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Although  trimmed  surfaces  play a fundamental 
role in the  derivation  and  processing of solid 
boundary  representations,  they  have  received 
little attention to date.  We propose  a  trimmed- 
surface  formulation  appropriate to the  Boolean 
combination  of  primitives  bounded  by  a  family of 
elementary  surface  patches (e.g.,  planes, 
quadrics,  ruled  surfaces,  surfaces of revolution) 
with  dual  parametric  rational  polynomial  and 
implicit  algebraic  equations.  Partial  intersections 
between  pairs of primitive  surface  patches  are 
formulated  precisely  as  algebraic  curves in the 
parameter  space of each  patch.  These  curves 
are  dissected into monotonic  branches  by  the 
identification  of  a  characteristic  point set.  The 
consolidation of all partial intersections  yields a 
system of piecewise-algebraic loops which 
define  a  trimming  boundary  enclosing  a 
parametric  domain  for  the  trimmed  patch.  With 
few  exceptions,  the  trimmed-surface  formulation 
is based  on  precisely  defined  mathematical 
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procedures, in order  to  achieve  maximum 
robustness. Some basic  interrogation  algorithms 
for  solids  bounded  by  trimmed-surface  elements 
are  also  presented,  including  procedures  for 
ray-tracing, point/solid classification,  sectioning, 
and  computation  of  surface  area,  volume,  center 
of gravity,  moments of inertia,  and  other  mass 
properties. 

1. Introduction 
Considerable effort has recently been directed  toward the 
development of solid modeling technology [ 1, 21 as a 
framework  for  formulating and solving complex  geometric 
problems. The potential  applications  of  these methods range 
from  mechanical  parts and VLSI circuits to geological 
formations,  a diversity reflected in  the  current variety of 
representational and algorithmic  approaches.  These 
endeavors  have been fueled by advances in  computer 
hardware and software, new mathematical tools,  graphical 
display techniques, and  the resurrection  of classical algebraic 
geometry.  However, it is now widely conceded that 
fundamental algorithmic  hurdles have impeded the 
development  of systems with adequate efficiency,  robustness, 
and versatility to fully realize their practical objectives. This 
is perhaps more  true of systems restricted to  the relatively 
modest surface forms (cf. Table 1, shown  later) than those 
addressing complex or amorphous geometries, since the 
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precision and reliability demanded in the  former case 
preclude the  approximate  methods which are generally 
suitable  for the latter. 

The  premium placed on  robustness  has  a  clear practical 
motivation: The executive role proposed for solid modelers 
in synthesizing and integrating  engineering design, analysis, 
manufacturing, assembly, and inspection  applications 
imposes on such systems an  onerous responsibility for 
individual or compounded errors, with costly consequences. 
Central  to  the  development of  a  robust  modeler 
encompassing the family of simpler surfaces commonly 
found in manufactured parts is a rigorous trimmed-surface 
formulation. A trimmed surface is a finite segment of an 
unbounded analytic surface, enclosed within  complex 
(possibly nested) border  curves lying on that surface.  These 
borders  are frequently  curves of intersection with other 
curved surfaces and, in general, they possess no elementary 
parametric representations. 

surface equations, and  thus  the need for trimmed surfaces 
arises immediately  in the  boundary description of solid 
models. Given the  fundamental  importance of trimmed- 
surface algorithms,  it is remarkable that they are largely 
neglected in the geometric  modeling literature-see, 
however, [ 3 ,  41. Trimmed surfaces are intimately  coupled to 
the  thorny problem  of  surface-intersection computation,  and 
published  boundary-evaluation  procedures which implicitly 
process them either bypass the issue of their  formal 
representation or restrict their attention  to simple domains 
(e.g., two-dimensional or polyhedral objects) for which 
closed-form solutions  are  available, e.g., [5]. While 
boundary-evaluation  procedures  have actually been 
implemented  in  some existing modelers, their reliability is 
apparently less than satisfactory [6]. 

surface  definition. We avoid, as far  as possible, heuristic 
methods  and base the definition on well-defined 
mathematical procedures  such  as the  arithmetic  operations 
and polynomial root-solving. Our emphasis is on  the 
definition and processing of  individual  trimmed-surface 
elements. Little consideration is given at present to issues 
such  as computational efficiency, data  structures for 
organizing the adjacency  relationships between trimmed- 
surface  elements, and  the  boundary evaluation  procedure per 
se. These  subjects are discussed elsewhere in  the literature. 

Few three-dimensional  objects are representable by single- 

In this  paper we attempt  to  formulate a rigorous trimmed- 

2. Trimmed  surfaces and boundary 
representations 
An abstract  trimmed-surface  definition, independent of the 
diverse representations of solids and their bounding surfaces 
occurring  in solid modeling systems, forms  a useful point of 
departure [7]. Adopting the usual notation of set theory, let 
A and B denote regular, compact volumes  in R3 and let 

A U B , A n B , A - B , B - A  (1) 

be the  volumes  generated by the regularized [8] Boolean 
operations  of union, intersection, and difference on  them. If 
the volumes A and B under consideration  represent 
homogeneous  solids  in  a solid modeling  system, they are 
unambiguously defined by their bounding surfaces S(A) and 
S(B). Our principal  concern is thus to determine  the 
boundaries 

S(A u B), S(A n B), S(A - B), S(B - A )  (2) 

of the Boolean combinations ( l ) ,  given the  input  boundaries 
S(A) and S(B). 

Any compact volume X may be regarded as  partitioning 
R3 into two regions: a bounded open set I(*, the interior of 
X ,  and  an  unbounded open set E(X), the exterior or 
complement of X .  The interior and exterior are separated by 
a surface S(*, called the boundary of X .  The exterior 
trimmed surface of A with respect to B, denoted S(A > B), is 
defined as the open subset of S(A) exterior to B: 

S(A > B) = S(A) n E(B). ( 3 )  

Thus S(A > B)  is empty if A C B, is equal to S(A) if B C A 
or A and B are disjoint, and is a  subset  of S(A) otherwise. 
The interior trimmed surface of A with respect to B, denoted 
S(A < B), is defined as the  open subset of S(A) interior to B: 

S(A < B) = S(A) n I(B). (4) 

Thus S(A < B)  is empty if B L A or A and B are disjoint, is 
equal to S(A) if A C B, and is a subset of S(A) otherwise. 

The exterior and interior trimmed surfaces of B with 
respect to A ,  denoted S(B > A )  and S(B < A )  respectively, 
are defined in a  similar manner: 

S(B > A )  = S(B) n E(A), S(B < A )  = S(B) n I(A).  ( 5 )  

The curve of intersection of A and B, denoted C(A, B), is 
defined as the set of points  common  to S(A) and S(B): 

C(A, B )  = S(A) n s(B). (6) 

Ordinarily, C(A,  B) consists of one or more closed, one- 
dimensional  space  curves.  However,  in  exceptional cases 
where S(A) and S(B) touch at a point or over  a common 
area, the curve C(A,  B) degenerates and  may suffer isolated 
points or two-dimensional regions. In such cases a 
regularization procedure [9] may be invoked to  render  the 
intersection  uniformly  one-dimensional, and  the  trimmed- 
surface definitions must  then  be modified accordingly for the 
boundary formulae given below to remain valid. 

Assuming regular intersections, the  boundaries of the 
Boolean combinations (1) are given in terms of the interior 
and exterior trimmed surfaces and  the intersection  curve: 

(7) 315 
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The four possible combinations of interior and exterior 
trimmed surfaces  from A and B, respectively,  together with 
their mutual curve of intersection, thus comprise the 
boundaries of the Boolean combinations ( I ) .  The problems 
of computing and interrogating boundary representations for 
Boolean  solid combinations therefore reduce to those of 
developing algorithms for deriving and processing trimmed- 
surface formulations. 

In subsequent discussions  it is convenient to define 
trimmed surfaces  as  closed  two-dimensional  sets, 
incorporating the curve-of-intersection boundary as part of 
the trimmed-surface definition. Thus, for  example, 

S(A 2 B )  = S(A > B )  U C(A, B )  (8) 

denotes the exterior trimmed surface of A with  respect to B 
including the regularized intersection boundary. Although 
intersection  curves are duplicated when  such trimmed 
surfaces are pieced  together, this presents no special 
difficulties. 

3. Polynomial  root  determination 
The trimmed-surface methods presented  below require 
procedures  for determining the real roots of univariate 
polynomials and pairs of simultaneous bivariate polynomials 
on specified domains, usually the unit line [0, 11 and the 
unit square [0, 11 X [0, I ] ,  respectively. The multiplicities of 
these roots must also  be  recognized. Polynomial roots are 
usually irrational numbers, and must  therefore be 
represented  with  finite  precision. Furthermore, since  closed- 
form solutions are not available for degrees  higher than 4, 
the numerical algorithms invoked to solve them introduce 
additional errors. A truly robust implementation of the 
trimmed-surface algorithms presented  here will thus be 
realized  only  in the context of a full theory of imprecise 
geometric representation and computation. This matter is 
beyond our present  scope, and we defer it to a subsequent 
study [ l o ] .  

In principle, the numerical root-solving  procedures 
discussed  below are amenable to polynomials of arbitrary 
degree. For practical floating-point implementations, 
however,  severe limitations are imposed by poor accuracy 
and efficiency in the evaluation of  high-degree  polynomials. 
The polynomial  degrees  arising in the intersection and 
trimming of a family of simpler surfaces of practical  value 
(cf.  Table 1 ,  shown later) may  nevertheless  prove tractable. 

The philosophy  underlying our trimmed-surface 
formulation is to provide, as far as possible, a sound 
mathematical foundation for the definition and processing of 
trimmed-surface elements, without regard to computational 
efficiency.  While  ultimately we have  recourse to numerical 
procedures in determining polynomial roots, we  wish to 
preclude the ab initio heuristic  flavor of many current 
surface-intersection computations, e.g., [ 11, 121, where 
algorithm deficiency  may equal or exceed  imprecise 316 
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computation as a source of failure. The advantages of our 
delaying action in the introduction of numerical procedures 
are clear: Any advances  in  reliability or efficiency in the root 
algorithms or in floating-point  precision  in  general are 
imported directly into the system. 

3. I Univariate polynomials 
We require robust algorithms for determining the real  roots 
ti of a degree-n  polynomial 

p,(t) = 1 ak t  = o (9) 

on a bounded interval [t,, tb], to specified  precision E (i.e., the 
computed roots should lie in the intervals t, k c about the 
true roots [ 131). The interval [ t ,  tb] may  be conveniently 
transformed to the unit line [0, 11. The procedure should 
find all real  roots in the specified interval. Furthermore, 
there should be no loss  of resolution at multiple or nearly 
multiple  roots,  where the problem  becomes  ill-conditioned 

n 

k=O 

1141. 
The polynomial  coefficients (ak) in (9) are rarely  available 

as  precise initial data, but result  from  floating-point 
computations themselves  (e.g., as in the elimination 
procedures  described  below). Polynomial roots may  be  ill- 
conditioned with  respect to perturbation of the coefficients 
even  with  widely separated roots, and therefore thorough 
error analyses [ 141 are required  for truly robust 
implementation of our trimmed-surface formulations. 

The  above considerations preclude the simpler iteration 
methods based on guessing initial root approximations [ 151, 
unless there is additionally available a root isolation 
procedure which furnishes a set of nonoverlapping 
subintervals which contain each of the distinct real roots on 
the entire interval [ 161. We outline two  possible  techniques. 

3. I .  I Bernstein-Bezier subdivision 
The interval [to,  tb] is transformed to [0, 1 1  and P,,(t) is 
expressed in the Bernstein basis: 

on that interval. The coefficients ( ck) are obtained from the 
{ak)  by collating and equating terms of equal power. In the 
form ( lo) ,  the polynomial has the convex  hull and variation- 
diminishing properties of a Bezier  curve.  These furnish an 
iterative subdivision procedure which should isolate and 
converge on each  real root [ 171. However,  convergence 
problems arise at multiple roots, and the technique requires 
refinement to process  such  cases  reliably. 

3. I .2 Sturrn sequences 
A Sturrn sequence for the polynomial P,,(t) on the interval 
It,, 4 1 ,  

f ;W,  . . ., f,(t)> ( 1   1 )  
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may  be generated in  the following manner. Setfo(t) = P,(t) 
andf;(t) = dPJdt, and  denote by R[p(t),  q(t)] the polynomial 
remainder  on dividing p(t) by q(t). Then 

J;( t )  = -R[J;-#),  J;-,(t)I, i = 2 , . . . , m, (12) 

where the process is continued until  anfm(t) is generated 
(m 5 n)  which has constant sign on [t,, t,,]. The  number N of 
real, distinct zeros of P,(t) on [tu, t,,] is then given by 

N = W u )  - V t h ) ,  (13) 

where v(t) denotes  the  number of sign changes  of the  Sturm 
sequence ( 1 1) evaluated at t [ 16, 181. This  theorem provides 
a means for  isolating all real zeros by binary subdivision of 
the interval [tu,  th] until  the  number of roots  indicated  for 
each  subinterval  is 0 or 1. 

3.2 Simultaneous bivariate polynomials 
Simultaneous bivariate  polynomial equations of the form 
m n  P 4  

LZ,~U'V~ = bkp v = 0 k /  

t=O J=o k=O /=0 

arise  frequently in  the trimmed-surface  procedures described 
below. We wish to  determine  the real roots (u, v )  E [0, I ]  X 

[0, I ]  of ( 1 4 ,  which correspond to  the intersections of two 
algebraic curves  within the  unit square. The bivariate root- 
solving procedure  should  meet the  same criteria as in the 
univariate case. All relevant roots  must be identified, and 
multiple-root cases should be  accommodated without 
difficulty. To realize these  requirements, we employ 
elimination techniques  to transform the problem (14) into a 
univariate  polynomial  problem, and  take advantage  of the 
robust  algorithms  of Section 3.1. 

The resultant of Equations (14) with respect to either 
variable is a univariate polynomial  of degree mq + np in  the 
other variable whose roots are  the discrete values for that 
variable at which the two  curves (14) intersect. The resultant 
may be conveniently computed by expanding  the Sylvester 
or Bezout determinant for the system (14) [ 191. To each 
simple root  of the univariate  resultant there corresponds a 
unique value for the  other variable; if the resultant  has a root 
of  multiplicity h, there  are h (possibly coincident) 
corresponding  values  for the  other variable. Usually only the 
real roots  on  the  unit interval [0, 1 1  for  each variable are of 
interest. 

Elimination methods have been successfully implemented 
in  symbolic computation  (computer algebra) systems for 
some  time, e.g., j20-241, but  their application to  computer- 
aided design problems  is relatively recent [25-271. In  the 
former case, the coefficients of the resultant  polynomial may 
be computed precisely as  symbolic  expressions or rational 
numbers, while in  the latter they suffer errors  due  to  the 
imprecise  floating-point arithmetic  incurred  in  the 
determinant expansion. An ill-conditioned  resultant would 
then  induce gross errors in the estimated  roots.  Although the 

numerical stability of elimination  methods in this  context 
requires further investigation, we have processed 
simultaneous bicubic equations  to high accuracy  in practical 
implementations [28]. 

The geometric  problems encountered below which can be 
set in  the  form (14) include  the following: constructing the 
bounding  box around a surface patch;  finding the (u, v )  

surface coordinates of a Cartesian point (x, y,  z )  lying on  the 
parametric surface r = r( u, v) ;  determining  the intersections 
of a three-dimensional ray with a surface patch; identifying a 
characteristic point set for an algebraic curve; and 
computing  the intersections  of two  monotonic algebraic 
curve  branches. 

4. Surface formulations 
We review below elementary  features  of a dual  parametric 
and implicit surface patch  representation, and propose a 
trimmed-surface formulation based on it. The discussion of 
algorithms  for  producing and processing such trimmed 
surfaces in specific Boolean solid combinations is deferred to 
a subsequent  section. 

4.1 Parametric equations 
We define a surface patch  as a mapping of the  unit  square 
(u, v )  E [0, 1 1  X [0, I ]  into R3 by rational  polynomial 
functions expressed in the Cartesian product form: 

m n  

Wj!&UJvk 

r(u, v )  = m n 
J=O k=O 

(15) 
W,kU'vk 

J=O k=O 

Such  patches are inherently  four-sided, but  may be forced 
into three-sided configurations by introducing a parametric 
singularity in which one side  degenerates to zero length. 
Patches  arising in a solid modeling  context are assumed by 
construction to be well formed, i.e., free of discontinuities 
such as cusps, ridges, and self-intersections. 

The  number of coefficients defining the surface ( 1  5 )  is 
4(rn+l)(n+l), the  number of degrees of  freedom being one 
less, since  only the relative magnitudes  of the projective 
coordinates w , ~  are significant. Familiar elementary 
surfaces-planes, quadrics, surfaces of  extrusion and 
revolution-and other simple swept surfaces possess 
parameterizations  of the above  form [29], although higher- 
order algebraic surfaces in general do not. 

4.2 Implicit equations 
All rational  polynomial surfaces of the  form (1 5 )  may be 
represented by implicit algebraic equationsf(x, y, z )  = 0 of 
degree p I 2mn, obtained by eliminating the  two  parametric 
variables (u, v )  from  the  three  equations x = x(u, v) ,  

y = y(u,  v) ,  z = z(u, v) ,  a procedure known  as implicitization 
[26]. In general, a degree-p algebraic surface has the implicit 
equation 317 
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Table 1 Elementary  surfaces. 

Surface  type  Degree 

Plane 1 
Quadric 2 
Conical or cylindrical  surface,  degree-n  profile  curve n 
Surface of revolution, degree-n  profile  curve 2n 

P P-1 P-1-J 

f ( x >  y ,  z ,  = c,JkX'YJzk = O, 
r=O ,=O k=O 

defining an unbounded surface (which closes on itself or 
extends to infinity). The  parametric  form ( 15) represents 
only a finite segment on such a surface. All points satisfying 
( 16) which lie outside the  unit  parameter  square for ( 15) are 
called the algebraic extension of the patch. The  number of 
distinct terms  in (16) is ( p  + l ) ( p  + 2)(p + 3)/6, the  number 
of degrees of freedom being one less since the  equation  may 
be divided through by any  nonzero coefficient without 
material change. 

elimination of the  parametric variables from  Equations (1 5 )  
is, in general, too complex  for  practical software 
implementation [30] .  For the family of low-degree surfaces 
shown in Table 1, implicit equations  may  be generated ab 
initio and  must be suitably transformed whenever their 
parent solid is  subjected to rigid-body motions.  Although the 
trimmed-surface  algorithms  developed  here are  in principle 
applicable to  arbitrary patches  having the  dual  parametric 
and implicit equations ( 1  5 )  and (16), restricting 
consideration to these  simpler surfaces constrains the 
polynomial degrees arising during trimmed-surface 
processing within realistic limits. 

The formal  implicitization procedure based on 

4.3 Solid  primitives 
A solid primitive P is  defined to be the three-dimensional 
volume enclosed by a collection of surface patches of the 
form ( I  5) with matched borders.  Each  border  of  every  patch 
matches precisely a border of one  other patch, or is 
degenerate  (has  zero length). The family of primitives 
possessing exact  definitions in  the above form is quite 
diverse, incorporating polyhedra and solids of revolution and 
extrusion [29] and  their offsets [ 3 1 ]  as well as  more general 
solids. The basic interrogation function for  such solid 
primitives, classifying a candidate  point p as lying inside, on 
the  boundary of, or outside the  volume of P, is accomplished 
by determining  the intersections of an arbitrary line  through 
p with the patches of P. These  intersections  divide the line 
into inside/outside  intervals, and  the location of p relative to 
these  intervals  provides the required classification. 

The intersections  of a line and a finite patch  may  be 
determined  in  one of two ways: (a) from  the  parametric 
equations (1 5 ) ,  using elimination  methods  to  obtain a 
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univariate  polynomial  of degree 2mn [25]-this gives the 
surface coordinates (u,, v,) of  each  intersection; or (b) from 
the implicit equation (16) [32],  which yields a degree-p 
polynomial from which the Cartesian  coordinates (x,, y,, zi) 
of each  intersection are obtained-an inversion procedure 
(cf. Section 4.5) must  then be employed to  ensure  that these 
lie within the  parameter  domain of the patch.  Testing the 
line against bounding boxes for the surface patches (see 
below) minimizes unnecessary computation. 

4.4 Bounding boxes 
Testing all patch  pairs  of  two  solids  for  intersection is 
inefficient, and Boolean combinations  can be accelerated if 
bounding boxes are available  for  each surface patch, allowing 
most  disjoint  pairs to be bypassed immediately [33]. Suppose 
r(u, v )  is of degree (m,  n) in (u, v) .  Considering  each 
coordinate  component (x, y ,  z )  individually, the spatial 
extent of a patch is determined by comparing corner points, 
border extrema, and surface extrema. 

The  comer  points  are simply 

and  the border extrema  occur  at  the  roots  on [0, I] of 

r,(u, 0 )  = 0, ru(u, 1) = 0, rJ0, v )  = 0, ru(l, v )  = 0, (18) 

which are univariate  polynomials of degree m - 1 or 
n - 1. Finally, the surface extrema occur at  the roots on 
[0, I ]  X [0, I ]  of the  simultaneous  equations 

ru(u, v )  = r,(u, v )  = 0. 

Eliminating  either variable between these equations yields a 
univariate  polynomial  of degree 2mn - m - n + 1. A 
bounding  box  for an  entire primitive is defined by the 
extremum coordinates of the  bounding boxes for its 
constituent patches.  These boxes allow the Boolean 
combination procedure to  be bypassed in  most  instances 
where the primitives are disjoint. 

4.5 Inversion and imaging 
In computing surface intersections and formulating 
trimmed-surface  representations for patches with the 
dual  implicit and  parametric representation {r = r(u, v) ,  

f ( x ,  y,  z )  = 0), an inversion procedure  is  required: Given a 
Cartesian point r, = (xo, y,, z,) known to lie on  the surface, 
f(xO, y,, z,) = 0, determine its parametric  coordinates 
(uo, no). This  can be accomplished by elimination of u or v 
from any pair of the  three  equations xO = x(u,  v) ,  

y, = y(u, v) ,  zo = z(u, v )  which are  not both independent of u 
or v-consistency  is guaranteed by the conditionf(x,, yo, z,,) 
= 0. For r(u, v )  of degree (m,  n) in (u,  v) ,  this  incurs a 
univariate  resultant  polynomial of degree 2mn. Once  this has 
been solved, a corresponding value for the  other variable is 
readily determined. 
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An important application  of the inversion  procedure  is in 
imaging points  on  the intersection  of  two surfaces between 
the  parametric spaces of  those surfaces. Suppose the  point 
(uo, uo) of r(u, v )  is  known to lie on  the intersection  of the 
surfaces r = r(s, t )  and r = r(u, v) .  We wish to  determine  the 
parametric  coordinates (so, to) on r(s, t )  corresponding to 
(uo, no). This is  achieved by projecting to  three dimensions, 
ro = r(uo, uo), and inverting the Cartesian point ro with 
respect to r = r(s, t). 

4.6 Parametric surface sections 
The intersection  of an unbounded algebraic surface ( 16) with 
a parametric surface patch ( 1  5) is given precisely by an 
algebraic curve  of the form 

pm pn 

F(u,  Y) = c c a,survs = 0, (20) 
F O  s=o 

obtained by substituting Equation ( 1  5) directly into ( 16) 
[28]. The  curve (20) on (u, v )  E [0, I ]  x [0, I ]  defines the 
intersection  of the patch ( 15) with the entire unbounded 
algebraic surface ( I  6). This is termed a complete intersection. 
If, however, we are interested in  the intersection of two finite 
parametric patches, Equation ( 16) (representing the 
implicitization  of one,  then  only a  segment  of the algebraic 
surface) participates  in the intersection. The portions of 
F( u, u )  = 0 contributing  to  the intersection in  this case lie 
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within an  ambiguous subset of the  unit  parameter square 
and  must be identified carefully. With  trimmed-surface 
patches, the difficulties are even further  compounded.  We 
return  to  the problem  of  such partial intersections in 
Section 5. 

4.7 Characteristic points 
In general, high-order algebraic curves  of the  form (20) 
possess complex topological structures [34-361. The 
properties of such  curves have been  studied  in depth by the 
methods of classical algebraic geometry, eg., [37-391. For 
our present  purposes, an essential requirement of a surface 
intersection  algorithm is to recognize each  individual loop or 
segment of the intersection and  to  render  the complex 
structure of the curve  tractable. The identification of a set of 
characteristic points [28] for the curve  (20)  accomplishes 
these goals by guaranteeing at least one  point  on each 
portion or feature of the curve, and dissecting the curve into 
a set of smooth,  monotonic branches (Figure 1). For the 
complete surface section (20), the characteristic  points fall 
into  three categories: 

The border points occur at  the roots on [0, I] of 

F(u ,  0 )  = 0, F(u,  1) = 0, F(0,  Y) = 0, F(1,  v )  = 0, (21) 

where the curve (20) enters or leaves the  unit square. 
Equations (2 1) are univariate  polynomials  of degree m or n. 
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The turning points occur at the roots of 

F( u, v )  = F"(U, v )  = 0, F( u, v )  = F, (U,  v )  = 0, (22) 

where the curve tangent is  parallel to the axes u = 0 and 
v = 0, respectively.  Solving Equations (22) by elimination 
incurs univariate polynomials of  degree 2mn - m and 
2mn - n, respectively. Finally, the singular points occur at 
the roots of 

F(u,  v )  = F,,( U, v )  = FU(u, v )  = 0, (23) 

where the curve tangent k(Fv, -FU) is not uniquely defined. 
A singular point is said to have multiplicity h if all partial 
derivatives  of F to order h - 1 are zero and at least one 
partial derivative of order h is nonzero. Singular points are 
identified without further computation by comparing the 
roots of the two equations (22). 

parametric patches or trimmed-surface patches, a further 
characteristic point category must be introduced, the 
termination points, to accommodate intersection tracks 
which end abruptly within the unit parameter square 
(cf.  Section 5) .  

In processing partial intersections between pairs of  finite 

4.8 Link multiplicities 
Associated  with each characteristic point i is a link 
multiplicity m,, indicating the number of monotonic 
branches entering or leaving that point. The link multiplicity 
depends on  the type of the characteristic point. For border 
points and termination points it is I ,  and for turning points 
it is 2. For a singular point of multiplicity h the link 
multiplicity is usually  2t,  where t ( s h )  is the number of real, 
distinct tangent directions (X, g) occumng as roots of 

E h! 
Xkgh-k 

ahF 
k=O (h  - k)!k! dUkdvh-k - O' 

For a double point (h = 2), for example, (24) becomes 
X2Fu, + 2XpF, + p2F, = 0, and there are three possibilities: 
(i) roots real and distinct, t = 2 and mi = 4, a self- 
intersection; (ii) roots real and coincident, t = 1 and mi = 2, 
a cusp; and (iii) complex conjugate roots, t = 0 and mi = 0, 
an isolated point of the curve. 

In exceptional situations where one of the tangents at a 
singular point is  also a singular tangent of the curve, the link 
multiplicity rule mi = 2t may fail,  however [28]. It is  also 
possible  for a characteristic point to fall into more than  one 
category; e.g., a turning point or singular point may  lie on 
the  unit square boundary. A more detailed investigation is 
then required to ascertain the appropriate link multiplicity. 

4.9 Monotonic branches 
A monotonic branch C of an algebraic curve F(u, v )  = 0 is a 
smooth, directed segment of the curve along which a unique 
tangent direction +(Fv,  -Fu) # (0, 0)  is defined, which  varies 
by not more than 90". Such a branch has definite starting 
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and ending points (us, us) and (u,, vJ. The tangent direction 
may  be parallel to the coordinate axes u = 0 or v = 0 
at these endpoints, but not at intermediate points. Note 
that the definition of a monotonic branch refers to a definite 
coordinate system and is therefore not independent of 
orientation. 

The specification of an implicit equation and consistent 
endpoints, 

IF(& 4 = 0: (us, Us) -+ ( U e ,  v,)L (25) 

uniquely identifies a monotonic branch C, except under the 
exceptional circumstance where  several monotonic branches 
connect two singular points. If the singular points are 
ordinary (i.e.,  all their tangents are distinct), start and end 
tangent directions may be appended to  the specification to 
resolve the ambiguity. 

bounding box 
The monotonic branch is entirely enclosed by the 

[urnin, urnax1 X [Urnin, vmaxl, 

where urnin = min(us, uJ, u,,, = max(u,, u,) and urnin = 
min(v,, ne), v,,, = max(v,, v,). The algebraic extension o f a  
monotonic branch C given  by (25) is defined to be the set  of 
all points satisfying F(u, v )  = 0 which do not belong to C. 
Note that elements of the algebraic extension of C may  lie 
inside its bounding box (26). 

4.10 Algebraic curve tracing 
The characteristic points (21), (22), and (23)  are derived 
directly from the algebraic curve definition (20) and are 
known to dissect the curve into a set of monotonic branches 
of the form (25). However, the identity of these branches 
remains to be  established;  i.e., we must determine which 
pairs of characteristic points are indeed connected by a 
monotonic branch. To accomplish this, we require a curve- 
tracing procedure, i.e., a means of moving along a 
monotonic branch, starting at a given characteristic point, to 
see which other characteristic point it  leads to. 

form 

( u  = u(t), Y = v( t ) ) ,  0 I t 5 1, (27 

Ideally, we would  like to derive a parameterization of the 

for the monotonic branches (25) in terms of elementary 
rational functions u(t) and v(t) of a parameter t-this would 
automatically solve the curve-tracing problem. A suficient 
condition for such a parameterization to exist  (i.e.,  for the 
curve to be rational) is that its genus be zero, which implies 
an exceptional configuration of singular points [39]. Since 
this condition is not realized  for  algebraic curves in general, 
we must resort to numerical procedures for curve tracing 
(Figure 2). 

on  the curve F(u, v )  = 0, the change in F is given  by 
dF = F,du + Fudu = 0. Hence we obtain the expressions 

Between two adjacent points (u,  v )  and ( u  + du, v + dv) 
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along F(u, v )  = 0. Higher-order derivatives along F(u, V )  = 0 
may  be generated by repeated application of the total 
derivative operators 

to (28);  the resulting expressions are rather cumbersome 

The total derivatives define a Taylor series  giving v in 
terms of u, or vice  versa,  in the neighborhood of any 
nonsingular point of the curve. The power  series can also be 
derived from an algebraic recursion formula [40].  Such local 
power  series  may be employed to trace a monotonic branch 
by small steps  in u or v.  Caution must be exercised  in 
choosing step size and controlling cumulative error, 
especially  in the vicinity of near-singular points where there 
is danger of migration between branches [28].  Algebraic 
curve-tracing is a crucial procedure in our trimmed-surface 
formulation, requiring a careful, tolerance-based 
implementation. Alternate methods for traversing an 
algebraic curve segment in a deterministic manner deserve 
further investigation. 

4. I 1  Intersection of a line  and a monotonic branch 
In addition to identifying the monotonic branches of an 
algebraic curve, the curve-tracing procedure plays an 
important role in computing the intersections of a straight 
line and a monotonic branch C (25). Of  special interest are 
the intersections of the coordinate lines u = u, and u = vo 

with C. We illustrate with the case u = u,. 
If u, 4 [us, u,], there are no intersections. If u, E [us, ue], 

determine the roots of the univariate polynomial 
F(u,, v )  = 0 on [vs, vel (there must be at least one). If there is 
only one root, this gives the desired intersection. If there are 
several roots, all but  one lie on  the algebraic extension of C. 
The true intersection with the branch under consideration 
must then be selected by tracing the curve branch from us or 
u, toward u, (Figure 3). If (u,, v,) is the intersection point 
thus determined, we may split the monotonic branch (25) at 
u, or v,, into two portions (F(u, v )  = 0: (us, us) + (u,, v,)) and 
{F(u, v )  = 0: (u,, no) + (ue, ne)). A portion of a monotonic 
branch is necessarily a monotonic branch itself. 

we  wish to determine their intersection points, if any. We 
begin  by determining the bounding boxes (26) for  each 

A monotonic algebraic curve branch, enclosed by its bounding box, 
illustrating the tracing of the curve by small steps in u using local 
power-series expansions. 

U 

branch. If the boxes do not share common area, there are  no 
intersections of the branches. Otherwise, an overlap box 
[u,, ub] X [va, vb] is defined, and the branch intersections 
must lie inside it. 

Eliminating, say, u from the two equations F,(u, v )  = 0 
" - - . ,  and F,(u, U) = 0, we find the real roots vi on [v,, vb] of the 
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resultant.  Corresponding values ui for u are  then  determined 
and ( u ,  v,)  is  retained  as  a candidate intersection if u, lies on 
[ u,, u,]. The  candidate intersections (u,, v i )  fall into  three 
categories: true intersections of the  two branches, 
intersections of one  branch with the algebraic extension  of 
the  other,  and intersections of the  two algebraic extensions 
(Figure 4). To verify a candidate  as a true intersection of the 
branches, we must be able to  trace each branch  from  one of 
its endpoints  to  the  candidate point. 

intersections of  monotonic branches from distinct  curves, 
i.e., the discrete points where the branches cross. 
Occasionally, however, the two  branches (30) may derive 
from the  same  parent curve and their equations F,(u, v )  = 0 
and F2(u, v )  = 0 are identical  within  a constant  nonzero 
factor. The  elimination  procedure  then yields an identity, 
and  the intersection  either is empty or degenerates to  the 
continuous coincident portion of the branches. (Note  that 
noncoincident branches from  the  same curve may  at most 
share an  endpoint, since  singular points of an algebraic curve 
are always endpoints of its monotonic branches.) 

The above method serves for determining proper 

4.13 Piecewise-algebraic loops 
A piecewise-algebraic loop L is defined to be an ordered 
sequence of N (12) monotonic algebraic curve  branches C, 
connecting a set of N nodes (u,, v,): 

322 {F,(u, = 0: (ui, v , )  -+ ( u , + ~ ,  vi+,)), i = 1 + N,  (31) 
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where ( u ~ + ~ ,  uN+J = (u l ,  u , ) .  No restrictions are imposed on 
the definition (31) other  than  that  the nodes be all distinct 
and  that intersections between distinct branches  are 
prohibited (self-intersections of branches are precluded by 
definition). 

Piecewise-algebraic loops possess a definite orientation, 
clockwise or anticlockwise, as  determined by the ordering  of 
the nodes (u,, u,). The direction of  the  constituent branches 
of a  loop is consistent with this  orientation. Anticlockwise 
loops are  denoted positive and clockwise loops negative 
(Figure 5) .  The piecewise-algebraic loop (31) defines a  simply 
connected region in the (u ,  u )  plane. By the monotonicity of 
the branches, the extent of a loop in the u and u directions is 

4.14 Point classijcation and nesting of loops 
A point-classification procedure  for piecewise-algebraic loops 
may be formulated by considering  their  intersections with 
straight  lines in  the (u ,  u)  plane. First, if the  candidate  point 
(uo, uo) lies outside the  bounding box (32) for the entire  loop, 
it must lie outside the  loop itself. Otherwise, we  classify 
(uo, vo) as lying inside, on  the perimeter of, or outside  the 
area  of L, by determining  the intersections of the  coordinate 
lines u = u, or v = v,, with each of the  constituent branches 
of L (cf. Section 4.1 I ) .  The  bounding boxes (26) minimize 
unnecessary computation.  The intersections  divide the lines 
into inside/outside  intervals; the location of the  candidate 
point relative to these  intervals gives the desired classification. 

Occasionally, a  procedure  for generating arbitrary points 
within  a piecewise-algebraic loop is also required.  A  simple 
(though possibly inefficient) method successively produces 
points with random distribution  inside the  bounding box 
(32) for the loop,  subjecting  each to  the  point/loop 
classification procedure and rejecting those which lie outside 
the loop. 

A loop Lo is said to be nested within another loop L, if the 
constituent branches of L, lie entirely  inside or on  the 
perimeter  of the  area enclosed by L,. To verify this we 
classify all the nodes of La with respect to L, and test for 
proper  intersections of each branch of La with every branch 
of L,. If none of the nodes lie outside L, and  no proper 
intersections are  found,  the verification is complete. 
Similarly, two  loops La and L, are said to  be disjoint if the 
constituent branches  of La lie entirely outside  or  on  the 
perimeter  of the area enclosed by L,, and vice versa. If all 
the nodes of each loop lie outside or  on  the perimeter of the 
other  loop,  and  there  are  no proper  intersections of the 
branches  of the two loops, they are verified to be disjoint. 
Note that according to these  definitions, loops which share 
common  elements (nodes,  branches, or  portions of branches) 
may still be regarded as nested or disjoint. 
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Schematic illustrations of piecewise-algebraic loops having positive 
and negative orientation. 

4.15 Trimmed-surface  formulation 
A trimmed-surface  patch is specified by the  dual  parametric 
and implicit equations ( 1  5) and (16) together with a 
trimming boundary, defined as a  tree structure of 
nonintersecting, nested piecewise-algebraic loops (cf. 
Figure 6). There may be one or several loops at  the  top level 
of the tree  structure. The branches  of the tree issuing from  a 
given loop  point  to  other loops nested within  it.  Loops on 
the  same nesting level are always disjoint. By convention, 
the  orientation of the  outermost or toplevel loops is taken 
as anticlockwise in  the (u,  v )  plane, and reverses with each 
successive nesting level. The  area of the trimmed-surface 
patch then lies to  the left in  traversing any loop. 

piecewise-algebraic loop  trimming  boundaries is called the 
parametric domain of the  trimmed patch, denoted Q .  The 
simplest trimmed surface is the  entire patch ( 1  5 )  with the 
trivial trimming  boundary 

The  area of the (u,  v )  plane contained within the 

{v = 0: (0, 0) "f (1, O), u = 1: ( I ,  0) "., (1, I ) ,  

v = 1: (1, 1) "f (0, l), u = 0: (0, 1) + (0, 0)) .  (33) 

We refer to such  a  surface  as  a complete patch. General 
trimmed-surface elements have more complex trimming 
boundaries;  often  these  include portions of the  unit square 
boundary (33). 

4.16 Area integrals over trimmed surfaces 
In computing  the mass  properties of solids bounded by 
trimmed surfaces, we require  a procedure  to integrate  a 
given function $(u, v )  over the  parametric  domain Q of each 
patch: 

J- 

I = J $(u, v)dudv. 
R 
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Numerical cubature formulae  for  estimating the integral 
(34) on elementary domains (e.g., triangles) over which 
$(u, V )  varies smoothly  are well known  [41, 421. These 
methods have  rapid  convergence and  may be formulated  in 
an adaptive manner  to optimize  accuracy versus compute 
time, e.g., [43]. Our principal concern is thus  to formulate 
tesselation algorithms for decomposing  a  complicated 
parametric domain Q ,  defined by a given trimming 
boundary, into well-formed triangles or other elements, to 
which a  suitable cubature rule may be applied. 

We take Q in  (34) to be the  area enclosed by a single 
piecewise-algebraic loop L. For domains defined by nested 
loops, we integrate  over each loop individually and  obtain 323 

RlDA T. FAROUKI 



the integral (34) by adding the contributions of positive 
loops and subtracting those of  negative loops. This technique 
is  algorithmically  simpler but perhaps less  efficient than 
tesselating multiply connected domains. Several approaches 
are possible. For example, the curve-tracing procedure 
(Section  4.10)  may  be  employed to polygonize L by selecting 
ordered sequences of discrete points along each branch; 
finite-element  meshing algorithms for 2D polygonal 
boundaries may then be  invoked  [44]. The quadtree method 
[45]  could  also  be  employed to approximate the area of L by 
the successive  subdivision  of square elements. 

decomposition of L [46] into strips parallel to, say, the v-axis. 
For each node (u,, v i )  of the loop (31), we split  each branch 
C, at its intersections with the line u = ui. The constituent 
branches of L may then be arranged in stacks defining 
cylindrical  regions  with  vertical  sidewalls and monotonic 
branches as upper and lower bounds (Figure 7). These 
cylindrical  regions,  together  with the curve-tracing 
procedure, are relatively  simple to process. 

In principle, the area integral (34) may  be transformed 
into a line integral around each circuit of the trimming 
boundary defining Q by invoking the Stokes theorem [47]. 
In the present context, however, this approach has two 
drawbacks  which render it inferior to direct numerical 
cubature-the  lack of  precise parametric representations (27) 
for the constituent branches of the trimming boundary, and 
the inability to determine the integrand of the line  integral 
exactly in most  cases. 

Another approach is to perform a cylindrical 

4.17 Curves on trimmed surfaces 
Given a parametric domain Q contained within a trimming 

324 boundary of nested  piecewise-algebraic  loops, and a general 
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algebraic  curve G(u, v )  = 0, we  wish to ascertain which 
portions of this curve  lie  within Q and to represent them as 
an evaluated system  of monotonic branches. This algorithm 
forms the basis  for computing section cuts through solids 
bounded by trimmed-surface elements (cf.  Section  6.3). 

characteristic points for the complete curve G(u, v )  = 0, and 
identify the set of monotonic branches they  define  (cf. 
Sections  4.6-4.10).  We then compute the intersections of 
each monotonic branch of G(u, v )  = 0 with  each monotonic 
branch of the trimming boundary (Section  4.12), and split 
the branches of G(u, v )  = 0 at these intersections. This 
process  generates a new set of monotonic branches defining 
G(u, v )  = 0 with the property that each branch lies  entirely 
inside or outside the parametric domain Q defined by the 
trimming boundary. Those branches lying outside Q must be 
identified and discarded. This is  accomplished by partially 
tracing  each branch to a point intermediate between its 
endpoints and classifying that point with  respect to Q (cf. 
Section  4.14 and 6.1  below);  if it lies outside the parametric 
domain, the branch must be discarded (Figure 8). 

curve G(u, v )  = 0 defined on a trimmed-surface patch with 
parametric domain Q. The representation consists of a 
collection of monotonic branches connecting a set of 
characteristic  points. The characteristic point set  comprises a 
subset of the border, turning, and singular points for the 
complete curve G(u, v )  = 0 (Section 4.7), augmented by a 
new type of border point-the intersections of the complete 
curve G(u, v )  = 0 with the trimming boundary for Q. These 
new border points also  have a link multiplicity of 1. Under 
exceptional circumstances, however,  they  may  coincide  with 

The algorithm proceeds  as  follows:  First, we determine the 

We have thus computed the representation of an algebraic 
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turning points or singular points, and  the link multiplicity 
must be adjusted accordingly. 

4.18 Solid boundaryjles 
The representation of a solid bounded by trimmed-surface 
patches of the form defined above is  called a boundaryjile 
when at least one of the patch trimming boundaries is not 
the trivial case (33). The complex nature of the elements 
comprising a boundary file necessitates a sophisticated data 
structure for representing the adjacency and incidence 
relationships of the faces,  edges, and vertices of the solid. 
The solid interrogation algorithms (cf.  Section 6) also require 
such organized representations for their reliable and efficient 
operation. 

immediate concern of the present study-detailed 
discussions are available elsewhere, e.g.,  [48]-we note that 
the boundary-file data structure and trimmed-surface 
formulation impose mutual constraints upon each other (see 
Section  5.1)  which  deserve further attention. The trimmed- 
surface formulation and algorithms described in this section 
lead to the present definition of a boundary file, but do not 
describe how it is actually computed in specific  Boolean 
combination scenarios. That is the subject of the following 
section, where the motivation for the present formulation 
becomes apparent. 

5. Boolean  combination 
We  now outline procedures for deriving the boundary files 
arising from Boolean  solid combinations. The emphasis here 
is on the derivation of representations for the individual 

Although boundary-file data structures are not the 
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trimmed-surface elements produced by such combinations, 
rather than the data structures expressing their topological 
relationships, issues of computational efficiency, or a detailed 
enumeration of the various stages  of the boundary 
evaluation procedure per se (the latter subject is  discussed, 
independent of any specific trimmed-surface formulation, in 
[5]). We consider three solid combination processes  of 
increasing computational complexity: the combination of 
two primitives, the combination of a primitive and a 
boundary file, and  the combination of  two boundary files. 

In the first  case,  only intersections between complete 
patches arise. This simplifies the boundary-file computation 
and serves to illustrate its salient features. However, 
algorithms which perform primitive combination only 
cannot be employed in further modifying the solid, and  are 
therefore of limited practical utility. 

and a trimmed patch occur. The solid is successively 
modified by unioning, differencing, or intersecting it with a 
new primitive at each stage  of a linear constructive solid 
geometry (CSG) tree [Figure 9(a)]. The first  stage 
corresponds to case one. This linear process avoids the 
difficult combination of two boundary files. Although certain 
solids  defined by general CSG trees (which require 
boundary-file combinations) cannot be created by this 
incremental method, many commonly encountered 
mechanical components are accommodated. 

In the final  case one encounters complex intersections 
between trimmed-surface pairs.  Boundary-file combination 
or merging capabilities are required to evaluate solids 
defined by a general binary CSG tree [Figure 9(b)], and 

In the second case, intersections between a complete patch 
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provide the greatest flexibility in creating and modifying 
solids. However, the algorithms  required are substantially 
more complex. 

5.1 Combination ofprimitives 
Let PI and P2 denote two solid primitives  as defined in 
Section 4.3, bounded by N ,  and N2 patches, respectively. 
The first step in the  boundary evaluation of Boolean 

326 combinations of these  primitives  is to  compute  the partial 
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intersections of each patch i of PI with each patch J of P2. Of 
the NlN2 possible intersections,  a  substantial  fraction are 
expected to be null. Most of these  are bypassed by bounding- 
box interference tests (Section 4.4). 

Let patch i of P,  be specified by the  dual  equations 
( r  = r(s, t ) , f ( x ,  y ,  -7) = O }  and patch j of P2 by ( r  = r(u, v ) ,  

g(x, y ,  z )  = 01. Substituting r(s, t )  into g(x, y,  z) = 0 and 
r(u, v )  intof(x, y ,  z) = 0, we obtain  the algebraic curve 
equations G(s, t )  = 0 and F(u, v )  = 0 in the  unit  parameter 
squares  of  patch i of PI  and patch; of P2, respectively. The 
partial  intersection is a  subset of these curves. We identify 
the correct  subsets and evaluate them  as collections of 
monotonic branches as follows. 

Consider the curve C(s, t )  = 0 on patch i of PI (symmetric 
arguments are  employed in processing F( u, v )  = 0 on patch J 

of P2). First, we identify the characteristic  points for the 
complete curve G(s, t )  = 0-the border, turning,  and singular 
points-and compute their  link multiplicities. We then 
determine  the  monotonic branches  delineated by these 
characteristic  points by the curve-tracing  procedure,  ensuring 
that all link  multiplicities are satisfied (cf. Sections 4.6-4.10). 

A set of termination  points is then identified. These  occur 
where the border  curves of patch;  of P2 cross the surface of 
patch i of PI  within the  unit  parameter  square; i.e., they are 
the image points  on r(s, t )  of the border points of F( u, v )  = 
0. Only  those lying in the  unit  parameter square  for r(s, t )  
are retained.  These termination points lie on  the  monotonic 
branches  of G(s, t )  = 0 (Figure 10). 

We split each monotonic  branch  at  the  termination  points 
which lie on it. This generates  a new set of monotonic 
branches  defining G(s, t )  = 0, with the following property: 
Each branch belongs entirely to  the intersection of the finite 
patches r(s, t )  and r(u, v) ,  or to  the intersection of r(s, t )  with 
the algebraic extension of r(u, v )  (cf. Section 4.2). Only the 
monotonic branches of the first category should be retained 
for the partial  intersection. 

These are identified as follows. We partially  trace  each 
branch  to  an  intermediate  point (s,, t,) between its endpoints, 
and  compute its image (u,, V I )  on r( u, v) .  The  branch is 
retained if (u,, v,)  E [0, 11 X [0, 11; otherwise it is discarded. 
In  the final representation of the partial  intersection as a 
collection of monotonic branches, termination points  may 
be regarded as having a  link  multiplicity of 1. 

to evaluate the portions  of  a general algebraic curve  within 
the  parametric  domain fi of a  trimmed-surface  patch 
(Section  4.17). The  main difference is that in the present 
situation there is no unambiguously defined parametric 
domain,  and  monotonic branches must be retained or 
discarded by reference to  the  other patch  participating in  the 
intersection. 

The above process may be repeated to evaluate the partial 

The procedure described above is similar to  that employed 

intersection subset of F(u, v )  = 0 in  the  parameter space  of 
patch j of Pz. Note  that  in  the partial  intersection of two 
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patches there is a  one-to-one  correspondence between border 
points and  termination points in the respective parameter 
spaces of the patches.  Such  a  correspondence also holds for 
singular points, but not for turning points. A turning point 
of G(s, t )  = 0 is not uniquely identified with a turning  point 
of F(u, v )  = 0, and even the  number of turning  points for the 
partial  intersection  representations in the two parameter 
spaces may differ. 

A well-structured  boundary-file data  structure should 
allow a unique identification between portions of the 
intersection  curve,  as  represented  in the  parameter space of 
each patch.  The lack of correspondence between turning 
points  implies that such an identification  does not hold for 
the  monotonic branches  as determined above. However, 
there is a  simple  remedy for this  dilemma (Figure 11): 

We image the  turning points  in one  parametric space into 
the  other  parametric space and vice versa, splitting the 
monotonic branches of the partial  intersection 
representation in each case. This  additional splitting of 
monotonic branches  guarantees  a unique correspondence of 
branches  for the partial  intersection  representation  in the 
two parameter spaces. The splitting introduces  redundancy 
in the definition of the partial  intersection. This  does  not 
necessitate any alteration  in the trimmed-surface 

Partial intersection of two finite patches r(s, f) and r(u, y). Border 
points of the intersection curve representation on r(s, t )  are imaged to 
termination points of the representation on r(u, u). and vice versa. 

formulation or interrogation  algorithms, but may induce 
some degradation of computational efficiency. 

N ,  of P, with each  patch j = 1, 2, . . . , N2 of P2 have been 
computed, we consider  each  patch  of the two  primitives  in 
turn. If no partial  intersections  have been found,  the 
trimming  boundary is the  unit square (33). I f  partial 
intersections do occur, we chain their  constituent  monotonic 
branches  together by identifying branches with common 
endpoints. Such  chains  either  form closed piecewise- 
algebraic loops  within the unit  square, or open  tracks which 
terminate  at border  points on  the unit-square boundary. 

By ordering the border points  around  the perimeter of the 
unit-square boundary (33), it is possible to  construct a set of 
piecewise-algebraic loops  from the open  tracks and portions 
of the unit-square boundary which cover the  entire  area of 
the  unit square (Figure 12). These are called principal 
loops-all other loops  in the  unit  square generated by partial 
intersections must be nested within a principal  loop. The 
nesting relationships  of  these  loops are  determined by the 
procedures described in  Section 4.14. If no border  points 
occur, there is only  a single principal  loop, the unit-square 
boundary (33). 

Once  the partial  intersections of each patch i = I ,  2, . . . , 
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The tree structure of  piecewise-algebraic loops may  now 
be assembled.  Each principal loop of  positive polarity is an 
initial node of the tree. For principal loops of  negative 
polarity, each contained loop at the first  nesting  level  (if any) 
is  also an initial node of the tree (the principal loop of 
negative polarity itself  is discarded). Since the nesting 
structure for  each principal loop has  been already 
determined, the remaining tree structure is  readily  available. 

We impose positive (anticlockwise) orientation on  the 
loops at the initial nodes of the tree, and reverse the 
orientation with  each  successive  nesting  level. This 
completes the trimmed-surface definition, which  consists  of 
the implicit and parametric equations ( 15) and ( 16), the 
specifications (3 1)  of a collection of  piecewise-algebraic 
loops, and the tree structure (Figure 6) describing their 
nesting relationships. 

Consider a single patch r(s, t )  on primitive P,. Each 
principal loop is assigned a polarity, positive or negative, 
according to whether we  wish to retain the interior or 
exterior trimmed surface of P, with  respect to Pz (cf.  Section 
2). The polarity is determined by obtaining a point (so, to) 
inside the principal loop, but outside all loops nested within 
it, projecting it to three dimensions, r,, = r(so, to), and 
classifying the Cartesian point ro with  respect to primitive P2 
(cf. Section 4.3). The polarity is positive  when ro is outside 
P2 and we want the exterior trimmed surface, or ro is inside 
P2 and we want the interior trimmed surface; otherwise it is 
negative. Note that adjacent principal loops must have 

328 opposite polarity. 

and for F(u, u )  = 0 as the images  of the border points of 
G(s, t )  = 0 on  the  unit square. The monotonic branches are 
split at these termination points in each  case. 

After splitting, each monotonic branch of G(s, t )  = 0 
either belongs entirely to the intersection of the complete 
patch r(s, t )  and the trimmed patch r(u, u), or to the 
intersection of the complete patch r(s, t )  with the extensions 
of r(u, v )  beyond the parametric domain Q. We partially 
trace each branch to a point (si, t i )  intermediate between its 
endpoints, and find its image ( u ,  ut). The branch is retained 
only if (uL, u,) E Q. 

Similarly,  each monotonic branch of F(u, u)  = 0 either 
belongs entirely to  the intersection of the complete patch 
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r(s, t )  and the trimmed patch r(u, u), or to the intersection of 
the trimmed patch r(u, u)  with the algebraic extension of the 
complete patch r(s, t ) .  Partially tracing each branch to a 
point ( u ,  vi) intermediate between its endpoints, we retain 
the branch only if its image point satisfies.(s, ti) E [0, 11 X 

[0, 11. As  before,  we can perform  imaging of turning points 
between the parameter spaces  of the complete and trimmed 
patches, and splitting of branches at the image points, if a 
unique identification between branches in the two parameter 
spaces  is  desired. 

The next step is to form the principal loops and assign 
their polarities. For the complete patch, this is done exactly 
as described above in the combination of two  primitives. For 
the trimmed patch, the principal loops are formed  from 
open tracks of monotonic branches, generated by partial 
intersections, plus portions of the trimming boundary (the 
branches of the trimming boundary must be split at the 
border points where the open tracks meet it). Taken 
together, the principal loops cover the entire parametric 
domain Q (Figure 13). 

The polarities are assigned by taking a parametric point 
inside  each principal loop (but outside all loops nested 
within  it),  projecting to three dimensions, and classifying the 
resulting  Cartesian point with  respect to the boundary file B 
(cf.  Section 6.2) or primitive P, as appropriate. The nesting 
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behavior of the piecewise-algebraic  loops  within  each 
principal loop is determined as described  in  Section  4.14, 
and the tree structure for the trimmed surface is then derived 
from the principal loops as described in Section  5.1.  When 
each  piecewise-algebraic loop has  been  assigned its canonical 
orientation, the trimmed-surface definition  is complete. 

5.3 Combination of boundaryfiles 
Finally, we consider the boundary evaluation of the Boolean 
combination of two  solid boundary files, B, and B2, 
comprising N ,  and N2 trimmed-surface patches,  respectively. 
Again,  we address  only the issues  arising in this case  which 
are significantly  different  from the procedures  described 
above. 

Consider the partial intersection of patch i of B, , defined 
by (r = r(s, t ) ,  f ( x ,  y ,  z )  = 0 )  and parametric domain a,, and 
patch j of B2, defined by (r = r(u, u), g(x, y,  z )  = 0 )  and 
parametric domain Q2. We must identify the partial 
intersection subsets of the algebraic  curves G(s, t )  = 0 and 
F( u, v )  = 0 and evaluate them as collections of monotonic 
branches. 

We consider the curve G(s, t )  on patch i of B ,  (symmetric 
arguments are employed in processing F(u, v )  = 0 on patch j 
of B2). We evaluate G(s, t )  = 0 with  respect to the parametric 
domain Q ,  (cf.  Section  4.17)  of the trimmed patch r(s, t) .  
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Termination points are  then introduced on  the resulting 
monotonic branches,  as the images of the border  points of 
F(u, u )  = 0 evaluated on Q,. The  monotonic branches are 
split at these termination points. 

After splitting, each monotonic  branch either belongs 
entirely to  the intersection  of the  trimmed patches r(s, t )  and 
r(u, u), or to  the intersection  of the  trimmed patch r(s, t )  
with the extensions of r( u, u )  beyond the  parametric  domain 
9,. Partially tracing each branch  to a point (sz, t,) 
intermediate between its endpoints, we retain the branch 
only if its  image point satisfies (u,, u,)  E Q2. 

The above process is repeated to evaluate the partial 
intersection  subset of F(u, u )  = 0 on patch j of B,. Imaging 
of turning  points between the  parametric spaces of the 
patches  may be performed to establish a unique 
correspondence of branches. The identification of the 
principal  loops and  the  construction of the tree  describing 
the nesting behavior of the piecewise-algebraic loops in  the 
trimming  boundary proceed in  a manner analogous to  that 
described previously. 

6. Interrogation  algorithms 
A  boundary-file  representation  for  a solid model  generated 
by Boolean operations is of limited value if interrogation 
algorithms, answering  elementary  queries  concerning the 
model, cannot be formulated or are  too complex to 
implement. In this section we outline  some basic 
interrogation  procedures for boundary files derived from  the 
trimmed-surface formulation presented  above. More general 
interrogation functions  may often be synthesized from these 
basic procedures. 

The reader  should not infer that we advocate boundary 
evaluation as a recommended  intermediate step in 
performing  these  interrogations.  Although  empirical 
evidence is sparse, it is probable that if the initial solid 
specification is a CSG tree,  for  example, ray-tracing and 
point classification may be performed more efficiently and 
reliably directly from  that representation.  However,  a 
boundary  formulation of these  algorithms is still important 
for cases where no  other representation is available. 
Additionally,  for the case of volumetric or mass properties 
integrations, boundary  methods offer potentially the most 
accurate and systematic approach [49]. 

6.1 Ray-tracing of boundary files 
The intersections of a ray with a solid boundary file are 
determined by finding the intersections with each of its 
constituent trimmed-surface patches. Testing the ray against 
the  bounding boxes for the complete patches associated with 
each  trimmed-surface  patch (cf. Section  4.4)  minimizes 
unnecessary computation.  (The problem  of computing  true 
bounding boxes for trimmed patches is quite complex, and 
the  time saved by having  such boxes might not offset the 
cost of computing  them.) 330 
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To  determine  the intersection of a ray with a trimmed- 
surface patch, we first determine  the intersections (u,, u,) with 
the complete  patch (cf. Section 4.3). Each of these must  then 
be classified as lying inside or outside the  parametric  domain 
Q of the  trimmed patch. To accomplish  this, we classify the 
points with respect to each of the piecewise-algebraic loops 
of the  trimming  boundary (cf. Section 4.14). If a candidate 
intersection point does not lie inside any of the loops, it is 
outside the parametric domain Q. If it lies inside one or 
more of the loops, these  loops must be nested, and we 
determine  the  orientation of the innermost loop. If this is 
clockwise, the  candidate intersection is outside Q; if 
anticlockwise, it lies inside Q. 

An obvious  application of the ray-tracing technique for 
solid boundary files is the generation  of high-resolution 
shaded  raster images. It should be noted, however, that if the 
boundary file results from  the evaluation of a Boolean CSG 
tree acting on a set of  primitives, it is almost certainly more 
efficient to ray-trace the primitives  directly, and  then 
perform the Boolean operations  on  the  in/out intervals  along 
the ray generated by each primitive. 

6.2 Point classification for boundary files 
A candidate  point p may be classified as lying inside, on  the 
boundary of, or outside the volume V defined by a boundary 
file B by considering the intersections  of  a  straight  line 
through p with the trimmed-surface  patches  of B. The 
procedure is analogous to  that for solid primitives (Section 
4.3), except that  the intersections of the  line with trimmed 
rather than complete  patches must be determined (see the 
preceding section). Note again that point/solid classification 
may be performed more efficiently directly from  the Boolean 
CSG  tree  in  most cases. 

6.3 Sectioning of boundaryfiles 
Automated  manufacturing applications  driven directly from 
solid boundary representations are still in  their  infancy, and 
even in  the most immediate application domain of solid 
modeling-detailed design and drafting-there is still a 
heavy reliance on two-dimensional  blueprints  as the final 
production specification. In this  context, the ability to 
compute,  annotate,  and  dimension  planar section cuts 
through  a solid boundary file is  of  crucial importance.  More 
complex  sectioning surfaces also frequently  arise  [28],  for 
example in  aerodynamic applications, and we consider 
below the general problem of sectioning  a boundary file  by 
an  unbounded surface defined by a low-degree implicit 
equationflx, y, z )  = 0 (cf. Table 1). 

Substituting the  parametric form ( 15) for each trimmed 
patch into  the implicit equation of the sectioning surface, we 
obtain  an algebraic curve equation of the form (20) for the 
section through  that patch. The segments of this  curve which 
lie in the  parametric  domain Q of the  trimmed patch are 
then identified and  broken  up  into  monotonic branches by 
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the  technique described in  Section 4.17. It is then usually 
desirable to  approximate these by three-dimensional 
parametric arcs. This may be accomplished by splining 
through an ordered set of discrete points  sampled  along  the 
branch  and projected to three  dimensions.  Alternately, the 
inherent  smoothness of monotonic branches suggests 
developing special algorithms  for  interpolating the 
endpoints, tangent  directions, and  other differential 
properties of a branch, projected to  three dimensions, by 
single parametric polynomial arcs. 

adjacency  relationships of the trimmed-surface  elements, 
provides  a means for  ordering the  parametric space  arcs 
resulting from the section computation (this  subject is 
beyond the scope of the present  study). An important related 
issue is the  treatment of arc end  conditions where the section 
curve traverses the  boundary between adjacent trimmed 
patches. If surface tangent  continuity  obtains across the 
boundary, the three-dimensional approximation procedure 
for monotonic branches  should ensure tangent continuity for 
the section  curve also. This is unlikely to be true if the 
trimming  boundary branch under consideration results from 
an intersection  of  primitives; however, it is true if the  branch 
is part of the  unit  square (33) and  the original primitive is 
tangent-continuous across  patch  boundaries. 

A systematic  boundary-file data  structure, describing the 

6.4 Mass properties for boundary files 
Perhaps the most important applications  of boundary files 
are in the estimation  of  volumetric  integrals  (mass 
properties) of complex solids. While  simpler  algorithms 
are readily available based on polyhedral approximation 
[50, 511, Monte  Carlo methods,  cellular  decomposition,  etc. 
[49], the surface-integral form  for boundary files is 
potentially the most  accurate,  since  it  is based on  an 
essentially precise representation of the solid. 

Let a boundary file B enclosing a solid volume V be 
composed of N trimmed-surface  patches with parametric 
equations r,(u, u), and let Q ,  denote  the parametric domain 
contained within the  trimming  boundary of patch i. A 
surface integral over B has the general form 

(35) 

where +,(u, v )  is a function of the  parametric  coordinates  on 
the  domain 0, of  patch i. Several important solid properties 
are easily expressed in  the surface integral form (35) by 
invoking the  Gauss divergence theorem 

1 V . F dxdydz = S F . dA, (36) 

F being an arbitrary vector field defined  in V, and dA a 
vector surface-area element of the  boundary B. 

B 

On  the trimmed-surface  patch r = r,(u, v) ,  the vector area 
element is 
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dA = S,(u, v)dudv, where S,(u, V )  = -L x l. (37) 
ar ar 
au dv 

We assume that  the surfaces under consideration have 
nonsingular  parameterizations, i.e., I S,(u, v )  I # 0 over the 
parametric domain 0, of each patch. To evaluate the surface 
integrals over each trimmed patch  in  (35), the numerical 
procedures described in  Section 4.16 must be invoked. In 
principle, the adaptive nature of these  schemes allows any 
prescribed precision to be realized in the integration. 

6.4.1 Surface area 
The surface area of the solid is obtained by integrating the 
scalar magnitude of dA over  each trimmed patch.  Hence, we 
integrate the  functions 

+,(% u )  = IS,(& v )  I (38) 

over the  parametric  domain of each  patch  in Equation (35). 

6.4.2 Volume 
By setting F = r in the  Gauss  theorem (36) ,  the volume V of 
the solid may be expressed as  a surface integral of the 
functions 

+,(u, v )  = $ r,(u, v )  . s,(u, (39) 

over the  parametric  domain of each trimmed patch  in 
Equation (35). For uniform  density p ,  the mass of the solid is 
M = pv .  

6.4.3 Center of gravity 
The center of gravity rc = (xc, yc, zc) of a  homogeneous solid 
is defined by 

Vr, = r dxdydz. 

The x, y, z components of the right-hand side of (40) may be 
expressed as surface integrals by choosing the vector fields 

F = a XT, 4 yr, 4 zr, 

respectively, for F in the  Gauss  theorem (36). For x,. this 
yields the integrands 

+,(u, = t x,(u, v)r,(u, v )  . s,(u, v )  (42) 

Jc (40) 

I l l  
(41) 

on each trimmed patch, where x,(u, u )  is the  x-component of 
r,(u, v) .  Symmetric expressions obtain when computing y, 
and z,. 

6.4.4 Inertia tensor 
For uniform  density p the  components of the solid inertia 
tensor  [52] are defined by 

I ,  = S ( y’ + z2)pdxdydz, 

I = - S xypdxdydz, etc. (43) 33 1 
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Since the inertia tensor is symmetric, only six  of the nine 
components (43)  are independent. The vector  fields 

F = f p(y’ + z’lr, - 5 pxyr, etc., (44) 

may  be employed to transform the inertia components (43) 
into surface integral expressions,  using the Gauss theorem 
(36). The integrands for  each trimmed patch then have the 
form 

$,(K v )  = f P[Y:(u, v )  + zf@, LJ)Ir,(u, v )  ’ S,(U, 

+,(u, u)  = - PX,(U, v)v,(u, v)r,(u, v )  . s,(u, etc. (45) 

in (35). Once [rA, Zx,, . . . are known, the inertia components 
may  be  referred to the center of gravity (40) and the 
principal axes and principal moments are then easily 
determined. 

6.4.5 Other volume integrals 
In general, the integral of an arbitrary scalar field @(x, y ,  z) 
over the volume of a solid 

I = @(x, y ,  z )  dxdydz 

may  be transformed to the form (35) appropriate to 
boundary representations if @(x, y ,  z) is an integrable 
function of the coordinates. A vector  field F = (Fx, F,,, Fz) 
satisfying 

(47) 

must be found. Solutions to (47)  are indeterminate to  the 
extent of the curl of an arbitrary vector  field;  i.e., if F is a 
solution, then 

F ’ = F + V x G  (48) 

is also, G being an arbitrary vector  field. A simple approach 
is to assume the three terms on  the left  of (47) to be equal, 
and  thus take the components of F to be the indefinite 
integrals 

fi: = S Qdx, F, = f S Gdy, F, = f S adz. (49) 

7. Summary  and  conclusions 
We  have outlined algorithms for representing and processing 
trimmed-surface elements, i.e., finite portions of unbounded 
analytic surfaces  with complex border curves. A unified 
approach was adopted in which the intimately coupled 
problems of surface intersection computation and trimmed- 
surface representation have  been  addressed in a consistent 
manner; all  surfaces  belonged to a single canonical form and 332 
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were thus amenable to processing by the same algorithms. 
The trimmed-surface formalism was based, as far as  possible, 
on deterministic mathematical procedures such  as the 
elementary arithmetic operations and univariate polynomial 
root-solving. 

Errors in geometric computations may be regarded as 
originating from  two  sources:  heuristics in the mathematical 
or algorithmic formulation of the problem, and the vagaries 
of practical floating-point software implementation of the 
proposed solution. In setting the surface intersection and 
trimming problem on a sounder mathematical footing, we 
have attempted to minimize the former source. Any 
advances in the accuracy and reliability of computer 
arithmetic or root-solving algorithms [ 101 can thus be 
imported into  the methods described  here  with immediate 
benefit. 

Our algorithms are amenable, in principle, to surfaces of 
arbitrary degree.  In practice, however, the complexity of 
surfaces  which can be realistically  addressed will  be 
constrained by the degree  of the univariate polynomials 
arising in the processing of those surfaces. As an extreme 
example, the intersection of  two  bicubic patches yields an 
algebraic curve of the form (20) of degree  54 in each of u 
and v.  Determining the characteristic points of such a curve 
would then incur an intractable univariate resultant 
polynomial of  degree  5778.  However, we  believe that a 
family of simpler surfaces  of interest (cf. Table 1) can be 
systematically and reliably  processed. 

We have vindicated the practical value  of the trimmed- 
surface methods presented  here by providing some well- 
defined interrogation procedures for  solids bounded by such 
surface elements (cf.  Section 6). In particular, the surface 
integral formulation provides a reliable and systematic 
means of estimating mass properties for complex solids. 

In concluding, we highlight areas for further research 
consolidating or complementing the present study. Perhaps 
the weakest  link  in the surface-intersection computation is 
the algebraic curve-tracing procedure (cf.  Section  4.10). 
Since this plays a central role in identifying and processing 
monotonic branches, a more deterministic method is 
desirable (a tolerance-based variant of the present technique 
might  suffice). Important areas that we have  given only 
cursory treatment or none at all are the Boolean 
combination algorithms that generate the trimmed-surface 
elements of a boundary file, and  data structures for 
representing their adjacency relationships in easily  accessible 
form. Finally, we remark that while some of the algorithms 
presented  here  have  been  validated by actual software 
implementation [28], the remainder require further practical 
exploration and testing. 
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