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The torus
and the disk

by R. L. Adler

This paper is a survey of a coherent program of
mathematics spanning 28 years. It begins with
questions concerning classification and
structure in ergodic theory and abstract
dynamical systems and describes the author’s
involvement with toral automorphisms,
topological entropy, iteration of maps on the
interval, symbolic dynamics, and ultimate
engineering applications. It serves as a case
study of how unplanned-for practical
applications can result from the pursuit of
mathematics for its own sake.

The first item in the title refers to a mathematical
abstraction, while the second is a successful product of the
computer industry.

The torus is a compact group and its automorphisms
preserve Haar measure. These are classic examples of
dynamical systems with invariant probability measures, the
objects of study in ergodic theory. The basic abstract object
of this subject is designated by (X, a, u), where X is a
Lebesgue space (that is, a space endowed essentially with the
measure-theoretic structure of the unit interval), « is a
measurable mapping of X onto itself, and u is a probability
measure with the property u(E) = u(¢~'E) for any
measurable subset E of X. A principal question of this
subject is one of isomorphism: When does there exist a
measure-preserving change of variables? In ergodic theory
two dynamical systems (X, a, n), (¥, 8, ») are said to be
measure-theoretically isomorphic (metrically isomorphic for
short) if there exists a mapping vy of X onto Y such that
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W E) = u(yv"'E) and the conjugacy relation
yay™ =B (ae.)

holds. For invertibility of v all that is required here is that
v~! exists almost everywhere.

Dynamical systems can be considered from other points of
view. For example, in the subject of topological dynamics we
designate a dynamical system' by (X, «), where X is a
compact metric space and a a continuous map of X onto
itsel‘f. Here two dynamical systems (X, a), (Y, 8) are said to
be topologically isomorphic (or alternately homeomorphically
conjugate) if v in the conjugacy relation is a
homeomorphism of X onto Y. This is the strongest sense of
equivalence from a purely topological point of view. But
later we elaborate on another slightly weaker one, more in
the spirit of measure theory, in the sense that we do not
insist that the conjugacy relation hold everywhere. Similarly
in the theory of smooth dynamical systems, the spaces in
question are manifolds, the mappings diffeomorphisms, and
we would call the notion of isomorphism diffeomorphic
conjugacy.

The other object in the title is the magnetic storage disk.
More generally, we are referring to any data storage or
transmission system. In information theory these are
portrayed within the framework of a channel, as in Figure 1.
The basic question here concerns the construction of finite
state automata which encode and decode data in order to
pass them through input-restricted channels. Later we
discuss some typical channel constraints.

It is not difficult to suspect a vague connection between
the isomorphism question of dynamical systems and the
coding problem of information theory: After all, in both
subjects one set is being transformed into another. The
discovery that these are really different interpretations of the
same problem is a consequence of what turned out to be a

! For a comprehensive treatment of such systems see [1].
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coherent program of research spanning 27 years and serves
as a good example of how unplanned-for practical
applications can result from the pursuit of mathematics for
its own sake.

It began for me as a graduate student in the late fifties.
The central problem in ergodic theory was one of metric
isomorphism between Bernoulli shifts. These are dynamical
systems representing stochastic processes like coin-tossing
experiments. The problem was: When could the sequences
of independently identically distributed results from one
probabilistic experiment be coded into another in an
invertible and measurable way so that corresponding events
under the coding have equal probability? A major
breakthrough occurred when Kolmogorov [2] indicated how
Shannon’s concept of entropy might be utilized as a metric
isomorphism invariant, and Sinai [3] supplied proofs
necessary to calculate the entropy of Bernoulli shifts. This
established in an effective way that shifts of different entropy
are not metrically isomorphic. A decade later Ornstein [4]
was to prove the converse, that Bernoulli shifts with the
same entropy are metrically isomorphic. This led to
tremendous progress and a profound understanding of the
basic structure of stationary stochastic processes.

As a graduate student I had come across a similar problem
concerning the automorphism of the torus. Toral
automorphisms are given by members of GL(n, Z), i.e.,
matrices of integers with determinant +1. They preserve
Haar measure and, therefore, are metrically isomorphic if
they are algebraically conjugate—i.e., they are conjugate
elements in the group GL(n, Z). Naturally one would be
tempted to prove the converse. I managed to prove such a
converse if metric conjugacy was replaced by diffeomorphic
conjugacy [S). A few years later Richard Palais showed me
how to improve this to homeomorphic conjugacy [6]. In the
meantime this was also proved by Arov [7]. But the original
metric conjugacy conjecture turned out to be false.

In the early sixties, the notion of topological entropy was
suggested to me by Kolmogorov’s notion of e-entropy [8],
which measures complexity of function spaces. I realized
that a dynamical invariant could be defined for continuous
maps by formal analogy with the Kolmogorov-Sinai
probabilistic entropy for measure-preserving transformations
(see [9]). This is done by replacing measurable partitions
with open covers and the number, called the entropy of the
partition, ZP(A)) log P(A4,) with the log of the cardinality of
a minimum sub-cover. The topological entropy of a
continuous map on a compact space can then be defined as
the largest possible growth rate of this number as covers are
successively refined by action of the map’s inverse. There
was no more of an idea to it than that.” Originally I thought
it a mere curiosity. Its main property is that continuous
maps which are homeomorphically conjugate have the same
topological entropy. But I knew of no maps that could not
be distinguished with other invariants more easily; and the
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converse, as to whether maps with the same topological
entropy are homeomorphically conjugate, could be easily
shown to be false for any interesting class of continuous
maps one would care to mention. Yet there was a striking
fact: namely, the Kolmogorov-Sinai entropy (with respect to
Haar measure) and the topological entropy are equal for
toral automorphisms. The entropy of a toral automorphism
is the logarithm of the product of eigenvalues of modulus =1
of the associated integer matrix.

The significance of this emerged a few years later. In the
fall of 1966, Leopold Flatto told Benjamin Weiss and me of
a new problem which has since gained enormous notoriety:
What is the dynamical behavior of the map x — ax(1 — x)
on the unit interval for choices of the parameter a,

1 = a =< 4? For instance, when is the orbit of the critical
point ¥ infinite? This has yet to be answered and perhaps is
the type of problem that can never be completely settled. We
tried our hand on a simpler version—namely, analyze
XxX—a—-2a|x—"%|,1=<a=<4. Weiss and I noticed that
for certain values of the parameter q, there exists a partition
having Markov behavior under the map. This gives rise to a
symbolic expansion for the points on the interval which
totally describes the dynamical behavior of the map in much
the same way as the binary expansion of numbers describes
the dynamical behavior of multiplication by two.

We examine this situation in more detail. Let (X, a) be a
dynamical system where a:x — (2x) and X is the unit
interval with 0 and 1 identified to make « continuous. Let
3, denote the set of all binary expansions of numbers in the
unit interval or equivalently the set of all infinite paths

? Some years later Bowen [10] and Dinaburg [11] independently
showed the equivalence of the above definition with one derived
more directly from Kolmogorov’s e-entropy; namely, the largest
growth rate as ¢ — o of the number of e-separated orbits of length n
(two orbits of length » are e-separated if the distance between some
pair of corresponding members is =¢). Furthermore, this definition
brings into clearer focus the fact that topological entropy is a natural
generalization of Shannon’s noiseless channel capacity.
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(sequences of edges) on the directed graph G illustrated in
Figure 2.

Let o denote the shift transformation which shifts the
symbol sequences in =, by one to the left and drops off the
initial digit. It is easy to define a metric on X, which makes
sequences closer the longer their initial segments agree. This
makes =, a compact metric space, in fact the Cantor
discontinuum, and ¢ a continuous map. We make the
elementary observation that the map = of =, onto X defined
by w(binary expansion of x) = x is continuous onto and
commutes in the sense that o7 = w«. Such maps are called
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Jactor maps (though “quotient” would be a better term), the
system (X, a) a factor of (2,, o), and (Z,, o) an extension of
(X, a). Furthermore, we call 7 a finite factor map since it is
nowhere infinite-to-one; in fact it is at most two-to-one, and
we call it essentially one-to-one since it is one-to-one except
for a certain set of rationals which is “negligible” compared
to the totality of all numbers. The existence of an extension
by a symbolic system which represents a dynamical system
in such a simple fashion arises from certain geometrical
properties of the map. For example, consider the partition of
X into the intervals [0, ¥2] and ['2, 1] (see Figure 3). If the
first inferval is labeled O and the second 1, then orbits of the
system (X, ) have histories through the partition identical
with sequences of Z, which are described by the directed
graph of Figure 2.

This happens here because the image of each element of
the partition is a union of some others. Partitions that
behave like this with respect to a map are called Markov.
Ambiguities occur when the orbit of a point hits a boundary
point of one of the intervals in the partition. Such an
occurrence is atypical and is a reflection of the same fact that
certain rationals have more than one expansion. In order to
get a simple description of the set of allowable expansions,
one pays the price by having nonuniqueness of symbolic
representation. This is a characteristic feature of decimal
expansions in arithmetic and symbolic representations of
orbits in dynamical systems.

Consider another example (X, ) where 8 has a plot as in
Figure 4. Here the image of the left interval is the right one
while the image of the right is the union of both. This
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Markov partition gives a symbolic extension (Z;, ¢) where G
is the directed graph in Figure 5 and Z is the set of infinite
paths (here sequences of nodes) on G. This set can be
topologized just as 2, and the defined shift ¢ is continuous.
Furthermore, there is an obvious finite essentially one-to-one
factor map = which maps histories to points in the interval.

Unfortunately, in analyzing the dynamical behavior of the
maps x — ax(l — x)orx —a— 2a|x — 2|, Weiss and |
found the above considerations useful only for special values
of the parameter a. So we abandoned the problem in favor
of trying to understand why the two entropies for toral
automorphisms yield identical numbers. To our surprise we
discovered (or rather rediscovered what K. Berg [12] had
found shortly before in research for his Ph.D. thesis) that
two-dimensional hyperbolic toral automorphisms have
simple Markov partitions. These give rise to symbolic
representations, paths on directed graphs, just like those we
had been playing with a short time before.

A brief account of our result is as follows. Let X = R%/Z*
denote the two-dimensional torus and « an automorphism
of X. Here points (x + m, y + n) in the plane form,n € Z
are identified, and « is given by

a(x, y) = (ax + ¢y, bx + dy) = (x, y)4,

where A is a matrix with integer entries and determinant 1.
Haar measure here is merely the projection of area measure
in the plane, and area measure is preserved by « because

| det 4} = 1. The matrix 4 has two eigenvalues A and « with
A = 1. This transformation is called hyperbolic if, say,

[A| > 1, which forces | x| < 1. Only the hyperbolic case in
dimension 2 is of interest from the dynamical point of view.
The geometry of a hyperbolic automorphism is as follows. In
the plane there are two distinct directions: one in which
distances expand by a factor of | A| under the action of 4,
and the other in which they contract by |«|. Because of this
fact one can construct Markov partitions and hence a
symbolic extension given by a directed graph. For example,
consider the case

In Figure 6 we draw a Markov partition for the
automorphism and in Figure 7 the associated directed graph
G. The idea here is the following. Instead of the unit square
another fundamental region for the torus is drawn with sides
parallel to the expanding and contracting eigenvectors. This
region is then partitioned into two parallelograms I and II.
Under the action of the automorphism, these get stretched in
one direction and shrunk in the other. Weiss and I did a
simple-minded thing. On one sheet of transparent graph
paper we drew the fundamental region and on a second the
image of it under the automorphism. We placed one sheet
on top of the other and slid them around to see how the two
set partitions got refined. New lines appeared in the
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expanding direction, but to our amazement no new ones in
the shrinking direction. This has a simple geometric
explanation and profound consequences. As shown in Figure
6, the two basic parallelograms I and II get refined into five
smaller ones. The image of rectangle ! is a collection of
rectangles stretching across 1, 2, and 3; similarly for the
images of 2 and 5; the image of 3 stretches across 4 and 5;
similarly for 4. These facts are summarized by the transitions
allowed in the graph depicted in Figure 7.

We now make a slight change in our notion of Z;. We
assume from now on that it consists of bi-infinite paths in
the graph G, which makes the shift ¢ an invertible map on
2, One of the consequences of the fact that there are no
new lines in the shrinking direction under repeated
applications of the automorphism is the existence of a finite
essentially one-to-one factor map = of Z; onto X. This map
associates a bi-infinite path in G to a unique point of X
having that path as a history through the partition under the
action of a. We shall not give the proof of this, but suffice it
10 say that it follows from some elementary plane geometry.

The areas of the parallelograms in the Markov partition
are numbers with special meaning. We found that a
symbolic system (2, ¢) which is an extension of a toral
automorphism satisfies a variational principle: namely, the
topological entropy is the same as the maximum
probabilistic entropy’, which in turn is the same as the
entropy of the toral automorphism. Also encouraged by
Meshalkin’s [14] success in coding between certain Bernoulli
shifts, we found that we could construct metric conjugacies
(i.e., measure-preserving changes of variables) by coding
between these symbolic systems representing toral
automorphisms whenever they had the same entropy. Here a
simplification occurred. Inherent in the power of our
method we merely had to construct a measurable change of
variables: The measure-preserving property was forced to
accompany it by virtue of the fact that topological entropy
and maximum probabilistic entropy coincide. Answering the
question on which I had been stuck as a graduate student,
we were able to prove the following.

Theorem  Two 2-dimensional hyperbolic toral
automorphisms are metrically isomorphic if and only if they
have the same entropy, i.e., the same corresponding | \|.

This was the first natural class of dynamical systems to be
classified by entropy. In the early seventies Ornstein [15]
made a vast generalization.

Our work [16] combined two new important ideas: finding
Markov partitions for smooth dynamical systems and coding

* Another rediscovery. The topological entropy of (2, o) is the same
thing as Shannon’s noiseless channel capacity, and the fact that it
equals the maximum probabilistic entropy was known to him for
Markov measures. Parry [13] rediscovered this fact and generalized
it to arbitrary measures.
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between symbolic systems associated with the partitions.
Each idea has stimulated mathematical activity.

With respect to the first one, R. Bowen [17, 18] and
Ya. Sinai [19] established the existence of Markov partitions
for a more general class of smooth dynamical systems. In
particular these results give Markov partitions for hyperbolic
toral automorphisms of any dimension. Furthermore, Sinai
[20] made an application of Markov partitions to some basic
questions in statistical mechanics. For an entrance into the
literature on the use of Markov partitions in smooth
systems, one can consult {21].

Weiss and I concentrated our further work on the second
idea. We observed that the codes which we were constructing
between symbolic systems were stronger than metric
conjugacies yet weaker than homeomorphic ones. Also we
could code between examples of symbolic systems with the
same topological entropy. The codes we were constructing
were almost but not quite invertible. They failed to be one-
to-one on a small set of exceptional symbol sequences. This
is also the case for metric conjugacies in general, but our set
of exceptional points was universally negligible with respect
to any regular invariant probability measure rather than a
fixed one. Later (see [22, 23]) when their nature was better
understood we called these codes “almost-homeomorphic
conjugacies.” Fashioned from the relationship of a binary
expansion and the number it represents, almost-
homeomorphic conjugacy is a relation, between topological
systems, which has the appearance of being only slightly
weaker than homeomorphic conjugacy. Two topological
dynamical systems (X, ) and (Y, ) are said to be almost
homeomorphically conjugate if they are factors of a common
extension, say (Z, p), and the factor maps are finite and
essentially one-to-one. Here essentially one-to-one means
that the factor maps are one-to-one on the doubly transitive
points—that is, the points whose future orbits and past
orbits are both dense. In systems which satisfy a standard
irreducibility condition, the nondoubly transitive points
comprise a negligible set in the sense of measure and
category just like those numbers which have more than one
binary expansion. Two basic facts can be proved: Almost-
homeomorphic conjugacy is an equivalence relation, and
topological entropy is an invariant.

The symbolic systems with which we were dealing
(namely, bi-infinite paths on directed graphs) we called
topological Markov shifts because they could be specified by
nonnegative fransition matrices. The name was chosen
because these matrices resemble stochastic ones except that
the positive transition probabilities have been replaced by
nonnegative integers. The relevant transition matrix is one
with entries 0, 1 and is specified as follows: Thereisa 1 in
the ith row and jth column if and only if edge i leads next to
edge j. We could just as easily label nodes, in which case:
There is an n in the ith row and jth column if and only if
there are n paths from node i to node j. Sometimes it is
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more convenient to work with nodes, sometimes edges: e.g.,
if n assumes values other than 0 or 1, then edge labeling
avoids an ambiguity which arises using nodes. A zero-one
transition matrix specifies a space of admissible sequences of
symbols (the labels of nodes or edges), and along with the
shift transformation we get a symbolic dynamical system.
These systems go under other names: topological Markov
chains [13)] and shifis of finite type [24]. We call a directed
graph as well as its transition matrix and the dynamical
system it specifies irreducible if any pair of nodes is
connected by a directed path and aperiodic if any pair of
nodes is connected by a directed path of the same length.
The topological entropy of a topological Markov shift is the
log of the largest eigenvalue of its transition matrix. This
eigenvalue is called the Perron value.

We considered first the case where the Perron value was
an integer N. A row sum N matrix has Perron value N, but
not conversely. We conceived of a proof consisting of two
parts: Part 1, to prove that for a system whose matrix has
Perron value N there exists a code to a new system where the
associated matrix has row sum N; Part 2, to prove that there
exists a code between a row sum N system and the system
given by an N X N matrix of all ones (such a system is called
the fill N-shift and its space of sequences is denoted by Z,).
We could prove Part 1 by a method which has come to be
known as state splitting, but the proof of Part 2 was elusive.
This problem became known as the “road problem.”

Here is the simplest version of the road problem. A group
of cities is connected by an aperiodic network of one-way
roads, each city having two exit roads (a city having a road
leading to itself is not excluded). The highway department
has two colors, say red and blue, with which to paint the
roads. Each city has one red exit and one blue. Is it possible
to color the roads in such a way that there is a sequence of
colors that leads everyone simultaneously to the same city,
say city 1, no matter where he starts?

It is still unsolved; but the most general result to date,

I believe, has been done by O’Brien [25]. In 1975 at an
ergodic theory symposium at the University of Warwick,

L. W. Goodwyn found a way to bypass the problem by
observing that it was sufficient to solve the road problem for
a higher-order edge graph, which is easier to do than for the
original one. This is described in [26].

At that same symposium Furstenburg proved that two
irreducible nonnegative integer matrices A, B (not
necessarily of the same dimension) have the same Perron
value if and only if there exists a positive integer matrix F
such that AF = FB. On the basis of this result, Brian Marcus
and I were able to prove a topological analogue to Ornstein’s
isomorphism theorem, to wit:

Theorem®  Two aperiodic topological Markov shifis are
almost-homeomorphically conjugate if and only if they have
the same topological entropy [22).
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A common extension.

If the transition matrix is irreducible but not aperiodic,
another invariant, the period, must be included with the
entropy. Our method is based on a technique which we call
“filling in tableaux,” which constructs a new graph from two
others with the same Perron value. In the new graph the
outgoing edges at the various nodes are like those of one of
the original graphs, while the incoming edges are like those
of the other. This new graph gives a dynamical system which
is a common extension of the original ones and the almost-
homeomorphism is constructed from factor maps. The
factor maps are defined by merging appropriate nodes. (See
Figure 8.)

A corollary of this and Bowen’s result [17, 18] is the fact
that the theorem of Adler and Weiss can be generalized to
hyperbolic toral automorphisms of all dimensions.

Theorem  Two hyperbolic toral automorphism are almost-
homeomorphically conjugate (hence metrically conjugate) if
and only if they have the same entropy.

An isomorphism theory (at least the type we are
discussing) has three elements: an equivalence relation, an
invariant, and a special class of systems for which the
invariant is a complete one. For ergodic theory they are
metric conjugacy, probabilistic entropy, and Bernoulli shifts;

* Likewise Parry [27] used Furstenburg’s result to obtain a version of
this theorem which stops short of getting the one-to-one condition in
almost-homeomorphic conjugacy. Thus he obtains a weaker
relation, which he calls finite equivalence, between two topological

Markov shifts with the same entropy. 229
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while for topological dynamics they are almost-
homeomorphic conjugacy, topological entropy, and
topological Markov shifts. What about an isomorphism
theory based on homeomorphic conjugacy? The outstanding
problem concerning shifts of finite type is to give an
algorithm (or prove its nonexistence) for determining
homeomorphic conjugacy. For material concerning this
problem, see [28-32]. If two dynamical systems are
homeomorphically conjugate, then they have the same
topological entropy [9]. However, it is not hard to
demonstrate that the converse is not true even for shifts of
finite type. Williams [32] gave an algebraic characterization
of topological isomorphism for shifts of finite type. Some
algebraic invariants, such as the Jordan form away from
0-eigenvalues, result which are stronger than topological
entropy. However, all of the currently known computable
invariants are inadequate to completely classify these
systems with respect to topological isomorphism. The
trouble seems to be that homeomorphic conjugacy is too
strong an equivalence relation. It is the weaker one, almost-
homeomorphic conjugacy, with respect to which an
isomorphism theory with a simple description can be
established.

The class of dynamical systems to which our isomorphism
theorem applies can be enlarged to include sofic systems (the
term “sofic,” introduced by Weiss [30], is derived from the
Hebrew word for finite and is supposed to suggest the
finitary character of these systems). It is the set of output
sequences from a finite state automaton. Shannon [33]
called them “transducers.” A sofic system (S, o) is defined by
choosing S to be the space of sequences of symbols gotten
from bi-infinite paths on directed graphs just like topological
Markov shifts except that perhaps the nodes (edges) are not
distinctly labeled. See [34-36]. If the nodes (edges) have
distinct labels, the sofic system is a subshift of finite type, but
if not, then it may or may not be homeomorphically
conjugate to a topological Markov shift. Generally it is not.
In any case topological entropy is a complete invariant with
respect to almost-homeomorphic conjugacy for aperiodic
members of this larger class of symbolic systems.

Marcus [37] improved the state-splitting method
introduced by Weiss and me to show that a topological
Markov shift with Perron value N is actually
homeomorphically conjugate to the one whose transition
matrix has row sum N. The row sum N system is a common
extension between the original topological Markov shift and
the full N-shift. From this follows a stronger statement than
the isomorphism theorem for the special case of rational
integer Perron values: namely, a topological Markov shift
with Perron value N is almost-homeomorphically conjugate
to a full N-shift via a factor map. His method has practical
implications which we mention later.

The practical applications of the isomorphism theory in
topological dynamics were first recognized by Martin
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Hassner [38]. While doing research for his Ph.D. in electrical
engineering, he was struck by the fact that our notion of
almost-topological conjugacy is a coding given by a finite
algorithm, so that an engineering application ought to be
possible. (The metric conjugacies for Bernoulli shifts given
by Ornstein are not anything like finite algorithms.) He also
was aware that information channels such as ones describing
magnetic data storage devices were modeled precisely by
topological Markov shifts and sofic systems. As a result of
his insight, the attention of mathematicians in ergodic theory
and dynamical systems was directed to an area of
engineering of which they had previously been oblivious.

Digital information usually takes the form of long binary
sequences which we can assume to be arbitrary. When data
are to be transmitted or stored, a system doing so may force
constraints on the binary sequences. For example, in storing
binary data on magnetic surfaces (tapes, disks, drums, etc.)
the symbol 1 is ascribed to a transition in the magnetic state
of the surface and 0 to a nontransition. During the read-back
process, a transition between magnetic states will cause a
voltage pulse while a nontransition will result in an absence
of signal in the read head. In such recording systems, the
separation of transitions is measured in terms of some basic
bit duration unit and constraints are introduced for the
following reasons. 1) If the transitions are too close,
interference between adjacent voltage pulses in the circuits
attenuates signals and shifts peaks—trouble for a peak-
detection scheme. This places a lower limit on the minimum
separation between successive transitions. 2) If the adjacent
transitions are too far apart, the absence of a signal may
cause a data-based clocking scheme, used to correct for drift,
to lose synchronization, giving a false measurement of the
number of bit duration units. This places an upper limit on
the maximum separation between transitions.

This translates into the so-called (d, k) constraints for
binary sequences, where d is the minimum number of zeros
between ones and k the maximum. Consequently, a device is
needed to code between arbitrary binary sequences and
constrained ones. In order for such a device to be practical,
it can only process small amounts of data at a time. From its
point of view the data that it is processing, though finite,
may just as well be infinite both with respect to the past as
well as the future. Therefore, symbolic dynamical systems
provide a perfect model for such a situation. Arbitrary data
are modeled by the full 2-shift (or the full 2% shift if one
wants to consider blocks of data) and (d, k)-constrained data
by a topological Markov shift. Furthermore, certain
constraints are modeled by sofic systems. For example, in
magnetic recording problems may develop due to a dc
component in the electrical signal, especially if the head is
coupled by an induction coil to the rest of the system.
Besides heating the coil, errors could be introduced in the
read-back process if the spectrum of the binary sequence
contained any power at the frequency zero. Therefore, we
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may be forced to place spectral constraints on our sequences,
and such constraints usually lead to sofic systems [39].

The engineer is now faced with two problems. 1) He must
code arbitrary data into constrained, and thereby lose some
rate. What coding rates are possible? 2) Given a possible
coding rate, how does one construct practical finite state
automata to do the coding and encoding?

The answer to the first question is provided by the notion
of topological entropy, which is the same as Shannon’s
noiseless channel capacity.5 This determines the possible
coding rates. The tableau and state-splitting methods
construct common extensions and factor maps. This gives a
solution to the second problem in the case that topological
entropy of input data matches capacity of the channel. To
explain this we must discuss the concept of the factor map6
in more detail.

Let L, and L, denote an ordered set of symbols for two
topological Markov shifts (= , ¢) and (2, o), respectively.
Also let m:2 , — Z ; be a factor map. It follows from
continuity and the shift-commuting property that = is a
k-block map for some integer k. This means that there is a
fixed function m:L, X - .- X L, — L, of k variables
(using 7 again by a slight abuse of notation) such that
V=X p X pps ** s Xi_jusy) fOr sSOMe fixed j € Z. (By a
suitable change of the symbol set L, and the transition
matrix 4 we can always arrange j = 0, kK = 1 so as to obtain
a 1-block map.) If the mapping r is also invertible, then =~
is also a k-block map, for perhaps a different k. Finite factor
maps7 are not invertible. They do, however, possess a weak
type of invertibility. Assuming, without loss of generality,
that =x = yis a 1-block factor map, then it is finite if and
onlyif (x,_, - -+, x,,.) is uniquely determined from
(Vieps "+ *» Visg) Xipand x,, for all i, p, g. Another way of
saying this is: If #(4) = =(») and the distance between o'u
and o'y goes to 0 as i — Foo, then u = » (“there are no
diamonds in pre-images”). A stronger kind of this weak
invertibility is the following. A factor map = is said to be
right-closing® if there are fixed integers p, ¢ =0, r = 1

%It is instructive at this point to compare Shannon’s noiseless coding
theorem [33) with the results presented here. His theorem states that
coding is possible between source and channel data if the source
entropy is strictly less than the channel capacity and impossible if
the inequality is reversed. He does not treat the case of equality.
Furthermore, his theorem says nothing about how coding can be
done with automata. On the other hand, his source entropy is a
probabilistic one, something more general than topological entropy.

¢ For initial literature on factor maps in symbolic dynamics see the
paper of Hedlund {40].

? Kitchens [41] found an important algebraic property of factor maps
of topological Markov shifts: If m:Z, — 2, is a finite factor map,
then the Jordan form of A, apart from the 0-eigenvalues, contains
that of B.

® This concept was known to B. McMillan [42] and was called
unifilar by him.

IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987

such that if =x = y, then x; is uniquely determined from
(¥ip -5 Vi) and the coordinates (x,_,, - - -, x;_,) which are
to the left of x,. Another way of saying this is: If #(#) = =(»)
and the distance between o'y and o'v goesto 0 as i —» —oo,
then u = v (“there are no right forks in pre-images”). We call
a right-closing map right-resolving if it is a 1-block map such
that r = 1, p = ¢ = 0. Lefi-closing and lefi-resolving are
similarly defined.

The concept of a right-resolving factor map can be given
the following engineering interpretation. =:L, — L,
determines how to construct a finite state automaton which
encodes sequences 2 ; to Z . The present output symbol
depends on the present input and the present internal state.
The present internal state depends on the past input and the
past internal state. The encoding proceeds from left to right
on the sequences, but this specification of the direction of
time is merely a convention. The general isomorphism
theorem for topological Markov shifts states that given
(Z,, o) and (2, o) of equal entropy, there is a common
extension (2, ) and two essentially one-to-one 1-block
factor maps = ;2. — Z, and 7,:2 . — Z,. One of these maps
is right-resolving and one is left-resolving. This means that
the finite state automaton which encodes sequences from 2,
via Z . to 2 proceeds from right to left, whereas the one that
decodes goes from left to right.

In the case of Perron value N, an integer, we have a
special situation. Encoding from (2, o) to (2, o) is derived,
as in general, from a right-resolving factor map »:Z.— Z,,
where 2. is a common extension of Z, and Z,. The graph
given by C defines the automaton and the factor map
72— 2, specifies its output. However, from Marcus’s
theorem the factor map =,:Z.— 2, from the common
extension to 2, is invertible, which means that the decoding
automaton is just the image of a continuous map—namely,
x,x, —and does not depend on an internal state. Engineers
call this type of decoder a sliding block decoder. Thus, while
errors in the input of the encoder might cause infinite output
erTors, error propagation is limited for a sliding block
decoder. This is just what is required for encoding and
decoding data for the magnetic recording information
channel. The channel coder is not responsible for user errors,
only channel errors. These he wants to limit in order not to
overwhelm an error-correcting code, another level of coding
which has not been part of our discussion.

To sum the last two paragraphs, the engineering
significance of almost-homeomorphic conjugacy (in fact,
even the weaker relation, finite equivalence) is that automata
can readily be constructed to encode and decode arbitrarily
long sequences from one subshift of finite type to another of
equal entropy. When the first is the full N-shift, then the
decoder can be made sliding block, something not true in
general. An added quality of almost-homeomorphic
conjugacy over finite equivalence is the existence of a finite

input which resets the encoding automaton independent of 231
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the current internal state (likewise for the decoder). There
may be situations where it is important to know the current
internal state: for instance, an initial state is an ingredient in
specifying an actual device.

To illustrate what we have been saying, we return to the
previous example in Figure 9 with edges labeled by data
symbols. The graph of the full 2-shift =, is on the right with
its edges labeled by 0 and 1. It represents sequences of
arbitrary data. The graph of 2, is on the left with its edges
labeled by some pairs of zeros and ones. It represents
constrained data. The sequences of pairs ostensibly comprise
a sofic system. Actually it is topologically isomorphic to the
Markov shift =, because there is a one-to-one
correspondence between sequences of pairs and sequences of
edges. Here sequences of pairs obey constraints which imply
run-length ones. One can read from the graph of the
common refinement 2 . on top how to encode arbitrary data
to constrained data at a rate 1:2 and also decode. The
internal states are six edges of graph C which should be
viewed as having distinct labels. Encoding proceeds from left
to right (reverse for decoding). On the other hand, thisis a
case of integer Perron value (two). For this example the
state-splitting method and the tableau method construct the
same common extension. A consequence of the state-
splitting method is that we can decode in the same direction
as encoding, namely, from left to right. In this method, to
determine a present unconstrained symbol one just looks
ahead in the sequence of constrained pairs.

R. L. ADLER

Marcus’s result can be used to solve the second
engineering problem of achieving error-limited decoding
with a sliding block decoder for rate p:q in the case where the
Perron value = 27 the log of which is the entropy. This
applies to the case where the input system taken as p-blocks
of user data has the same topological entropy as that of
g-blocks of channel-constrained data. Constraints rarely have
such entropies, so his method had to be extended to include
Perron values # 27/ and this was done by Adler,
Coppersmith, and Hassner [43]. One can always get the
source entropy less than or equal to the channel capacity by
choosing p and g properly.

The theorem of Marcus [37] for factoring topological
Markov shifts onto the full N-shift was generalized by him
[44] to include a special class of sofic systems he called
almost-finite type. These are described by finite state
automata with the property that output sequences lying in
some open set determine sequences of internal states—i.e.,
nodes of the defining graph. This mathematical notion was
inspired by engineering applications, which impose
constraints on signals representing bit strings, like having no
dc component. Spectral constraints of this sort lead to this
type of sofic system. Actually Marcus’s result [44] for sofic
systems was not as strong as the one for topological Markov
shifts because it just gives a factoring of (.S, ak) onto (Z ,, ak)
for some k.° The following remark will perhaps shed some
light on the practical significance of this. Patel [45] invented
a code for the so-called zero-modulation channel used in the
IBM 3850, a mass storage magnetic tape system, It satisfies
the (1, 3) run-length constraint along with a spectral
constraint to eliminate the dc component in the electrical
signals. This makes it a sofic system. Patel discovered a code
with a simple sliding block decoder having small error
propagation. The encoder, however, is based on a finite
factor map which is not right-resolving. In order to design an
encoding automaton for this particular system, a small
amount of rate had to be sacrificed. As a by-product of
Marcus’s and Karabed’s research on sofic systems, it can
now be done without this sacrifice. Admittedly, there is a
substantial increase in complexity and error propagation in
the decoder.

It is appropriate to mention here the interesting work of
Franaszek [46] and of Lempel and Cohn [47]. They
developed methods similar to the aforementioned in the
sense that all are based on the Perron-Frobenius spectral
theory of nonnegative matrices. Mathematical clarity which

® A hot new result at IBM Research San Jose by him and a
collaborator, R. Karabed, is the fact that k = 1, just as in the
Markovian case. In addition, Marcus was then able to extend this
theorem to arbitrary sofic systems by inventing a new notion he
called a non-catastrophic decoder, which was also inspired by
engineering requirements. It is a generalization of the notion of the
sliding block decoder and beautifully fits the mathematics of the
situation.
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is missing from their work can now be supplied in terms of
notions which have become standard in symbolic dynamics.

Finally, patents {48-50] and products (the IBM 9332 Hard
Disk File) have accrued as dividends of this kind of work.
Moreover, in the past it might take an engineer several
months to design, by ingenious ad hoc methods, the code
tables and the logic for an automaton to code data to fit
constraints such as (d, k) ones. Now some of the most
complicated cases can be routinely handled; but the main
point is that these can often be done in less than a day.
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