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Piecewise= 
circular  curves 
for  geometric 
modeling 

by Jaroslaw R. Rossignac 
Aristides A. G. Requicha 

Modern solid modelers  must  be  able  to 
represent  a  wide class of objects,  and  must 
support  Boolean  operations  on  solids.  These 
operations  are  very useful for  defining 
solids, detecting interferences,  and  modeling 
fabrication  processes.  Computing  the 
boundaries of solids  defined  through 
Boolean  operations  requires  algorithms  for 
surface/surface and curve/surface intersection. 
Many  of the  currently  available  modelers  use 
closed-form parametric  expressions  for  the 
curves of intersection of quadric  surfaces,  and 
compute intersections of these  curves  with  other 
surfaces  by  finding the roots of low-degree 
polynomials.  Because  the  curves  that result from 
intersections involving tori or  more  complex 
surfaces  generally  cannot be expressed in 
closed form,  modelers  typically  approximate 
these  curves  by  cubic  splines  that  interpolate 
points lying on the true intersections.  Cubic 
splines  exhibit  second-degree  continuity,  but 
they  are  expensive to process in solid modeling 
computations. In this  paper, we trade  second- 
degree  continuity  for  computational  simplicity, 
and  present  a  method  for interpolating three- 
dimensional  points  and  associated unit tangent 
vectors  by  smooth  space  curves  composed  of 
straight line segments  and  circular  arcs.  These 
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curves  are  designated  as PCCs (for piecewise- 
circular  curves)  and  have  continuous  unit 
tangents. PCCs can be used in efficient 
algorithms  for  performing  fundamental 
geometric  computations,  such  as  the  evaluation 
of  the  minimal  distance  from  a point to  a  curve 
or the intersection of a  curve  and  a  surface. 
Formulae  and  algorithms  are  presented  for 
generating  and  processing PCCs in solid 
modelers. We also  show  that PCCs are useful 
for  incorporating toroidal primitives,  as  well  as 
sweeping,  growing,  shrinking,  and  blending 
operations in systems  that  model  solids 
bounded  by the natural  quadric  surfaces- 
planes,  cylinders,  cones,  and  spheres. 

Introduction 
Solid modeling plays a key role in  computer-aided design 
and  manufacturing of mechanical and electromechanical 
parts and assemblies. It also is becoming increasingly 
important in computer graphics, computer vision, robotics, 
and  other disciplines that involve spatial phenomena. A 
modern solid modeler must be able to represent  a wide class 
of geometric objects, and must also support Boolean 
operations on solids. Boolean operations-regularized set 
union, difference, and intersection [ 11-are very useful for 
defining solids via CSG (Constructive Solid Geometry), for 
detecting  spatial interferences, and for  modeling physical 
processes such as machining and integrated  circuit 
fabrication [2]. The study  reported  in  this  paper is aimed  at 
increasing the geometric coverage of modelers that  support 
Boolean operations. 

To  compute  the  bounding edges and vertices of a solid 
defined by Boolean operations one  must ( I )  find the 
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potential edges,  which  are the curves of intersection of the 
object’s  surfaces, and (2) classify these curves to determine 
the segments that  are inside, outside, or on  the boundary of 
the object [3, 41. These curve  segments are bounded by 
vertices,  which are points of intersection of the potential 
edges  with the object’s  surfaces. Thus, support for  Boolean 
operations requires the computation of surface/surface and 
curve/surface intersections. Typically, thousands of such 
calculations are needed to evaluate the boundary of a solid 
of moderate complexity. 

Which objects should be representable in a modeler? 
Mechanical parts may  be  classified in two broad groups: 
1)  Sculptured or free-form objects, e.g., car bodies, 
characterized by doubly curved bounding surfaces, and 
2) unsculptured or functional objects,  e.g., machine-tool 
components. Part surveys  show that a large proportion of 
parts are unsculptured, and that over 90% of  these are 
bounded by planes, cylinders,  spheres, cones, tori, and 
blends (i.e.,  fillets and rounds) between such surfaces. Planar, 
cylindrical, spherical, and conical surfaces are often called 
the natural  quadrics [5],  because they are produced easily  by 
the usual machining operations. Tori have similar properties, 
and we  refer to the natural quadrics plus the torus as natural 
surfaces. 

Modelers  for sculptured objects are emerging [6], but 
known techniques for computing the required curve and 
surface intersections are inefficient, numerically unreliable, 
or both. This study is  focused on  the more restricted domain 
of solids bounded by natural surfaces and blends. Current 
solid modelers use either one of the two following techniques 
to support Boolean operations on objects bounded by 
natural surfaces: 

1. All surfaces are approximated by planar facets, and these 
are used  for all intersection calculations. Polyhedral 
approximations with reasonable numbers of  facets are 
excellent for displaying objects, but not sufficiently 
accurate for numerically controlled machining and other 
applications. 

parametrically in closed form. The parametric equations 
x = x( t ) ,  y = y( t ) ,  z = z ( t )  of a curve are substituted in 
the implicit equation F(x,  y ,  z )  = 0 of a surface, and  the 
resulting equation solved  for t. This technique may 
provide exact answers, within the accuracy of floating- 
point arithmetic, but is not applicable to toroidal or 
blending surfaces because  closed-form expressions for the 
corresponding intersection curves are unavailable. The 
curves of intersection of tori with tori or with other 
surfaces are approximated with cubic splines that 
interpolate a sequence of points lying on  the exact  edge. 
(These points may be computed by several techniques.) 
The cubic approximations are used to compute curve/ 
surface intersections. For cubic/torus intersection this 

2. Curves of intersection of natural quadrics are expressed 

amounts  to solving a twelfth-degree  algebraic equation, 
which must be done numerically. High-degree equations 
are undesirable because the efficiency and reliability of 
numerical root finders  generally  decrease  when the 
degrees  of the equations to be solved  increase. 

In this paper we present an alternative scheme for 
approximating intersections that involve toroidal or blending 
surfaces by using  PCCs  (piecewise-circular curves). 

Curve approximation by smoothly joined rational or 
polynomial spans has been studied since the early times of 
computer-aided design [7, 81, and many approximation and 
interpolation schemes have  been proposed. Bezier and 
B-spline (rational or integral) cubic parametric curves are the 
most widely  used in modern systems  for the interactive 
design  of  free-form curves, in both two and three dimensions 

These schemes exhibit several features important to free- 
171. 

form curve design: 

1. Parametric formulation-a curve is composed of 
segments or spans defined by parametric vector-valued 
functions that are either polynomials or quotients of 
polynomials of  low degree. 

2. Second-degree  continuity-the spans are joined with 
second-degree parametric continuity; this is not 
equivalent to continuity of geometric curvature [9] but 
produces smooth curves in most common cases. 

3. Local  control-a curve can be modified  locally by 
adjusting parameters or moving control points, without 
producing side  effects on  the rest of the curve. 

In our opinion, only the first  of these features is important 
when the curves are used to approximate surface 
intersections in solid  modeling. Therefore we trade second- 
degree continuity (which  is unimportant in many geometric 
modeling applications) for computational simplicity of 
curve/surface intersection calculation, and we  use 
approximations based on PCCs rather than cubic splines. 
PCCs are composed of line and  arc segments and exhibit 
first-degree geometric continuity (GI), i.e., they have 
continuous unit tangent directions [9]. The intersection of a 
PCC  with any of the natural surfaces, including tori, 
amounts to solving a fourth-degree equation, and this can be 
done analytically. Using  PCCs instead of  piecewise-cubic 
curves to approximate the edges  of the modeled  solids does 
not change the computational complexity of the algorithms 
that are fundamental to solid modeling, because the number 
of spans is the same in both cases-our experience indicates 
that cubic spans are not better for approximating space 
curves than  the bi-arc spans that form our PCCs. 
Furthermore, various speedups based on the convex-hull 
properties of piecewise-cubic curves may  also  be  used  with 
PCCs,  because, as explained below,  each arc of a PCC  is 297 
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Control triangle: The circular arc is completely defined by its control 
triangle (A ,  B, C) . 

contained in a very simple  convex  hull (a triangle), and  can 
be efficiently subdivided. 

In addition  to  supporting  tori in  modelers based on 
natural quadrics, a major goal of the work described  here 
was to use natural surfaces to  support blending and offsetting 
operations [ 101. Most of the blending surfaces found  in 
mechanical  parts are constant-radius blends, which are 
conceptually  generated by rolling a sphere  tangentially to  the 
surfaces being blended.  PCCs are well suited  for supporting 
constant-radius  blending  for the following reasons. 

Constant-radius blends can be produced by combining 
growing and shrinking operations (collectively called 
offsetting) with Boolean operations [ 1 11. Offsetting a solid 
bounded by natural surfaces  produces another solid bounded 
by natural surfaces and by so-called canal surfaces [ 121. A 
canal surface is the envelope  of a family of  spherical surfaces 
generated by sweeping a sphere  along a trajectory called a 
spine. Closed-form implicit equations for general canal 
surfaces are  unknown,  and exact  techniques  for  dealing with 
such surfaces in a modeler  also are  unknown. Therefore 
canal surfaces must be approximated-preferably by 
piecewise-simple smooth surfaces. In our  approach spines of 
canal surfaces are  approximated by PCCs, which implies that 
the canal  surfaces are  approximated by smoothly  joined 
piecewise-toroidal or -cylindrical surfaces. This 
approximation scheme is very attractive.  Since  canal surfaces 
are  approximated by natural surfaces, new intersection 
algorithms are  not required. Thus  PCC  approximation 
enables a natural surface modeler to deal with constant- 
radius blends, and with Boolean operations  on blended 
objects. 298 
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To test the  approach described in this paper, the  authors 
implemented  an experimental solid modeling system [lo]. 
The use of PCC  approximations for all intersection  curves 
greatly simplified the  implementation because only one type 
of edge needed to be considered for curve/surface 
intersection  calculations. 

The  remainder of the  paper is divided into five major 
sections: construction of PCCs, given point  and tangent data; 
approximation of  intersection  curves between two  natural 
surfaces; various utilities for  supporting  calculations that 
involve PCCs; other applications of PCCs; and experimental 
implementation  and conclusions. 

Construction and representation of PCCs 
The interpolation of an ordered set of  points and of 
associated unit tangents by a smooth curve can be broken 
down into a sequence of simpler independent subproblems, 
each of which consists of interpolating a pair of consecutive 
points and tangents with a smooth  span. It is assumed 
throughout  this  paper  that  the  term  “smooth” is equivalent 
to  “GI-continuous.” We first show  how interpolants over a 
single span can  be constructed, and  then discuss storage costs 
for a whole PCC. 

Local interpolation 
We seek a computationally efficient solution  for the  Hermite 
interpolation  problem  stated as follows. Given two points PI  
and P2 and associated unit tangent vectors T,  and T,, 
generate a 3D curve  segment that is GI-continuous  and 
tangent to TI at PI and  to T, at P2. As noted  earlier, some 
geometric  modeling systems solve this  problem by using 
cubic  curves. Our  approach uses twisted bi-arcs, which are 
curve  segments  composed of two  circular or linear segments. 
From now on, we make  no distinction between circular and 
linear  segments and we use the  common  term arc for both. 
(A linear  segment  may be viewed as an  arc of a circle whose 
center lies at infinity, and  implementational problems 
resulting from such  generalizations are  minor  and best 
addressed directly in the lowest-level routines.) Each arc in a 
twisted bi-arc interpolates the  boundary  conditions  at  one of 
the given endpoints,  and  the two  arcs are  joined together 
smoothly. Curve classification [3]  and  other geometric 
calculations used in modeling systems are  much simpler and 
less expensive for  circular  arcs than for cubics or for 
noncircular  conics. 

Two related approaches have been reported  in the 
literature.  Varady [ 131, in a parallel and  independent effort, 
has developed parabolic bi-arcs, and Sabin [ 141 has used 
planar circular bi-arcs. 

Control triangle for a circular  arc 
A circular arc with center 0 and radius r, spanning  an angle 
of  less than 180 degrees, can be described by an isosceles 
control triangle (A ,  B, C )  as shown  in Figure 1.  A and C are 
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the  endpoints of the  arc, which is tangent  to AB and BC at 
these endpoints. (In fact, the  same isosceles control triangle 
may  be used to represent  two complementary arcs of the 
same circle.) The  three  points of  a control triangle in space 
have nine coordinates, but these are linked by the  constraint 
11 A - B 11 = )I B - C 11. Therefore,  a  circular arc  in space can 
be defined by eight parameters. 

in  tangent direction ( A B  parallel to T I ) ,  the  point B must lie 
on  the line that passes through PI and is tangent  to TI. The 
arc has still three degrees of  freedom. We can specify the 
signed distance a defined by B = P, + aT, to fix one of the 
degrees of freedom. The two remaining degrees can be 
chosen as  the angle between AB and C B  and  an angle that 
defines the  rotation of CB around AB. In order  to 
parameterize the  arc  in a manner consistent with the 
orientation of T, ,  we adopt  the following convention: If 
a > 0, the triangle ( A ,  B, C) defines the circular arc inscribed 
in  the triangle; if a < 0, the triangle defines the  complement 
of that  arc  in  the circle (see Figure 2). 

The  control triangle of a semicircle is degenerate. It 
consists of a  pair of parallel semilines, which meet at a  point 
B at infinity. (One  can represent points  at infinity with 
homogeneous  coordinates, but it is simpler to  treat 
semicircles as special cases. This is  a low-level 
implementation issue, not addressed here.) 

Control polygon for a twisted bi-arc 
To  ensure GI continuity of the PCC, we force  pairs of arcs to 
share  a common  tangent direction and  orientation  at their 
common  end. Since an arc is tangent  to its control triangle, 
we can  smoothly  join two arcs by connecting their  control 
triangles in a smooth  manner, as  shown in Figure 3. 

The resulting figure is a (not necessarily planar) 
quadrilateral called the control polygon of the bi-arc. Notice 
that when the  four vertices of the  control polygon are  not 
coplanar,  the bi-arc  is twisted; i.e., it is a smooth  nonplanar 
curve. 

The  control polygon of the bi-arc made of the  arcs 
described by the triangles ( A , ,   B , ,  C,) and (A, ,  B,, C,) is 
( A , ,   B , ,  B,, C,), because C ,  = A,  and A,  lies on  the segment 

If  we constrain one  end of the  arc in  position ( A  = PI) and 

( 4 9  4 ) .  

Constraints 
The eighteen coordinates of the six points A , ,   B , ,  C,, A,,  B,. 
and C, that define  a control polygon of an interpolating 
bi-arc must satisfy the following constraints: 

The polygon satisfies the position boundary  conditions 
(six equations): 

A ,  = P, and C, = P,. 

The polygon can be decomposed into two isosceles 
triangles (two  equations): 

C,=A, 

II B ,  - A ,  II = II C, - B,  II and II B, - A,  II = II C, - B2 II . 
The two control triangles are  smoothly  connected  at their 
common  point (six more  equations,  but also an  extra 
variable k): 

C, = A,  and C, - B ,  = k ( B ,  - C,). 

The polygon satisfies the tangential boundary  conditions 
(six equations  and two new variables a,  and a,): 

B ,  = P, + a, T,  and B,  = P, - a,T,. 

Thus we have 20 equations  and 2 I variables, and therefore 
one degree of freedom. If  we  fix a, and a,, the whole system 
of equations  can be simplified by constructing the  control 
polygon as follows: 

A ,  = P I ,  

C, = PI, 

B ,  = PI + a,  T I ,  
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or 

II SI1 a2(a,(T, . T, - 1) - S . T,) = a,S . T I  - -. 
2 (3) 

300 

B, = P, - a, T, , 

C,  = B, + - a’ (B2 - B,) ,  
a, + a2 

A,  = C, . 
Two unknowns remain: a, and a2. They are bound by a 
single equation, 

I l l32 - BIII = a, +a,, 

which  becomes 

II(P, - a2TJ - (PI + a,T,)II = a, + a,, (1) 

0 Computing the control  polygon 
We  use a, as the parameter that determines the remaining 
degree  of  freedom  for the bi-arc, and express a2 in terms of 
a,. 

We can  solve Equation (1) for a2 by  first squaring both 
terms: 

II P, - PI - (a,T2 + a, TI)1l2 = (a,  + a27, (2 )  

which,  with S = P, - P I ,  yields 

llSIl2 - 2S . (a ,T,  + a,TJ + a?ll T,112 + ail1 T,llz 

+ 2a,a,Ti ’ T2 = a: + a: + 2a,a,, 

where . denotes the scalar (inner) product of two  vectors. 
Since 11 T I  11 = 11 T, )I = 1, we obtain 

ala2( T I  . T, - I )  + - I I S ~ ~ ~  - - a,(S . T I )  + a,(S . TJ 2 

General solution 
In the general  case,  where a,( T I  . T, - 1) # S . T,, using 
Equation (3) yields 

I 
a,(S . T,) - 2 II SII’ 

a, = 
a,( T I  . T2 - 1) - S . T,’ 

Degenerate  cases 
Let us consider the degenerate  case of Equation (3), where 
a,( TI . T, - 1) = S . T,. Replacing 1 with T, . T2 and S 
with P2 - P I  in the above condition yields 

(P, + a,T, - ( P I  + a,T,))  . T, = 0. 

Control polygons  may  easily be constructed in this 
degenerate  case  if one notes that the line  segment joining the 
point B, = PI + a,   TI  with the point Bi = P2 + a,  T, must  be 
orthogonal to T,, and therefore is tangent at B; to the sphere 
of center P, and radius a,.  

First  let  us examine the subcase  where the right  side  of 
Equation (3) is not null, i.e., 

a,S . T,  # 5 IISII’. I 

Clearly, there is no finite a, that satisfies the general 
equation. However, if  we let a2 go to infinity we obtain a 
control polygon  with one vertex at infinity, i.e., a degenerate 
control polygon that corresponds to a semicircle, as shown 
in Figure 4. 

Consider now the subcase  where the right-hand  side of 
Equation (3) is null: 

1 
2 

a,S . T ,  = - 1 1 ~ 1 1 ~ .  

The general equation is  satisfied for any value of a,. This 
situation is characterized by the two simultaneous equations 

2 a , ( ~  . TJ = IISII’ 

and 

a,(T, . T2 - 1) = S . T,. 

The first equation constrains B, to lie in the plane normal to 
Sand passing through the midpoint of PI  and P,. (The 
projection of a,  TI on the direction of S is equal to half the 
length of S.) 

that S . TI  = 0 and that 11 SI1 = 0. This corresponds to a 
degenerate  case,  where the bi-arc  reduces to a single point 
(PI  = P, and TI  = T,). 

If T I  . T,  = 1, then T I  = T, and S . T, = 0, which implies 
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Suppose now that TI  . T2 # 1. We can eliminate a, from 
the system  of two equations and obtain 

2(S . T,)(S . T I )  = ~ ~ S ~ ~ 2 ( T ,  . T2 - 1). 

Dividing this equation by ( 1  S 11 ’, and choosing a coordinate 
system  such that S is aligned  with the X-axis, we obtain 

2x,x2 = X l X 2  + y , y ,  + z,zz - 1, 

which  yields 

x,x2 - y,.!J, - z,z2 = -1,  

where TI  = (x,, y, ,  z , )  and T, = (x2, y,, z,). Define the real 
quantity g as 

g = (x, + x2I2 + ( Y ,  - Y2l2 + ( z ,  - z,),. 

g = x; + 2x,x2 + x; + y: - 2y,y2 + y ,  + z ,  - 2z,z2 + z: 

= x; + y: + z ,  + x, + y ,  + z ,  + 2(x,x, - y,y, - Z I Z 2 )  

Using x: + y;  + z: = 1 and x: + y; + z; = I ,  we obtain 
2 2  

2 2 2 2  

= 1 + 1 - 2 = 0 .  

Because g is the sum of three positive terms, each term must 
be null: 

x, = -x2, 

Y ,  = Y2, 

z ,  = z2. 

It  follows that S . TI  = -S . T2, and  that  the vector 
TI  - T2 is  parallel to S. Since S . (2a,  T I )  = 11 SI1 ’, we obtain 

a,(T, - T2) = S, 

which  yields 

B ,  = PI  + a,T, = PI  + S + a,T2 = P2 + a,T,. 

This implies that 11 B ,  - P, 1) = a,, and  that B, lies on the 
line passing through P2 and parallel to T,. It follows that  the 
first control triangle is (PI, B, ,  P,). The second control 
triangle is ( P2, B,, PJ,  and  it represents a circle  of  zero 
radius, which produces a cusp at P, regardless  of the value  of 
a,. This situation is depicted in Figure 5. 

Selecting a control  polygon 
We  showed in the previous section how to compute a, and 
derive the control polygon  of an interpolating bi-arc,  given 
the interpolated points and tangents and  the value  of a,. 

the exact curve is known (but is complicated and therefore 
needs to be approximated), a, can be chosen to minimize 
some error measure for the approximation. When the exact 
curve is not known, a choice for a, may be dictated by the 
desire to minimize the curvature, the total arc length, the 
twist, or any other characteristic of the resulting bi-arc. 

The shape of the bi-arc depends on the value of a,. When 
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Using numerical methods when no closed solution was 
available, we investigated  several of these optimization 
criteria and concluded that in certain cases they lead to 
surprising and undesirable side  effects  (awkward-looking 
curves), and  do not offer any significant advantage over the 
scheme  described  below,  which does not require expensive 
computations. 

Equisided control  polygon 
Excellent  results are obtained by choosing a, = a,, which 
produces very  regular curves and leads to an efficient 
evaluation of a,. For example, we found experimentally that 
a bi-arc  with a ,  = a2 is very close to a Bezier cubic curve that 
interpolates the same boundary conditions as the bi-arc and 
passes through the  junction of the two  arcs. 

With a, = a, = a, S = P, - P I ,  and T = TI  + T2, 
Equation ( 2 )  becomes 11 S - U T  11 = 4a2, which can be 
written as 11 SII + a’ 11 T 11 - 2 a ( ~  . T )  = 4a2, or 

u ~ ( I I T ~ ~ ~  - 4) - 2 4 S  . T )  + llS112 = 0. 

This is a second-degree equation in a and has for 
discriminant 

d = ( S  . T)’ + 11 SI12(4 - 11 Til2). ( 5 )  

Because 11 T 11 I 2, d is the  sum of  two nonnegative terms 
and therefore must be positive or null. 

General  solution 
If 11 T 11 # 4, we have two real solutions. Of the two roots, 
we chose 

& - S .  T 
a =  

4 - IITllZ . 
Since d 2 (S  . T)’, a is always  positive, and therefore this 
solution produces arcs of  less than 180 degrees. The second 
root is negative and therefore corresponds to arcs of more 
than 180 degrees. 
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Degenerate case 
The special case where 11 T 11 * = 4 is equivalent to TI = T,. 

If S . TI # 0, then 

and if S . TI  < 0, then a is negative, and arcs of more  than 
~ 302 180 degrees must be used (see Figure 6). 

If S . T,  = 0, a becomes infinite and we  use semicircles, 
as  shown  in Figure 7. 

In the rest of this  paper we use only  equisided control 
polygons. Our experience  indicates that they are  adequate 
both for the  approximation  of surface/surface  intersections 
and for the interactive design of free-form space  curves (see 
the section on applications of PCCs). 

approximation  of known but  more complex  curves by PCCs, 
a different choice of a,  may be appropriate.  For example, the 
approximation of ellipses by PCCs has many applications  in 
CAD/CAM and will be addressed in  a  separate  paper. 

However, for other applications,  such  as the 

Storage costs 
Representations of PCCs in terms of their control polygons 
are well suited  for graphics, but  trigonometric 
representations are preferable for the  computation of 
curve/surface  intersections and of point/curve  minimum 
distances. Several representations  for PCCs are presented  in 
[ 151, where we analyze  their storage cost and propose 
formulae  for efficiently converting between one 
representation and  another. 

Storage cost is a major  concern in  industrial use of solid 
modelers, because models that involve  a large number of 
faces and edges are frequent [ 161. Our experience shows that 
an average edge may be adequately approximated with a 
PCC that involves roughly 20 bi-arcs. Each bi-arc requires 
between 5 and 28 real numbers, depending on the specific 
representation  scheme adopted. (We used a  scheme that 
requires 8 real numbers [ 151 in the experimental 
implementation discussed below.) Representations based on 
exact closed-form equations for edges, when available, are 
preferable to  the corresponding  PCC approximations, 
because such exact representations  require at least an  order 
of magnitude less storage. 

PCC approximation of intersection edges 
Most solid modeling systems compute surface/surface 
intersections to  obtain  the edges of solids defined by Boolean 
operations [4] on primitive solids. 

An edge is  a  segment of  the curve of intersection  of  two 
surfaces. Applications that use intersection  curves typically 
are  built upon a few primitive  tools which include the 
following: 

Producing  a  sequence  of points evenly spaced along  a 
curve. 
Computing  the intersections of a  curve with a surface. 
Computing  the  minimum distance between a point  and a 
curve. 

The development of such  tools is greatly simplified if a 
simple closed-form parametric equation is available  for  each 
curve. We noted in the  introduction  that closed-form 
equations exist for  intersections of quadrics, but  not for 
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general intersections  involving  toroidal surfaces. This section 
explains in detail how PCC approximations may be used to 
address  intersection  problems when closed-form solutions 
are unavailable. 

Approximation of surfacefsurface intersections 
Two PCC-based approaches are available to designers of 
systems for modeling solids bounded by natural surfaces: 

1 .  Approximate all intersection edges with PCCs. This 
approach simplifies the  implementation, because it 
requires  a  curvefsurface  intersection  procedure  for  only 
one type  of edge. 

PCCs only when tori are involved. 
2. Use exact expressions for quadric intersections and use 

The first approach was used  by us in an experimental 
modeler, to test the  technique discussed below. The second 
approach has been implemented recently in the 
UNISOLIDS modeler by McDonnell Douglas.* 
Experimental  evidence  indicates that,  as expected, for 
natural  quadric surfaces the homogeneous (first) approach is 
more expensive in  time  and storage than  the second. 

Generation of intersection curves 
This section discusses the  computation of PCC 
approximations for intersection edges between any two 
natural faces (i.e., faces of natural primitives: blocks, spheres, 
cylinders,  cones, and tori,  shown  in Figure 8). Our method 
can be extended to  other surface patches and  can be 
modified easily to generate smooth piecewise-cubic curves 
instead  of PCCs. It interpolates the exact intersection  curve 
at discrete  points,  unlike an alternative technique known  as 
recursive subdivision, which converts  the faces into a grid of 
low-degree patches,  often planar facets, whose intersections 
do not interpolate the exact curve [ 18, 191. For intersections 
of tori, our approach is simpler and  more reliable than 
tracing methods, which march  along an intersection edge 
from a  starting point [20], and  compute  the next point 
iteratively. Tracing often fails in the vicinity of singularities. 
Our method is a  variation  of the  parametric grid method 
[2 I ]  and is composed of three steps: 

1. Generate intersection points  and tangents. 
2. Sort the  points along the edges. 
3. Interpolate the  points with PCCs. 

To meet  accuracy  requirements, one  may have to iterate  this 
sequence by recursively refining the  approximation in 
selected intervals. 

D. L. Vossler, McAuto. McDonnell Douglas Automation Company, Cyprus, CA, 
December 1986, private communication. 
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Before we describe the steps in detail, let us summarize 
their effect and indicate how they differ from  techniques 
reported elsewhere. 

intersections. For  the faces of natural primitives,  such 
computations  are reduced to  the intersection  of  lines or 
circles with natural surfaces. An efficient implementation of 
such computations is described in [ 151. For each  intersection 
point,  the tangent to  the intersection  curve is derived  from 
the cross product of the  normals  to both surfaces at  the 
intersection  point. 

The second  step is the source of inefficiencies in the 
algorithms discussed in [20] and [21]. We map intersection 
points to  an  array of cells in the two-dimensional parameter 
space of one primitive face. (Hereafter,  for brevity we refer 
to primitive faces as patches.) Our method locates 
consecutive points practically without  searching. Because 
heuristic methods  are  inadequate, rare matching ambiguities 
are addressed by recursively subdividing  certain cells into 
four subcells. 

The first step  requires the  computation of curve/surface 

In the last step, we interpolate  pairs of consecutive 
intersection points  and  tangents with twisted bi-arcs, thus 
generating  a PCC  that interpolates the actual edge at all 
intersection  points. Computation of twisted bi-arcs and 
representation  of the  PCC were discussed earlier. 

Step 1: Constant-parameter curves 
Given  a solid S, defined as a Boolean combination of 
primitives P,, any face of S is contained in the  union of  the 
faces of all P,. Faces of natural primitives can be 
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Constant-parameter  curves on faces of natural primitives:  Lines 
and circles. 

m 

parameterized in such  a way that  constant-parameter curves 
correspond to lines of curvature  and  are circular  arcs or 
line  segments (see Figure 9). A patch can be represented 
in  its  biparametric  form by a vector-valued function 
F(  u, v )  that  maps a rectangle in  parameter space 
( u  E [u, ,  u,] and v E [u, ,  v , ] )  into a natural face. Constant- 
parameter curves (also called generators) are u-curves of 
the  form CJt) = F(u,  f ) ,  and v-curves of the  form 
CJf) = F(t ,  v) .  

Let F,  and F, be two patches contained respectively in  the 
natural surfaces SI and S,. We  assume  that  the intersection 
of SI with S, is a set of dimension  one or is empty. 
Singularities and degeneracies are discussed below in a 
separate  subsection. 

We generate points  that lie on F,  and  on S, by using a 
grid of  generators  (u-curves and v-curves) of F , .  We 
compute  the intersection points of each generator with S,. 
Unless we are in  a special case where the whole generator 
lies on S,, we obtain  at most four intersection points [ 151. 
For example, given a constant-u curve C, of F,,  we compute 
its  intersection points C,(v,) with S,. These  intersection 
points are represented in  the  parametric space of F ,  by the 
parameter values (u ,  u,), and lie on F ,  and  on S, but  can be 
out of F,. Points  out of F, could be easily rejected, since, 
given a point P on S,, it  is easy (for natural surfaces) to 
obtain  its (u ,  v )  values in the  parameter space  of F, and 
compare these with u- and v-limits that correspond to  the 
boundaries of F,. However, we keep such  points, because 
they define bi-arcs (Figure 10) that may lie partly on F2 and 
partly out of it. (A bi-arc approximates a  segment E of the 
intersection edge between SI and S,. By saying that  the 
bi-arc is  partly on F, we mean  that E is  partly on F,, since in 
general the bi-arc is not entirely on  any of the intersecting 
surfaces.) 

It is necessary to generate  similar  intersection  points  for 
v-curves of F,;  otherwise we could miss large intersection 
edges that  are almost parallel to u-curves of F,  (Figure 11). 

The tangents to intersection points  are used as  additional 
constraints  for the  approximation.  The exact tangent to  the 
intersection  curve at  an intersection point P can be 
computed as the cross product of the  normals  at P to SI and 
to S,. Normals  to  natural surfaces are simple to  obtain. 
When the  two  normals  are collinear, the  two surfaces are 
tangent, which implies either a self-crossing of the 
intersection edge or a point or curve  of tangency. These 
cases are discussed in  the subsection on singularities. 

It is desirable to produce  intersection points which are 
evenly spaced  (in  a  rough sense) and  to provide an  upper 
bound  on  the size of details missed by the  approximation. 
The generators form a  grid, which divides the patch F,  into 
cells. The cell that corresponds to  the  parameter interval 
[ u , ,  u,] x [ v , ,  v,] is defined by the  function F ( u ,  v )  for 
u E [u , ,  u,] and u E [ v , ,  v,].  The “size” of the cell is 
controlled by the two increments 6u = u2 - u, and 
6v = v2 - u , ,  and  the  boundary of such  a cell is composed of 
four segments: the segments  of C,,(v) and of C,,(v) for 
v E [v , ,  v,],  and  the segments of CUI( u )  and of Cv2( u)  for 
u E [u,, u,]. For  natural patches, one  can easily compute 
values of 6u and of 6v that correspond to  the desired 
precision. 

The parameterization we have  chosen  has the drawback of 
producing some cells that degenerate into triangles (for 
example at  the  center of a disk). Intersection  curves that pass 
close to  points where many such triangles meet  generate  a 
dense and  nonuniform distribution  of  intersection  points. 
All these points  are needed for our matching procedure, but 
many  may be redundant in the final PCC, because a  PCC 
obtained with a  subset  of  these  intersection points  may 
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Intersection almost parallel to u-curves: Using only u-curves of F, ,  
we miss the intersection edge. 

approximate the real  curve  with enough precision. The 
precision  tests  described below  may  be  used to determine 
whether a given  intersection point can be eliminated. The 
elimination itself  is  trivial. 

Step 2: Matching intersection points 
The parameters vi of the intersections of generators C, of F, 
with S, are stored in an array V [ u ]  indexed by discrete 
values of u. Each element of the array contains at most four 
v values,  because C,, can intersect S, in at most four discrete 
points. If C,, lies  entirely  in S,, it is ignored and the 
intersection is detected by v-curves. The parameters u, of the 
intersections of generators C, of F, with S, are stored in a 
similar array U [ v ]  indexed by discrete  values of v.  Given a 
cell  defined as F,(u, v )  with u E [u , ,  u,] and v E [v , ,  v,], the 
intersections of its boundary with S, contain at most  sixteen 
points, which can be found in four lists.  Each  list has at most 
four elements. The intersection points are of the following 
form: 

I .  F,(u, ,  V )  with v stored in V [ u , l  and v E [v, ,   v,] .  
2.  F,( u,, V )  with v stored in V [u,] and v E [v , ,   v , ] .  
3. F,(u, u,) with u stored in U [ v , ]  and u E [u , ,  u21. 
4. F,(u,  v,) with u stored in U[V,] and u E [u , ,  u21. 

Thus, intersection points that lie on the boundary of a 
given  cell can be accessed without searching. If care is taken 
to count twice certain intersection points that correspond to 
comers of  cells, and tangency points where a generator 
"touches" S,, the boundary of each  cell contains an even 
number of intersection points, because S, is a closed or 
infinite  surface  (see Figure 12), and therefore the curve of 
intersection between SI and S, cannot terminate (i.e.,  have 
an endpoint) within a cell. 

If a cell has only  two intersection points on its boundary, 
the matching is  trivial. If  we  have more than two points for a 
single  cell, we  use adaptive subdivision to match these 
intersection points into pairs.  (We tried heuristic approaches 

i Errors of heuristic matching: Given four intersection points PI to P', 
f and the associated tangents, most heuristic approaches would match 
; P, with P' (left), and not with P, (right), which might be the correct 
;: solution. 

based  on the direction of the tangents associated  with  each 
point, but one cannot guarantee that such approaches will 
produce the appropriate results,  especially near points where 
the two  surfaces are almost tangent. An example is shown in 
Figure 13.) 

When the boundary of a cell contains more than two 
intersection points, or when the bi-arc approximation does 
not satisfy the precision criterion discussed  below, the cell  is 
recursively  subdivided into four cells until all  precision 
criteria are met and all matching ambiguities  resolved, or 
until the "size"  of the cell  is  less than a specified limit. A cell 
is subdivided by  using generators that correspond to 
midvalues of the parameters defining the cell.  If the 
subdivision  process  reaches a specified minimum size for the 
cell without resolving the matching ambiguities (more than 
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two intersection points remain on  the boundary of the cell), 
we could declare that the edge  is  self-intersecting, but it  is 
easier to match points so that the induced edge  segments do 
not intersect. The sampling points do not provide enough 
information from which to infer the correct topology of the 
intersection. We cannot distinguish between  possible 
topologies on the basis of approximate geometric data,  and 
we choose a simple topology:  We match points so that they 
can be connected in the parametric space by noncrossing 
line segments.  (See the subsection on singularities for further 
discussion.) 

Our cell-based approach to the matching problem is 
simpler and seems more robust than a similar method 
reported in [ 13, 221 and used  in the BUILD modeler. Is it 
less  efficient? The approach, partly  described  in [ 131, uses 
only  u-curves and  an isosceles search-triangle to sort the 
intersection points in parametric space.  When an 
intersection edge  is almost parallel to the u-curves,  Varady’s 
method reduces the size  of the basic step and requires 
expensive geometric computations to generate intermediate 
intersection points and to test whether they lie within the 
search-triangle.  In our approach almost all  cells have zero or 
two intersection points on their boundaries, and for  these the 
matching is performed without any geometric calculation. 

Step 3: Interpolation 
After the matching process,  each pair of points (with 
associated tangents) is interpolated by a twisted bi-arc. 
(Tangential intersection curves may require infemng  the 
tangents, as  discussed  below.) The result  is a geometrically 
smooth space curve composed of linear and circular 
segments which interpolates all intersection points and their 
tangents. 

To obtain a continuous parameterization of the whole 
curve, we must maintain consistency between the 
orientation of two consecutive bi-arcs. A consistent 
orientation of the bi-arcs  may be propagated along the PCC 
curve by matching the ending point of one bi-arc  with the 
starting point of the next  bi-arc along the curve. Self- 
intersecting edges are approximated by PCCs that  do not 
reflect their singularities and therefore can be consistently 
oriented. 

Singularities 
In the previous discussion we assumed that patches F, and 
F2 either were disjoint or intersected transversely, producing 
well-behaved  curves.  But  several singularities may  arise: 

1. Two surfaces may be coincident. 
2. Two surfaces may  be tangent at isolated points. 
3. Two surfaces may be tangent along a curve. 
4. Intersection curves may  self-intersect. 

Cases 1, 2, and 3 may be detected directly by testing the 
relative position of one surface with  respect to the other, or 306 
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may  be derived from the user’s input. An approach for 
specifying and storing tangency relations between  surfaces  is 
described  in [ 2 3 ] .  

We do not attempt  to detect singularities of  Case 4 and 
predict situations where the intersection edge  crosses  itself; 
instead, we produce an approximation that may not reflect 
the true topology of the intersection curve, but approximates 
it within controlled accuracy and corresponds to a valid 
topology. In our experience such decisions have no 
consequences as  long  as  they are made consistently. 
However, maintaining consistency in geometric algorithms 
that involve floating-point computation is a delicate and 
poorly understood problem-even  when no approximations 
are used-and  we make no  attempt to solve it here. 
(Although the correct processing of singularities is 
mathematically tractable, its numeric implementation leads 
to severe stability problems which are far from resolved.  We 
consider them outside the scope of this paper.) 

Precision 
We do not have an explicit representation of the real  edge  of 
intersection of tori with other surfaces, and therefore it is 
difficult to compute a bound on the maximum distance 
between points on the PCC approximation and  the real  edge. 
Instead, we define the error of the approximation as the 
maximum of the distances from all points of the PCC to the 
two  surfaces that intersect at the approximated edge. This 
error measure is more practical than  the distance between 
curves  because it directly relates to  the “tolerance” used in 
set-membership classification algorithms [4]. For example, if 
the intersection of two  surfaces S, and S, is approximated 
within a specified tolerance by a PCC, all points on  the PCC 
must be on S,  and on S, within the same tolerance. A point 
is considered on a given surface if it  lies within a given 
tolerance from the surface. 

Point/surface distance is simple to compute for natural 
surfaces, but computing its maximum over a circular or even 
a linear arc is very expensive. For example, the maximum 
distance between a circular arc and a torus may be derived 
from the maximum distance between the whole  circle and 
the circular spine of the torus. Computing such a distance 
requires finding roots of an eight-degree polynomial. 
Exploratory investigations indicated that evaluation of error 
bounds usually is more expensive than any refinement it 
might avoid. Thus, in our implementation we replace the 
exact maximum distance between an arc and a surface  with 
an estimate computed at specific points of the interpolating 
curve, or of its convex  hull. The optimal choice of such 
points and the derivation of an error bound remain open 
issues. On the other hand, if the additional computational 
cost is acceptable, exact error bounds may be calculated to 
measure the accuracy of the PCC approximation and  to 
drive subdivision steps that may be necessary to achieve a 
desired accuracy. 
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Approximating edges of solids 

Classification of PCCs 
Each edge of a given solid is a subset of the intersection 
between two  patches. We showed above how to  compute  an 
approximation of the intersection of one patch with the 
surface that  contains  the  other patch. We must now trim this 
approximation  to  obtain the  subset that corresponds to  the 
actual edge, i.e., to  the  portion of the real curve that lies on 
the  boundary of the solid. The simplest approach is to 
classify the approximation with respect to  the solid and 
retain only the  part  that is on. 

If one accepts the risk of missing intersection  details that 
are smaller than  one cell, it is economical to  start by 
classifying the intersection points  that were used to define 
the interpolating PCC. If two  consecutive  intersection  points 
have the  same classification (for example,  they are  both on 
the solid), assume  that  the classification is constant along the 
bi-arc bounded by these two points. On the  other  hand, if 
the classification changes between one intersection point  and 
its neighbor, find the set of primitive solids that may have 
caused such a change of classification, generate the bi-arc 
between the  two intersection  points, and  compute  the 
intersections  of  both  arcs with the surfaces of the selected 
primitives. These  intersections  divide the arcs into segments 
that have  a constant classification. Classifying the  midpoint 
of each  segment yields the classification of the segment. 

solids, and for many  other applications  in  geometric 
modeling. 

Classification procedures are useful for trimming edges of 

Neighborhoods 
Correct classification of  curves that result from Boolean 
operations on solids  having  overlapping faces or edges 
requires information  on edge neighborhoods.  These  can be 
constructed by a  technique used in  PADL-2  for quadric 
intersections. Specifically, compute  the plane normal  to  the 
edge at a selected point P of the edge, and find the 
intersection  curves of that  plane with all the solid’s surfaces 
S, that  contain  the edge. Sort the half-curves starting at P 
around P so that material is contained between the first and 
second half-curve, between the third and  fourth,  and so on. 
Sorting is accomplished by computing  tangents  to  the curves 
or by using curvature  and higher-order derivatives when 
curves have the  same unit  tangent. 

For PCCs one should construct neighborhoods at  the 
intersection points used to define the PCC because (within 
the tolerance  implied by floating-point accuracy)  these points 
lie on all the surfaces S,, and  the  tangent direction computed 
as the cross product of the  normals  to  any two of these 
surfaces is tangent  to all S,. Selecting other  points of the 
PCC  may lead to incorrect  neighborhoods,  since  these  points 
generally do  not lie in  any of the intersecting surfaces. 

Computational  complexity 
The average complexity of boundary evaluation is unknown. 
Worst-case bounds  are easy to derive, but experimental data 
indicate that these bounds  are  too pessimistic to be useful. 

The following is a comparison of the  time  and storage 
costs associated with the generation and classification of an 
edge by PCC and by closed-form methods. 

estimates found experimentally. Generating  an “average” 
PCC consisting of 20 bi-arcs to  approximate  the intersection 
of two surfaces involves in  the  order of 40 curve/surface 
intersection  calculations.  Each  of these calculations  requires 
finding the  roots of a  polynomial of degree 54 .  Additional 
cost comes  from  the precision tests and  the occasional 
subdivision discussed earlier. Thus, PCC  generation is much 
more expensive than closed-form solutions,  when  these are 
available. 

Average values used in this  comparison  are rough 

Curve/solid classification by the brute-force method 
involves intersecting the curve with each surface bounding 
the solid (or with all surfaces bounding primitive solids, if 
the object is defined in Constructive Solid Geometry). If a 
closed-form equation for an edge is available, curve/surface 
intersection typically amounts  to  computing  the roots of a 
single polynomial of degree 18. Intersecting  a  PCC 
composed of 20 bi-arcs with a natural surface amounts  to 40 
arc/surface  intersection  calculations that involve  roots  of 
polynomials  of degree 54 .  However, if, as  in  the speedups 
mentioned above, we perform  curve/surface  intersection 
calculations  only for bi-arcs that  join  points lying on 
different sides of the surface, the PCC/surface  intersection 
calculation  might be reduced to 20 point/halfspace 
classifications (quadric  equations for quadrics) and a few 
occasional arc/surface  intersections. 

We conclude that  the  main difference between PCC 
approximations  and closed-form solutions (when available) 
for edges of solids lies in  the cost of  generating 
surface/surface intersections. 

The  number of curves  (tentative edges) generated and 
classified in boundary-evaluation  algorithms is proportional 
to  the square  of the  number of primitives. Thus,  the penalty 
for using PCC approximations when closed-form solutions 
are available is large, and we do  not  recommend this 
approach. On  the  other  hand, when tori are involved, and 
for offsetting operations, no closed-form solution is available, 
and, for reasons  outlined  in the  introduction, PCCs seem an 
excellent choice. 

Utilities for PCCs 
In this section we present several tools  for PCCs that  are 
used by the applications discussed in the next section. 

Recursive subdivision 
To display or classify an arc,  it is useful to subdivide  it into 
two parts. Representation  in terms of control triangles is 307 
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When Cis  a line, the normal projection of P is 
H = (0, 0, z).  When C is a circle of radius r, if P is not on 
the Z-axis there are two normal projection points H I  and 
H,, having  for coordinates (qx, qy, 0) and (-qx, -qy, 0), 
where q = r/ Jx2 + y2. If P is on the Z-axis, all the points of 
the arc are normal projections of P, and any one of them 
can be  used for computing point/curve distance or 
point/sweep set-membership classification by the algorithms 
described  below. 

To obtain the normal projections of P on a segment  of a 
curve C, compute normal projections on the whole curve 
and discard points that fall outside the segment. The set  of 
normal projections of P on a PCC  is the union of normal 
projections of P on all the arcs that form the PCC. 

well-suited  for  display and subdivision. Given a control 
triangle (A,  B, C) ,  we produce the two control triangles 
(A ,  MI, M,) and (ML,  M2,  C )  (see Figure 14) of the two 
half-arcs by the following sequence of 

U = A - B ,   V = C - B ,   Y = C - A ,  

II YII a a =  IlUIl, h = -  m =- 
2 ’  a + h’ 

MI + M2 M I  = mU + B, M2 = mV + B, Mi = ~ 

2 .  

The value of m is derived from the proportionality between 
the two triangles (A ,  B, C )  and (MI, B, M2) in Figure 14. For 
simplicity we assume that a is not infinite and that both a 
and h are not null. The treatment of degenerate arcs is very 
simple and is not discussed  here. 

Inferring tangents 
When tangent data are not available, the following scheme 
may  be  used  for infemng reasonable tangents from the 
position of neighboring points. 

Our method is based on three circles  defined by  five 
consecutive points. Three noncollinear points P,.-l, P,, P,+l 
define one circle C,. The center 0, and radius rr of the circle, 
as well as the normal N, to the plane that contains the circle, 
are computed as  follows  [7]: 

r, = II R II. 
The circle C, lies  in the plane normal to Nj and passes  by 

the points Pj-l, q, P,+,. The tangent direction T,, to C, at a 
point Pi is the  unit vector  parallel to Nj X (0, - Pi). T,,, 
could be used  for estimating the tangent T, associated  with 
the sampling point P,. However, this method is too local and 
can produce somewhat “unnatural” waves. Much better 
results are obtained by using a weighted  average  of tangents 
to three circles constructed over consecutive points 
(Figure 15): 

0 Point/curve minimum distance and normal projections 
The minimum distance between a point and a smooth curve 
may only occur at the normal projections of the point on the 
curve. The  “normal projections” of a point P = (x, y,  z )  on a 
curve Care the points Hi of C for which the vector PH, is 
orthogonal to the tangent to C at Hi. For PCCs, one needs 
only to project on lines and circles. Without loss  of 
generality, we consider local coordinate systems such that a 
line lies on  the Z-axis of its local coordinate system, and a 
circle  lies in the z = 0 plane and is centered at the origin of 
its local coordinate system.  Let C be a whole line or a 
complete circle and let (x, y ,  z )  be the coordinates of P 
expressed in the local coordinate system of C. 

for 1 = 3 . . . n - 2. For noncyclic  curves, tangents at the first 
and last two points are inferred from only one or two  circles. 

When the weights w, are all equal, a smooth curve  with 
small curvature variations is obtained. In order to correctly 
approximate straight lines defined by three or more collinear 
points, we make the weights proportional to the 
corresponding radii ( w, = rJ This produces infinite weights 
for collinear points (Figure 16). Another weight formula for 
combining three tangents is proposed in [24],  where the 
coefficients w, are slightly more complicated but do not seem 
to produce significantly better results than ours. 
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Applications of PCCs 
PCCs  have many potential applications in geometric 
modeling,  in addition to the approximation of intersection 
edges  discussed earlier. A few  of these applications are 
described  in this section. 

Wire-frame  display 
PCCs  offer an economical representation of smooth 
approximations for  space curves. Practical experience 
indicates that PCCs require at least one order of magnitude 
fewer segments than linear approximations in order to 
produce wire-frame  displays  of comparable accuracy and 
visual smoothness. PCC representations can be stored in 
display  devices to allow real-time transformations, and can 
be displayed by a fast algorithm that recursively subdivides 
circular arcs until their projection on  the screen  falls  within 

one pixel or is almost linear. Subdivision  of  PCC arcs was 
described in the previous section. 

Interactive design 

PCCs for defining  and processing 2 0  contours 
PCCs  may  be  used to define 2D contours composed of  linear 
and circular segments. A contour may be specified and 
modified  graphically in terms of control points which  define 
line segments,  fillets  for corners, or points to be interpolated 
with a smooth PCC. 

Such contours contain only circular or linear segments, 
and therefore are closed under normal offsetting [lo]. That 
is,  exact  offset contours are also composed of only linear and 
circular segments. Offsets of contours that bound 2D regions 
are used to drive numerically controlled cutting tools in 
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surfaces, because sweeping along a PCC spine is equivalent 
to a sequence of rotational sweeps (for circular  spine 
segments) and translational sweeps (for linear  spine 
segments). Translating lines and circles produces  planes and 
cylinders,  rotating  lines  produces  cylinders or cones, and 
rotating circles produces  spheres or tori.  Therefore, a 2D 
PCC contour swept along a 3D PCC spine  produces a solid 
whose faces lie in  natural surfaces. 

Set-membership classification algorithms  for  solids 
generated by PCC sweeps can be organized  as follows: 

1. To classify a point P, one  computes  the  normal 
projections P, of P on  the spine, and  then classifies P 
against the 2D cross  sections that  contain each P,. The 
2D classification can be performed by the usual methods 
for classifying points against regions represented by their 
boundaries. 

2.  To classify a curve, one first computes all the 
intersections  of the curve with the set of patches 
generated by sweeping individual  arcs  of the  contour 
along  individual  arcs of the spine. Then  one classifies an 
intermediate  point of each curve  segment defined by two 
consecutive  intersecting  points. 

Support of ofsetting and blending operations 
Offset  (i.e., expanded or shrunk) solids [ 121 as well as solids 
with constant-radius  blends [ 1 11 have faces that lie on so- 
called canal surfaces  of constant radius (see Figure 18). A 
canal surface is the envelope of a family of  spherical surfaces 
with centers on a space  curve called the spine. 

Canal surfaces are complex but  can be approximated by 
smoothly  joined toroidal or cylindrical faces if their spines 

are  approximated with PCCs. In addition, PCC 
approximation for  intersection edges simplifies point- 
membership classification with respect to expanded or 
shrunk solids, because such classification requires the 
computation of the  minimum distance between a point  and 
the edges of the original (non-offset) solid, and distances  can 
be deduced from  the  normal projections  of points  on edges. 
Blending and filleting operations  can be modeled by 
combining growing and shrinking operations  on solids [ 111. 

blends  in a solid modeler where intersection edges are 
approximated with PCCs, one needs  procedures  for 
computing  the  normal projections of points  on PCCs, in 
addition to the usual classification procedures provided by 
most  modelers [4]. 

Thus,  to  support sweeps, offsets, and constant-radius 

Experimental  implementation  and  conclusions 
An experimental solid modeler that incorporates offsetting 
operations  in  constructive solid geometry was implemented 
by the  authors [IO]. Canal surfaces and intersection edges of 
tori, and indeed all intersection edges, were approximated 
with PCCs in the modeler. The  implementation was greatly 
simplified because we had  to deal with only one edge type. 

Our experience with PCCs showed that a small number of 
segments is sufficient to  approximate complicated edges with 
PCCs that  cannot be visually distinguished from  the exact 
edges. Timing results were good  when compared  to those of 
other schemes  for approximating intersection edges of 
nonquadric surfaces, even though no  attempt was made  to 
produce efficient code. For example, wire-frame displays of a 
simple  object (Figure 19) were produced  in a few seconds on 
a VAX/780. 31 1 
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The generation and classification  of a PCC approximation 
for the intersection of two natural quadrics is much more 
expensive than  the generation of a closed-form curve 
representation. Therefore, PCCs are best  used in conjunction 
with analytic solutions when the latter are available. This 
approach has  been  successfully implemented in the 
UNISOLIDS modeler, which  uses  PCCs to support 
intersection of tori, as well as free-form curve design for 
sweeping planar cross sections (see footnote p. 303). 

In summary, this paper describes a new technique for 
interpolating points and tangent vectors by  piecewise- 
circular curves, and shows that PCCs  have many 
applications in geometric modeling.  They are well-suited  for 
approximating intersection edges in modelers that support 
the natural surfaces (planes, spheres, cylinders, cones, and 
tori), because  PCCs are easy to compute and display, and 
lead to simple algorithms. For example, the intersection of a 
curve approximated by a PCC  with a natural surface 
involves  solving fourth-degree equations, and this can be 
done analytically. In addition, PCCs provide convenient 
means for incorporating sweeping, blending, growing, and 
shrinking operations in solid modelers that support only 
natural surfaces. 
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