
The complexity
of computations
by networks

by Nicholas Pippenger

We survey the current state of knowledge
concerning the computation of Boolean
functions by networks, with particular emphasis
on the addition and multiplication of binary
numbers.

1. Introduction
The object of this paper is to survey what is known about
the complexity of computing certain Boolean functions. The
model of computation we use is that of Boolean networks,
also known as combinational logic networks or circuits. The
functions we deal with are those corresponding to arithmetic
operations on numbers represented in binary. These
functions are among the most important of those that
networks are commonly used to compute; they also have the
merit of illustrating nicely much of the theory of
computation by networks.

Though the computation of arithmetic functions by
networks is one of considerable practical importance, the
viewpoint of this paper is ruthlessly theoretical. Most
textbooks on computer arithmetic devote a great deal of
discussion to matters such as the representation of negative
numbers. Though this issue has practical importance, it is of
little theoretical interest, and almost nothing is said about it
here. Many of the results we describe, on the other hand,
have practical relevance only if it is necessary to perform
operations on numbers of astronomical length; they are
unlikely to find application outside of stunts such as the
computation of T to millions of digits. These results are of
Wopyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

theoretical importance, however, because they describe the
fundamental possibilities and limitations of computation by
networks.

We confine our attention to operations on numbers
represented in binary. Little would change if we adopted
decimal, or any other fixed radix, instead. Because we wish
to study the complexity of computing prescribed Boolean
functions, we regard the representation system as given. One
may, however, regard the representation system as
something to be engineered, like the network; for results
from this point of view, see the pioneering work of
Winograd [1,2].

Let B denote the Boolean algebra with two elements,
which are denoted 0 and 1 (alternative denotations are
“false” and “true,” respectively). A Boolean functionf
depending on n arguments is simply a mapf:B” + B.
Suppose that we are given the values x, , . . . , x, of the
arguments and that we wish to compute the value
f (x , , . . , x,). In this situation we may regard x, , . . ., x, as
indeterminates andfas an element of the extension Boolean
algebra B(x,, . . ., x,,), which contains 2*’ elements. (Recall
the analogous situation in which a real polynomial in n
variables may be regarded either as a map p:R” + R or an
element of the ring R[x, , . . ., x,,].)

The idea of computation by Boolean networks is a simple
one: We are given a supply of components called “gates”
that compute some basic Boolean functions, and we wish to
interconnect them into a system called a “network” that
computes one or more other Boolean functions. We
illustrate this idea with an example. Suppose we are given a
supply of gates that compute the “nand” function of two
arguments (this function assumes the value 1 unless both its
arguments assume the value 1, in which case it assumes the
value 0). Suppose that we wish to compute the “parity”
function of two arguments (also known as the “sum modulo
2”; it assumes the value 1 if and only if an odd number of its

IBM 1. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987 NICHOLAS PIPPENGER

236

arguments assume the value 1). We can perform our task as
follows.

a + nand@, y),

b c nand(x, a),

c t nand(a, y),

z c nand(b, c).

In this example, x and y represent the network inputs, a,
b, and c represent “wires” carrying the outputs of the first
three gates to succeeding gates, and z represents the network
output. The example illustrates several properties of
networks. First, it is possible to compute something once
and use it many times (the value of a is used twice, as are
the network inputs x and y). Second, there are no cycles of
dependence; each computation uses only network inputs or
outputs of preceding computations.

Two important parameters of a network are its size (the
number of gates it contains; four in the example) and its
depth (the number of gates on the longest path of
dependence; three in the example). The size of a network has
an obvious relation to its cost (under the simplifying
assumption that all gates have equal cost and that no other
components, such as wires, have any cost). The depth
corresponds (under analogous simplifying assumptions) to
the delay introduced by a network.

We assume that we are given a set of available gate
functions and a set of desired network functions, and we are
interested in the minimum possible size of a network
performing this task. Alternatively, we may be interested in
the minimum possible depth, or in the possible
combinations of size and depth that can be achieved
simultaneously.

More generally, we may assume that we are given not
only a set of available gate functions, but also an assignment
of a nonnegative real cost and delay to each of them. Such a
set of functions together with costs and delays will be called
a basis. To any network built from these gates we also assign
a cost (the sum of the costs of its constituent gates) and a
delay (the maximum over all paths from an input to an
output of the sum of the delays of the gates on that path).
Given a set of desired network functions, we are interested
in the minimum possible cost, or the minimum possible
delay, or the achievable combinations of both.

own distinct complexity theory. This is true to a certain
extent, but there are large classes of bases that behave, for
theoretical purposes, in the same way. Consider, for
example, bases having the following three properties. First,
they contain only finitely many types of gates. Second, the
gates they contain can be interconnected in sufficient
quantities to form a network computing any prescribed
Boolean function. Third, they contain gates computing the
constant functions 0 and 1 with cost 0 and delay 0, but no

It may seem at first that each possible basis gives rise to its

NICHOLAS PIPPENGER

nonconstant function has cost 0 or delay 0. Such a basis will
be called a standard bounded basis.

Standard bounded bases have a number of pleasant
properties that make their complexity theory particularly
simple and natural. The first of these is that optimal costs
and delays do not depend very strongly on which standard
bounded basis we consider. Given any two standard
bounded bases, we can construct for each gate of one a
network computing the same function using gates of the
other. These networks can be connected together in the same
way as gates, so in going from one standard bounded basis to
another we need increase the cost and delay by at most
constant factors (which depend only on the two bases). We
celebrate this fact by stating results in a form that ignores
constant factors: We usually give upper bounds in the form
O(g(n)), meaning “bounded above by some constant times
g(n),” and lower bounds in the form Q(g(n)), meaning
“bounded below by some strictly positive constant times
g(n).” This fact, which gives great coherence to the
complexity theory of standard bounded bases, seems to have
been appreciated by the earliest workers in the field (see
Muller [3]).

The second pleasant property of standard bounded bases
is that the cost and delay of a network computing a given
Boolean function can be bounded above by simple functions
of the number of arguments on which the function depends.
Specifically, a function of n arguments is computed by a
network having cost O(2”) and delay O(n), simultaneously.
To see this, assume (by virtue of the preceding pleasant
property) that the basis contains a gate depending on three
arguments (say, x, y, and z) and producing the output “if x
then y else z.” A network computingf(x,, . . . , x,) can then
be constructed from such a gate with xI for x, the output of
a network computingf(1, x,, . , x,) for y and the output of
a network computingf(0, x,, . . e , x,) for z. It is easy to see
that this construction yields the bounds mentioned above.
The cost bound can be improved to O(2”ln) (see [3]), but
this improvement is best possible, as is the delay bound.

The third pleasant property is that cost and delay are
bounded below by simple functions of the number of
arguments on which a function depends. (Here we must
assume of course that the function actually depends on all its
arguments, that is, that the two partial functions obtained by
substituting the constants 0 and 1 for an argument are
always distinct; otherwise, the function might be a constant
in disguise.) For any standard bounded basis there is a
maximum number, say k, of arguments on which any gate
depends. It is easy to see by induction that if a network has
size c, it can depend on at most c(k - 1) + 1 inputs, and if it
has depth d, it can depend on at most kd inputs. From this it
follows that a network computing a function depending on n
arguments must have cost Q(n) and delay Q(1og n). These
bounds also seem to have been appreciated by early workers.
Because they differ exponentially from the universally

IBM I. RES. DEVELDP. VOL. 31 NO. 2 MARCH 1987

applicable upper bounds, they provide great scope within
which functions can vary in their complexity.

asymmetry between inputs and outputs in networks. For a
standard bounded basis, there is a bound to the number of
arguments on which any gate depends (this number is
sometimes called the “fan-in” of the gate). Suppose that we
also postulate for each type of gate in the basis a bound to
the number of other gates that can depend directly upon it
(such a bound is called a “fan-out’’ bound for the gate). How
would this affect optimal costs and delays? According to a
theorem of Hoover, Klawe, and Pippenger [4], as long as the
basis contains a nonconstant gate with a fan-out bound at
least 2 , both cost and delay are within constant factors of
what they would be with unbounded fan-out. (To prove this
for cost alone or delay alone is straightforward, but some
care is needed to keep both under control simultaneously.)

strong justification for the complexity theory of standard
bounded bases as “the” complexity theory of Boolean
functions. A great frustration of this theory, however, is the
paucity of results concerning specific functions. Although it
is known that there exist functions of n arguments with costs
almost everywhere from 0 (2 ” / n) down to O(n) and delays
almost everywhere from O(n) down to @log n) (see
Paterson and Wegener [5] , for example), no specific function
is known for which the cost can be proved to be O(n2) but
not O(n), or for which the delay can be proved to be
O((1og n y) but not @log n).

This frustration has motivated the study of “monotone”
Boolean functions by monotone Boolean networks. A
monotone Boolean function is one that is nondecreasing in
the usual sense: Changing an argument from 0 to 1 can
change the value from 0 to 1 but not from 1 to 0. The
property of being monotone is preserved by composition, so
if the gates in a basis compute only monotone functions, so
will all networks over that basis. We may define a monotone
bounded basis by altering the second condition in the
definition of a standard bounded basis to require only
computing any prescribed monotone Boolean function.
Monotone bounded bases enjoy the four pleasant properties
mentioned above (with the best possible universally
applicable cost bound reduced to O(2”/n3’*); see Andreev
[6]) . There has been considerable success in proving lower
bounds for the computation of sets of monotone Boolean
functions by networks over monotone bounded bases, and
recently there has been decisive progress in proving such
bounds for single monotone Boolean functions (see
Razborov [7] and Andreev [8] and the references cited
therein). The topic of monotone computation is somewhat
off the track of this paper, however, since most functions of
arithmetic interest are not monotone.

A fourth pleasant property concerns an apparent

These four pleasant properties, especially the first, provide

Apart from standard bounded bases, the basis that
concerns us most in this paper is one we call the standard

unbounded basis. It comprises (1) a gate computing the
negation of one argument with cost 1 and delay 0, (2) for
each k 2 2, a gate computing the “and” of k arguments with
cost k and delay 1, and (3) for each k 2 2 , a gate computing
the “or” of k arguments with cost k and delay 1. It is not
hard to see that, as far as cost is concerned, the complexity
theory for this basis is within constant factors the same as
that of the standard bounded bases. Where delay is
concerned, however, the standard unbounded basis has
dramatically different properties from the standard bounded
bases. To see this, let us consider how the pleasant properties
of standard bounded bases are affected by the change.

First, consider the effect of changes to the basis. If we omit
(l), we get a basis, the monotone unbounded basis, that bears
the same relationship to the standard unbounded basis that
the monotone bounded bases do to the standard bounded
bases. Alternatively, we could by using DeMorgan’s laws
omit either (2) or (3) and obtain a basis differing by at most
constant factors in the cost and differing not at all in delay.
We see later, however, that adding other unbounded families
of gates (for each k 2 2 , a gate computing the parity of k
arguments with cost k and delay 1, for example) greatly
affects the properties of the basis.

For a universally applicable upper bound, a function of n
arguments is computed by a network of cost at most n2” and
delay at most 2 . To see this, express the function as the “or”
of at most 2” functions, each corresponding to one possible
assignment of Os and 1s to the arguments and each
computed by the “and” of n arguments or their negations.
We have a universally applicable lower bound of n for the
cost of a network computing a function depending on n
arguments, but as we have just seen, no function requires
delay greater than 2 .

Networks over the standard unbounded basis are often
called “networks with unbounded fan-in,’’ and it is
invariably assumed that they also have unbounded fan-out.
Similarly, networks over the standard bounded basis are
often called “networks with bounded fan-in,’’ and we have
seen that it does not matter whether or not they have
bounded fan-out.

2. Addition in binary
Suppose that we are given two natural numbers x and y,
each in the range (0, . . . , 2“ - 1 I, as represented by n-bit
binary sequences x,, . . . , x,,-l and yo, . . ., Y, , -~ :

x = c X”2”
04msn-I

and

Y = c Y 2 ” .
Osmsn-I

We wish to compute their sum z = x + y, which lies in the
range (0, . . . , 2”+’ - 11, as represented by an (n + 1)-bit
binary sequence zo, . . . , z,: 237

NICHOLAS PIPPENGER IBM J. RES, DEVELOP. VOL. 31 NO. 2 MARCH 1987

r = r,2,.
Osmsn

Since z, depends on all 2n inputs, it is clear that a network
with bounded fan-in for addition must have cost Q(n) and
delay Q(1og n). Our first goal in this section is to see how
these bounds can be achieved.

A little thought reveals that the essence of the matter is the
computation of the “cames” e,, . . . , c,, which may be
accomplished by means of the recurrence

e,,, = majority (x,, Y,, c,)

for 0 5 m 5 n - I , together with the condition e, = 0. (The
“majority” function of n arguments assumes the value 1 if
and only if at least half the arguments assume the value 1 .)
Once c,, . . . , e,, have been computed, z,, . . . , z, can be
computed by the formula

z, = parity (x,, Y,, Cm)

for 0 I m s n - I , together with r, = e,, . These formulae
yield a network with bounded fan-in for addition, often
called a “ripple-carry adder,” having cost O(n) and delay
O(n). This settles the question of the optimal cost, but leaves
open that of the optimal delay.

In 1956, Nadler [9], and independently Weinberger and
Smith [IO], showed how addition can be performed with
delay O(1og n). The networks they proposed (Nadler’s is
called a “pyramidal adder,” Weinberger and Smith’s a
“carry-look-ahead adder”) have cost O(n log n) rather than
O(n), as does yet another (called a “conditional-sum adder”)
proposed by Sklansky [1 11 in 1960. Thus, while these results
settled the question of the optimal delay, they left open that
of whether the optimal cost and delay can be achieved
simultaneously. It was Ofman [121, in 1962, who solved this
problem by showing how to achieve linear cost and
logarithmic delay simultaneously.

Unlike its predecessors, Ofman’s adder never acquired a
catchy name. The idea behind it, however, has proved useful
for a variety of other problems, and is now known as
“parallel-prefix computation.”

To describe Ofman’s result, let us consider a finite-state
automaton that receives a sequence of input symbols a,, . . . ,
an-,. When it receives the symbol a,, it uses this symbol and
its current state q, to compute its next state q,+, and an
output symbol b,. The initial state q, is assumed to be fixed.
Ofman’s result is that the computation of the output
sequence bo, . . . , b,-l and the final state q,, from the input
sequence a,, . . . , a,-, can be performed by a network with
bounded fan-in having linear cost and logarithmic delay. (It
does not matter how the input and output sequences are
represented by Boolean variables, as long as each symbol is
represented separately and in the same way; any desired
change of representation can be accomplished by networks
with linear cost and bounded delay; which does not affect

238 our results.)

NICHOLAS PIPPENGER

To apply this result to addition, we take the input symbol
a, to be the pair (x,, y,) of input bits (so there are four
input symbols) and the state q, to be the carry c, (there are
two states). The output bit z, is then the output symbol b, if
0 5 m 5 n - 1, or the final state q,, if m = n. The reader
may enjoy the exercise of applying the result to the problem
of dividing an n-bit binary number by 3, producing an
(n - I)-bit quotient and a 2-bit remainder.

To prove Ofman’s result, we begin by regarding each
input symbol a, as a map Am from the set of states to itself
sending q, to q,,,. The effect of a sequence of symbols
a,, . . . , a, is then given by the composition of maps
A , 0 . . . 0 A,. Clearly it suffices to compute some
representation of the sequence of maps Q, = A,, Q, =
A , 0 A,, . . ., Q, = A,,-, 0 . . 0 A,, for then with a network
of linear cost and bounded delay we may apply them to the
initial state q, to get the sequence of states ql , . . ., q,, then
use these and the input sequence to compute the output
sequence bo, . . . , bn-,.

To see how to compute Q,, . . ., Q, from A,, . . ., A,-,,
suppose that n = 2n‘ is even (the case of n odd is similar).
First, compute the compositions A ; = 0 A , , for
0 5 m 5 n’. Then, by recursive application of the procedure
being described, compute Qi = A;, Q S = A ; 0 A& . . -, Qi.
= A;,-l 0 . . . 0 A;. Finally, compute Q, = A,, Q2* = QL for
1 s m s n ’ a n d Q 2 , + , = A , , o Q ~ f o r O s m ~ n ‘ - 1 .
Since this recursion reduces n by a factor of two with linear
cost and bounded delay, it yields a network with linear cost
and logarithmic delay, which completes the proof of
Ofman’s result.

The only property of the composition of maps used in the
foregoing construction is associativity, so the result is
actually one about computation in semigroups, and this is
the natural setting for parallel-prefix computation.
Associated with the addition problem is a semigroup, the
“carry semigroup,” which contains three elements. Viewed
as maps from the set of states to itself, these elements are the
constant maps 0 and 1, and the identity map. In the context
of addition, they correspond to “absorption” of a carry
[accomplished by the input symbol (0, O)], “generation” of a
carry [accomplished by (1, I)], and “propagation” of a carry
[accomplished by (0, 1) or (I , O)]. Below we meet other finite
semigroups of computational interest.

given by Khrapchenko [131. Further work on parallel-prefix
computations has been done by Ladner and Fischer [141,
Fich [151, and Snir [161.

unbounded fan-in. Adders with linear cost are still optimal
(as regards cost), but now we should strive for bounded delay
rather than logarithmic delay. As we saw in the introduction,
we can achieve delay 2 with cost O(n2’“). Thus the question
is “Can bounded delay and linear cost be achieved
simultaneously?“

Refinements of Ofman’s work on addition have been

Let us now consider addition by networks with

IBM J . RES, DEVELOP. VOL. 31 NO. 2 MARCH 1987

As was the case for bounded fan-in, addition can be
reduced to carry computation by a network with linear cost
and bounded delay. Furthermore, the reverse reduction can
be accomplished by a network with the same cost and delay,
since

c, = parity (x,, Y,, z m)

for 0 5 m I n - 1 and c,, = 2,. Thus the question as to
whether addition can be performed by networks with linear
cost and bounded delay is equivalent to that as to whether
carry computation can be performed by such networks. The
latter question is somewhat more convenient to deal with,
however. In particular, the cames are monotone functions of
the inputs (since the “majority” function is monotone), so
the question can be asked in two forms: for monotone
networks with unbounded fan-in and for nonmonotone
networks with unbounded fan-in.

It is implicit in the work of Weinberger and Smith [101
that the cames can be computed by a monotone network of
delay 3 and cost O(n3). The next step was taken by Chandra,
Fortune, and Lipton [171, who showed that carries can be
computed by a monotone network of delay 6 and cost
O(n(1og n)*). They went further than this, however; to
describe their full result we must introduce some notation.
For n 2 1 , let

log* n = min { / 2 0:log . . . log n 5 l) ,
I ’
/

where all logs are to base 2. The values of log* at 1 , 2, 4, 16,
and 65 536 are 0, 1 , 2, 3, and 4, respectively, so log* is a
very slowly growing function. Let

log** n = min (f 2 O:log* . . . log* n I 11 , -
/

and, more generally, let
k k- I k- I

”
T
/

Chandra, Fortune, and Lipton showed that the cames can be
computed by a monotone network of delay 6k and cost

b- 1

e7
O(n(l0g n)2).

This result says that one can almost, though not quite,
construct adders of bounded delay and linear cost. (In view
of the astronomical argument values needed for functions
such as log** to assume large values, it is clear that this
result is of a purely theoretical character!)

and Lipton can be extended to other finite semigroups. It
extends to any finite semigroup if gates are available that
compute the product of k semigroup elements with cost k
and delay 1. If only gates in the standard unbounded basis

Like the result of Ofman, the result of Chandra, Fortune,

are available, it extends to those finite semigroups that
contain no group as a subsemigroup. (Semigroups that do
contain a group are discussed in the next section.)

We are still left with the question of whether there are
adders with bounded delay and linear cost. The first step in
answering this question was also taken by Chandra, Fortune,
and Lipton [181, who showed that any monotone network
for computing the carries with delay k must have cost at
least

A
Q(n log n).

They did this by showing that any monotone network for
computing the carries has to be what they call a “parallel-
prefix graph,” then showing that any parallel-prefix graph
with depth k and n inputs must have size at least

e k-2

Q(n1og n).

That this result has no implications for nonmonotone
networks can be seen as follows. Consider prefix-or, the
parallel-prefix problem for the “or” semigroup (the
semigroup with elements 0 and 1 and “or” as its operation).
A monotone network computing prefix-or must also contain
a parallel-prefix graph, so the lower bound of

k-2 c3
Q(nl0g n)

also applies to such networks. But Chandra, Fortune, and
Lipton [181 have shown that prefix-or can be computed by
nonmonotone networks with constant delay and linear cost
(the reader may enjoy proving this as an exercise). Thus the
concept of a parallel-prefix graph cannot be used to prove
lower bounds for nonmonotone networks.

Chandra, Fortune, and Lipton [171 also observed,
however, that an adder or a (not necessarily monotone)
network computing cames must contain another type of
graph called a “weak superconcentrator.” Dolev, Dwork,
Pippenger, and Wigderson [191 then proved that a weak
superconcentrator with n inputs and depth 2k must have size
at least

rn k- I

Q(n log n).

Thus neither addition nor carry computation can be
performed by networks with both constant delay and linear
cost. This result, together with the upper bound, shows that
the minimum possible delay for adders of linear size is
O(log* n), where

k
c3

log’ n = min {k t 0:log n I k).

The example of prefix-or shows that negation may be used
to reduce the complexity of computations that can be
performed without it. A particularly dramatic example of 239

NICHOLAS PIPPENGER IBM 1. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

this phenomenon is due to Razborov [20], who shows that
the monotone “logical permanent” function, which can be
computed by networks with polynomial cost, can be
computed by monotone networks only with cost nn(losn).

3. Multiplication in binary
Suppose that we are given the binary representations
x,, . . . , x“-, and yo, . . . , yn-, of two n-bit binary numbers x
and y , and that we wish to compute the binary
representation z,, . . . , z2,,- I of their 2n-bit product z = xy. As
for addition, since the most significant output depends on all
the inputs, a network with bounded fan-in must have cost
Q(n) and delay Q(1og n).

To get our bearings, let us consider the most obvious
method for multiplication. First, compute the binary
representations of the n “partial products” x,y, 2x,y, . . .,
2”-’xn-,y. Then, add these to form the “total product” z. The
formation of the partial products is trivially accomplished
with cost O(n2) and delay O(1). The accumulation of the
total product can be accomplished by adding the partial
products in pairs, adding the results in pairs, and so forth,
until a single result is obtained. The resulting “tree” of
adders contains n - 1 adders, of which at most [log, n 1 lie
on any path from a “leaf” (partial product) to the “root”
(total product). As we saw in Section 2, each adder can be
constructed with cost O(n) and delay O(log n), so the
resulting multiplier has cost O(n2) and delay O((1og ny).

may be brought to bear here. In the present instance, it
reduces the delay from O((1og n),) to O(1og n), without
affecting the cost. It is applicable whenever a large number of
additions must be performed, and in particular it is
applicable to other multipliers, with smaller costs, that are
described later in this section.

There is a useful device, called “carry-save addition,” that

The idea behind carry-save addition is the use of a
redundant representation for numbers. Instead of using the
ordinary binary representation x,, . . . , x”-, for x, let us agree
to use any combination of 2n bits x& x;, ’ . . , X,,-,, x,-,
such that

I I1

x = (x; + x:)2”.
Osmsn-I

The representation is now no longer unique, but precisely
this flexibility makes it easier to perform additions.

Suppose we are given the redundant representations
x& x;, . . . , x;-,, x;-, and y& y;, . . . , y;-,, y:-, for numbers
x and y and that we wish to compute a redundant
representation z& z;, . . ., z:, z; for their sum z = x + y.

The rules for addition symmetrically combine three bits
(denoted x,, y,, and c, in Section 2) to obtain one bit
associated with the same position (denoted z m) and one bit
associated with the next higher position (denoted c,,,). Let
us combine x;, x:, and y ; in this way to obtain a, and
b,,,. Of course, b, is produced by the next lower position.

240 Let us then combine a,, b,, and y: in the same way to

NICHOLAS PIPPENGER

obtain a; and b;+,. Finally, we set z; = a; and z: = b;
(which is produced by the next lower position). This method
actually produces a bit z:+, that has no place in our result,
but if x and y are at most 2“ - 1, this extra bit is 0 and need
not be computed. Thus carry-save addition can be
performed by networks with cost O(n) and delay O(1).

If we now construct a multiplier as before, but employ
carry-save adders instead of ordinary adders, we obtain a
multiplier with cost O(n2) but delay only O(1og n). Of
course, this multiplier accepts its inputs and produces its
outputs in redundant representation, but this difficulty is
easily overcome. To convert inputs from ordinary binary to
redundant binary, we may set x; = x, and x: = 0. To
convert the output from redundant binary to ordinary
binary, we may employ an ordinary adder; this contributes
O(n) to the cost and @log n) to the delay, yielding an
ordinary multiplier with cost O(n2) and delay O(1og n).

delay, let us now turn to the problem of reducing the
cost. The first step was taken by Karatsuba [21] in 1962;
he showed how to construct multipliers with cost
O(n1“823) (lo@ = 1.585 . . .). One way of doing this (more
suitable for generalization than the one used by Karatsuba)
is as follows. Suppose that n = 2n’ is even (the case of n odd
is similar). Regard the input x as the value p(2”’) of a linear
polynomial p ([) = po + pI[at the point [= 2”‘, where the
coefficients p, and p , are n ’-bit numbers. Regard y similarly
as the value q(2”’) of a polynomial q(E) = q, + q,[. If we can
compute the product r ([) = p(E)q((), which is a quadratic
polynomial, then z can be obtained as its value r(2“’). Since
a quadratic polynomial is determined by its values at any
three distinct points, one way of computing r(E) is to
evaluate p ([) and q([) at three points, say E E (0, 1, 2);
multiply these values in pairs (by recursive application of the
procedure being described) to obtain r(O), r(l), and r(2);
then interpolate to obtain the coefficients r,, r , , and r, of
r ([) = ro + r,[+ r2t2. The values of p ([) and q ([) at [E
(0, 1, 21 are at most 7(2“’ - l), and thus are (n’ + 3)-bit
numbers. Thus, the multiplication of a pair of n-bit numbers
is reduced to the multiplication of three pairs of (n’ + 3)-bit
numbers, together with some evaluation and interpolation
operations. The evaluation and interpolation reduce to
shifting, addition, and subtraction, and if arithmetic is done
modulo 2,” + 1, then 2*” serves as - 1, so subtraction reduces
to cyclic shifting and addition. The recursion reduces n by
about a factor of 2, while increasing the number of problems
by a factor of 3, at a cost of O(n). It follows that the final
cost is ~(n’”’z’).

The foregoing scheme may be generalized by employing
polynomials of higher degree and evaluating and
interpolating at more points. This was done by Toom [22],
whose scheme when optimized yields a cost bound of the
form O(n2- log n). Independently, Schonhage [23]
proposed a different scheme, based on modular arithmetic

Having seen how to multiply with the minimum possible

IBM 3. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

~

but yielding the similar cost bound O (n 2 p (log r ~) ~ ”) . It
was Schonhage and Strassen [24] in 1971 who obtained the
cost bound O(n log n log log n), which remains the best that
is known today. Their idea is to evaluate and interpolate
polynomials at many points, but to exploit a particularly
advantageous choice of points. If 2” points are used, and if
the points are chosen to be the 2“th roots of unity, the
evaluation and interpolation processes become the
computation of a finite Fourier transform and its inverse, for
which a particularly efficient algorithm (the “Fast Fourier
Transform,” due to Cooley and Tukey [25]) is available. As
a final touch of elegance, Schonhage and Strassen observe
that if arithmetic is done modulo a number of the form

+ 1, then 2 serves as a 2“th root of unity, so Fourier
transforms can be done without complex numbers. This
modulus is also convenient for the use of redundant
representation to reduce delay; combining all these
ideas yields a multiplier with delay @log n) and cost
O(n log n log log n).

22-’

It remains an open question whether there are multipliers
of linear cost. It is widely believed that there are not, but no
nonlinear bounds to the cost of multipliers (or, as was noted
in Section 1, nonmonotone networks computing any other
“simple” functions) have yet been obtained.

For networks with unbounded fan-in, it is not at all clear
how to improve the delay bound of O(1og n) significantly
without an enormous increase in cost. In particular, it is not
clear whether bounded delay and polynomial cost can be
achieved simultaneously. It is natural in this situation to
look for a simple problem that captures the essence of
multiplication in the same way that carry computation
captures the essence of addition. We show that “majority” is
such a problem.

Let us say that a problem (with a parameter n) is “easy” if
it can be computed by a network with unbounded fan-in,
bounded delay (independent of n), and polynomial cost (as a
function of n). We perform a cycle of reductions among
problems. First, we show that if multiplication is easy, then
so is majority (with n arguments). Then we show that if
majority is easy, then so is “counting” (that is, determining
the binary representation of the number of 1s among its n
arguments). Finally, we close the cycle by showing that if
counting is easy, then so is multiplication. This establishes
the equivalence of multiplication and majority.

First let us show that if multiplication is easy, then so is
majority. Suppose that we wish to determine the number of
1s among n = 2’ - 1 Boolean arguments x,, . . ., x,,-l. This
number is the coefficient of [‘“I in the product of the
polynomials x ([) = x,, + xl[+ . . . + xn-lEn” .and y(6) = 1 +
E + . . . + E’”’. If we evaluate these polynomials at [= 2”
and multiply the resulting (nu)-bit numbers together, the
coefficient in question can be read off from the (nv)th
through the ((n + 1). - 1)st positions of the product, and the
most significant of these is the majority. The formation of

I

i

IBM 1. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

the factors and the interpretation of the product require no
gates, so the delay and cost needed to compute the majority
of n variables are at most those needed to multiply two
numbers of length O(n log n). Thus if multiplication is easy,
so is majority.

Now let us show that if majority is easy, so is counting.
Given a network computing the majority of 2n + 1
arguments, we can by substituting constants for n + 1 of
these arguments obtain any “threshold” function of the
remaining n arguments (the mth threshold function assumes
the value 1 if and only if at least m of its arguments assume
the value 1). From the mth and (m + 1)st threshold
functions we can easily compute the mth “indicator”
function (which assumes the value 1 if and only if exactly m
of its arguments assume the value 1). Furthermore, from the
first through nth indicator functions, we can easily compute
any “symmetric” function (that is, any function whose value
depends only on the number of 1 s among its arguments).
But all of the counting functions are symmetric functions.
Thus if majority is easy, so is counting.

multiplication. Suppose we are given two n-bit numbers and
we wish to compute their product. We have seen that this
can be accomplished by adding together n partial products
of length 2n. Let us begin by counting the number of 1s in
each of the 2n positions; this gives 2n counts, each of length
O(1og n). Since each position appears in just O(1og n) of the
counts, what remains is the problem of adding together
O(1og n) “second” partial products of length 2n. Repeating
this procedure reduces the problem to adding together
O(1og log n) “third” partial products of length 2n. Now
partition the positions into blocks each containing
rlog, log, n 1 consecutive positions, and alternately assign the
colors “red” and “blue” to the blocks. Let p denote the sum
of the third partial products when the red positions in these
partial products are set to Os, and let q denote the sum when
the blue positions are set to Os. It is easy to see that each bit
of the binary representation of p or q depends on only
O(1og log n) bits of each of the third partial products, and
thus on only O((1og log ny) bits altogether. Thus each
position of p or q can easily be computed from the third
partial products. Since the final product is the sum of p and
q, it can easily be computed from them by an adder. Thus if
counting is easy, so is multiplication.

majority, we are left with the question as to whether either of
them is easy. This question was answered independently by
Furst, Saxe, and Sipser [26] and by Ajtai [27], who showed
that no network with bounded delay and polynomial cost
can compute parity (with n arguments). As we have just
seen, such a negative result for a symmetric function such as
parity implies one for majority, and thus for multiplication.
The ideas in these two papers, if carried to their limits, yield
lower bounds of nn(losn) for the cost of networks computing

Finally let us show that if counting is easy, so is

Having shown the equivalence of multiplication and

NICHOLAS PIPPENGER

parity with bounded delay. This is far from the best upper

majority, for networks with delay k.

showed that monotone networks computing majority with
delay k must have cost 2n(n’’‘k-’’), nearly matching the upper
bound above (which does, in fact, apply to monotone
networks). An example due to Ajtai and Gurevich [29],
however, shows that there are monotone functions
computed by networks of bounded delay and polynomial
cost for which any monotone network of bounded delay
must have cost nn(’oglogn). This shows that Boppana’s result
has no implications for nonmonotone networks.

For nonmonotone networks, the decisive step was taken
by Yao [30], who showed that n t :yks computing parity
with delay k must have cost 2n(“ . An improvement due to
Hastad [3 1 1 (which has the added merit of a drastically
simplified proof) shows they must have cost 2n(n”x), almost
matching the upper bound. Hastad‘s result, together with the
upper bound, shows that the minimum possible delay for
multipliers of polynomial size is O(log n/log log n).

If a problem is easy, there is some minimum delay for
which it is computed by networks with polynomial cost.
Sipser [32] showed that for every k z 1 there is a problem
computed by networks with delay k + 1 and linear cost, but
not by networks with delay k and polynomial cost. Klawe,
Paul, Pippenger, and Yannakakis [33] showed that these
functions, which are monotone, are computed by monotone
networks with delay k and cost about the same as that for
parity, and they gave a matching lower bound for monotone
networks. The methods of Yao [30] and Hastad [3 11 give an
almost matching lower bound for nonmonotone networks.

The reader may have noticed that although multiplication
was shown to be equivalent to majority, the final lower
bound was obtained through panty. Parity is a computation
in a semigroup (indeed, in a group, the group of integers
modulo 2). This prompts us to resume the study of
computations in semigroups begun in Section 2.

First, let us mention that the results concerning parity
described above all apply equally to the problem
“congruence modulo p,” for any fixed modulus p 2 2. Thus,
computations in cyclic groups are not easy. Since every
group contains a cyclic subgroup, computations in groups
are not easy. In particular, computations in semigroups that
contain a group as a subsemigroup are not easy. The result
of Chandra, Fortune, and Lipton [171 shows that
computations in finite semigroups that do not contain a
group as a subsemigroup are easy, so we now know (at least
at the level of “easy” versus “not easy”) the complexity of
computations in finite semigroups for networks with
unbounded fan-in.

bounds known, 2°(n’nk”’9 for parity and 20(~”k-”(1~~)’-’’(k”’’) for

This gap was partially closed by Boppana [28], who

Next, let us consider the relationship between panty and
majority. Razborov [34] has shown that even if gates are

242 available that compute panty for k arguments with cost k

and delay 1 , majority is still not easy. An improvement due
to Smolensky [35] shows that even if gates are available that
compute congruence modulo a prime q for k arguments with
cost k and delay 1 , congruence modulo p is not easy for any
prime p distinct from q. (Taking p = 2 and q = 3 yields an
alternative proof of the result of Yao and Hastad for parity.)
On the other hand, Barrington [36] has shown that there is a
finite group (the alternating group A, of even permutations
of 5 points) with the property that, if gates are available that
compute the product of k elements with cost k and delay 1,
then every problem solved by circuits with bounded fan-in
and logarithmic depth (in particular, every problem
considered in this paper) is easy.

4. Conclusion
The morals of our study of addition are as follows. The
essence of addition is the computation of the carries. This
computation is an example of a prefix problem for a finite
semigroup, the “carry” semigroup. For networks with
bounded fan-in, all finite semigroups have the same
complexity, with linear cost and logarithmic delay. For
networks with unbounded fan-in, the situation is more
complicated. For some semigroups, for example the “or”
semigroup, linear cost and logarithmic delay are achievable
simultaneously. But the carry semigroup is not among these;
for it these bounds are not achievable simultaneously.

The morals of our study of multiplication are as follows.
The essence of multiplication is computation of the
majority. This is not a semigroup computation, but it is
connected to the computation of parity, which is. For some
semigroups, for example the carry semigroup, polynomial
cost and bounded delay can be achieved simultaneously. But
parity is not among these; for it these bounds are not
achievable simultaneously.

It would be natural to continue our study of arithmetic
operations to division, extraction of square roots, and other
operations. We have not done so because this leads away
from the algebraic methods that have been emphasized in
this paper towards analytic methods. We shall only mention
that for networks with bounded fan-in, the best cost bounds
known for these problems are the same as those for
multiplication [currently, O(n log n log log n)], but are
achieved by networks with delay O((1og n) 2) through the use
of Newton’s method (see Cook [37]). This was the best delay
known for many years, until a breakthrough by Reif [39],
giving delay O(1og n (log log n)’). This was quickly followed
by an improvement due to Beame, Cook, and Hoover [39],
giving delay O(1og n), achieved by networks with cost O(n4).
It is a tantalizing open problem to reconcile these methods
to achieve cost O(n log n log log n) and delay O(1og n)
simultaneously.

References
I . S. Winograd, “On the Time Required to Perform Addition,” J.

ACM12,211-285 (1965).

NICHOLAS PIPPENGER IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

2. S. Winograd, “On the Time Required to Perform
Multiplication,” J. ACM 14, 793-802 (1967).

3. D. E. Muller, “Complexity in Electronic Switching Circuits,”
IRE Trans. Electr. Comp. 5, 15-19 (1956).

4. H. J. Hoover, M. M. Klawe, and N. J. Pippenger, “Bounding
Fan-Out in Logical Networks,” J. ACM 31, 13- 18 (1984).

5. M. S. Paterson and I. Wegener, “Nearly Optimal Hierarchies for
Network and Formula Size,’’ Acta Informat. 23, 2 17-22 1 (1986).

6. A. E. Andreev, “On the Complexity of Monotone Functions,”
Vest. Mosk. Univ. Mat. Mekh. 1, No. 4, 83-87 (1985).

7. A. A. Razborov, “Lower Bounds for the Monotone Complexity
of Some Boolean Functions,” Dokl. Akad. Nauk 281,798-801
(1985).

8. A. E. Andreev, “On One Method of Obtaining Lower Bounds of
Individual Monotone Function Complexity,” Dokl. Akad. Nauk
282, 1033-1037 (1985).

9. M. Nadler, “A High-speed Electronic Arithmetic Unit for
Automatic Computing Machines,” Acta Techn. 16,464-478
(1956).

IO. A. Weinberger and J. L. Smith, “A One-Microsecond Adder
Using One-Megacycle Circuitry,” IRE Trans. Electr. Comp. 5,
67-13 (1956).

Electr. Comp. 9,226-231 (1960).

Functions,” Sov. Phys. Dokl. 7, 589-591 (1963).

of a Parallel Adder,” Prob. Kibernet. 19, 107-122 (1967).

I 1. J. Sklansky, “Conditional Sum Addition Logic,” IRE Trans.

12. Yu. P. Ofman, “The Algorithmic Complexity of Discrete

13. V. M. Khrapchenko, “Asymptotic Estimation of Addition Time

14. R. E. Ladner and M. J. Fischer, “Parallel Prefix Computation,”

15. F. E. Fich, “New Bounds for Parallel Prefix Circuits,” ACM
Symp. Theor. Computing 15, 100-109 (1983).

16. M. Snir, “Depth-Size Trade-offs for Parallel Prefix
Computation,” J. Algor. 7, 185-201 (1986).

17. A. K. Chandra, S. J. Fortune, and R. J. Lipton, “Unbounded
Fan-In Circuits and Associative Functions,” ACM Symp. Theor.
Computing 15, 52-60 (1983).

18. A. K. Chandra, S. J. Fortune, and R. J. Lipton, “Lower Bounds
for Constant Depth Monotone Circuits for Prefix Functions,”
Int. Colloq. Automata, Languages & Programming 10, 109-1 17
(1983).

“Superconcentrators, Generalizers and Generalized Connectors
with Limited Depth,” ACM Symp. Theor. Compuring 15,42-5 1
(1983).

20. A. A. Razborov, “A Lower Bound to the Monotone Complexity
of the Logical Permanent,” Mat. Zametki 37 (1985).

2 I. A. Karatsuba and Yu. Ofman, “Multiplication of Multidigit
Numbers on Automata,” Sov. Phys. Dokl. 7,595-596 (1963).

22. A. L. Toom, “The Complexity of a Scheme of Functional
Elements Realizing the Multiplication of Integers,” Sov. Math.
3, 714-716 (1963).

23. A. Schonhage, “Multiplikation groBer Zahlen,” Computing 1,

24. A. Schonhage and V. Strassen, “Schnelle Multiplikation groBer
Zahlen,” Computing7,281-292 (1971).

25. J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine
Computation of Complex Fourier Series,” Math. Comp. 19,

J. ACM 27,831-838 (1980).

19. D. Dolev, C. Dwork, N. Pippenger, and A. Wigderson,

182-1 96 (1966).

297-301 (1965).
26. M. Furst, J. B. Saxe, and M. Sipser, “Parity, Circuits and the

Polynomial-Time Hierarchy,” IEEE Symp. Found. Comp. Sci.

27. M. Ajtai, “8;-Formulae on Finite Structures,” Ann. PureAppl.

28. R. Boppana, “Threshold Functions and Bounded Depth

22,260-270 (1981).

Logic 24, 1-48 (1983).

479 (1984).
Monotone Circuits,” ACM Symp. Theor. Computing 16,475-

29. M. Ajtai and Y. Gurevich, “Monotone Versus Positive,” J.
ACM, to appear.

30. A. C.-C. Yao, “Separating the Polynomial-Time Hierarchy by
Oracles,” IEEE Symp. Found. Comp. Sci. 26, 1-10 (1985).

3 I . J. Hastad, “Almost Optimal Lower Bounds for Small Depth

32. M. Sipser, “Bore1 Sets and Circuit Complexity,” ACM Symp.

33. M. Klawe, W. Paul, N. Pippenger, and M. Yannakakis, “On

Circuits,” ACM Symp. Theor. Computing 18,6-20 (1986).

Theor. Computing 15, 61-69 (1983).

Monotone Formulae with Restricted Depth,” ACM Symp.
Theor. Computing 16, 480-487 (1984).

34. A. A. Razborov, “Lower Bounds on the Size of Bounded-Depth
Networks Over the Basis { A , e),’’ Mat. Zametki, to appear.

35. R. Smolensky, “Algebraic Methods in the Theory of Lower
Bounds for Boolean Circuit Complexity,” Department of
Mathematics, University of California at Berkeley, 1986.

36. D. A. Bamngton, “Bounded-Width Polynomial-Size Branching
Programs Recognize Exactly Those Languages in NC’,” ACM
Symp. Theor. Computing 18, 1-5 (1986).

Functions,” Thesis, Harvard University, Cambridge, MA, 1966.

Functions,” IEEE Symp. Found. Comp. Sci. 24, 138-145
(1983).

39. P. W. Beame, S. A. Cook, and H. J. Hoover, “Log Depth
Circuits for Division and Related Problems,” IEEE Symp.
Found. Cornp. Sci. 25, 1-6 (1984).

37. S. A. Cook, “On the Minimum Computation Time of

38. J. H. Reif, “Logarithmic Depth Circuits for Algebraic

Received December 18, 1986; accepted for publication
January 19, 1987

Nicholas Pippenger IBM Almaden Research Center, 650 Harry
Road, San Jose, California 95120. Dr. Pippenger received a B.S. in
natural science from Shimer College, Mt. Carroll, Illinois, in 1965
and the B.S., MS. , and Ph.D. degrees in electrical engineering from
the Massachusetts Institute of Technology in 1967, 1969, and 1973.
From 1969 to 1972, he was a staff member of the Draper Laboratory
(formerly the MIT Instrumentation Laboratory) in Cambridge. He
joined the Mathematical Sciences Department of the IBM Thomas
J. Watson Research Center in 1973 and served as the department’s
assistant director from 1975 to 1976. In 1978 he served as a visiting
associate professor in the Computer Science Department at the
University of Toronto, Canada. He returned as manager of the
theoretical computer sciences group and served in that capacity from
1979 to 1980, at which time he transferred to the Computer Science
Department at San Jose.

243

NICHOLAS PIPPENGER IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH I 987

