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Piecewise-
circular curves
for geometric
modeling

by Jaroslaw R. Rossignac
Aristides A. G. Requicha

Modern solid modelers must be able to
represent a wide class of objects, and must
support Boolean operations on solids. These
operations are very useful for defining

solids, detecting interferences, and modeling
fabrication processes. Computing the
boundaries of solids defined through

Boolean operations requires algorithms for
surface/surface and curve/surface intersection.
Many of the currently available modelers use
closed-form parametric expressions for the
curves of intersection of quadric surfaces, and
compute intersections of these curves with other
surfaces by finding the roots of low-degree
polynomials. Because the curves that result from
intersections involving tori or more complex
surfaces generally cannot be expressed in
closed form, modelers typically approximate
these curves by cubic splines that interpolate
points lying on the true intersections. Cubic
splines exhibit second-degree continuity, but
they are expensive to process in solid modeling
computations. In this paper, we trade second-
degree continuity for computational simplicity,
and present a method for interpolating three-
dimensional points and associated unit tangent
vectors by smooth space curves composed of
straight line segments and circular arcs. These
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curves are designated as PCCs (for piecewise-
circular curves) and have continuous unit
tangents. PCCs can be used in efficient
algorithms for performing fundamental
geometric computations, such as the evaluation
of the minimal distance from a point to a curve
or the intersection of a curve and a surface.
Formulae and algorithms are presented for
generating and processing PCCs in solid
modelers. We also show that PCCs are useful
for incorporating toroidal primitives, as well as
sweeping, growing, shrinking, and blending
operations in systems that model solids
bounded by the natural quadric surfaces-—
planes, cylinders, cones, and spheres.

Introduction
Solid modeling plays a key role in computer-aided design
and manufacturing of mechanical and electromechanical
parts and assemblies. It also is becoming increasingly
important in computer graphics, computer vision, robotics,
and other disciplines that involve spatial phenomena. A
modern solid modeler must be able to represent a wide class
of geometric objects, and must also support Boolean
operations on solids. Boolean operations—regularized set
union, difference, and intersection [1]—are very useful for
defining solids via CSG (Constructive Solid Geometry), for
detecting spatial interferences, and for modeling physical
processes such as machining and integrated circuit
fabrication [2]. The study reported in this paper is aimed at
increasing the geometric coverage of modelers that support
Boolean operations.

To compute the bounding edges and vertices of a solid
defined by Boolean operations one must (1) find the
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potential edges, which are the curves of intersection of the
object’s surfaces, and (2) classify these curves to determine
the segments that are inside, outside, or on the boundary of
the object [3, 4]. These curve segments are bounded by
vertices, which are points of intersection of the potential
edges with the object’s surfaces. Thus, support for Boolean
operations requires the computation of surface/surface and
curve/surface intersections. Typically, thousands of such
calculations are needed to evaluate the boundary of a solid
of moderate complexity.

Which objects should be representable in a modeler?
Mechanical parts may be classified in two broad groups:

1) Sculptured or free-form objects, e.g., car bodies,
characterized by doubly curved bounding surfaces, and

2) unsculptured or functional objects, e.g., machine-tool
components. Part surveys show that a large proportion of
parts are unsculptured, and that over 90% of these are
bounded by planes, cylinders, spheres, cones, tori, and
blends (i.¢., fillets and rounds) between such surfaces. Planar,
cylindrical, spherical, and conical surfaces are often called
the natural quadrics 5], because they are produced easily by
the usual machining operations. Tori have similar properties,
and we refer to the natural quadrics plus the torus as natural
surfaces.

Modelers for sculptured objects are emerging [6], but
known techniques for computing the required curve and
surface intersections are inefficient, numerically unreliable,
or both. This study is focused on the more restricted domain
of solids bounded by natural surfaces and blends. Current
solid modelers use either one of the two following techniques
to support Boolean operations on objects bounded by
natural surfaces:

1. All surfaces are approximated by planar facets, and these
are used for all intersection calculations. Polyhedral
approximations with reasonable numbers of facets are
excellent for displaying objects, but not sufficiently
accurate for numerically controlled machining and other
applications.

2. Curves of intersection of natural quadrics are expressed
parametrically in closed form. The parametric equations
x = x(t), y = W(t), z = z(t) of a curve are substituted in
the implicit equation F(x, y, z) = 0 of a surface, and the
resulting equation solved for . This technique may
provide exact answers, within the accuracy of floating-
point arithmetic, but is not applicable to toroidal or
blending surfaces because closed-form expressions for the
corresponding intersection curves are unavailable. The
curves of intersection of tori with tori or with other
surfaces are approximated with cubic splines that
interpolate a sequence of points lying on the exact edge.
(These points may be computed by several techniques.)
The cubic approximations are used to compute curve/
surface intersections. For cubic/torus intersection this
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amounts to solving a twelfth-degree algebraic equation,
which must be done numerically. High-degree equations
are undesirable because the efficiency and reliability of
numerical root finders generally decrease when the
degrees of the equations to be solved increase.

In this paper we present an alternative scheme for
approximating intersections that involve toroidal or blending
surfaces by using PCCs (piecewise-circular curves).

Curve approximation by smoothly joined rational or
polynomial spans has been studied since the early times of
computer-aided design [7, 8], and many approximation and
interpolation schemes have been proposed. Bezier and
B-spline (rational or integral) cubic parametric curves are the
most widely used in modern systems for the interactive
design of free-form curves, in both two and three dimensions
7.

These schemes exhibit several features important to free-
form curve design:

1. Parametric formulation—a curve is composed of
segments or spans defined by parametric vector-valued
functions that are either polynomials or quotients of
polynomials of low degree.

2. Second-degree continuity—the spans are joined with
second-degree parametric continuity; this is not
equivalent to continuity of geometric curvature [9] but
produces smooth curves in most common cases.

3. Local control—a curve can be modified locally by
adjusting parameters or moving control points, without
producing side effects on the rest of the curve.

In our opinion, only the first of these features is important
when the curves are used to approximate surface
intersections in solid modeling. Therefore we trade second-
degree continuity (which is unimportant in many geometric
modeling applications) for computational simplicity of
curve/surface intersection calculation, and we use
approximations based on PCCs rather than cubic splines.
PCCs are composed of line and arc segments and exhibit
first-degree geometric continuity (G'), i.e., they have
continuous unit tangent directions [9]. The intersection of a
PCC with any of the natural surfaces, including tori,
amounts to solving a fourth-degree equation, and this can be
done analytically. Using PCCs instead of piecewise-cubic
curves to approximate the edges of the modeled solids does
not change the computational complexity of the algorithms
that are fundamental to solid modeling, because the number
of spans is the same in both cases—our experience indicates
that cubic spans are not better for approximating space
curves than the bi-arc spans that form our PCCs.
Furthermore, various speedups based on the convex-hull
properties of piecewise-cubic curves may also be used with

PCCs, because, as explained below, each arc of a PCC is 297
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Control triangle: The circular arc is completely defined by its control
triangle (4, B, C).

contained in a very simple convex hull (a triangle), and can
be efficiently subdivided.

In addition to supporting tori in modelers based on
natural quadrics, a major goal of the work described here
was to use natural surfaces to support blending and offsetting
operations [10). Most of the blending surfaces found in
mechanical parts are constant-radius blends, which are
conceptually generated by rolling a sphere tangentially to the
surfaces being blended. PCCs are well suited for supporting
constant-radius blending for the following reasons.

Constant-radius blends can be produced by combining
growing and shrinking operations (collectively called
offsetting) with Boolean operations [11]. Offsetting a solid
bounded by natural surfaces produces another solid bounded
by natural surfaces and by so-called canal surfaces [12]. A
canal surface is the envelope of a family of spherical surfaces
generated by sweeping a sphere along a trajectory called a
spine. Closed-form implicit equations for general canal
surfaces are unknown, and exact techniques for dealing with
such surfaces in a modeler also are unknown. Therefore
canal surfaces must be approximated—preferably by
piecewise-simple smooth surfaces. In our approach spines of
canal surfaces are approximated by PCCs, which implies that
the canal surfaces are approximated by smoothly joined
piecewise-toroidal or -cylindrical surfaces. This
approximation scheme is very attractive. Since canal surfaces
are approximated by natural surfaces, new intersection
algorithms are not required. Thus PCC approximation
enables a natural surface modeler to deal with constant-
radius blends, and with Boolean operations on blended
objects.
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To test the approach described in this paper, the authors
implemented an experimental solid modeling system [10].
The use of PCC approximations for all intersection curves
greatly simplified the implementation because only one type
of edge needed to be considered for curve/surface
intersection calculations.

The remainder of the paper is divided into five major
sections: construction of PCCs, given point and tangent data;
approximation of intersection curves between two natural
surfaces; various utilities for supporting calculations that
involve PCCs; other applications of PCCs; and experimental
implementation and conclusions.

Construction and representation of PCCs

The interpolation of an ordered set of points and of
associated unit tangents by a smooth curve can be broken
down into a sequence of simpler independent subproblems,
each of which consists of interpolating a pair of consecutive
points and tangents with a smooth span. It is assumed
throughout this paper that the term “smooth” is equivalent
to “G'-continuous.” We first show how interpolants over a
single span can be constructed, and then discuss storage costs
for a whele PCC.

& Local interpolation

We seek a computationally efficient solution for the Hermite
interpolation problem stated as follows. Given two points P,
and P, and associated unit tangent vectors 7, and T,
generate a 3D curve segment that is G'-continuous and
tangent to T, at P, and to 7, at P,. As noted earlier, some
geometric modeling systems solve this problem by using
cubic curves. Our approach uses twisted bi-arcs, which are
curve segments composed of two circular or linear segments.
From now on, we make no distinction between circular and
linear segments and we use the common term arc for both.
(A linear segment may be viewed as an arc of a circle whose
center lies at infinity, and implementational problems
resulting from such generalizations are minor and best
addressed directly in the lowest-level routines.) Each arc in a
twisted bi-arc interpolates the boundary conditions at one of
the given endpoints, and the two arcs are joined together
smoothly. Curve classification [3] and other geometric
calculations used in modeling systems are much simpler and
less expensive for circular arcs than for cubics or for
noncircular conics.

Two related approaches have been reported in the
literature. Varady [13], in a parallel and independent effort,
has developed parabolic bi-arcs, and Sabin [14] has used
planar circular bi-arcs.

Control triangle for a circular arc

A circular arc with center O and radius r, spanning an angle
of less than 180 degrees, can be described by an isosceles
control triangle (4, B, C) as shown in Figure 1. 4 and C are
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the endpoints of the arc, which is tangent to AB and BC at
these endpoints. (In fact, the same isosceles control triangle
may be used to represent two complementary arcs of the
same circle.) The three points of a control triangle in space
have nine coordinates, but these are linked by the constraint
|4 — B| = || B— C||. Therefore, a circular arc in space can
be defined by eight parameters.

If we constrain one end of the arc in position (4 = P,) and
in tangent direction (4B parallel to T), the point B must lie
on the line that passes through P, and is tangent to 7. The
arc has still three degrees of freedom. We can specify the
signed distance a defined by B = P, + aT to fix one of the
degrees of freedom. The two remaining degrees can be
chosen as the angle between 4B and CB and an angle that
defines the rotation of CB around AB. In order to
parameterize the arc in a manner consistent with the
orientation of 7, we adopt the following convention: If
a > 0, the triangle (A4, B, C) defines the circular arc inscribed
in the triangle; if a < 0, the triangle defines the complement
of that arc in the circle (see Figure 2).

The control triangle of a semicircle is degenerate. It
consists of a pair of parallel semilines, which meet at a point
B at infinity. (One can represent points at infinity with
homogeneous coordinates, but it is simpler to treat
semicircles as special cases. This is a low-level
implementation issue, not addressed here.)

Control polygon for a twisted bi-arc

To ensure G continuity of the PCC, we force pairs of arcs to
share a common tangent direction and orientation at their
common end. Since an arc is tangent to its control triangle,
we can smoothly join two arcs by connecting their control
triangles in a smooth manner, as shown in Figure 3.

The resulting figure is a (not necessarily planar)
quadrilateral called the control polygon of the bi-arc. Notice
that when the four vertices of the control polygon are not
coplanar, the bi-arc is twisted; i.e., it is a smooth nonplanar
curve.

The control polygon of the bi-arc made of the arcs
described by the triangles (4,, B, C,) and (4,, B,, C,) is
(4,, B,, B,, C,), because C, = A, and 4, lies on the segment
(B, B,).

& Constraints

The eighteen coordinates of the six points 4, B, C,, A,, B,,
and C, that define a control polygon of an interpolating
bi-arc must satisfy the following constraints:

1. The polygon satisfies the position boundary conditions
(six equations):
A =P and C,=P,.

2. The polygon can be decomposed into two isosceles
triangles (two equations):
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Compatible orientation: The portion of the circle defined by the con-
trol triangle (4, B, C) depends on the orientation of 7} and on the sign
of a.

Interpolating control polygon: The endpoints P,, P, and the tangents
T, T, are interpolated by a control polygon (4, B, B,, C,).

I1B,— 4,1 = C, B, and | B, — 4,1 = | C, = B, .

3. The two control triangles are smoothly connected at their
common point (six more equations, but also an extra
variable k).

C,=A4,and C, ~ B, = k(B, - C)).
4. The polygon satisfies the tangential boundary conditions
(six equations and two new variables a, and a,):
B =P +aqT andB,=P,—-a,T,.
Thus we have 20 equations and 2] variables, and therefore
one degree of freedom. If we fix q, and a,, the whole system

of equations can be simplified by constructing the control
polygon as follows:

A4,=P,
C,=P,
B =P +alTl, 299
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Bi-arc with one semicircle: In the special case where a (1T, — 1) =
ST, the point B, is at infinity and hence is not depicted in the figure.
The second triangle defines a semicircle.

B, =P, - a,7,,

C =B +—2—(8-B8)
[ | a1+a2 2 1/
A4,=C,.

Two unknowns remain: 4, and a,. They are bound by a
single equation,

IB,— Bll=a, +a,,

which becomes

||(P2_a2T2)—(P1+a1T|)" = 4qa, +(12, (1)
e Computing the control polygon

We use g, as the parameter that determines the remaining
degree of freedom for the bi-arc, and express a, in terms of
a,.

We can solve Equation (1) for a, by first squaring both
terms:

1P, = P, — (@, T, + a, THI’ = (a, + &, 2

which, with S = P, — P, yields
1S1° = 28 - (&, T, + a,T,)) + &I T,I* + &) T,
+2a,a,T, - T, = 4 + d + 2a,a,,

where - denotes the scalar (inner) product of two vectors.

Since | T, || = | T,)| = 1, we obtain
oo - ISP
alaZ( 1 - 42 7T ) + 2 - al(S ° Tl) + az(S . T2~)
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or

ISI*,

afa(T, - T,-1H-8-T)=aS8 T, - 3

3

General solution
In the general case, where a (T, - T, — 1) # S - T, using
Equation (3) yields

1
a(S - T)=3 Isi®

LTI T,-1)-S8-T,

Degenerate cases

Let us consider the degenerate case of Equation (3), where
a(T, - T,—1)=S - T,. Replacing 1 with T, - T, and §
with P, — P, in the above condition yields

(P,+a,T, - (P +aT)) T,=0.

Control polygons may easily be constructed in this
degenerate case if one notes that the line segment joining the
point B, = P, + a, T, with the point B, = P, + 4,7, must be
orthogonal to T, and therefore is tangent at B; to the sphere
of center P, and radius q,.

First let us examine the subcase where the right side of
Equation (3) is not null, i.e.,

1
a8 T, #3 N

Clearly, there is no finite a, that satisfies the general
equation. However, if we let 4, go to infinity we obtain a
control polygon with one vertex at infinity, i.e., a degenerate
control polygon that corresponds to a semicircle, as shown
in Figure 4.

Consider now the subcase where the right-hand side of
Equation (3) is null:

1
a8 T =3 N

The general equation is satisfied for any value of a,. This
situation is characterized by the two simultaneous equations

2a(S - T) = | S\’
and
a(T, - T,-1)=S-T,

The first equation constrains B, to lie in the plane normal to
S and passing through the midpoint of P, and P,. (The
projection of a, T, on the direction of S is equal to half the
length of S.)

T, -T,=1,then T, = T,and S - T, = 0, which implies
that S - T, = 0 and that | S|| = 0. This corresponds to a
degenerate case, where the bi-arc reduces to a single point
(P,=P,and T, =T,).
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Suppose now that T, - T, # 1. We can eliminate g, from
the system of two equations and obtain

2AS - TXS - T) = | SIXT, - T, = 1).

Dividing this equation by || S I*, and choosing a coordinate
system such that S is aligned with the X-axis, we obtain

2x x5, =xx%+yy,+z2z,— 1|,
which yields
XX =WV~ z5,= 1,

where T, = (x,, y,, z,) and T, = (x,, ,, 2,). Define the real
quantity g as

g=(x + )+ (y -y +(z - z)
Using x° + V. +z0=1and x3 + y} + 22 = 1, we obtain

XA 20+ X+ =20y, + Vs + 2~ 22,2, + 74

g

2 2 2 2 2 2
Xp+ Y+ + ¥, + 2+ 2AXX, - vy, — 2,2,)

1+1-2=0.

Because g is the sum of three positive terms, each term must
be null:

X, = =X,
yl = yza
Z, = Z,.

It follows that S - T, = —S - T, and that the vector
T, — T, is parallel to S. Since S - (2a,T,) = || S||°, we obtain

a(T,-T,)=1,
which yields
B =P +aT =P +S+aT,=P,+aT,.

This implies that | B, — P,|| = a,, and that B, lies on the
line passing through P, and parallel to T,. It follows that the
first control triangle is (P,, B,, P,). The second control
triangle is (P,, B,, P,), and it represents a circle of zero
radius, which produces a cusp at P, regardless of the value of
a,. This situation is depicted in Figure 5.

o Selecting a control polygon
We showed in the previous section how to compute a, and
derive the control polygon of an interpolating bi-arc, given
the interpolated points and tangents and the value of a,.
The shape of the bi-arc depends on the value of a,. When
the exact curve is known (but is complicated and therefore
needs to be approximated), a, can be chosen to minimize
some error measure for the approximation. When the exact
curve is not known, a choice for a, may be dictated by the
desire to minimize the curvature, the total arc length, the
twist, or any other characteristic of the resulting bi-arc.
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Bi-arc with a cusp: In the special case where a\(7) — T,) = S, the
second triangle degenerates into a cusp and a, is unconstrained.

Using numerical methods when no closed solution was
available, we investigated several of these optimization
criteria and concluded that in certain cases they lead to
surprising and undesirable side effects (awkward-looking
curves), and do not offer any significant advantage over the
scheme described below, which does not require expensive
computations.

o Equisided control polygon
Excellent results are obtained by choosing a, = a,, which
produces very regular curves and leads to an efficient
evaluation of a,. For example, we found experimentally that
a bi-arc with @, = a, is very close to a Bezier cubic curve that
interpolates the same boundary conditions as the bi-arc and
passes through the junction of the two arcs.

Witha, =a,=a,S=P,—P,and T =T, + T,,
Equation (2) becomes ||.S — aT||* = 44", which can be
written as || S|> + &*| T||” = 2a(S - T) = 4d’, or

A(TI> -4 = 2aS - T)+ |SI° =0. @)
This is a second-degree equation in @ and has for
discriminant

d=(S- T+ ISI°G4 - ITI>. (5)

Because || 7| < 2, d is the sum of two nonnegative terms
and therefore must be positive or null.

General solution
If | T||* # 4, we have two real solutions. Of the two roots,
we chose

_Vd-s-T
4-|T)*"

Since d = (S - T), a is always positive, and therefore this
solution produces arcs of less than 180 degrees. The second

root is negative and therefore corresponds to arcs of more
than 180 degrees.
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Negative control polygon: If the coefficient a is negative, we use cir-
cular arcs of more than 180 degrees defined by the control polygon.

Bi-arc with two semicircles: When 7, = T, and S -7, = 0, the bi-arc is
composed of two semicircles.

Degenerate case
The special case where || T|| P=4is equivalentto 7', = 7.,
If S - T, #0, then

g ISE
&S -T)

and if § - T, <0, then a is negative, and arcs of more than
180 degrees must be used (see Figure 6).
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If S . T, =0, a becomes infinite and we use semicircles,
as shown in Figure 7.

In the rest of this paper we use only equisided control
polygons. Our experience indicates that they are adequate
both for the approximation of surface/surface intersections
and for the interactive design of free-form space curves (see
the section on applications of PCCs).

However, for other applications, such as the
approximation of known but more complex curves by PCCs,
a different choice of ¢, may be appropriate. For example, the
approximation of ellipses by PCCs has many applications in
CAD/CAM and will be addressed in a separate paper.

& Storage costs

Representations of PCCs in terms of their control polygons
are well suited for graphics, but trigonometric
representations are preferable for the computation of
curve/surface intersections and of point/curve minimum
distances. Several representations for PCCs are presented in
[15], where we analyze their storage cost and propose
formulae for efficiently converting between one
representation and another.

Storage cost is a major concern in industrial use of solid
modelers, because models that involve a large number of
faces and edges are frequent [16]. Our experience shows that
an average edge may be adequately approximated with a
PCC that involves roughly 20 bi-arcs. Each bi-arc requires
between 5 and 28 real numbers, depending on the specific
representation scheme adopted. (We used a scheme that
requires 8 real numbers [15] in the experimental
implementation discussed below.) Representations based on
exact closed-form equations for edges, when available, are
preferable to the corresponding PCC approximations,
because such exact representations require at least an order
of magnitude less storage.

PCC approximation of intersection edges

Most solid modeling systems compute surface/surface
intersections to obtain the edges of solids defined by Boolean
operations [4] on primitive solids.

An edge is a segment of the curve of intersection of two
surfaces. Applications that use intersection curves typically
are built upon a few primitive tools which include the
following:

Producing a sequence of points evenly spaced along a
curve.

Computing the intersections of a curve with a surface.
Computing the minimum distance between a point and a
curve.

The development of such tools is greatly simplified ifa
simple closed-form parametric equation is available for each
curve. We noted in the introduction that closed-form
equations exist for intersections of quadrics, but not for
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general intersections involving toroidal surfaces. This section
explains in detail how PCC approximations may be used to
address intersection problems when closed-form solutions
are unavailable.

e Approximation of surface/surface intersections
Two PCC-based approaches are available to designers of
systems for modeling solids bounded by natural surfaces:

1. Approximate all intersection edges with PCCs. This
approach simplifies the implementation, because it
requires a curve/surface intersection procedure for only
one type of edge.

2. Use exact expressions for quadric intersections and use
PCCs only when tori are involved.

The first approach was used by us in an experimental
modeler, to test the technique discussed below. The second
approach has been implemented recently in the
UNISOLIDS modeler by McDonnell Douglas.*
Experimental evidence indicates that, as expected, for
natural quadric surfaces the homogeneous (first) approach is
more expensive in time and storage than the second.

Generation of intersection curves

This section discusses the computation of PCC
approximations for intersection edges between any two
natural faces (i.e., faces of natural primitives: blocks, spheres,
cylinders, cones, and tori, shown in Figure 8). Our method
can be extended to other surface patches and can be
modified easily to generate smooth piecewise-cubic curves
instead of PCCs. It interpolates the exact intersection curve
at discrete points, unlike an alternative technique known as
recursive subdivision, which converts the faces into a grid of
low-degree patches, often planar facets, whose intersections
do not interpolate the exact curve [18, 19]. For intersections
of tori, our approach is simpler and more reliable than
tracing methods, which march along an intersection edge
from a starting point [20], and compute the next point
iteratively. Tracing often fails in the vicinity of singularities.
Our method is a variation of the parametric grid method
[21] and is composed of three steps:

1. Generate intersection points and tangents.
2. Sort the points along the edges.
3. Interpolate the points with PCCs.

To meet accuracy requirements, one may have to iterate this

sequence by recursively refining the approximation in
selected intervals.

* D. L. Vossler, McAuto, McDonnell Douglas Automation Company, Cyprus, CA,
December 1986, private communication.
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Natural primitives: Block, sphere, cylinder, cone, and torus
segment.

Before we describe the steps in detail, let us summarize
their effect and indicate how they differ from techniques
reported elsewhere.

The first step requires the computation of curve/surface
intersections. For the faces of natural primitives, such
computations are reduced to the intersection of lines or
circles with natural surfaces. An efficient implementation of
such computations is described in [15]. For each intersection
point, the tangent to the intersection curve is derived from
the cross product of the normals to both surfaces at the
intersection point.

The second step is the source of inefficiencies in the
algorithms discussed in [20] and [21]. We map intersection
points to an array of cells in the two-dimensional parameter
space of one primitive face. (Hereafter, for brevity we refer
to primitive faces as patches.) Our method locates
consecutive points practically without searching. Because
heuristic methods are inadequate, rare matching ambiguities
are addressed by recursively subdividing certain cells into
four subcells.

In the last step, we interpolate pairs of consecutive
intersection points and tangents with twisted bi-arcs, thus
generating a PCC that interpolates the actual edge at all
intersection points. Computation of twisted bi-arcs and
representation of the PCC were discussed earlier.

Step 1: Constant-parameter curves

Given a solid S, defined as a Boolean combination of
primitives P,, any face of S'is contained in the union of the
faces of all P,. Faces of natural primitives can be
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Constant-parameter curves on faces of natural primitives: Lines
and circles.

”c://I

Intersection point lying in one face only: The point P, is out of F;, but
is needed to specify the bi-arc (P, P;), which partly lies on F,.

parameterized in such a way that constant-parameter curves
correspond to lines of curvature and are circular arcs or
line segments (see Figure 9). A patch can be represented

in its biparametric form by a vector-valued function

F(u, v) that maps a rectangle in parameter space

(u € [u,, u,] and v € [v,, v,]) into a natural face. Constant-
parameter curves (also called generators) are u-curves of

the form C (¢) = F(u, ¢), and v-curves of the form

CAt)y = F(t, v).

Let F, and F, be two patches contained respectively in the
natural surfaces S, and §,. We assume that the intersection
of S, with S, is a set of dimension one or is empty.
Singularities and degeneracies are discussed below in a
separate subsection.
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We generate points that lie on F, and on S, by using a
grid of generators (u-curves and v-curves) of F,. We
compute the intersection points of each generator with S,.
Unless we are in a special case where the whole generator
lies on §,, we obtain at most four intersection points [15].
For example, given a constant-u curve C, of F,, we compute
its intersection points C (v;) with S,. These intersection
points are represented in the parametric space of F, by the
parameter values (u, v;), and lie on F, and on S, but can be
out of F,. Points out of F, could be easily rejected, since,
given a point P on .S,, it is easy (for natural surfaces) to
obtain its (u, v) values in the parameter space of F, and
compare these with u- and v-limits that correspond to the
boundaries of F,. However, we keep such points, because
they define bi-arcs (Figure 10) that may lie partly on F, and
partly out of it. (A bi-arc approximates a segment E of the
intersection edge between S, and S,. By saying that the
bi-arc is partly on F, we mean that E is partly on F,, since in
general the bi-arc is not entirely on any of the intersecting
surfaces.)

It is necessary to generate similar intersection points for
v-curves of F,; otherwise we could miss large intersection
edges that are almost parallel to u-curves of F, (Figure 11).

The tangents to intersection points are used as additional
constraints for the approximation. The exact tangent to the
intersection curve at an intersection point P can be
computed as the cross product of the normals at P to S, and
10 5,. Normals to natural surfaces are simple to obtain.
When the two normals are collinear, the two surfaces are
tangent, which implies either a self-crossing of the
intersection edge or a point or curve of tangency. These
cases are discussed in the subsection on singularities.

It is desirable to produce intersection points which are
evenly spaced (in a rough sense) and to provide an upper
bound on the size of details missed by the approximation.
The generators form a grid, which divides the patch F, into
cells. The cell that corresponds to the parameter interval
[u,, u,] X [v,, v,] is defined by the function F(u, v) for
u € [u,, w)] and v € [v,, v,]. The “size” of the cell is
controlled by the two increments éu = 1, — u, and
év = v, — v,, and the boundary of such a cell is composed of
four segments: the segments of Cu,(v) and of Cuz(v) for
v € [v,, v,], and the segments of C,,I(u) and of Cvz(u) for
u € [u,, u,). For natural patches, one can easily compute
values of éu and of év that correspond to the desired
precision.

The parameterization we have chosen has the drawback of
producing some cells that degenerate into triangles (for
example at the center of a disk). Intersection curves that pass
close to points where many such triangles meet generate a
dense and nonuniform distribution of intersection points.
All these points are needed for our matching procedure, but
many may be redundant in the final PCC, because a PCC
obtained with a subset of these intersection points may
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Intersection almost parallel to u-curves: Using only u-curves of F,,
we miss the intersection edge.

Parametric grid: Intersection points (left) are mapped into cells of the
. . parametric grid (right).
approximate the real curve with enough precision. The

precision tests described below may be used to determine
whether a given intersection point can be eliminated. The
elimination itself is trivial.

Step 2: Matching intersection points . P“/ P4/
The parameters v, of the intersections of generators C, of F, /

with S, are stored in an array V [u] indexed by discrete I P
values of u. Each element of the array contains at most four
v values, because C, can intersect S, in at most four discrete P, P,
points. If C, lies entirely in S,, it is ignored and the /

intersection is detected by v-curves. The parameters u, of the

intersections of generators C, of F with S, are stored in a / Py / Py

similar array UJv] indexed by discrete values of v. Given a
cell defined as F\(u, v) with u € [u,, w,] and v € [v, v,], the
intersections of its boundary with S, contain at most sixteen
points, which can be found in four lists. Each list has at most

four elements. The intersection points are of the following
form:

Errors of heuristic matching: Given four intersection points P, to P,,
and the associated tangents, most heuristic approaches would match
P, with P, (left), and not with P, (right), which might be the correct
solution.

1. F,(u,,v) with v stored in V'[w,] and v € [v,, v,].
2. F,(u,, v} with v stored in V' [1,] and v € [v, v,].
3. F(u,v,) with u stored in Ulv,] and u € [u,, u,].
4. F,(u, v,) with u stored in Ulv,] and u € [u,, 1,].

based on the direction of the tangents associated with each
point, but one cannot guarantee that such approaches will
produce the appropriate results, especially near points where
the two surfaces are almost tangent. An example is shown in

Thus, intersection points that lie on the boundary of a
given cell can be accessed without searching. If care is taken

to count twice certain intersection points that correspond to Figure 13.)

corners of cells, and tangency points where a generator When the boundary of a cell contains more than two

“touches” S, the boundary of each cell contains an even intersection points, or when the bi-arc approximation does

number of intersection points, because S, is a closed or not satisfy the precision criterion discussed below, the cell is

infinite surface (see Figure 12), and therefore the curve of recursively subdivided into four cells until all precision

intersection between S, and S, cannot terminate (i.e., have criteria are met and all matching ambiguities resolved, or

an endpoint) within a cell. until the “size” of the cell is less than a specified limit. A cell
If a cell has only two intersection points on its boundary, is subdivided by using generators that correspond to

the matching is trivial. If we have more than two points fora  midvalues of the parameters defining the cell. If the

single cell, we use adaptive subdivision to match these subdivision process reaches a specified minimum size for the

intersection points into pairs. (We tried heuristic approaches  cell without resolving the matching ambiguities (more than 305
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two intersection points remain on the boundary of the cell),
we could declare that the edge is self-intersecting, but it is
easier to match points so that the induced edge segments do
not intersect. The sampling points do not provide enough
information from which to infer the correct topology of the
intersection. We cannot distinguish between possible
topologies on the basis of approximate geometric data, and
we choose a simple topology: We match points so that they
can be connected in the parametric space by noncrossing
line segments. (See the subsection on singularities for further
discussion.)

Qur cell-based approach to the matching problem is
simpler and seems more robust than a similar method
reported in [13, 22] and used in the BUILD modeler. Is it
less efficient? The approach, partly described in [13], uses
only u-curves and an isosceles search-triangle to sort the
intersection points in parametric space. When an
intersection edge is almost parallel to the u-curves, Varady’s
method reduces the size of the basic step and requires
expensive geometric computations to generate intermediate
intersection points and to test whether they lie within the
search-triangle. In our approach almost all cells have zero or
two intersection points on their boundaries, and for these the
matching is performed without any geometric calculation.

Step 3: Interpolation

After the matching process, each pair of points (with
associated tangents) is interpolated by a twisted bi-arc.
(Tangential intersection curves may require inferring the
tangents, as discussed below.) The result is a ggometrically
smooth space curve composed of linear and circular
segments which interpolates all intersection points and their
tangents.

To obtain a continuous parameterization of the whole
curve, we must maintain consistency between the
orientation of two consecutive bi-arcs. A consistent
orientation of the bi-arcs may be propagated along the PCC
curve by matching the ending point of one bi-arc with the
starting point of the next bi-arc along the curve. Self-
intersecting edges are approximated by PCCs that do not
reflect their singularities and therefore can be consistently
oriented.

Singularities

In the previous discussion we assumed that patches F, and
F, either were disjoint or intersected transversely, producing
well-behaved curves. But several singularities may arise:

1. Two surfaces may be coincident.

2. Two surfaces may be tangent at isolated points.
3. Two surfaces may be tangent along a curve.

4. Intersection curves may self-intersect.

Cases |, 2, and 3 may be detected directly by testing the
relative position of one surface with respect to the other, or
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may be derived from the user’s input. An approach for
specifying and storing tangency relations between surfaces is
described in [23).

We do not attempt to detect singularities of Case 4 and
predict situations where the intersection edge crosses itself;
instead, we produce an approximation that may not reflect
the true topology of the intersection curve, but approximates
it within controlled accuracy and corresponds to a valid
topology. In our experience such decisions have no
consequences as long as they are made consistently.
However, maintaining consistency in geometric algorithms
that involve floating-point computation is a delicate and
poorly understood problem--even when no approximations
are used—and we make no attempt to solve it here.
(Although the correct processing of singularities is
mathematically tractable, its numeric implementation leads
to severe stability problems which are far from resolved. We
consider them outside the scope of this paper.)

Precision

We do not have an explicit representation of the real edge of
intersection of tori with other surfaces, and therefore it is
difficult to compute a bound on the maximum distance
between points on the PCC approximation and the real edge.
Instead, we define the error of the approximation as the
maximum of the distances from all points of the PCC to-the
two surfaces that intersect at the approximated edge. This
error measure is more practical than the distance between
curves because it directly relates to the “tolerance” used in
set-membership classification algorithms [4]. For example, if
the intersection of two surfaces S, and S, is approximated
within a specified tolerance by a PCC, all points on the PCC
must be on S, and on §, within the same tolerance. A point
is considered on a given surface if it lies within a given
tolerance from the surface.

Point/surface distance is simple to compute for natural
surfaces, but computing its maximum over a circular or even
a linear arc is very expensive. For example, the maximum
distance between a circular arc and a torus may be derived
from the maximum distance between the whole circle and
the circular spine of the torus. Computing such a distance
requires finding roots of an eight-degree polynomial.
Exploratory investigations indicated that evaluation of error
bounds usually is more expensive than any refinement it
might avoid. Thus, in our implementation we replace the
exact maximum distance between an arc and a surface with
an estimate computed at specific points of the interpolating
curve, or of its convex hull. The optimal choice of such
points and the derivation of an error bound remain open
issues. On the other hand, if the additional computational
cost is acceptable, exact error bounds may be calculated to
measure the accuracy of the PCC approximation and to
drive subdivision steps that may be necessary to achieve a
desired accuracy.
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e Approximating edges of solids

Classification of PCCs

Each edge of a given solid is a subset of the intersection
between two patches. We showed above how to compute an
approximation of the intersection of one patch with the
surface that contains the other patch. We must now trim this
approximation to obtain the subset that corresponds to the
actual edge, i.e., to the portion of the real curve that lies on
the boundary of the solid. The simplest approach is to
classify the approximation with respect to the solid and
retain only the part that is on.

If one accepts the risk of missing intersection details that
are smaller than one cell, it is economical to start by
classifying the intersection points that were used to define
the interpolating PCC. If two consecutive intersection points
have the same classification (for example, they are both on
the solid), assume that the classification is constant along the
bi-arc bounded by these two points. On the other hand, if
the classification changes between one intersection point and
its neighbor, find the set of primitive solids that may have
caused such a change of classification, generate the bi-arc
between the two intersection points, and compute the
intersections of both arcs with the surfaces of the selected
primitives. These intersections divide the arcs into segments
that have a constant classification. Classifying the midpoint
of each segment yields the classification of the segment.

Classification procedures are useful for trimming edges of
solids, and for many other applications in geometric
modeling.

Neighborhoods

Correct classification of curves that result from Boolean
operations on solids having overlapping faces or edges
requires information on edge neighborhoods. These can be
constructed by a technique used in PADL-2 for quadric
intersections. Specifically, compute the plane normal to the
edge at a selected point P of the edge, and find the
intersection curves of that plane with all the solid’s surfaces
S, that contain the edge. Sort the half-curves starting at P
around P so that material is contained between the first and
second half-curve, between the third and fourth, and so on.
Sorting is accomplished by computing tangents to the curves
or by using curvature and higher-order derivatives when
curves have the same unit tangent.

For PCCs one should construct neighborhoods at the
intersection points used to define the PCC because (within
the tolerance implied by floating-point accuracy) these points
lie on all the surfaces S, and the tangent direction computed
as the cross product of the normals to any two of these
surfaces is tangent to all S,. Selecting other points of the
PCC may lead to incorrect neighborhoods, since these points
generally do not lie in any of the intersecting surfaces.
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Computational complexity

The average complexity of boundary evaluation is unknown.
Worst-case bounds are easy to derive, but experimental data
indicate that these bounds are too pessimistic to be useful.

The following is a comparison of the time and storage
costs associated with the generation and classification of an
edge by PCC and by closed-form methods.

Average values used in this comparison are rough
estimates found experimentally. Generating an “average”
PCC consisting of 20 bi-arcs to approximate the intersection
of two surfaces involves in the order of 40 curve/surface
intersection calculations. Each of these calculations requires
finding the roots of a polynomial of degree =4. Additional
cost comes from the precision tests and the occasional
subdivision discussed earlier. Thus, PCC generation is much
more expensive than closed-form solutions, when these are
available.

Curve/solid classification by the brute-force method
involves intersecting the curve with each surface bounding
the solid (or with all surfaces bounding primitive solids, if
the object is defined in Constructive Solid Geometry). If a
closed-form equation for an edge is available, curve/surface
intersection typically amounts to computing the roots of a
single polynomial of degree <8. Intersecting a PCC
composed of 20 bi-arcs with a natural surface amounts to 40
arc/surface intersection calculations that involve roots of
polynomials of degree <4. However, if, as in the speedups
mentioned above, we perform curve/surface intersection
calculations only for bi-arcs that join points lying on
different sides of the surface, the PCC/surface intersection
calculation might be reduced to 20 point/halfspace
classifications (quadric equations for quadrics) and a few
occasional arc/surface intersections.

We conclude that the main difference between PCC
approximations and closed-form solutions (when available)
for edges of solids lies in the cost of generating
surface/surface intersections.

The number of curves (tentative edges) generated and
classified in boundary-evaluation algorithms is proportional
to the square of the number of primitives. Thus, the penalty
for using PCC approximations when closed-form solutions
are available is large, and we do not recommend this
approach. On the other hand, when tori are involved, and
for offsetting operations, no closed-form solution is available,
and, for reasons outlined in the introduction, PCCs seem an
excellent choice.

Utilities for PCCs
In this section we present several tools for PCCs that are
used by the applications discussed in the next section.

o Recursive subdivision

To display or classify an arc, it is useful to subdivide it into
two parts. Representation in terms of control triangles is

JAROSLAW R. ROSSIGNAC AND ARISTIDES A. G. REQUICHA




308

Subdivision: The arc defined by (A, B, C) is subdivided into two arcs
defined by (A, M|, M) and (M, M,, C).

well-suited for display and subdivision. Given a control
triangle (4, B, C), we produce the two control triangles
(4, M, M) and (M, M,, C) (see Figure 14) of the two
half-arcs by the following sequence of

U=4A-B, V=C-B Y=C-4,
_ R __a
a= U], h———z, m=-——7
M, + M,
M, =mU+B, M,=mV+B, M=—72

2

The value of m is derived from the proportionality between
the two triangles (4, B, C) and (M,, B, M,) in Figure 14. For
simplicity we assume that a is not infinite and that both a
and 4 are not null. The treatment of degenerate arcs is very
simple and is not discussed here.

e Point/curve minimum distance and normal projections
The minimum distance between a point and a smooth curve
may only occur at the normal projections of the point on the
curve. The “normal projections” of a point P = (x, y, z) on a
curve C are the points H, of C for which the vector PH, is
orthogonal to the tangent to C at H,. For PCCs, one needs
only to project on lines and circles. Without loss of
generality, we consider local coordinate systems such that a
line lies on the Z-axis of its local coordinate system, and a
circle lies in the z = 0 plane and is centered at the origin of
its local coordinate system. Let C be a whole line or a
complete circle and let (x, y, z) be the coordinates of P
expressed in the local coordinate system of C.
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When C is a line, the normal projection of P is
H = (0,0, z). When C is a circle of radius 7, if P is not on
the Z-axis there are two normal projection points H, and
H,, having for coordinates (¢x, gy, 0) and (—gx, —qy, 0),
where g = r/vy* + 3% If P is on the Z-axis, all the points of

the arc are normal projections of P, and any one of them
can be used for computing point/curve distance or
point/sweep set-membership classification by the algorithms
described below.

To obtain the normal projections of P on a segment of a
curve C, compute normal projections on the whole curve
and discard points that fall outside the segment. The set of
normal projections of P on a PCC is the union of normal
projections of P on all the arcs that form the PCC.

& Inferring tangents

When tangent data are not available, the following scheme
may be used for inferring reasonable tangents from the
position of neighboring points.

Our method is based on three circles defined by five
consecutive points. Three noncollinear points £,_, P, P,
define one circle C,. The center O, and radius r, of the circle,
as well as the normal N, to the plane that contains the circle,

are computed as follows [7]:

V=F_,-P, W=P~P.,—-F N, =V xX W],
v W’

r=1 2" (W><N,)+H2—"(N,x V), 0,= P, + R,

r,={R|.

The circle C, lies in the plane normal to N, and passes by
the points P,_,, P, P,,,. The tangent direction T, ,to C;ata
point P, is the unit vector parallel to N, X (O, — P). T},
could be used for estimating the tangent 7; associated with
the sampling point P,. However, this method is too local and
can produce somewhat “unnatural” waves. Much better
results are obtained by using a weighted average of tangents
to three circles constructed over consecutive points

(Figure 15):

_ wo Ty +wl, +w, T,

bl

!
Wit Wt owy,

for /=3 ... n— 2. For noncyclic curves, tangents at the first
and last two points are inferred from only one or two circles.

When the weights w, are all equal, a smooth curve with
small curvature variations is obtained. In order to correctly
approximate straight lines defined by three or more collinear
points, we make the weights proportional to the
corresponding radii (w, = r;). This produces infinite weights
for collinear points (Figure 16). Another weight formula for
combining three tangents is proposed in [24], where the
coefficients w, are slightly more complicated but do not seem
to produce significantly better results than ours.
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Tangent approximation: The tangent at P, is approximated by the weighted average of the unit tangents at P, to three circles: the circle passing
* by (P, P, P), the circle passing by (P,, Py, P,), and the circle passing by (P;, P,, Ps).

Applications of PCCs one pixel or is almost linear. Subdivision of PCC arcs was
PCCs have many potential applications in geometric described in the previous section.

modeling, in addition to the approximation of intersection

edges discussed earlier. A few of these applications are & [nteractive design

described in this section.
PCC:s for defining and processing 2D contours

o Wire-frame display PCCs may be used to define 2D contours composed of linear

PCCs offer an economical representation of smooth and circular segments. A contour may be specified and

approximations for space curves. Practical experience modified graphically in terms of control points which define

indicates that PCCs require at least one order of magnitude line segments, fillets for corners, or points to be interpolated

fewer segments than linear approximations in order to with a smooth PCC.

produce wire-frame displays of comparable accuracy and Such contours contain only circular or linear segments,

visual smoothness. PCC representations can be stored in and therefore are closed under normal offsetting [10]. That

display devices to allow real-time transformations, and can is, exact offset contours are also composed of only linear and

be displayed by a fast algorithm that recursively subdivides circular segments. Offsets of contours that bound 2D regions

circular arcs until their projection on the screen falls within are used to drive numerically controlled cutting tools in 309
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Constant-radius blends: Face of a blend generated by rolling a sphere along rounded edge (left) is bounded by a subset of canal surfaces (right).

surfaces, because sweeping along a PCC spine is equivalent
to a sequence of rotational sweeps (for circular spine
segments) and translational sweeps (for linear spine
segments). Translating lines and circles produces planes and
cylinders, rotating lines produces cylinders or cones, and
rotating circles produces spheres or tori. Therefore, a 2D
PCC contour swept along a 3D PCC spine produces a solid
whose faces lie in natural surfaces.

Set-membership classification algorithms for solids
generated by PCC sweeps can be organized as follows:

1. To classify a point P, one computes the normal
projections P, of P on the spine, and then classifies P
against the 2D cross sections that contain each P,. The
2D classification can be performed by the usual methods
for classifying points against regions represented by their
boundaries.

2. To classify a curve, one first computes all the
intersections of the curve with the set of patches
generated by sweeping individual arcs of the contour
along individual arcs of the spine. Then one classifies an
intermediate point of each curve segment defined by two
consecutive intersecting points.

Support of offsetting and blending operations
Offset (i.e., expanded or shrunk) solids [12] as well as solids
with constant-radius blends [11] have faces that lie on so-
called canal surfaces of constant radius (see Figure 18). A
canal surface is the envelope of a family of spherical surfaces
with centers on a space curve called the spine.

Canal surfaces are complex but can be approximated by
smoothly joined toroidal or cylindrical faces if their spines
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are approximated with PCCs. In addition, PCC
approximation for intersection edges simplifies point-
membership classification with respect to expanded or
shrunk solids, because such classification requires the
computation of the minimum distance between a point and
the edges of the original (non-offset) solid, and distances can
be deduced from the normal projections of points on edges.
Blending and filleting operations can be modeled by
combining growing and shrinking operations on solids {11].

Thus, to support sweeps, offsets, and constant-radius
blends in a solid modeler where intersection edges are
approximated with PCCs, one needs procedures for
computing the normal projections of points on PCCs, in
addition to the usual classification procedures provided by
most modelers [4].

Experimental implementation and conclusions
An experimental solid modeler that incorporates offsetting
operations in constructive solid geometry was implemented
by the authors [10]. Canal surfaces and intersection edges of
tori, and indeed all intersection edges, were approximated
with PCCs in the modeler. The implementation was greatly
simplified because we had to deal with only one edge type.

Our experience with PCCs showed that a small number of
segments is sufficient to approximate complicated edges with
PCCs that cannot be visually distinguished from the exact
edges. Timing results were good when compared to those of
other schemes for approximating intersection edges of
nonquadric surfaces, even though no attempt was made to
produce efficient code. For example, wire-frame displays of a
simple object (Figure 19) were produced in a few seconds on
a VAX/780.
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Torus/cylinder intersection: The intersection curve of a toroidal and a
cylindrical face (left) was generated (right) in less than two seconds.

The generation and classification of a PCC approximation
for the intersection of two natural quadrics is much more
expensive than the generation of a closed-form curve
representation. Therefore, PCCs are best used in conjunction
with analytic solutions when the latter are available. This
approach has been successfully implemented in the
UNISOLIDS modeler, which uses PCCs to support
intersection of tori, as well as free-form curve design for
sweeping planar cross sections (see footnote p. 303).

In summary, this paper describes a new technique for
interpolating points and tangent vectors by piecewise-
circular curves, and shows that PCCs have many
applications in geometric modeling. They are well-suited for
approximating intersection edges in modelers that support
the natural surfaces (planes, spheres, cylinders, cones, and
tori), because PCCs are easy to compute and display, and
lead to simple algorithms. For example, the intersection of a
curve approximated by a PCC with a natural surface
involves solving fourth-degree equations, and this can be
done analytically. In addition, PCCs provide convenient
means for incorporating sweeping, blending, growing, and
shrinking operations in solid modelers that support only
natural surfaces.
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