preceding section). Note again that point/solid classification
may be performed more efficiently directly from the Boolean
CSG tree in most cases.

6.3 Sectioning of boundaryfiles
Automated manufacturing applications driven directly from
solid boundary representations are still in their infancy, and
even in the most immediate application domain of solid
modeling-detailed design and drafting-there is still a
heavy reliance on two-dimensional blueprints as the final
production specification. In this context, the ability to
compute, annotate, and dimension planar section cuts
through a solid boundary file is of crucial importance. More
complex sectioning surfaces also frequently arise [28], for
example in aerodynamic applications, and we consider
below the general problem of sectioning a boundary file by
an unbounded surface defined by a low-degree implicit
equationflx, y, z) = 0 (cf. Table 1).

Substituting the parametric form (15) for each trimmed
patch into the implicit equation of the sectioning surface, we
obtain an algebraic curve equation of the form (20) for the
section through that patch. The segments of this curve which
lie in the parametric domain Q of the trimmed patch are
then identified and broken up into monotonic branches by

IBM J. RES. I XVELOP. VOL. 31 NO. 3 MAY 1987

the technique described in Section 4.17. It is then usually
desirable to approximate these by three-dimensional
parametric arcs. This may be accomplished by splining
through an ordered set of discrete points sampled along the
branch and projected to three dimensions. Alternately, the
inherent smoothness of monotonic branches suggests
developing special algorithms for interpolating the
endpoints, tangent directions, and other differential
properties of a branch, projected to three dimensions, by
single parametric polynomial arcs.

adjacency relationships of the trimmed-surface elements,
provides a means for ordering the parametric space arcs
resulting from the section computation (this subject is
beyond the scope of the present study). An important related
issue is the treatment of arc end conditions where the section
curve traverses the boundary between adjacent trimmed
patches. If surface tangent continuity obtains across the
boundary, the three-dimensional approximation procedure
for monotonic branches should ensure tangent continuity for
the section curve also. This is unlikely to be true if the
trimming boundary branch under consideration results from
an intersection of primitives; however, it is true if the branch
is part of the unit square (33) and the original primitive is
tangent-continuous across patch boundaries.

A systematic boundary-file data structure, describing the

6.4 Mass properties for boundary files
Perhaps the most important applications of boundary files
are in the estimation of volumetric integrals (mass
properties) of complex solids. While simpler algorithms
are readily available based on polyhedral approximation
[50, 511, Monte Carlo methods, cellular decomposition, etc.
[49], the surface-integral form for boundary files is
potentially the most accurate, since it is based on an
essentially precise representation of the solid.

Let a boundary file B enclosing a solid volume V be
composed of N trimmed-surface patches with parametric
equations r,(u, u), and let Q , denote the parametric domain
contained within the trimming boundary of patch i. A
surface integral over B has the general form

(35)

where +,(u, v) is a function of the parametric coordinates on
the domain 0, of patch i. Several important solid properties
are easily expressed in the surface integral form (35) by
invoking the Gauss divergence theorem

1 V . F dxdydz = S F . dA, (36)

F being an arbitrary vector field defined in V, and dA a
vector surface-area element of the boundary B.

B

On the trimmed-surface patch r = r,(u, v) , the vector area
element is

I B M J . RES. DEVELOP. VOL 31 NO. 3 MAY 1981

dA = S,(u, v)dudv, where S,(u, V) = -L x l. (37)
ar ar
au dv

We assume that the surfaces under consideration have
nonsingular parameterizations, i.e., I S,(u, v) I # 0 over the
parametric domain 0, of each patch. To evaluate the surface
integrals over each trimmed patch in (35), the numerical
procedures described in Section 4.16 must be invoked. In
principle, the adaptive nature of these schemes allows any
prescribed precision to be realized in the integration.

6.4.1 Surface area
The surface area of the solid is obtained by integrating the
scalar magnitude of dA over each trimmed patch. Hence, we
integrate the functions

+,(% u) = IS,(& v) I (38)

over the parametric domain of each patch in Equation (35).

6.4.2 Volume
By setting F = r in the Gauss theorem (36) , the volume V of
the solid may be expressed as a surface integral of the
functions

+,(u, v) = $ r,(u, v) . s,(u, (39)

over the parametric domain of each trimmed patch in
Equation (35). For uniform density p , the mass of the solid is
M = pv .

6.4.3 Center of gravity
The center of gravity rc = (xc, yc, zc) of a homogeneous solid
is defined by

Vr, = r dxdydz.

The x, y, z components of the right-hand side of (40) may be
expressed as surface integrals by choosing the vector fields

F = a XT, 4 yr, 4 zr,

respectively, for F in the Gauss theorem (36). For x,. this
yields the integrands

+,(u, = t x,(u, v)r,(u, v) . s,(u, v) (42)

Jc (40)

I l l
(41)

on each trimmed patch, where x,(u, u) is the x-component of
r,(u, v) . Symmetric expressions obtain when computing y,
and z,.

6.4.4 Inertia tensor
For uniform density p the components of the solid inertia
tensor [52] are defined by

I , = S (y’ + z2)pdxdydz,

I = - S xypdxdydz, etc. (43) 33 1

RlDA T FAROUKI

Since the inertia tensor is symmetric, only six of the nine
components (43) are independent. The vector fields

F = f p(y’ + z’lr, - 5 pxyr, etc., (44)

may be employed to transform the inertia components (43)
into surface integral expressions, using the Gauss theorem
(36). The integrands for each trimmed patch then have the
form

$,(K v) = f P[Y:(u, v) + zf@, LJ)Ir,(u, v) ’ S,(U,

+,(u, u) = - PX,(U, v)v,(u, v)r,(u, v) . s,(u, etc. (45)

in (35). Once [rA, Zx,, . . . are known, the inertia components
may be referred to the center of gravity (40) and the
principal axes and principal moments are then easily
determined.

6.4.5 Other volume integrals
In general, the integral of an arbitrary scalar field @(x, y , z)
over the volume of a solid

I = @(x, y , z) dxdydz

may be transformed to the form (35) appropriate to
boundary representations if @(x, y , z) is an integrable
function of the coordinates. A vector field F = (Fx, F,,, Fz)
satisfying

(47)

must be found. Solutions to (47) are indeterminate to the
extent of the curl of an arbitrary vector field; i.e., if F is a
solution, then

F ’ = F + V x G (48)

is also, G being an arbitrary vector field. A simple approach
is to assume the three terms on the left of (47) to be equal,
and thus take the components of F to be the indefinite
integrals

fi: = S Qdx, F, = f S Gdy, F, = f S adz. (49)

7. Summary and conclusions
We have outlined algorithms for representing and processing
trimmed-surface elements, i.e., finite portions of unbounded
analytic surfaces with complex border curves. A unified
approach was adopted in which the intimately coupled
problems of surface intersection computation and trimmed-
surface representation have been addressed in a consistent
manner; all surfaces belonged to a single canonical form and 332

RIDA T. FAROUKl

were thus amenable to processing by the same algorithms.
The trimmed-surface formalism was based, as far as possible,
on deterministic mathematical procedures such as the
elementary arithmetic operations and univariate polynomial
root-solving.

Errors in geometric computations may be regarded as
originating from two sources: heuristics in the mathematical
or algorithmic formulation of the problem, and the vagaries
of practical floating-point software implementation of the
proposed solution. In setting the surface intersection and
trimming problem on a sounder mathematical footing, we
have attempted to minimize the former source. Any
advances in the accuracy and reliability of computer
arithmetic or root-solving algorithms [101 can thus be
imported into the methods described here with immediate
benefit.

Our algorithms are amenable, in principle, to surfaces of
arbitrary degree. In practice, however, the complexity of
surfaces which can be realistically addressed will be
constrained by the degree of the univariate polynomials
arising in the processing of those surfaces. As an extreme
example, the intersection of two bicubic patches yields an
algebraic curve of the form (20) of degree 54 in each of u
and v. Determining the characteristic points of such a curve
would then incur an intractable univariate resultant
polynomial of degree 5778. However, we believe that a
family of simpler surfaces of interest (cf. Table 1) can be
systematically and reliably processed.

We have vindicated the practical value of the trimmed-
surface methods presented here by providing some well-
defined interrogation procedures for solids bounded by such
surface elements (cf. Section 6). In particular, the surface
integral formulation provides a reliable and systematic
means of estimating mass properties for complex solids.

In concluding, we highlight areas for further research
consolidating or complementing the present study. Perhaps
the weakest link in the surface-intersection computation is
the algebraic curve-tracing procedure (cf. Section 4.10).
Since this plays a central role in identifying and processing
monotonic branches, a more deterministic method is
desirable (a tolerance-based variant of the present technique
might suffice). Important areas that we have given only
cursory treatment or none at all are the Boolean
combination algorithms that generate the trimmed-surface
elements of a boundary file, and data structures for
representing their adjacency relationships in easily accessible
form. Finally, we remark that while some of the algorithms
presented here have been validated by actual software
implementation [28], the remainder require further practical
exploration and testing.

References
1 . A. A. G. Requicha and H. B. Voelcker, “Solid Modeling: A

Historical Summary and Contemporary Assessment,” IEEE
Comput. Graph. & Appl. 2, No. 2,9-24 (1982).

IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

2. A. A. G. Requicha and H. B. Voelcker, “Solid Modeling:
Current Status and Research Directions,” IEEE Comput. Graph.
& Appl. 3, No. 7, 25-37 (1983).

3. S. W. Thomas, “Modelling Volumes Bounded by B-Spline
Surfaces,” Ph.D. thesis, University of Utah, Salt Lake City,
1984.

Surface Patches,” IEEE Comput. Graph. & Appl. 7, No. I ,
33-43 (1987).

Solid Modeling: Boundary Evaluation and Merging
Algorithms,” Proc. IEEE 73, No. I , 30-44 (1985).

GMSOLID Goals and Issues,” Solid Modeling by Computers-
From Theory to Applications, M. S. Pickett and J. W. Boyse,
Eds., Plenum Press, New York, 1984.

7. A. A. G. Requicha and H. B. Voelcker, “Constructive Solid
Geometry,” Technical Memo 25, Production Automation
Project, University of Rochester, Rochester, NY, 1977.

8. R. B. Tilove and A. A. G. Requicha, “Closure of Boolean
Operations on Geometric Entities,” Comput. Aided Design 12,

4. M. S. Casale, “Free-Form Solid Modeling with Trimmed

5. A. A. G. Requicha and H. B. Voelcker, “Boolean Operations in

6. R. F. Sarraga and W. C. Waters, “Free-Form Surfaces in

NO. 5 , 219-220 (1980).
9. A. A. G. Requicha and R. B. Tilove, “Mathematical

Foundations of Constructive Solid Geometry: General Topology
of Closed Regular Sets,” Technical Memo 27a, Production
Automation Project, University of Rochester, Rochester, N Y ,
1978.

Computation,” presented at the Surfaces in Computer-Aided
Geometric Design Conference, Oberwolfach, West Germany,
1987.

Problem,” Report No. MDC J7789, McDonnell-Douglas
Corporation, Long Beach, CA, 1977.

12. E. G. Houghton, R. F. Emnett, J. D. Factor, and L. Sabharwal,
“Implementation of a Divide-and-Conquer Method for
Intersection of Parametric Surfaces,” Compur. Aided Geom.
Design 2, 173-183 (1985).

13. G. E. Collins, “Infallible Calculation of Polynomial Zeros to
Specified Precision,” Mathematical Software III, J. R. Rice, Ed.,
Academic Press, Inc., New York, 1977.

14. J. H. Wilkinson, Rounding Errors in Algebraic Processes,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963.

15. G. Dahlquist and A. Bjorck [trans. N. Anderson], Numerical
Methods, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974.

16. J. V. Uspensky, Theory ofEquations, McGraw-Hill Book Co.,
Inc., New York, 1948.

17. J. M. Lane and R. F. Riesenfeld, “Bounds on a Polynomial,”
BIT21, No. I , 112-117 (1981).

18. A. S. Householder, The h‘umerical Treatment of a Single
Nonlinear Equation, McGraw-Hill Book Co., Inc., New York,
1970.

19. G. Salmon, Lessons Introductory to the Modern Higher Algebra
(reprint), Chelsea Publishing Co., New York, 1885.

20. L. H. Williams, “Algebra of Polynomials in Several Variables for
a Digital Computer,” J. ACM 9,29-40 (1 962).

2 I . J. Moses, “Solution of Systems of Polynomial Equations by
Elimination,” Commun. ACM 9, No. 8, 634-637 (1966).

22. G. E. Collins, “Subresultants and Reduced Polynomial
Remainder Sequences,” J. ACM 14, No. 1, 128-142 (1967).

23. S. Y. Ku and R. J. Adler, “Computing Polynomial Resultants:
Bezout’s Determinant vs. Collins’ Reduced P.R.S. Algorithm,”
Commun. ACM 12, No. 1,23-30 (1969).

24. G. E. Collins, “The Calculation of Multivariate Polynomial
Resultants,” J. ACM 18, No. 4, 5 15-522 (1971).

25. J. T. Kajiya, “Ray Tracing Parametric Patches,” ACM Comput.
Graph. (Proc. SIGGRAPH ’82) 16, No. 3,245-254 (1982).

26. T. W. Sederberg, D. C. Anderson, and R. N. Goldman,
“Implicit Representation of Parametric Curves and Surfaces,”
Comput. Vision, Graph. & Image Proc. 28, 72-84 (1984).

Computer Aided Geometric Design,’’ Comput. Aided Geom.
Design 1, 309-326 (1984).

IO. R. T. Farouki and V. T. Rajan, “Imprecise Geometric

I 1. H. G. Timmer, “A Solution to the Surface Intersection

27. Y. de Montaudouin and W. Tiller, “The Cayley Method in

28. R. T. Farouki, “The Characterization of Parametric Surface
Sections,” Comput. Vision, Graph. & Image Proc. 33,209-236
(1986).

29. R. T. Farouki and J. K. Hinds, “A Hierarchy of Geometric
Forms,” IEEE Comput. Graph. & Appl. 5, No. 5 , 5 1-78 (1985).

30. T. W. Sederberg, “Implicit and Parametric Curves and Surfaces
for Computer Aided Geometric Design,” Ph.D. thesis, Purdue
University, West Lafayette, IN, 1983.

3 I . R. T. Farouki. “Exact Offset Procedures for Simple Solids,’’
Comput. Aided Geom. Design 2,257-279 (1985).

32. P. Hanrahan, “Ray Tracing Algebraic Surfaces,” ACM Comput.
Graph. (Proc. SIGGRAPH ’83) 17, No. 3, 83-90 (1983).

33. B. Dimsdale, “Bicubic Patch Bounds,” Comput. & Math. with

34. D. S. Amon, “Topologically Reliable Display of Algebraic
Appl. 3,95-104 (1977).

Curves,’’ ACM Comput. Graph. (Proc. SIGGRAPH ’83) 17, No.
3,219-227 (1983).

35. P. Frost, An Elementary Treatise on Curve Tracing (reprint),
Chelsea Publishing Co., New York, 1872.

36. I. Petrowsky, “On the Topology of Real Plane Algebraic
Curves,’’ Ann. Math. 39, No. 1, 189-209 (1938).

37. G. Salmon, A Treatise on the Higher Plane Curves (reprint),
Chelsea Publishing Co., New York, 1879.

38. J. G. Semple and G. T. Kneebone, Algebraic Cunw, Oxford
University Press, Oxford, England, 1959.

39. R. J. Walker, Algebraic Curves (reprint), Springer-Verlag, New
York. 1978.

40. Y. de Montaudouin, W. Tiller, and H. Vold, “Applications of
Power Series in Computational Geometry,” Comput. Aided
Design 18, No. IO, 514-524 (1986).

41. H. Engels, Numerical Quadrature and Cubature, Academic
Press, Inc., New York, 1980.

42. A. H. Stroud, Approximate Calculation of Multiple Integrals,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971.

43. R. E. Barnhill and F. F. Little, “Adaptive Triangular Cubature,”
Rocky Mount. J. Math. 14, No. I , 53-75 (1984).

44. M. S. Shephard, “Automatic and Adaptive Mesh Generation,”
IEEE Trans. Magnetics MAG-21, No. 6, 2484-2489 (1985).

45. M. A. Yeny and M. S. Shephard, “Finite Element Mesh
Generation Based on a Modified-Quadtree Approach,” IEEE
Comput. Graph. & Appl. 3, No. I , 36-46 (1983).

Algebraic Decomposition I: The Basic Algorithm,” and “11: An
Adjacency Algorithm for the Plane,” SIAM J. Computing 13,

46. D. S. Amon, G. E. Collins, and S. McCallum, “Cylindrical

NO. 4, 865-889 (1984).
47. H. G. Timmer and J. M. Stem, “Computation of Global

Geometric Properties of Solid Objects,” Comput. Aided Design
12, No. 6, 301-304 (1980).

Curved-Surface Environments,” IEEE Comput. Graph. & Appl.
5, No. 1,21-40 (1985).

49. Y. T. Lee and A. A. G. Requicha, “Algorithms for Computing
the Volume and Other Integral Properties of Solids: I. Known
Methods and Open Issues,” and “11. A Family of Algorithms
Based on Representation Conversion and Cellular
Approximation,” Commun. ACM 25, No. 9,635-650 (1982).

Polyhedron Measures [Z],” ACM Trans. Math. Software 6, No.
I , 121-130 (1980).

5 I . S. Lien and J. T. Kajiya, “A Symbolic Method for Calculating

IEEE Comput. Graph. & Appl. 4, No. IO, 35-41 (1984).
the Integral Properties of Arbitrary Nonconvex Polyhedra,”

52. L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press,
Oxford, England, 1960.

48. K. J. Weiler, “Edge-Based Data Structures for Solid Modeling in

50. A. M. Messner and G. Q. Taylor, “Algorithm 550: Solid

Received August 25, 1986; accepted for publication December
22, 1986

333

RlDA T. FAROUM IBM J. RES. DEVELOP. VOL. 31 NO. 3 MAY 1987

Rida T. Farouki IBM Thomas J. Watson Research Center, P.O.
Box 218, Yorktown Heights, New York 10598. Dr. Farouki
graduated from Oxford University, England, in 1978 with First
Class Honours in engineering science and was awarded the
Maurice Lubbock Memorial Prize. In 1983 he received a Ph.D. in
astronomy and space sciences from Cornel1 University, Ithaca, New
York. His doctoral research was concerned with the dynamics of
galaxy collisions and mergers. From 1983 to 1986 he was engaged in
the design and implementation of geometric modeling algorithms at
the General Electric Research and Development Center. His current
research interests focus on the computational and representational
aspects of boundary evaluation in solid modeling.

334

RlDA T. FAROUKI IBM J . RES. DEVELOP. VOL 31 NO 3 MAY 1987

