
The  torus 
and the disk 

by R. L. Adler 

This  paper  is  a  survey  of a  coherent  program  of 
mathematics  spanning 28 years. It begins  with 
questions  concerning  classification  and 
structure  in  ergodic  theory  and  abstract 
dynamical  systems  and  describes  the  author's 
involvement  with  toral  automorphisms, 
topological  entropy,  iteration of  maps  on the 
interval,  symbolic  dynamics,  and  ultimate 
engineering  applications. It serves as a case 
study  of  how  unplanned-for  practical 
applications  can  result  from  the  pursuit of 
mathematics  for  its  own  sake. 

The first item in the title refers to a mathematical 
abstraction, while the second  is a successful product of the 
computer industry. 

The torus is a compact group and its automorphisms 
preserve Haar measure.  These are classic  examples of 
dynamical systems with  invariant probability measures, the 
objects of study in ergodic theory. The basic abstract object 
of this subject is  designated by ( X ,  a, p), where X is a 
Lebesgue  space (that is, a space  endowed  essentially  with the 
measure-theoretic structure of the unit interval), a is a 
measurable mapping of X onto itself, and p is a probability 
measure  with the property p ( E )  = p(4"E) for any 
measurable  subset E of X .  A principal question of this 
subject is one of isomorphism: When  does there exist a 
measure-preserving  change of variables? In ergodic theory 
two dynamical systems ( X ,  a, p), ( Y, 8, u)  are said to be 
measure-theoretically  isomorphic (metrically isomorphic for 
short) if there exists a mapping y of X onto Y such that 
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u(E) = p(y-IE) and the conjugacy  relation 

yay-' = 8 (a.e.) 

holds. For invertibility of y all that is required here  is that 
y-l exists almost everywhere. 

Dynamical  systems can be  considered from other points of 
view. For example, in the subject of topological dynamics we 
designate a dynamical system' by ( X ,  a), where X is a 
compact metric space and a a continuous map of X onto 
itse!f. Here two dynamical systems ( X ,  a), (Y ,  8) are said to 
be topologically  isomorphic (or alternately homeomorphically 
conjugate) if y in the conjugacy  relation  is a 
homeomorphism of X onto Y. This is the strongest  sense  of 
equivalence from a purely  topological point of  view.  But 
later we elaborate on another slightly  weaker one, more in 
the spirit of measure theory, in the sense that we do not 
insist that the conjugacy relation hold  everywhere.  Similarly 
in the theory of smooth dynamical systems, the spaces in 
question are manifolds, the mappings  diffeomorphisms, and 
we  would call the notion of isomorphism dzffeomorphic 
conjugacy. 

More  generally, we are refemng to any data storage or 
transmission  system.  In information theory these are 
portrayed  within the framework of a channel, as in Figure 1. 
The basic question here concerns the construction of finite 
state automata which encode and decode data in order to 
pass them through input-restricted channels. Later we 
discuss some typical channel constraints. 

the isomorphism question of dynamical systems and the 
coding  problem of information theory:  After  all, in both 
subjects one set  is  being transformed into another. The 
discovery that these are really  different interpretations of the 
same  problem  is a consequence of what turned out to be a 

The other object in the title is the magnetic  storage  disk. 

It is not difficult to suspect a vague connection between 

' For a  comprehensive  treatment of such  systems see [ 11. 
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coherent program of research spanning 27 years and serves 
as a good example  of how unplanned-for practical 
applications can result from the pursuit of mathematics for 
its own  sake. 

It began for me as a graduate student in the late  fifties. 
The central problem in ergodic theory was one of metric 
isomorphism between  Bernoulli  shifts. These are dynamical 
systems  representing  stochastic  processes  like  coin-tossing 
experiments. The problem was: When could the sequences 
of independently identically distributed results from one 
probabilistic experiment be  coded into another in an 
invertible and measurable way so that corresponding events 
under the coding have equal probability?  A major 
breakthrough occurred when  Kolmogorov [2] indicated how 
Shannon’s concept of entropy might be utilized as a metric 
isomorphism invariant, and Sinai [3] supplied  proofs 
necessary to calculate the entropy of Bernoulli  shifts. This 
established in an effective  way that shifts of different entropy 
are not metrically isomorphic. A decade later Ornstein [4] 
was to prove the converse, that Bernoulli  shifts  with the 
same entropy are metrically isomorphic. This led to 
tremendous progress and a profound understanding of the 
basic structure of stationary stochastic processes. 

concerning the automorphism of the torus. Toral 
automorphisms are given  by members of GL( n, Z ) ,  i.e., 
matrices of integers  with determinant & 1. They  preserve 
Haar measure and, therefore, are metrically isomorphic if 
they are algebraically conjugate-i.e., they are conjugate 
elements in the group Gun ,  Z ) .  Naturally one would  be 
tempted to prove the converse. I managed to prove  such  a 
converse if metric conjugacy was replaced by diffeomorphic 
conjugacy [5]. A few  years later Richard Palais  showed  me 
how to improve this to homeomorphic conjugacy [6]. In the 
meantime this was also proved by  Arov [7]. But the original 
metric conjugacy conjecture turned out to be  false. 

In the early  sixties, the notion of topological entropy was 
suggested to me by Kolmogorov’s notion of e-entropy [8], 
which  measures  complexity  of function spaces. I realized 
that a dynamical invariant could be defined  for continuous 
maps by formal  analogy  with the Kolmogorov-Sinai 
probabilistic entropy for measure-preserving transformations 
(see [9]). This is done by replacing measurable partitions 
with open covers and the number, called the entropy of the 
partition, ZP(Ai )  log P(Ai)  with the log of the cardinality of 
a minimum subcover. The topological  entropy of a 
continuous map on a compact space  can then be defined as 
the largest  possible  growth rate of this number as covers are 
successively  refined  by action of the map’s  inverse. There 
was no more of an idea to it than that.’  Originally I thought 
it  a mere curiosity. Its main property is that continuous 
maps which are homeomorphically conjugate have the same 
topological entropy. But I knew  of no maps that could not 
be distinguished  with other invariants more easily; and the 

As a graduate student I had come across  a similar problem 
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f Information channel. 

converse, as to whether maps with the same topological 
entropy are homeomorphically conjugate, could be  easily 
shown to be  false for any interesting class  of continuous 
maps one would care to mention. Yet there was a striking 
fact:  namely, the Kolmogorov-Sinai entropy (with respect to 
Haar measure) and the topological entropy are equal for 
toral automorphisms. The entropy of  a toral automorphism 
is the logarithm of the product of eigenvalues of modulus 2 1 
of the associated  integer matrix. 

The significance  of this emerged  a few  years later. In the 
fall  of 1966, Leopold Flatto told Benjamin Weiss and me of 
a new problem  which  has  since  gained enormous notoriety: 
What  is the dynamical behavior of the map x -+ ax( 1 - x) 
on the unit interval for  choices of the parameter a, 
1 5 a 5 4? For instance, when  is the orbit of the critical 
point Yz infinite? This has  yet to be  answered and perhaps  is 
the type of problem that can never  be  completely  settled. We 
tried our hand on a simpler version-namely,  analyze 
x + a - 2 a I x - % I , I ~ a ~ 4 . W e i s s a n d I n o t i c e d t h a t  
for certain values of the parameter a, there exists  a partition 
having  Markov  behavior under the map. This gives  rise to a 
symbolic  expansion  for the points on the interval which 
totally  describes the dynamical behavior of the map in much 
the same way as the binary  expansion of numbers describes 
the dynamical behavior of multiplication by two. 

We examine this situation in more  detail.  Let ( X ,  a)  be a 
dynamical system  where a:x + (2x) and X is the unit 
interval  with 0 and I identified to make a continuous. Let 
Z, denote the set of all  binary expansions of numbers in the 
unit interval or equivalently the set of  all infinite paths 

* Some  years  later  Bowen [IO]  and  Dinaburg [ 1 I ]  independently 
showed  the  equivalence  of  the  above  definition  with  one  derived 
more  directly  from  Kolmogorov’s  e-entropy;  namely,  the  largest 
growth  rate as E + m of the  number of c-separated  orbits of length n 
(two orbits of length n are  rseparated  if  the  distance  between  some 
pair of corresponding  members is re) .  Furthermore,  this  definition 
brings into clearer focus  the  fact  that  topological  entropy  is  a  natural 
generalization of Shannon’s  noiseless  channel  capacity. 
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(sequences of  edges) on the directed  graph G illustrated  in 
Figure 2. 

Let u denote the shift transformation which  shifts the 
symbol  sequences  in 2, by one to the left and drops off the 
initial digit.  It  is easy to define a metric on Z, which makes 
sequences  closer the longer their initial segments  agree. This 
makes Z, a compact  metric  space,  in  fact the Cantor 
discontinuum, and u a continuous map. We make the 
elementary  observation that the map a of Z2 onto X defined 
by r(binary expansion of x) = x is continuous onto and 
commutes in the sense that UT = pa. Such  maps are called 226 
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factor maps (though “quotient” would  be a better term), the 
system ( X ,  a) afuctor of (E,, a), and (Z,, u) an extension  of 
( X ,  a). Furthermore, we call a afinite factor map since it is 
nowhere  infinite-to-one;  in  fact it is at most  two-to-one, and 
we call it essentially  one-to-one  since it is  one-to-one  except 
for a certain  set  of rationals which  is  “negligible” compared 
to the totality of  all numbers. The existence of an extension 
by a symbolic  system  which  represents a dynamical  system 
in  such a simple  fashion  arises  from  certain  geometrical 
properties of the map. For example,  consider the partition of 
X into the intervals [0, %I and [%, I ]  (see Figure 3). If the 
first  interval  is  labeled 0 and the second 1, then orbits of the 
system ( X ,  a) have  histories  through the partition identical 
with  sequences  of Z, which are  described by the directed 
graph of  Figure 2. 

the partition is a union of some  others. Partitions that 
behave  like this with  respect to a map  are  called Markov. 
Ambiguities  occur when the orbit of a point hits a boundary 
point of one of the intervals in the partition. Such an 
occurrence  is  atypical and is a reflection  of the same  fact that 
certain rationals have  more than one  expansion.  In  order to 
get a simple  description of the set  of  allowable  expansions, 
one  pays the price by having nonuniqueness of  symbolic 
representation. This is a characteristic  feature of decimal 
expansions  in arithmetic and symbolic  representations of 
orbits in  dynamical  systems. 

Consider another example ( X ,  a) where  has a plot as in 
Figure 4. Here the image  of the left interval is the right one 
while the image  of the right  is the union of both. This 

This happens  here  because the image  of each  element of 
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Markov partition gives a symbolic  extension (ZG, D )  where G 
is the directed graph in Figure 5 and 2, is the set  of  infinite 
paths (here sequences of nodes) on G. This set can be 
topologized just as 2, and the defined  shift u is continuous. 
Furthermore, there is an obvious  finite  essentially one-to-one 
factor map K which  maps  histories to points in the interval. 

Unfortunately, in analyzing the dynamical behavior of the 
mapsx+ax(l  -x)orx+a-2aIx-1/2l,WeissandI 
found the above considerations useful  only  for  special  values 
of the parameter a. So we abandoned the problem in favor 
of trying to understand why the two entropies for toral 
automorphisms yield identical numbers. To  our surprise we 
discovered (or rather rediscovered  what K. Berg [ 121 had 
found shortly before in research  for  his Ph.D. thesis) that 
two-dimensional hyperbolic toral automorphisms have 
simple  Markov partitions. These give  rise to symbolic 
representations, paths on directed graphs, just like  those we 
had  been  playing  with a short time before. 

A brief account of our result is as follows.  Let X = R 2 / Z 2  
denote the two-dimensional torus and a an automorphism 
of X .  Here points (x + m, y + n) in the plane  for m, n E Z 
are identified, and a is  given by 

.(x, Y )  = (ax + CY, bx + d ~ )  = (x, Y)A,  

where A is a matrix with  integer entries and determinant rt 1. 
Haar measure  here  is  merely the projection of area measure 
in the plane, and area measure  is  preserved  by a because 
I det A 1 = 1. The matrix A has two  eigenvalues X and K with 
X K  = * 1. This transformation is  called  hyperbolic  if, say, 
I X I > 1,  which  forces I K I < 1. Only the hyperbolic  case in 
dimension 2 is  of interest From the dynamical point of  view. 
The geometry of a hyperbolic automorphism is  as  follows.  In 
the plane there are two distinct directions: one in which 
distances expand by a factor of I X I under the action of A,  
and the other in which  they contract by I K I. Because  of this 
fact one can construct Markov partitions and hence a 
symbolic  extension  given by a directed graph. For example, 
consider the case 

A = (f i). 
In Figure 6 we draw a Markov partition for the 
automorphism and in Figure 7 the associated directed graph 
G. The idea  here  is the following.  Instead  of the unit square 
another fundamental region  for the torus is  drawn  with  sides 
parallel to the expanding and contracting eigenvectors.  This 
region  is then partitioned into two  parallelograms I and 11. 
Under the action of the automorphism, these get stretched in 
one direction and shrunk in the other. Weiss and I did a 
simple-minded thing. On one sheet of transparent graph 
paper we  drew the fundamental region and on a second the 
image  of  it under the automorphism. We placed one sheet 
on top of the other and slid them around to see  how the two 
set partitions got  refined. New lines appeared in the 
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expanding direction, but to our amazement no new ones in 
the shrinking direction. This has a simple geometric 
explanation and profound consequences. As shown in Figure 
6 ,  the two  basic  parallelograms I and I1 get  refined into five 
smaller  ones. The image of rectangle 1 is  a  collection of 
rectangles stretching across 1, 2, and 3; similarly for the 
images of 2 and 5; the image  of 3 stretches across  4 and 5; 
similarly for 4.  These  facts are summarized by the transitions 
allowed in the graph depicted in Figure 7. 

We  now make a  slight change in  our notion of 2,. We 
assume  from  now on that it consists of bi-infinite paths in 
the graph G, which  makes the shift u an invertible map on 
Z,. One of the consequences of the fact that there are no 
new lines in  the shrinking direction under repeated 
applications of the automorphism is the existence of a  finite 
essentially one-to-one factor map A of 2,  onto X .  This map 
associates  a  bi-infinite path in G to a unique point of X 
having that path as a  history through the partition under the 
action of a. We shall not give the proof of this, but suffice it 
to say that it follows  from some elementary plane geometry. 

The areas of the parallelograms in the Markov partition 
are numbers with  special  meaning. We found that a 
symbolic  system (ZG, U) which  is an extension of a toral 
automorphism satisfies  a variational principle: namely, the 
topological entropy is the same as the maximum 
probabilistic entropy3, which in  turn is the same as the 
entropy of the toral automorphism. Also encouraged by 
Meshalkin’s [ 141  success in coding between certain Bernoulli 
shifts, we found that we could construct metric conjugacies 
(i.e., measure-preserving  changes of variables) by coding 
between  these  symbolic  systems  representing toral 
automorphisms whenever they had the same entropy. Here  a 
simplification occurred. Inherent in the power  of our 
method we merely had to construct a measurable change of 
variables: The measure-preserving property was forced to 
accompany it by virtue of the fact that topological entropy 
and maximum probabilistic entropy coincide.  Answering the 
question on which I had  been stuck as a graduate student, 
we  were able to prove the following. 

Theorem Two 2-dimensional hyperbolic  toral 
automorphisms  are metrically isomorphic ifand only ifthey 
have  the same entropy, i.e., the same corresponding I X I. 

This was the first natural class of dynamical systems to be 
classified  by entropy. In the early  seventies Ornstein [ 151 
made a  vast  generalization. 

Our work [ 161 combined two new important ideas:  finding 
Markov partitions for smooth dynamical systems and coding 

Another  rediscovery.  The  topological  entropy of (EG, a) is the  same 
thing as Shannon’s  noiseless  channel  capacity,  and  the  fact  that  it 
equals  the  maximum  probabilistic  entropy  was  known to him  for 
Markov  measures.  Parry [ 131 rediscovered  this  fact  and  generalized 
it to arbitrary  measures. 228 
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between  symbolic  systems  associated  with the partitions. 
Each  idea has stimulated mathematical activity. 

With  respect to the first one, R. Bowen [ 17, 181 and 
Ya. Sinai [ 191 established the existence of Markov partitions 
for  a more general  class  of smooth dynamical systems. In 
particular these  results give Markov partitions for  hyperbolic 
toral automorphisms of any dimension. Furthermore, Sinai 
[20] made an application of Markov partitions to some basic 
questions in statistical  mechanics. For an entrance into the 
literature on the use of  Markov partitions in smooth 
systems, one can consult [21]. 

Weiss and I concentrated our further work on the second 
idea. We observed that the codes  which we  were constructing 
between  symbolic  systems  were  stronger than metric 
conjugacies  yet  weaker than homeomorphic ones. Also  we 
could  code  between  examples  of  symbolic  systems  with the 
same topological entropy. The codes we  were constructing 
were almost but not quite invertible.  They  failed to be one- 
to-one on a  small  set of exceptional symbol sequences. This 
is also the case  for metric conjugacies in general, but our set 
of exceptional points was universally  negligible  with  respect 
to any regular invariant probability measure rather than a 
fixed one. Later (see [22, 231)  when their nature was better 
understood we called  these  codes “almost-homeomorphic 
conjugacies.” Fashioned from the relationship of a binary 
expansion and the number it represents, almost- 
homeomorphic conjugacy  is  a relation, between  topological 
systems,  which has the appearance of being  only  slightly 
weaker than homeomorphic conjugacy. Two topological 
dynamical systems ( X ,  a) and ( Y, p) are said to be almost 
homeomorphically  conjugate if they are factors of a common 
extension,  say ( Z ,  p), and the factor maps are finite and 
essentially one-to-one. Here essentially one-to-one means 
that the factor maps are one-to-one on the doubly transitive 
points-that  is, the points whose future orbits and past 
orbits are both dense.  In  systems  which  satisfy  a standard 
irreducibility condition, the nondoubly transitive points 
comprise  a  negligible  set in the sense  of  measure and 
category just like  those numbers which  have more than one 
binary expansion. Two  basic  facts can be  proved: Almost- 
homeomorphic  conjugacy is an  equivalence  relation, and 
topological  entropy  is an invariant. 

The symbolic  systems  with  which we  were dealing 
(namely, bi-infinite paths on directed graphs) we called 
topological  Markov  shifts because  they could be  specified  by 
nonnegative transition matrices. The name was  chosen 
because  these matrices resemble  stochastic ones except that 
the positive transition probabilities have  been  replaced  by 
nonnegative  integers. The relevant transition matrix is one 
with entries 0, 1 and is  specified as follows: There is a 1 in 
the ith row and j th column if and only if  edge i leads  next to 
edge j .  We could just as easily  label  nodes, in which  case: 
There is an n in the ith row and jth column if and only  if 
there are n paths from node i to node j .  Sometimes it is 
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more convenient to work  with  nodes, sometimes edges:  e.g., 
if n assumes  values other than 0 or 1, then edge labeling 
avoids an ambiguity which  arises  using  nodes. A zero-one 
transition matrix specifies  a  space  of  admissible  sequences  of 
symbols (the labels of nodes or edges), and along with the 
shift transformation we  get a symbolic dynamical system. 
These  systems go under other names: topological  Markov 
chains [ 131 and shifts offinite type [24]. We call  a  directed 
graph as well as its transition matrix and the dynamical 
system it specifies irreducible if any pair of nodes  is 
connected by a directed path and aperiodic if any pair of 
nodes  is connected by a  directed path of the same length. 
The topological entropy of a  topological Markov shift  is the 
log  of the largest  eigenvalue  of its transition matrix. This 
eigenvalue  is  called the Perron value. 

We considered  first the case  where the Perron value was 
an integer N. A row sum N matrix has Perron value N,  but 
not conversely. We conceived of a  proof  consisting of two 
parts: Part 1, to prove that for a  system  whose matrix has 
Perron value N there exists  a  code to a new  system  where the 
associated matrix has row sum N, Part 2, to prove that there 
exists  a  code  between  a row sum N system and the system 
given  by an N X N matrix of  all ones (such a  system  is  called 
thefull N-shift and its space of sequences  is denoted by 2J. 
We could prove Part 1 by a method which has come to be 
known as state splitting, but the proof of Part 2 was  elusive. 
This problem  became  known as the “road problem.” 

Here is the simplest  version of the road  problem.  A group 
of cities  is connected by an aperiodic network of  one-way 
roads,  each  city  having  two  exit roads (a city  having  a  road 
leading to itself  is not excluded). The highway department 
has two colors,  say  red and blue, with  which to paint the 
roads.  Each  city has one red exit and one blue. Is it possible 
to color the roads in such  a way that there is  a  sequence of 
colors that leads  everyone simultaneously to the same city, 
say  city 1 ,  no matter where  he starts? 

It is  still  unsolved; but the most  general  result to date, 
I believe,  has  been done by OBrien [25]. In  1975 at an 
ergodic theory symposium at the University of  Warwick, 
L. W. Goodwyn found a way to bypass the problem by 
observing that it was sufficient to solve the road  problem  for 
a  higher-order edge graph,  which  is  easier to  do than for the 
original  one. This is  described in [26]. 

At that same symposium Furstenburg proved that two 
irreducible nonnegative  integer matrices A ,  B (not 
necessarily  of the same dimension) have the same Perron 
value if and only if there exists  a  positive  integer matrix I; 
such that AF = FB. On the basis  of this result,  Brian Marcus 
and I were able to prove  a  topological analogue to Omstein’s 
isomorphism theorem, to wit: 

Theorem4 Two aperiodic  topological Markov shifts are 
almost-homeomorphically conjugate if and  only ifthey have 
the same topological  entropy [22]. 
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I A common extension. 

If the transition matrix is irreducible but not aperiodic, 
another invariant, the period, must be included with the 
entropy. Our method is based on a technique which  we  call 
“filling in tableaux,” which constructs a new graph  from  two 
others with the same Perron value. In the new graph the 
outgoing  edges at  the various  nodes are like those of one of 
the original  graphs,  while the incoming edges are like those 
of the other. This new graph  gives  a dynamical system  which 
is  a common extension of the original  ones and  the almost- 
homeomorphism is constructed from factor maps. The 
factor maps are defined  by  merging appropriate nodes. (See 
Figure 8.) 

A  corollary of this and Bowen’s result [ 17, 181 is the fact 
that the theorem of  Adler and Weiss can  be  generalized to 
hyperbolic toral automorphisms of  all dimensions. 

Theorem Two hyperbolic  toral  automorphism  are almost- 
homeomorphically  conjugate  (hence metrically conjugate) if 
and  only ifthey have  the same entropy. 

An isomorphism theory (at least the type we are 
discussing)  has three elements: an equivalence relation, an 
invariant, and a  special  class  of  systems  for  which the 
invariant is  a complete one. For ergodic theory they are 
metric conjugacy,  probabilistic entropy, and Bernoulli  shifts, 

- 

4 .  Likewise Parry [27] used Furstenburg’s  result  to  obtain a version of 
this  theorem  which  stops  short of getting  the  one-to-one  condition  in 
almost-homeomorphic  conjugacy.  Thus  he  obtains  a  weaker 
relation,  which  he  callsfinire equivalence, between  two  topological 
Markov shifts with  the  same  entropy. 
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while  for  topological dynamics they are almost- 
homeomorphic conjugacy,  topological entropy, and 
topological  Markov  shifts. What about an isomorphism 
theory based on homeomorphic conjugacy? The outstanding 
problem concerning shifts of finite type is to give an 
algorithm (or prove its nonexistence) for determining 
homeomorphic conjugacy. For material concerning this 
problem, see  [28-321.  If two dynamical systems are 
homeomorphically conjugate, then they  have the same 
topological entropy [9].  However, it is not hard to 
demonstrate that the converse is not true even  for  shifts of 
finite  type.  Williams  [32]  gave an algebraic characterization 
of topological isomorphism for shifts of finite  type. Some 
algebraic invariants, such as the Jordan form away from 
0-eigenvalues,  result  which are stronger than topological 
entropy. However,  all of the currently known computable 
invariants are inadequate to completely  classify  these 
systems  with  respect to topological isomorphism. The 
trouble seems to be that homeomorphic conjugacy  is too 
strong an equivalence relation. It is the weaker one, almost- 
homeomorphic conjugacy,  with  respect to which an 
isomorphism theory with a simple description can be 
established. 

The class  of dynamical systems to which our isomorphism 
theorem applies can  be  enlarged to include sofic systems (the 
term “sofic,” introduced by  Weiss [30], is derived  from the 
Hebrew  word  for  finite and is  supposed to suggest the 
finitary character of these  systems). It is the set  of output 
sequences from a finite state automaton. Shannon [33] 
called them “transducers.” A sojc system (S, U) is  defined by 
choosing S to be the space of sequences of symbols gotten 
from  bi-infinite paths on directed graphs just like  topological 
Markov  shifts  except that perhaps the nodes  (edges) are not 
distinctly labeled. See  [34-361.  If the nodes  (edges)  have 
distinct labels, the sofic  system  is a subshift of finite  type, but 
if not, then it may or may not be homeomorphically 
conjugate to a topological Markov shift. Generally it  is not. 
In any case  topological entropy is a complete invariant with 
respect to almost-homeomorphic conjugacy  for aperiodic 
members of this larger  class  of  symbolic  systems. 

Marcus [37] improved the state-splitting method 
introduced by  Weiss and me to show that a topological 
Markov  shift  with Perron value N is actually 
homeomorphically conjugate to the one whose transition 
matrix has row sum N. The row sum N system  is a common 
extension  between the original  topological Markov shift and 
the full  N-shift. From this follows a stronger statement than 
the isomorphism theorem for the special  case  of rational 
integer Perron values:  namely, a topological  Markov  shift 
with Perron value N is almost-homeomorphically conjugate 
to a full  N-shift  via a factor map. His method has practical 
implications which  we mention later. 

The practical applications of the isomorphism theory in 
topological dynamics were  first  recognized  by Martin 
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Hassner  [38].  While doing research  for  his  Ph.D. in electrical 
engineering, he  was struck by the fact that our notion of 
almost-topological  conjugacy  is a coding  given  by a finite 
algorithm, so that an engineering application ought to be 
possible. (The metric conjugacies  for  Bernoulli  shifts given 
by Ornstein are not anything like  finite algorithms.) He also 
was aware that information channels such as ones describing 
magnetic data storage  devices  were  modeled  precisely by 
topological  Markov  shifts and sofic  systems. As a result of 
his insight, the attention of mathematicians in ergodic theory 
and dynamical systems was directed to  an area of 
engineering of  which they  had  previously  been  oblivious. 

Digital information usually  takes the form of long  binary 
sequences  which we can assume to be arbitrary. When data 
are to be transmitted or stored, a system doing so may  force 
constraints on the binary  sequences. For example, in storing 
binary data on magnetic  surfaces (tapes, disks, drums, etc.) 
the symbol 1 is ascribed to a transition in the magnetic state 
of the surface and 0 to a nontransition. During the read-back 
process, a transition between  magnetic states will cause a 
voltage  pulse  while a nontransition will result in an absence 
of  signal in the read  head. In such  recording  systems, the 
separation of transitions is measured in terms of some basic 
bit duration unit and constraints are introduced for the 
following  reasons. 1) If the transitions are too close, 
interference  between adjacent voltage  pulses in the circuits 
attenuates signals and shifts  peaks-trouble  for a peak- 
detection  scheme. This places a lower limit on the minimum 
separation between  successive transitions. 2)  If the adjacent 
transitions are too far apart, the absence of a signal  may 
cause a data-based  clocking  scheme,  used to correct  for drift, 
to lose synchronization, giving a false measurement of the 
number of bit duration units. This places an upper limit on 
the maximum separation between transitions. 

This translates into the so-called (d, k) constraints for 
binary  sequences,  where d is the minimum number of zeros 
between ones and k the maximum. Consequently, a device  is 
needed to code  between arbitrary binary  sequences and 
constrained ones.  In order for such a device to be  practical, 
it  can  only  process  small amounts of data  at a time. From its 
point of  view the data that it is  processing, though finite, 
may just as well  be infinite both with  respect to the past as 
well  as the future. Therefore,  symbolic dynamical systems 
provide a perfect  model  for  such a situation. Arbitrary data 
are  modeled by the full  2-shift (or the full  2k-shift if one 
wants to consider  blocks of data) and (d ,  k)-constrained data 
by a topological  Markov  shift. Furthermore, certain 
constraints are modeled by  sofic  systems. For example, in 
magnetic  recording problems may  develop due to a dc 
component in the electrical  signal,  especially if the head  is 
coupled by an induction coil to the rest of the system. 
Besides heating the coil, errors could  be introduced in the 
read-back  process  if the spectrum of the binary  sequence 
contained any power at the frequency  zero.  Therefore, we 
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may  be  forced to place  spectral constraints on our sequences, 
and such constraints usually  lead to sofic systems [39]. 

The engineer  is now  faced  with  two  problems. 1)  He must 
code arbitrary data  into constrained, and thereby  lose some 
rate.  What coding rates are possible? 2) Given a possible 
coding rate, how does one construct practical finite state 
automata to  do the coding and encoding? 

of topological entropy, which  is the same as Shannon’s 
noiseless channel capacity.’ This determines the possible 
coding rates. The tableau and state-splitting methods 
construct common extensions and factor  maps. This gives a 
solution to the second  problem in the case that topological 
entropy of input  data matches capacity of the channel. To 
explain this we must  discuss the concept of the factor map6 
in more detail. 

Let LA and L, denote an ordered set of symbols for two 
topological Markov shifts ( E A ,  U )  and (Z,, a), respectively. 
Also let a:ZA + Z, be a factor map. It follows  from 
continuity and the shift-commuting property that P is a 
k-block map for some integer k. This means that there is a 
fixed function *:LA X . . . X LA + L, of k variables 
(using P again by a slight abuse of notation) such that 
y ,  = *(x,,, xi-,+,, . . . , x ~ - ~ + ~ - , )  for  some fixedj E Z.  (By a 
suitable change of the symbol  set LA and the transition 
matrix A we can always arrange j = 0, k = 1 so as to obtain 
a 1-block map.) If the mapping P is also invertible, then P-’ 
is  also a k-block map, for perhaps a different k. Finite factor 
maps7 are not invertible.  They do, however,  possess a weak 
type of invertibility. Assuming, without loss  of  generality, 
that ax = y is a 1-block  factor map, then it is  finite if and 
only if (x,+ . . . , xi+,) is  uniquely determined from 
(yI+ . . . , y,,,), and xl+, for all i, p ,  q. Another way  of 
saying this is:  If a( u )  = a(u) and  the distance between u’u 

and uiu goes to 0 as i + 700, then u = u (“there are no 
diamonds in pre-images”). A stronger kind of this weak 
invertibility is the following. A factor map P is  said to be 
right-closing’ if there are fixed integers p ,  q 2 0, r 2 1 

The answer to the first question is provided by the notion 

’ It  is instructive at this point to compare Shannon’s  noiseless  coding 
theorem [33] with the results  presented  here. His theorem states that 
coding  is  possible  between  source and channel data if the source 
entropy is  strictly  less than the channel capacity and impossible if 
the inequality is  reversed.  He does not treat the case  of equality. 
Furthermore, his theorem says nothing about how  coding can be 
done with automata. On the other hand, his source entropy is a 
probabilistic one, something more general than topological entropy. 

For initial literature on factor maps in symbolic dynamics see the 
paper of Hedlund (401. 

’ Kitchens [41] found an important algebraic property of factor maps 
of  topological Markov shifts: Ifrr:Z, -+ Z, is afinite factor map, 
then  the  Jordan form ofA, apart from the 0-eigenvalues, contains 
that of B. 

This concept was  known  to B. McMillan [42] and was called 
unifilar by him. 

such that if ax = y,  then xi is  uniquely determined from 
(Y,-~, . . ., y,+,) and the coordinates (xi-r, . . +, xi-,) which are 
to the left  of xi. Another way of  saying this is:  If a( u )  = T(U) 
and the distance between uiu and uiu goes to 0 as i + -m, 
then u = u (“there are no right  forks in pre-images”).  We  call 
a right-closing map right-resolving if it is a 1 -block map such 
that r = 1, p = q = 0. Left-closing and left-resolving are 
similarly  defined. 

The concept of a right-resolving  factor map can be given 
the following  engineering interpretation. r:LA + L, 
determines how to construct a finite state automaton which 
encodes  sequences 2 ,  to 2,. The present output symbol 
depends on the present input  and the present internal state. 
The present internal state depends on the past input and the 
past internal state. The encoding proceeds  from  left to right 
on the sequences, but this specification of the direction of 
time is merely a convention. The general isomorphism 
theorem for  topological  Markov  shifts states that given 
(ZA, u) and ( X , ,  u) of equal entropy, there is a common 
extension (Z,, U )  and two  essentially  one-to-one 1 -block 
factor maps P , : Z ,  + Z, and P , : Z ,  + 2,. One of these maps 
is  right-resolving and one is  left-resolving. This means that 
the finite state automaton which  encodes  sequences  from 2, 
via 2, to Z, proceeds  from  right to left,  whereas the one that 
decodes  goes from left to right. 

special situation. Encoding from ( Z ,  U )  to (EA,  a) is derived, 
as in general,  from a right-resolving  factor map r I :ZC+ Z, 
where Z, is a common extension of 2, and Z, The graph 
given  by C defines the automaton and the factor map 
a2:Zc + Z, specifies its output. However,  from  Marcus’s 
theorem the factor map P,:Z,  + 2, from the common 
extension to Z, is  invertible,  which means that the decoding 
automaton is just the image  of a continuous map-namely, 
a,P;l-and does not depend on an internal state. Engineers 
call this type of decoder a sliding  block  decoder. Thus, while 
errors in the input of the encoder might  cause  infinite output 
errors, error propagation is limited for a sliding  block 
decoder. This is just what is required  for encoding and 
decoding data for the magnetic  recording information 
channel. The channel coder is not responsible  for user errors, 
only channel errors. These  he wants to limit in order not to 
overwhelm an error-correcting code, another level  of coding 
which has not been part of our discussion. 

significance  of almost-homeomorphic conjugacy (in fact, 
even the weaker relation, finite  equivalence) is that automata 
can  readily  be constructed to encode and decode arbitrarily 
long  sequences from one subshift of finite  type to another of 
equal entropy. When the first  is the full  N-shift, then the 
decoder  can  be made sliding  block, something not true in 
general. An added quality of almost-homeomorphic 
conjugacy  over  finite  equivalence is the existence of a finite 
input which  resets the encoding automaton independent of 

In the case  of Perron value N, an integer, we  have a 

To sum the last  two  paragraphs, the engineering 
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{ Automata. 

the current internal state (likewise  for the decoder). There 
may be situations where it is important to know the current 
internal state: for instance, an initial state is an ingredient in 
specifying an actual device. 

To illustrate what we have  been  saying, we return to the 
previous example in Figure 9 with  edges  labeled  by data 
symbols. The graph of the full  2-shift Z, is on the right  with 
its edges  labeled by 0 and 1. It represents  sequences of 
arbitrary data. The graph of 2,  is on the left  with its edges 
labeled by some pairs of zeros and ones. It represents 
constrained data. The sequences of pairs  ostensibly comprise 
a sofic  system.  Actually it is topologically isomorphic to the 
Markov  shift Z, because there is a one-to-one 
correspondence between  sequences  of  pairs and sequences of 
edges.  Here  sequences of pairs  obey constraints which imply 
run-length ones. One can read from the graph of the 
common refinement Z, on top how to encode arbitrary data 
to constrained data  at a rate 1:2 and also  decode. The 
internal states are six  edges  of graph C which should be 
viewed  as having distinct labels.  Encoding  proceeds from left 
to right  (reverse for decoding). On the other hand, this is a 
case.  of integer Perron value  (two). For this example the 
state-splitting method and the tableau method construct the 
same common extension. A consequence of the state- 
splitting method is that we can decode in the same direction 
as encoding, namely, from  left to right. In this method, to 
determine a present unconstrained symbol one just looks 
ahead in the sequence of constrained pairs. 232 
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Marcus’s  result  can  be  used to solve the second 
engineering  problem of achieving error-limited decoding 
with a sliding  block decoder for rate p:q in the case. where the 
Perron value = 2’Iq, the log  of  which  is the entropy. This 
applies to the case  where the input system taken as pblocks 
of user data has the same topological entropy as that of 
q-blocks  of channel-constrained data. Constraints rarely  have 
such entropies, so his method had to be extended to include 
Perron values # 2’”; and this was done by Adler, 
Coppersmith, and Hassner [43]. One can  always  get the 
source entropy less than or equal to the channel capacity by 
choosing p and q properly. 

The theorem of Marcus [37] for factoring  topological 
Markov  shifts onto the full  N-shift  was  generalized  by him 
[44] to include a special  class of  sofic systems he called 
almost-fnite type. These are described by finite state 
automata with the property that output sequences  lying in 
some open set determine sequences of internal states”i.e., 
nodes of the defining graph. This mathematical notion was 
inspired by engineering applications, which  impose 
constraints on signals  representing  bit  strings,  like  having no 
dc component. Spectral constraints of this sort lead to this 
type of  sofic  system.  Actually  Marcus’s  result [44] for  sofic 
systems was not as strong as the one for  topological Markov 
shifts  because it just gives a factoring of (S ,  u k )  onto ( 2 ,  uk) 
for some k. The following remark will perhaps shed some 
light on the practical  significance of this. Patel [45] invented 
a code for the so-called zero-modulation channel used in the 
IBM 3850, a mass  storage  magnetic tape system. It satisfies 
the ( 1, 3) run-length constraint along  with a spectral 
constraint to eliminate the dc component in the electrical 
signals. This makes  it a sofic  system.  Patel  discovered a code 
with a simple  sliding  block decoder having small error 
propagation. The encoder, however,  is  based on a finite 
factor map which  is not right-resolving. In order to design an 
encoding automaton for this particular system, a small 
amount of rate had to be  sacrificed.  As a by-product of 
Marcus’s and Karabed‘s  research on sofic  systems, it can 
now  be done without this sacrifice.  Admittedly, there is a 
substantial increase in complexity and error propagation in 
the decoder. 

It  is appropriate to mention here the interesting work  of 
Franaszek [46] and of Lempel and Cohn [47]. They 
developed methods similar to the aforementioned in the 
sense that all are based on the Perron-Frobenius spectral 
theory of nonnegative matrices. Mathematical clarity  which 

A hot new result at IBM Research  San Jose by him and a 
collahorator, R. Karabed, is the  fact  that k = 1, just as in  the 
Markovian case. In addition, Marcus  was then able to extend this 
theorem to arbitrary  sofic systems by inventing a new notion he 
called  a non-catastrophic decoder, which  was also inspired  by 
engineering  requirements. It is a  generalization of the notion of the 
sliding block decoder and beautifully fits the mathematics of the 
situation. 
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is missing from their work can now  be supplied in terms of 
notions which  have  become standard in symbolic dynamics. 

Disk  File)  have  accrued as dividends of this kind of  work. 
Moreover, in the past it might take an engineer  several 
months to design, by ingenious ad hoc methods, the code 
tables and the logic for an automaton to code data to fit 
constraints such as (d ,  k )  ones.  Now some of the most 
complicated cases can be routinely handled but the main 
point is that these can often  be done in less than a day. 

Finally, patents (48-501 and products (the IBM 9332 Hard 
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