
The complexity 
of computations 
by networks 

by Nicholas  Pippenger 

We  survey  the  current  state of knowledge 
concerning  the  computation of Boolean 
functions  by  networks,  with  particular  emphasis 
on  the  addition  and  multiplication of binary 
numbers. 

1. Introduction 
The object of this paper is to survey  what  is  known about 
the complexity of computing certain Boolean functions. The 
model of computation we use is that of  Boolean  networks, 
also  known as combinational logic  networks or circuits. The 
functions we deal  with are those corresponding to arithmetic 
operations on numbers represented in binary. These 
functions are among the most important of those that 
networks are commonly used to compute; they also  have the 
merit of illustrating nicely much of the theory of 
computation by networks. 

Though the computation of arithmetic functions by 
networks is one of  considerable  practical importance, the 
viewpoint of this paper is  ruthlessly theoretical. Most 
textbooks on computer arithmetic devote a great  deal of 
discussion to matters such as the representation of  negative 
numbers. Though this issue has practical importance, it is  of 
little theoretical interest, and almost nothing is said about it 
here.  Many of the results we describe, on the other hand, 
have  practical  relevance  only  if it is  necessary to perform 
operations on numbers of astronomical length; they are 
unlikely to find application outside of stunts such as the 
computation of T to millions of digits. These results are of 
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theoretical importance, however,  because  they  describe the 
fundamental possibilities and limitations of computation by 
networks. 

We confine our attention to operations on numbers 
represented in binary.  Little  would  change if  we adopted 
decimal, or any other fixed radix,  instead.  Because we  wish 
to study the complexity of computing prescribed  Boolean 
functions, we  regard the representation system as given. One 
may,  however,  regard the representation system as 
something to be  engineered,  like the network; for results 
from this point of  view,  see the pioneering  work  of 
Winograd [ 1,2]. 

Let B denote the Boolean  algebra  with  two  elements, 
which are denoted 0 and 1 (alternative denotations are 
“false” and “true,” respectively). A Boolean functionf 
depending on n arguments is simply a mapf:B” + B. 
Suppose that we are given the values x, ,  . . . , x, of the 
arguments and that we  wish to compute the value 
f (x , ,  . . , x,). In this situation we  may  regard x, ,  . . ., x, as 
indeterminates andfas an element of the extension  Boolean 
algebra B(x,, . . ., x,,), which contains 2*’ elements.  (Recall 
the analogous situation in which a real polynomial in n 
variables  may  be  regarded either as a map p:R” + R or  an 
element of the ring R[x, ,  . . ., x,,].) 

The  idea of computation by  Boolean networks  is a simple 
one: We are given a supply of components called  “gates” 
that compute some basic  Boolean functions, and we  wish to 
interconnect them into a system  called a “network” that 
computes one or more other Boolean functions. We 
illustrate this idea  with an example.  Suppose we are given a 
supply  of  gates that compute the “nand” function of  two 
arguments (this function assumes the value 1 unless both its 
arguments assume the value 1, in which  case it assumes the 
value 0). Suppose that we  wish to compute the “parity” 
function of  two arguments (also known as the “sum modulo 
2”; it assumes the value 1 if and only if an odd number of its 
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arguments assume the value 1).  We can  perform our task as 
follows. 

a + nand@, y), 

b c nand(x, a), 

c t nand(a, y), 

z c nand(b, c). 

In this example, x and y represent the network inputs, a, 
b, and c represent  “wires”  carrying the  outputs of the first 
three gates to succeeding  gates, and z represents the network 
output. The example illustrates several properties of 
networks.  First, it is  possible to compute something once 
and use it many times (the value of a is  used  twice, as are 
the network inputs x and y).  Second, there are no cycles  of 
dependence; each computation uses only  network inputs or 
outputs of preceding computations. 

Two important parameters of a network are its size (the 
number of gates it contains; four in the example) and its 
depth (the number of gates on the longest path of 
dependence; three in the example). The size  of a network  has 
an obvious relation to its cost (under the simplifying 
assumption that all  gates  have equal cost and that no other 
components, such as wires,  have any cost). The depth 
corresponds (under analogous  simplifying assumptions) to 
the delay introduced by a network. 

We assume that we are given a set of available  gate 
functions and a set of desired  network functions, and we are 
interested in the minimum possible  size  of a network 
performing this task.  Alternatively, we may  be interested in 
the minimum possible depth, or in the possible 
combinations of  size and depth that can  be  achieved 
simultaneously. 

More  generally, we  may assume that we are given not 
only a set of available  gate functions, but also an assignment 
of a nonnegative real  cost and delay to each of them. Such a 
set of functions together  with  costs and delays will  be called 
a basis. To any network built from  these  gates we also  assign 
a cost (the sum of the costs of its constituent gates) and a 
delay (the maximum over  all paths from an input to  an 
output of the sum of the delays of the gates on that path). 
Given a set  of  desired  network functions, we are interested 
in the minimum possible  cost, or the minimum possible 
delay, or the achievable combinations of both. 

own distinct complexity theory. This is true to a certain 
extent, but there are large  classes  of  bases that behave,  for 
theoretical  purposes, in the same way. Consider, for 
example,  bases  having the following three properties.  First, 
they contain only finitely many types of gates.  Second, the 
gates  they contain can be interconnected in sufficient 
quantities to form a network computing any prescribed 
Boolean function. Third, they contain gates computing the 
constant functions 0 and 1 with  cost 0 and delay 0, but no 

It may  seem at first that each  possible  basis  gives  rise to its 
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nonconstant function has cost 0 or delay 0. Such a basis will 
be called a standard bounded basis. 

Standard bounded bases  have a number of pleasant 
properties that make their complexity theory particularly 
simple and natural. The first  of  these  is that optimal costs 
and delays do not depend very  strongly on which standard 
bounded basis  we consider.  Given any two standard 
bounded bases,  we can construct for  each  gate of one a 
network computing the same function using  gates of the 
other. These  networks can be connected together in  the same 
way  as gates, so in going  from one standard bounded basis to 
another we  need increase the cost and delay by at most 
constant factors  (which depend only on the two  bases).  We 
celebrate this fact by stating results in a form that ignores 
constant factors:  We usually give upper bounds in the form 
O(g(n)), meaning “bounded above by some constant times 
g(n),” and lower bounds in the form Q(g(n)), meaning 
“bounded below  by some strictly  positive constant times 
g(n).” This fact,  which  gives  great  coherence to the 
complexity theory of standard bounded bases,  seems to have 
been appreciated by the earliest  workers in the field (see 
Muller [3]). 

The  second  pleasant property of standard bounded bases 
is that the cost and delay of a network computing a given 
Boolean function can  be bounded above by simple functions 
of the number of arguments on which the function depends. 
Specifically, a function of n arguments is computed by a 
network  having  cost O(2”) and delay O(n), simultaneously. 
To see this, assume (by virtue of the preceding  pleasant 
property) that the basis contains a gate depending on three 
arguments (say, x, y, and z) and producing the output “if x 
then y else z.” A network computingf(x,, . . . , x,) can then 
be constructed from such a gate  with xI for x, the output of 
a network computingf(1, x,, . , x,) for y and the output of 
a network computingf(0, x,, . . e ,  x,) for z. It is  easy to see 
that this construction yields the bounds mentioned above. 
The cost bound can be improved to O(2”ln) (see [3]), but 
this improvement is  best  possible, as is the delay bound. 

The third pleasant property is that cost and delay are 
bounded below  by simple functions of the number of 
arguments on which a function depends. (Here we must 
assume of course that the function actually depends on all its 
arguments, that is, that the two partial functions obtained by 
substituting the constants 0 and 1 for an argument are 
always distinct; otherwise, the function might  be a constant 
in disguise.) For any standard bounded basis there is a 
maximum number, say k, of arguments on which any gate 
depends. It is  easy to see  by induction that if a network has 
size c, it can depend on at most c(k - 1) + 1 inputs, and if it 
has depth d, it can depend on at most kd inputs. From this it 
follows that a network computing a function depending on n 
arguments must have  cost Q(n) and delay Q(1og n). These 
bounds also  seem to have  been appreciated by early  workers. 
Because  they  differ  exponentially from the universally 
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applicable upper bounds, they provide great scope within 
which functions can vary in their complexity. 

asymmetry between inputs and outputs in networks. For a 
standard bounded basis, there is a bound to the number of 
arguments on which any gate depends (this number is 
sometimes called the “fan-in” of the gate). Suppose that we 
also postulate for each type  of  gate in the basis a bound to 
the number of other gates that can depend directly upon it 
(such a bound is  called a “fan-out’’ bound for the gate).  How 
would this affect optimal costs and delays?  According to a 
theorem of Hoover, Klawe, and Pippenger [4], as long as the 
basis contains a nonconstant gate  with a fan-out bound at 
least 2 ,  both cost and delay are within constant factors of 
what they would be with unbounded fan-out. (To prove this 
for cost alone or delay alone is straightforward, but some 
care is  needed to keep both under control simultaneously.) 

strong justification for the complexity theory of standard 
bounded bases as “the” complexity theory of  Boolean 
functions. A great frustration of this theory, however, is the 
paucity of results concerning specific functions. Although it 
is known that there exist functions of n arguments with  costs 
almost everywhere from 0 ( 2 ” / n )  down to O(n)  and delays 
almost everywhere from O(n)  down to @log n )  (see 
Paterson and Wegener [ 5 ] ,  for example), no specific function 
is known for which the cost can be  proved to be O(n2) but 
not O(n), or for  which the delay can be proved to be 
O((1og n y )  but not @log n). 

This frustration has motivated the study of “monotone” 
Boolean functions by monotone Boolean  networks. A 
monotone Boolean function is one that is nondecreasing in 
the usual sense: Changing an argument from 0 to 1 can 
change the value from 0 to 1 but  not from 1 to 0. The 
property of being monotone is preserved by composition, so 
if the gates in a basis compute only monotone functions, so 
will all networks over that basis.  We  may  define a monotone 
bounded basis by altering the second condition in the 
definition of a standard bounded basis to require only 
computing any prescribed monotone Boolean function. 
Monotone bounded bases enjoy the four pleasant properties 
mentioned above (with the best  possible  universally 
applicable cost bound reduced to O(2”/n3’*); see  Andreev 
[6]) .  There has  been considerable success in proving lower 
bounds for the computation of sets of monotone Boolean 
functions by networks over monotone bounded bases, and 
recently there has  been  decisive  progress in proving such 
bounds for  single monotone Boolean functions (see 
Razborov [7] and Andreev [8] and the references cited 
therein). The topic of monotone computation is somewhat 
off the track of this paper, however, since most functions of 
arithmetic interest are not monotone. 

A fourth pleasant property concerns an apparent 

These four pleasant properties, especially the first, provide 

Apart from standard bounded bases, the basis that 
concerns us most in this paper is one we call the standard 

unbounded basis. It comprises (1 )  a gate computing the 
negation  of one argument with cost 1 and delay 0, ( 2 )  for 
each k 2 2, a gate computing the  “and” of k arguments with 
cost k and delay 1, and (3) for each k 2 2 ,  a gate computing 
the “or” of k arguments with cost k and delay 1. It is not 
hard to see that, as far as  cost  is concerned, the complexity 
theory for this basis is within constant factors the same as 
that of the standard bounded bases.  Where  delay is 
concerned, however, the standard unbounded basis  has 
dramatically different properties from the standard bounded 
bases. To see this, let  us consider how the pleasant properties 
of standard bounded bases are affected  by the change. 

First, consider the effect  of changes to the basis. If  we omit 
(l), we  get a basis, the monotone unbounded basis, that bears 
the same relationship to the standard unbounded basis that 
the monotone bounded bases do  to the standard bounded 
bases. Alternatively, we could by using  DeMorgan’s  laws 
omit either ( 2 )  or (3) and obtain a basis  differing by at most 
constant factors in the cost and differing not at all in delay. 
We  see later, however, that adding other unbounded families 
of gates (for each k 2 2 ,  a gate computing the parity of k 
arguments with  cost k and delay 1, for example) greatly 
affects the properties of the basis. 

For a universally applicable upper bound, a function of n 
arguments is computed by a network  of  cost at most n2” and 
delay at most 2 .  To see this, express the function as the “or” 
of at most 2” functions, each corresponding to one possible 
assignment of Os and 1s to the arguments and each 
computed by the “and” of n arguments or their negations. 
We  have a universally applicable lower bound of n for the 
cost  of a network computing a function depending on n 
arguments, but as we have just seen, no function requires 
delay  greater than 2 .  

Networks  over the standard unbounded basis are often 
called “networks with unbounded fan-in,’’ and it is 
invariably assumed that they also have unbounded fan-out. 
Similarly, networks over the standard bounded basis are 
often called “networks with bounded fan-in,’’ and we have 
seen that it does not matter whether or not they have 
bounded fan-out. 

2. Addition  in  binary 
Suppose that we are given two natural numbers x and y,  
each  in the range (0, . . . , 2“ - 1 I, as represented by n-bit 
binary sequences x,, . . . , x,,-l and yo, . . ., Y, , -~ :  

x = c X”2” 
04msn-I 

and 

Y = c Y 2 ” .  
Osmsn-I 

We  wish to compute their sum z = x + y, which  lies in the 
range (0, . . . , 2”+’ - 11, as represented by an (n  + 1)-bit 
binary sequence zo, . . . , z,: 237 
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r = r,2,. 
Osmsn 

Since z, depends on all 2n inputs, it is clear that a network 
with bounded fan-in for addition must  have  cost Q(n)  and 
delay Q(1og n). Our first  goal in this section is to see  how 
these bounds can  be  achieved. 

A little thought reveals that the essence  of the matter is the 
computation of the “cames” e,, . . . , c,,  which  may  be 
accomplished by means of the recurrence 

e,,, = majority (x,, Y,, c,) 

for 0 5 m 5 n - I ,  together  with the condition e, = 0. (The 
“majority” function of n arguments assumes the value 1 if 
and only if at least  half the arguments assume the value 1 .) 
Once c,, . . . , e,, have  been computed, z,, . . . , z, can be 
computed by the formula 

z, = parity (x,, Y,, Cm) 

for 0 I m s n - I ,  together  with r,  = e,, . These formulae 
yield a network  with bounded fan-in for addition, often 
called a “ripple-carry adder,” having  cost O(n) and delay 
O(n). This settles the question of the optimal cost, but leaves 
open that of the optimal delay. 

In  1956,  Nadler  [9], and independently Weinberger and 
Smith [IO],  showed  how addition can be performed  with 
delay O(1og n). The networks  they  proposed  (Nadler’s is 
called a “pyramidal adder,” Weinberger and Smith’s a 
“carry-look-ahead adder”) have  cost O(n log n) rather than 
O(n), as does  yet another (called a “conditional-sum adder”) 
proposed by Sklansky [ 1 11 in 1960. Thus, while  these  results 
settled the question of the optimal delay,  they  left open that 
of whether the optimal cost and delay can be  achieved 
simultaneously. It was Ofman [ 121, in 1962,  who  solved this 
problem by showing how to achieve linear cost and 
logarithmic delay simultaneously. 

Unlike its predecessors,  Ofman’s adder never acquired a 
catchy name. The idea behind it, however, has proved  useful 
for a variety of other problems, and is now known as 
“parallel-prefix computation.” 

To describe  Ofman’s  result,  let us consider a finite-state 
automaton that receives a sequence of input symbols a,, . . . , 
an-,. When  it  receives the symbol a,, it uses this symbol and 
its current state q, to compute its next state q,+, and an 
output symbol b,. The initial state q, is  assumed to be  fixed. 
Ofman’s  result  is that the computation of the output 
sequence bo, . . . , b,-l and the final state q,, from the input 
sequence a,, . . . , a,-, can be  performed by a network  with 
bounded fan-in having linear cost and logarithmic delay. (It 
does not matter how the input and  output sequences are 
represented by  Boolean variables, as long as each  symbol is 
represented  separately and in the same way; any desired 
change of representation can be accomplished by networks 
with linear cost and bounded delay;  which  does not affect 

238 our results.) 
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To apply this result to addition, we take the input symbol 
a, to be the pair (x,, y,)  of input bits (so there are four 
input symbols) and the state q, to be the carry c, (there are 
two  states). The output bit z, is then the output symbol b, if 
0 5 m 5 n - 1, or the final state q,, if m = n. The reader 
may  enjoy the exercise  of  applying the result to the problem 
of dividing an n-bit binary number by 3, producing an 
(n - I)-bit quotient and a 2-bit remainder. 

To prove  Ofman’s  result, we  begin  by regarding  each 
input symbol a, as a map Am from the set of states to itself 
sending q, to q,,,. The effect  of a sequence of symbols 
a,, . . . , a, is then given  by the composition of maps 
A ,  0 . . . 0 A,. Clearly it suffices to compute some 
representation of the sequence of maps Q, = A,, Q, = 
A ,  0 A,, . . ., Q, = A,,-, 0 . . 0 A,, for then with a network 
of linear cost and bounded delay we may  apply them to the 
initial state q, to get the sequence of states ql ,  . . ., q,, then 
use these and the input sequence to compute the  output 
sequence bo, . . . , bn-,. 

To see  how to compute Q,, . . ., Q, from A,, . . ., A,-,, 
suppose that n = 2n‘ is even (the case  of n odd  is similar). 
First, compute the compositions A ;  = 0 A , ,  for 
0 5 m 5 n’. Then, by recursive application of the procedure 
being  described, compute Qi = A;, Q S  = A ;  0 A& . . -, Qi. 
= A;,-l 0 . . . 0 A;.  Finally, compute Q, = A,, Q2* = QL for 
1 s m s n ’ a n d Q 2 , + , = A , , o Q ~ f o r O s m ~ n ‘ - 1 .  
Since this recursion  reduces n by a factor of  two  with linear 
cost and bounded delay, it yields a network  with linear cost 
and logarithmic delay,  which completes the proof  of 
Ofman’s  result. 

The  only property of the composition of maps used in  the 
foregoing construction is  associativity, so the result  is 
actually one about computation in semigroups, and this is 
the natural setting  for  parallel-prefix computation. 
Associated  with the addition problem is a semigroup, the 
“carry semigroup,” which contains three elements. Viewed 
as maps from the set of states to itself,  these elements are the 
constant maps 0 and 1, and the identity map. In the context 
of addition, they correspond to “absorption” of a carry 
[accomplished by the input symbol (0, O)], “generation” of a 
carry  [accomplished by (1, I)], and “propagation” of a carry 
[accomplished by (0, 1) or ( I ,  O)].  Below  we meet other finite 
semigroups of computational interest. 

given  by Khrapchenko [ 131. Further work on parallel-prefix 
computations has  been done by Ladner and Fischer [ 141, 
Fich [ 151, and Snir [ 161. 

unbounded fan-in.  Adders  with linear cost are still optimal 
(as regards  cost), but now  we should strive  for bounded delay 
rather than logarithmic delay. As  we  saw in the introduction, 
we can  achieve  delay 2 with  cost  O(n2’“). Thus the question 
is “Can bounded delay and linear cost  be  achieved 
simultaneously?“ 

Refinements of  Ofman’s  work on addition have  been 

Let us now  consider addition by networks  with 
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As was the case  for bounded fan-in, addition can  be 
reduced to carry computation by a network  with linear cost 
and bounded delay. Furthermore, the reverse reduction can 
be accomplished by a network  with the same cost and delay, 
since 

c, = parity (x,, Y,, z m )  

for 0 5 m I n - 1 and c,, = 2,. Thus the question as to 
whether addition can  be  performed by networks  with linear 
cost and bounded delay is equivalent to that as to whether 
carry computation can be performed by such  networks. The 
latter question is  somewhat more convenient to deal  with, 
however.  In particular, the cames are monotone functions of 
the inputs (since the “majority” function is monotone), so 
the question can  be  asked in two  forms:  for monotone 
networks  with unbounded fan-in and for nonmonotone 
networks  with unbounded fan-in. 

It  is implicit in the work  of Weinberger and Smith [ 101 
that the cames can  be computed by a monotone network of 
delay 3 and cost O(n3). The next step was taken by Chandra, 
Fortune, and Lipton [ 171, who  showed that carries can be 
computed by a monotone network of delay 6 and cost 
O(n(1og n)*). They  went further than this,  however; to 
describe their full  result we must introduce some notation. 
For n 2 1 ,  let 

log* n = min { /  2 0:log . . . log n 5 l ) ,  
I ’  
/ 

where  all  logs are to base 2. The values of  log* at 1 ,  2, 4, 16, 
and 65 536 are 0, 1 ,  2, 3, and 4, respectively, so log*  is a 
very  slowly growing function. Let 

log** n = min (f 2 O:log* . . . log* n I 11 ,  - 
/ 

and, more generally,  let 
k k- I k- I 

” 
T 
/ 

Chandra, Fortune, and Lipton  showed that the cames can be 
computed by a monotone network of delay 6k and cost 

b- 1 

e7 
O(n(l0g n)2).  

This result  says that one can almost, though not quite, 
construct adders of bounded delay and linear cost. (In view 
of the astronomical argument values  needed for functions 
such as log** to assume large  values, it is  clear that this 
result is  of a purely theoretical character!) 

and Lipton can  be extended to other finite  semigroups. It 
extends to any finite semigroup if gates are available that 
compute the product of k semigroup elements with  cost k 
and delay 1. If only  gates  in the standard unbounded basis 

Like the result of Ofman, the result of Chandra, Fortune, 

are available,  it extends to those finite  semigroups that 
contain no group as a subsemigroup.  (Semigroups that do 
contain a group are discussed in the next section.) 

We are still  left  with the question of whether there are 
adders with bounded delay and linear cost. The first step in 
answering this question was also taken by Chandra, Fortune, 
and Lipton [ 181, who  showed that any monotone network 
for computing the carries  with  delay k must  have  cost at 
least 

A 
Q(n log n). 

They  did this by showing that any monotone network  for 
computing the carries has to be what  they  call a “parallel- 
prefix graph,” then showing that any parallel-prefix  graph 
with depth k and n inputs must  have  size at least 

e k-2 

Q(n1og n). 

That this result has no implications for nonmonotone 
networks can be  seen  as  follows. Consider  prefix-or, the 
parallel-prefix  problem  for the “or” semigroup (the 
semigroup  with elements 0 and 1 and “or” as its operation). 
A monotone network computing prefix-or  must  also contain 
a parallel-prefix  graph, so the lower bound of 

k-2 c3 
Q(nl0g  n )  

also applies to such  networks.  But Chandra, Fortune, and 
Lipton [ 181 have  shown that prefix-or can be computed by 
nonmonotone networks  with constant delay and linear cost 
(the reader  may  enjoy  proving this as an exercise). Thus the 
concept of a parallel-prefix  graph cannot be used to prove 
lower bounds for nonmonotone networks. 

Chandra, Fortune, and Lipton [ 171 also  observed, 
however, that an adder or a (not necessarily monotone) 
network computing cames must contain another type of 
graph  called a “weak superconcentrator.” Dolev,  Dwork, 
Pippenger, and Wigderson [ 191 then proved that a weak 
superconcentrator with n inputs and depth 2k must  have  size 
at least 

rn k- I 

Q(n log n). 

Thus neither addition nor carry computation can be 
performed by networks  with both constant delay and linear 
cost. This result,  together  with the upper bound, shows that 
the minimum possible  delay  for adders of linear size  is 
O(log* n),  where 

k 
c3 

log’ n = min {k t 0:log n I k).  

The example of  prefix-or  shows that negation  may be used 
to reduce the complexity of computations that can be 
performed without it. A particularly dramatic example of 239 
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this phenomenon is due to Razborov  [20],  who  shows that 
the monotone “logical permanent” function, which  can  be 
computed by networks  with  polynomial  cost,  can  be 
computed by monotone networks  only  with  cost nn(losn). 

3. Multiplication  in  binary 
Suppose that we are given the binary representations 
x,, . . . , x“-, and yo, . . . , yn-,  of two  n-bit  binary numbers x 
and y ,  and that we  wish to compute the binary 
representation z,, . . . , z2,,- I of their 2n-bit product z = xy. As 
for addition, since the most  significant output depends on all 
the inputs, a network  with bounded fan-in must have  cost 
Q(n) and delay Q(1og n). 

To get our bearings,  let us consider the most obvious 
method for multiplication. First, compute the binary 
representations of the n “partial products” x,y, 2x,y, . . ., 
2”-’xn-,y. Then, add these to form the “total product” z. The 
formation of the partial products is trivially  accomplished 
with  cost O(n2) and delay O( 1). The accumulation of the 
total product can  be  accomplished by adding the partial 
products in pairs, adding the results in pairs, and so forth, 
until a single  result  is obtained. The resulting “tree” of 
adders contains n - 1 adders, of which at most [ log, n 1 lie 
on any path  from a “leaf” (partial product) to the “root” 
(total product). As we  saw in Section 2, each adder can be 
constructed with  cost O(n) and delay O(log n), so the 
resulting multiplier has  cost O(n2) and delay O((1og ny). 

may  be brought to bear  here.  In the present instance, it 
reduces the delay  from O((1og n),) to O(1og n), without 
affecting the cost. It is  applicable  whenever a large number of 
additions must be performed, and in particular it is 
applicable to other multipliers, with  smaller  costs, that are 
described later in this section. 

There is a useful  device,  called  “carry-save addition,” that 

The idea behind carry-save addition is the use  of a 
redundant representation for numbers. Instead of using the 
ordinary binary representation x,, . . . , x”-, for x, let us agree 
to use any combination of  2n bits x& x;, ’ . . , X,,-,, x,-, 
such that 

I I1 

x = (x; + x:)2”. 
Osmsn-I 

The representation is now no longer unique, but precisely 
this flexibility  makes it easier to perform additions. 

Suppose we are given the redundant representations 
x& x;, . . . , x;-,, x;-, and y&  y;, . . . , y;-,, y:-, for numbers 
x and y and that we  wish to compute a redundant 
representation z& z;, . . ., z:,  z; for their sum z = x + y. 

The rules  for addition symmetrically combine three bits 
(denoted x,, y,, and c, in Section  2) to obtain one bit 
associated  with the same position (denoted z m )  and one bit 
associated  with the next  higher  position (denoted c,,,).  Let 
us combine x;, x:, and y ;  in this way to obtain a, and 
b,,,. Of course, b, is produced by the next  lower  position. 

240 Let us then combine a,, b,, and y: in the same way to 
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obtain a; and b;+,. Finally, we set z; = a; and z: = b; 
(which is produced by the next  lower  position). This method 
actually produces a bit z:+, that has no place in our result, 
but if x and y are at most  2“ - 1, this extra bit  is 0 and need 
not be computed. Thus carry-save addition can be 
performed by networks  with  cost O(n)  and delay O( 1). 

If  we  now construct a multiplier as before, but employ 
carry-save adders instead of ordinary adders, we obtain a 
multiplier with  cost O(n2) but delay  only O(1og n). Of 
course, this multiplier accepts its inputs and produces its 
outputs in redundant representation, but this difficulty  is 
easily  overcome. To convert inputs from ordinary binary to 
redundant binary, we  may  set x; = x, and x: = 0. To 
convert the output from redundant binary to ordinary 
binary, we may  employ an ordinary adder; this contributes 
O(n) to the cost and @log n) to the delay,  yielding an 
ordinary multiplier with  cost O(n2) and delay O(1og n). 

delay,  let us now turn to the problem of reducing the 
cost. The first step was taken by Karatsuba [21] in 1962; 
he  showed  how to construct multipliers with  cost 
O(n1“823) (lo@ = 1.585 . . .). One way  of doing this (more 
suitable  for  generalization than the one used  by Karatsuba) 
is as follows.  Suppose that n = 2n’ is  even (the case  of n odd 
is similar). Regard the input x as the value p(2”’) of a linear 
polynomial p ( [ )  = po + pI[ at the point [ = 2”‘, where the 
coefficients p, and p ,  are n ’-bit numbers. Regard y similarly 
as the value q(2”’) of a polynomial q(E) = q, + q,[ .  If  we can 
compute the product r ( [ )  = p(E)q((), which  is a quadratic 
polynomial, then z can  be obtained as its value r(2“’). Since 
a quadratic polynomial  is determined by its values at any 
three distinct points, one way  of computing r(E) is to 
evaluate p ( [ )  and q([)  at three points, say E E (0, 1, 2); 
multiply  these  values in pairs  (by  recursive application of the 
procedure  being  described) to obtain r(O), r( l), and r(2); 
then interpolate to obtain the coefficients r,, r , ,  and r, of 
r ( [ )  = ro + r,[ + r2t2. The values of p ( [ )  and q ( [ )  at [ E 
(0, 1, 21 are at most 7(2“’ - l), and  thus are (n’ + 3)-bit 
numbers. Thus, the multiplication of a pair of  n-bit numbers 
is  reduced to the multiplication of three pairs of (n’ + 3)-bit 
numbers, together  with some evaluation and interpolation 
operations. The evaluation and interpolation reduce to 
shifting, addition, and subtraction, and if arithmetic is done 
modulo 2,” + 1, then 2*” serves as - 1, so subtraction reduces 
to cyclic  shifting and addition. The recursion  reduces n by 
about a factor of 2,  while  increasing the number of problems 
by a factor of 3, at a cost of O(n). It follows that the final 
cost  is ~(n’”’z’). 

The foregoing  scheme  may  be  generalized by employing 
polynomials of higher  degree and evaluating and 
interpolating at more points. This was done by Toom [22], 
whose scheme  when optimized yields a cost bound of the 
form O(n2-  log n). Independently, Schonhage [23] 
proposed a different  scheme,  based on modular arithmetic 

Having  seen  how to multiply  with the minimum possible 
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but yielding the similar cost bound O ( n 2 p  (log r ~ ) ~ ” ) .  It 
was Schonhage and Strassen [24] in 1971  who obtained the 
cost bound O(n log n log log n), which remains the best that 
is known  today. Their idea  is to evaluate and interpolate 
polynomials at many points, but to exploit  a particularly 
advantageous choice of points. If 2” points are used, and if 
the points are chosen to be the 2“th roots of unity, the 
evaluation and interpolation processes  become the 
computation of a  finite Fourier transform and its inverse, for 
which  a  particularly  efficient algorithm (the “Fast Fourier 
Transform,” due to Cooley and Tukey  [25])  is  available. As 
a  final touch of elegance,  Schonhage and Strassen  observe 
that if arithmetic is done modulo a number of the form 

+ 1, then 2 serves as a 2“th root of unity, so Fourier 
transforms can be done without complex numbers. This 
modulus is  also convenient for the use  of redundant 
representation to reduce  delay; combining all  these 
ideas  yields  a multiplier with  delay  @log n) and cost 
O(n log n log  log n). 

22-’ 

It remains an open question whether there are multipliers 
of linear cost. It is  widely  believed that there are not, but no 
nonlinear bounds to the cost  of multipliers (or, as was noted 
in Section 1, nonmonotone networks computing any other 
“simple” functions) have yet been obtained. 

For networks  with unbounded fan-in, it is not at all  clear 
how to improve the delay bound of  O(1og n) significantly 
without an enormous increase in cost.  In particular, it is not 
clear  whether bounded delay and polynomial cost can be 
achieved simultaneously. It  is natural in this situation to 
look  for  a simple problem that captures the essence of 
multiplication in the same way that carry computation 
captures the essence  of addition. We  show that “majority” is 
such  a  problem. 

Let us say that a  problem  (with  a parameter n) is  “easy” if 
it  can  be computed by a  network  with unbounded fan-in, 
bounded delay (independent of n), and polynomial  cost  (as  a 
function of n). We perform  a  cycle  of reductions among 
problems.  First, we  show that if multiplication is  easy, then 
so is majority (with n arguments). Then we show that if 
majority is  easy, then so is “counting” (that is, determining 
the binary representation of the number of  1s among its n 
arguments).  Finally, we  close the cycle  by showing that if 
counting is  easy, then so is multiplication. This establishes 
the equivalence of multiplication and majority. 

First  let us  show that if multiplication is  easy, then so is 
majority.  Suppose that we  wish to determine the number of 
1s among n = 2’ - 1 Boolean arguments x,, . . ., x,,-l. This 
number is the coefficient  of [‘“I in the product of the 
polynomials x ( [ )  = x,, + xl[ + . . . + xn-lEn” .and y(6) = 1 + 
E + . . . + E’”’. If  we evaluate these polynomials at [ = 2” 
and multiply the resulting  (nu)-bit numbers together, the 
coefficient in question can  be  read off from the (nv)th 
through the ((n + 1). - 1)st  positions  of the product, and the 
most  significant of these is the majority. The formation of 

I 

i 
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the  factors and the interpretation of the product require no 
gates, so the delay and cost  needed to compute the majority 
of n variables are at most  those  needed to multiply two 
numbers of length O(n log n). Thus if multiplication is  easy, 
so is  majority. 

Now  let  us  show that if majority is  easy, so is counting. 
Given  a  network computing the majority of  2n + 1 
arguments, we can by substituting constants for n + 1 of 
these arguments obtain any “threshold” function of the 
remaining n arguments (the mth threshold function assumes 
the value 1 if and only if at least  m of its arguments assume 
the value 1). From the mth and (m + 1)st threshold 
functions we can easily compute the mth “indicator” 
function (which  assumes the value 1 if and only if  exactly  m 
of its arguments assume the value 1). Furthermore, from the 
first through nth indicator functions, we can easily compute 
any “symmetric” function (that is, any function whose  value 
depends only on the number of 1 s among its arguments). 
But  all  of the counting functions are symmetric functions. 
Thus if majority is  easy, so is counting. 

multiplication. Suppose we are given  two n-bit numbers and 
we  wish to compute their product. We  have seen that this 
can  be  accomplished by adding together n partial products 
of length  2n.  Let  us  begin  by counting the number of  1s in 
each of the 2n positions; this gives  2n counts, each of length 
O(1og n). Since  each  position appears in just O(1og n) of the 
counts, what remains is the problem of adding together 
O(1og n) “second” partial products of length  2n. Repeating 
this procedure reduces the problem to adding together 
O(1og  log n) “third” partial products of length  2n.  Now 
partition the positions into blocks  each containing 
rlog, log, n 1 consecutive  positions, and alternately assign the 
colors  “red” and “blue” to the blocks.  Let p denote the sum 
of the third partial products when the red  positions in these 
partial products are set to Os, and let q denote the sum when 
the blue  positions are set to Os. It is easy to see that each bit 
of the binary representation of p or q depends on only 
O(1og  log n) bits of each of the third partial products, and 
thus on only O((1og  log ny) bits  altogether. Thus each 
position of p or q can easily  be computed from the third 
partial products. Since the final product is the sum of p and 
q, it can  easily  be computed from them by an adder. Thus if 
counting is  easy, so is multiplication. 

majority, we are left  with the question as to whether either of 
them is  easy. This question was answered independently by 
Furst, Saxe, and Sipser  [26] and by Ajtai  [27],  who  showed 
that no network  with bounded delay and polynomial cost 
can compute parity  (with n arguments). As we  have just 
seen,  such  a  negative  result for a symmetric function such as 
parity  implies one for majority, and thus for multiplication. 
The ideas in these  two  papers, if carried to their limits,  yield 
lower bounds of nn(losn) for the cost of networks computing 

Finally  let  us  show that if counting is  easy, so is 

Having  shown the equivalence of multiplication and 
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parity  with bounded delay. This is  far  from the best  upper 

majority, for  networks  with  delay k. 

showed that monotone networks computing majority with 
delay k must  have  cost 2n(n’’‘k-’’), nearly matching the upper 
bound above  (which  does, in fact,  apply to monotone 
networks). An example due to Ajtai and Gurevich [29], 
however,  shows that there are monotone functions 
computed by networks of bounded delay and polynomial 
cost  for  which any monotone network of bounded delay 
must have  cost nn(’oglogn). This shows that Boppana’s  result 
has no implications for nonmonotone networks. 

For nonmonotone networks, the decisive step was taken 
by Yao [30], who  showed that n t :yks  computing parity 
with  delay k must have  cost 2n(“ . An improvement due to 
Hastad [3 1 1  (which has the added merit of a drastically 
simplified proof) shows  they  must  have  cost 2n(n”x), almost 
matching the upper bound. Hastad‘s  result,  together  with the 
upper bound, shows that the minimum possible  delay for 
multipliers of polynomial size  is O(log n/log log n). 

If a problem  is  easy, there is some minimum delay  for 
which it is computed by networks  with polynomial cost. 
Sipser [32] showed that for  every k z 1 there is a problem 
computed by networks  with  delay k + 1 and linear cost, but 
not by networks  with  delay k and polynomial  cost.  Klawe, 
Paul, Pippenger, and Yannakakis [33] showed that these 
functions, which are monotone, are computed by monotone 
networks  with  delay k and cost about the same as that for 
parity, and they gave a matching lower bound for monotone 
networks. The methods of Yao [30] and Hastad [3 11 give an 
almost matching lower bound for nonmonotone networks. 

The reader  may  have  noticed that although multiplication 
was shown to be equivalent to majority, the final  lower 
bound was obtained through panty. Parity is a computation 
in a semigroup (indeed, in a group, the group of integers 
modulo 2). This prompts us to resume the study of 
computations in semigroups  begun in Section 2. 

First,  let us mention that the results concerning parity 
described above all  apply  equally to the problem 
“congruence modulo p,” for any fixed modulus p 2 2. Thus, 
computations in cyclic  groups are not easy.  Since  every 
group contains a cyclic subgroup, computations in groups 
are not easy.  In particular, computations in semigroups that 
contain a group as a subsemigroup are not easy. The result 
of Chandra, Fortune, and Lipton [ 171 shows that 
computations in finite  semigroups that do not contain a 
group as a subsemigroup are easy, so we  now know (at least 
at the level  of “easy”  versus “not easy”) the complexity of 
computations in finite  semigroups for networks  with 
unbounded fan-in. 

bounds known, 2°(n’nk”’9 for parity and 20(~”k-”(1~~)’-’’(k”’’ ) for 

This gap was partially  closed by Boppana [28], who 

Next,  let us consider the relationship between panty and 
majority. Razborov [34] has  shown that even if gates are 

242 available that compute panty for k arguments with  cost k 

and delay 1 ,  majority is  still not easy.  An improvement due 
to Smolensky [35] shows that even if  gates are available that 
compute congruence modulo a prime q for k arguments with 
cost k and delay 1 ,  congruence modulo p is not easy for any 
prime p distinct from q. (Taking p = 2 and q = 3 yields an 
alternative proof of the result of Yao and Hastad for parity.) 
On the other hand, Barrington [36] has shown that there is a 
finite group (the alternating group A,  of even permutations 
of 5 points) with the property that, if gates are available that 
compute the product of k elements with  cost k and delay 1, 
then every  problem  solved by circuits with bounded fan-in 
and logarithmic depth (in particular, every  problem 
considered in this paper) is  easy. 

4. Conclusion 
The morals of our study of addition are as follows. The 
essence  of addition is the computation of the carries. This 
computation is an example of a prefix  problem  for a finite 
semigroup, the “carry” semigroup. For networks  with 
bounded fan-in, all  finite  semigroups  have the same 
complexity,  with linear cost and logarithmic delay. For 
networks  with unbounded fan-in, the situation is  more 
complicated. For some  semigroups,  for  example the “or” 
semigroup, linear cost and logarithmic delay are achievable 
simultaneously. But the carry  semigroup is not among these; 
for  it  these bounds are not achievable simultaneously. 

The morals of our study of multiplication are as  follows. 
The essence of multiplication is computation of the 
majority. This is not a semigroup computation, but it is 
connected to the computation of parity, which  is. For some 
semigroups,  for  example the carry semigroup, polynomial 
cost and bounded delay can be achieved  simultaneously.  But 
parity  is not among these;  for  it  these bounds are not 
achievable simultaneously. 

It would be natural to continue our study of arithmetic 
operations to division, extraction of square roots, and other 
operations. We  have not done so because this leads  away 
from the algebraic methods that have  been  emphasized in 
this paper towards analytic methods. We shall  only mention 
that for  networks  with bounded fan-in, the best  cost bounds 
known for these problems are the same as those for 
multiplication [currently, O(n log n log log n)], but are 
achieved by networks  with  delay  O((1og n ) 2 )  through the use 
of Newton’s method (see Cook [37]). This was the best  delay 
known for many years, until a breakthrough by Reif [39], 
giving  delay  O(1og n (log log n)’). This was quickly  followed 
by an improvement due to Beame, Cook, and Hoover [39], 
giving  delay O(1og n), achieved by networks  with  cost O(n4). 
It  is a tantalizing open problem to reconcile  these methods 
to achieve  cost O(n log n log  log n) and delay O(1og n) 
simultaneously. 
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