Fourier
transforms

that respect
crystallographic
symmetries

by L. Auslander
M. Shenefelt

in crystallography one has to compute finite
Fourier transforms that are often very large and
often respect crystallographic symmetries. In
this paper we discuss efficient finite Fourier
transform algorithms on 5 X 5 x 5 points that
respect a collection of crystallographic
symmetries. Although the size is too small for
any practical problems, the methods indicated in
this paper can be extended to problems of
meaningful size.

1. Introduction

Although crystallographic groups were classified about 1890
and a problem related to them occurred in the celebrated
Hilbert problems at the turn of the 20th century, many
mathematicians do not know these groups or why they are
important. But what is probably more of a mystery to a
mathematician is the title of this paper. What does it mean
for a Fourier transform to respect crystallographic group
symmetries, and why is it important to understand such
transforms? We take a little time in this introduction to
answer these questions.
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Let R(3) denote the group of rigid motions of Euclidean
3-space. Then R(3) contains the normal subgroup 7T of
translations, and R(3) is the semidirect product of the
orthogonal group O(3) and T, which we denote by
O(3) X T. Now let C be a collection of labeled atoms that we
think of as forming the atomic arrangements of a crystal C.
We think of a crystal as being regularly repeating so that we
can imagine an idealized crystal as filling 3-space. Let the
subgroup R of R(3) be the group of symmetries of C or the
collection of rigid motions that provides a 1 to 1
correspondence between the labeled atoms of C. R is called
the group of the crystal C, or a crystallographic group.

Let us now examine some properties of R. Since atoms
are at a finite distance from each other, there cannot exist a
subset of R that forms a Cauchy sequence and so Ris a
discrete subgroup of R(3). Next, we come back to the
concept of “regularly repeating.” By this we mean that if we
have a piece of a crystal, we can in our mind create a crystal
to fill all of 3-space. This can be formulated by the precise
hypothesis that the quotient space R(3)/R is compact.

We formalize this in the following definition: A
crystallographic group R is

1. A subgroup of R(3).
2. A discrete subset of R(3).
3. Such that R(3)/R is compact.

L. Bieberbach [1] about 1910 showed that if R is a
crystallographic group, then R N T'= L is a lattice, where T

is the group of translations. In other words, every 213
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crystallographic group contains 3 linearly independent
translations f,, {,, t; such that

3
RN T={ Y atla € Z} =L
i=1

Now although crystallographic groups were classified in
1891 and studied by Bieberbach, they were not used until
1919 by crystallographers. It was not until after the advent of
X-ray diffraction techniques in the study of crystallography
that the crystallographic groups became important. Indeed,
until X-ray diffraction techniques were available, given a
crystal, there was no way of determining its crystallographic
group. Let us now very briefly indicate the type of
information about a crystal that X-ray diffraction yields.

Consider D(x), the electron density in the crystal. D(x) is
invariant under the crystallographic group, i.e.,

D(rx) = D(x), reR.

Now let L C R be its lattice subgroup. Then D is L-invariant
and so may be considered as either triply periodic or living
on the torus T/L. As such, it has a Fourier expansion
D(x) = Y 4,6,

lerL
where the dot denotes the dot product. Stated in its briefest
form, the result of an X-ray diffraction of a crystal is the
determination of the absolute value of 4,, (4,|. Phase
information is lost in X-ray diffraction. But what we are
interested in is D(x). Thus we see that the basic problem of
X-ray diffraction in its simplest form is the following: Given
|4,], | € L, determine D. The reason this can even be solved
is that not all triply periodic functions D(x) can actually
occur because of physical and chemical constraints.

This explains why we are concentrating our attention on
computing Fourier transforms of functions that are invariant
under crystallographic groups.

Now let us assume we know the crystallographic group R
of our crystal. Then we have

D(rx) = D(x), reR.

This implies relations among the 4, that can greatly simplify
computations involved in crystallographic studies.

In order to explain the relations among the 4,, we have to
look further at the structure of crystallographic groups R. We
have already seen that R D L, a lattice of pure translations.
Clearly, L is a normal subgroup of R and so we may
consider the quotient group R/L = G or the exact sequence
of groups

l>L—>R->G->1.

We call G the point group of the crystallographic group R. It
follows from the fact that R(3)/R is compact that G is finite.
This gives us the following intrinsic characterization of
crystallographic groups.
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Let Z* denote the direct sum of 3 copies of the integers. A
crystallographic group R is any group that satisfies the exact
sequence

1—>Za—>R——>G—->1,

where G is a finite group and Z® is a maximal Abelian
normal subgroup of R. There is another intrinsic
formulation of a crystallographic group that is also useful.
Let us now look at a bit of structure that will enable us to
formulate this alternative definition.

Consider the exact sequence of groups

1-A5SBLHCo,

where we assume A to be Abelian as well as normal. Let
Aut(4) be the group of automorphisms of the group A.
Then the above exact sequence determines a
homomorphism or representation 7 of C into Aut(4),

7:C = Aut(A4),

as follows: For ¢ € C, let j~'(c) be any element & such that
J(7'(€)) = ¢. Consider j(c)A(j'(¢))™". This is an
automorphism of 4 which will be denoted by r(c). Since A4 is
commutative, 7(c) is well defined.

Let R satisfy
12 SR>G— 1,

with G finite and 7(G) an isomorphism. Then R is a
crystallographic group. Since Aut(Zs) can be identified with
3 X 3 matrices with integer entries and determinant +1,
GL(3, Z), 7 provides a faithful representation of G by such
matrices.

For the rest of this paper, we make some simplifying
assumptions in order to expose in a reasonable amount of
space the most important features of our results.

Henceforth we make the following assumptions:

1. R=Gx Z°.

2. det(r(g)) =1, gEG.

It follows that we are dealing with a very small class of
crystallographic groups. Indeed, out of the possible 230
crystallographic groups, we treat only 65 explicitly. However,
the general crystallographic group can be dealt with by a
slight modification of the method presented here.

For this class of crystallographic groups, it is very simple
to write down the relations between the Fourier coefficients.
This is because of the following well-known result. Let L be
a lattice in 3-space and let D(x + /) = D(x), /€ L. Let gbe
a linear transformation of 3-space such that g(L) = L. Then,
if D(gx) = D(x),

A, = A«g—l,l)l, for l€L,

where ( ) denotes the transpose.
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Hence we should be able to reduce the input and output
of the computation of the Fourier transform by a factor that
is about the order of the group G.

We are now faced with the problem of actually carrying
out the computation. We do it by sampling and computing
the finite Fourier transform. For sampling size N X N X N,
this requires time proportional to 3NV 3 log N. Now the above
discussion shows that if r is of the order of G, then we can
reduce the computation to evaluating an (N 3/r) X (N*/r)
matrix acting on N 3/r vectors. A brute force computation
would require N %/¢? arithmetic operations compared to
3N’ log N, and since N is large compared to 7, the symmetry
would not help. The essential problem is to show that we can
take advantage of crystallographic symmetry and still arrive
at a computation for which a fast algorithm exists.

In this paper we show how this can be done for certain
toy-size problems. Recently the method has been carried out
for certain realistic problems, and it is clear that it can
always be done. Our basic strategy is to produce skew-
circulant blocks to which Winograd’s fast convolution
algorithms can be applied.

2. G-invariant finite Fourier transforms

Let fbe a continuous function on R’ thatis G X L-
invariant. Then certainly f'is L-invariant, and so we may
view f as a continuous function on R’/L, a three-
dimensional torus. As such, it has a Fourier expansion which
may be made explicit as follows: Let /, ,, /, be a basis of L
so that

L={nl +nl,+nlin,€Z a=1,2,3}

and let x = x,/, + x,I, + x,/;. As usual, we suppress the basis
1,, L, I, and write elements of L as (n,, n,, n,) and elements
of R’ as (x,, X,, x,). Then

Jix) = ¥ A, expQnil-x).
leL
Let g € G. Then gL = L. Let / be a function in L*(R*/L)
with Fourier expansion

h(x) = ¥ B, exp(2xil-x).
lfeL

Consider the function A(gx):

h(gx) = ¥ B, exp(2wil-gx)

leL

= Y B, exp(2wigl-x).

leL
Let !’ = g'l. Then I = (¢") 'V, and if g* = (¢')', then
h(gx) = ¥ B, exp(2wil’-x).

I'eL
But A(gx) has a Fourier series,

h(gx) = ¥ C,exp(2mil-x).

leL

Hence C, = B,.,, le L.
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Finally, if A(gx) = A(x), we have B, = B,., forall /€ L
and g* € G*. Notice that the set of elements of G* really
constitutes a group, because

(8.8)* = (8,8)) = (&) = (&) '(&)" =g

Now we replace a continuous function by a function on a
finite set, so that we can use digital computers to make the
computation. This is called the sampling process and
introduces an error called the aliasing error. We now show
how to do this while introducing a group of symmetries
analogous to the crystallographic group symmetries on the
finite set.

Let N be a fixed positive integer and consider the lattice
(I/M)L,

(/ML ={(1/N) | € L}.

Then (1/N)L/L=ZIN® ZIN® ZIN=A C RS/L.

Clearly, since G maps L onto itself and is linear, G maps
(1/N)L onto itself also. Thus we have a representation 7 of
G, G,, by automorphisms of the group A4. Our first task is to
compute the kernel of 7. Let I denote the identity mapping
of R*. We claim that g € G is the kernel of 7 if and only if
(g — D:(1/N)L — L. To see this, notice that if g is in the
kernel of 7, then for every I’ € (1/N)L, g(’) = I’ + I, where
l€ L. Hence g — I maps (1/N)L onto L. The converse is
obvious.

Remark If we represent g as an integer matrix, M, relative
to the above coordinate system, we have that g is in the
kernel of  if and only if reduction of the entries of M, to
mod N is the identity matrix.

Now let f be a continuous function that is G X L-
invariant. Then f'| , = f; is well defined and f; is easily seen
to be G -invariant. But f; as a function on the Abelian group
A has a Fourier transform of f”. Our first task is to relate /g
to f~, the Fourier transform of f. Since

f(xy = X A,exp2wil-x),
kL

Sfia) = fla) = ¥ A,expQnil-I'/N), a=1/N,
leL

=2 (2 Akm,)exp(Zvrik-l’/N).

kea MeL

Now let C, = 34, ,,, k € A, and view a as an element of
L/NL. Then we have

fla) = ¥ C.exp(2wik-a/N)
keA

and
fs(k) = C,= ¥ fla)exp(=2=ik-a/N).
ked

We now see the relation between the Fourier transform of f

and f75. If $,., A, A, aDPrOXimates 4,, we may use the finite 215
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Fourier transform to approximate the continuous Fourier
transform. The error in this process is the aliasing error.

Since G, acts on A, A is the disjoint union of G, orbits
and f'is constant on each orbit. Similarly, since G . acts on
A, A is the disjoint union of G, orbits and /™ is constant on
G ,. orbits. We now see how to use this to reduce the
N’ x N* matrix representing the linear transformation of the
Fourier transform to a smaller matrix.

From each G, orbit choose a point a and denote the orbit
containing a by O(a). Denote the space of G, orbits by X,
and view a € X;. Make a similar construction for G . acting
on A. Denote the elements of X+ by b and the orbits by
O(b). Then

=3 ( ¥ exp(27rib-c/N)f(a)), b € X

aeX; \c€O(a)

This linear transformation from G ,-invariant functions to
G ,-invariant functions will be called the G-invariant Fourier
transform on A.

3. Point groups

Although the point groups were classified a long time ago,
we now list them by their intrinsic group structure. This is
not done just to be elegant; we need them in this
presentation to construct G, and G . orbits.

Let us first see that every element of G has order 2, 3, 4,
or 6. Since 7(G) is faithful, +(G) € SL(3, Z) and 7(g) has
determinant 1, the characteristic polynomial of 7(g) has
integer coefficients, and (because G is finite) every element of
7(G) has at least one eigenvalue 1. Hence we know that the
characteristic polynomial of 7(g) has the form

(x — D + ax + b).
Because the determinant is 1, we have that » =1 and
X4ax+1=(x—-0x+0),

where |6| = 1. Hence a = 2cosa or a =0, =1, £2. This
corresponds to rotations of 2x/n, n =1, 2, 3, 4, 6, or groups
oforder 1, 2, 3, 4, or 6.

It follows from the classification of the point groups that
they are all solvable. We use this fact to organize the list of
the point groups with positive determinant.

Abelian groups Z/2, Z/3, Z|4, Z/6, Z{2 & Z/2

Let 8,, n = 3, 4, 6, be the automorphism of period two that
takes a into —a in an Abelian group. Then we form 2-step
solvable groups {8,} X Z/n and Z/3 X (Z/2 & Z/2), where
Z/3 is a cyclic shift on the 3 nonzero elements of Z/2 @ Z/2.

3-Step solvable group
1-ZR2®Z2—-G—-»P3)—>1,

where P(3) is the permutation group on 3 elements. P(3)
satisfies
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1-7Z/3—>P3)—Z/2—>1.

Our next task is to write out all presentations of these
groups in SL(3, Z) up to integer unimodular equivalence.

For Z/n, we only need to specify a matrix for a generator:
Z/2

-1 0 0
0 -1 0f;
0 0 1
<—1 1 0> (0
—1 0 0} 0
0 1 1
Z/6
1 -1 0
1 0 0].
0 0 1

To represent {8,} X Z/n, n = 3, 4, 6, we only need to
represent a generator of Z/n and a matrix B, of 8, such that

TN
o= O
SO =
I

-0 O
S —

Z/3

SO =
[ =
N—

<

Z/4

SO -
-0 O
S ———

(===

BnMnB;l = M;l 4

where M, generates Z/n, n = 3, 4, 6. Following is the
respective list of B, for the above list of Z/n:

0 0 0 -1 0
1 01/ -1 0 0}
0 -1 0 0 -1
1 0 0
0 -1 0]
0 0 -1
-1 1 0

0 1 0}

0 0 -1

To represent Z/3 X (Z/2 & Z/2), we need a representation 7
for (Z/2 ® Z/2) and a matrix B such that

B,

[

Br(a)B™" = =(b),
Br(b)B™' = 7(c),
Br(c)B™' = (),

where 1, a, b, and ¢ are the elements of Z/2 & Z/2:

0 1 0
B=10 0 1}
1 0 O
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To represent the 3-step solvable group, we need
representation 7 of Z/3 X (Z/2 ® Z/2) and the matrix P(3)
such that

P3)r(a)P(3)" = b,
POY(b)P(3) ' =g,

where a and b are the elements of order 3:

o 1 0
P3)y={-1 0 0}
0 0 1

When we finitize the problem to G, where A = Z/N @
Z/N @ Z/N and N is relatively prime to 2 or 3, we have for
each G only one matrix representation up to conjugation in
GL(3, Z/N). We always use the representation listed first in
the above table. These groups are denoted as follows (we use
the notation of crystallographers):

P,; Z/2.

Py Z/3.

P, Z/A.

P Z/6.

P,y Z[2 ® Z/2.

P, By Z/3.

P, B, X Z/4.

P,,»; B, X Z/6.

P,,,; BX (Z/2® Z)2).

P,,,; the 3-step solvable group.
4. Examples of a G-invariant finite Fourier
transform

We choose N = 5 and consider 4 = Z/5 & Z/5 ® Z/5 with
the automorphism group P, generated by

-1 1 0
g=\{-1 0 OFJ;
0o 0 1

g is of order 3 with entries in Z/5 and acting on (x, y, zZ) € 4
by

-1 1 0\ /x
-1 0 O0)\y}).
0 O 1 z

Notice that since Z/5 is a field, the nonzero elements of
Z/5 form a multiplicative cyclic group (Z/5)" of order 4. If
we represent a € (Z/5)" by

a 0 O
da—-\{0 a 0]},
0 0 a

we have that d(a) and g commute. [Although in practice one
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Table 1
vertically).

(Z/5)" orbits in 4" = A4 — {0, 0, 0} (orbits are listed

001 010 01l 012 013 014 100 101 102 103
003 030 033 031 034 032 300 303 301 304
004 040 044 043 042 041 400 404 403 402
002 020 022 024 021 023 200 202 204 201

104 110 111 112 113 114 120 121 122 123
302 330 333 331 334 332 310 313 311 314
401 440 444 443 442 441 430 434 433 432
203 220 222 224 221 223 240 242 244 241

124 130 131 132 133 134 140 141 142 143
312 340 343 341 344 342 320 323 321 324
431 420 424 423 422 421 410 414 413 412
243 210 212 214 211 213 230 232 234 231

144
322
411
233

could use the group (Z/5)* X (Z/5)" to obtain a bigger group
which commutes with g, we have chosen to use (Z/5)" to
simplify the discussion.] Let O be a P, orbit. Then d(a)O is a
P, orbit, because

d(a)gb = gd(a)b,

and so if O is the P, orbit determined by b, d(a)O is the P,
orbit determined by d(a)b. If a # 1, then d(a)ON O =D

because
ax -1 1 0\ [x
ayl=\-1 0 O0O}\ly
az 0 0 1 z

implies that (x, y, zY’ is an eigenvector of the matrix g or gz.
But the characteristic equation of g or g is x* + x + 1,
which has no roots modulo 5, and so neither g nor g2 can
have an eigenvector.

Hence, once we know a (Z/5)" orbit decomposition, we
can use it to determine a P, orbit picture. See Tables 1
and 2.

Now, to compute

bEA,

¥ exp(21rib-c/5)f(a)>, beX,,

ceEO(a)

fy= X (

aez\"l,3
we can read off the elements a € X, P and ¢ € O(a) from
Table 2 of P, orbits and the elements b € X, _from Table 3
of P, orbits.

Consider now {8,} X Z/3. Then, since B, normalizes Z/3,
we have

By(gx) = g'B,(x).

Thus B, of the P, orbit is a P, orbit and we have the orbit

picture for P,, = B; X P, presented in Table 4. 217
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Table 2 P, orbitsin 4™

a€ X, O(a) a€ X, 0(a) a€ X, O(a)

a 001 001 010 010 100 440 011 011 101 441
3a 003 003 030 030 300 220 033 033 303 221
4a 004 004 040 040 400 110 044 044 404 114
2a 002 002 020 020 200 330 022 022 202 332
a 012 012 102 442 013 013 103 443 014 014 104 444
3a 031 031 301 221 034 034 304 224 032 032 302 222
4a 043 043 403 113 042 042 402 112 041 041 401 111
2a 024 024 204 334 021 021 201 331 023 023 203 333
a 120 120 140 340 121 121 141 341 122 122 142 342
3a 310 310 320 420 313 313 323 423 311 311 321 421
4a 430 430 410 210 434 434 414 214 433 433 413 213
2a 240 240 230 130 242 242 232 132 244 244 234 134
a 123 123 143 343 124 124 144 344

3a 314 314 324 424 312 312 322 422

4a 432 432 412 212 431 431 411 211

2a 241 241 231 131 243 243 233 133

Table 3 P, orbits in 4™
ae XP:‘ O(a) a€ XP;' O(a) ae X,,g. O(a)

a 001 001 010 010 400 140 011 011 401 141
3a 003 003 030 030 200 320 033 033 203 323
4a 004 004 040 040 100 410 044 044 104 414
2a 002 002 020 020 300 230 022 022 302 232
a 012 012 402 142 013 013 403 143 014 014 404 444
3a 031 031 201 321 034 034 204 324 032 032 202 322
4a 043 043 103 413 042 042 102 412 041 041 101 411
2a 024 024 304 234 021 021 301 231 023 023 303 233
a 120 120 220 210 121 121 221 211 122 122 222 212
3a 310 310 110 130 313 313 113 133 311 311 111 131
4a 430 430 330 340 434 434 334 344 433 433 333 343
2a 240 240 440 420 242 242 442 422 244 244 444 424
a 123 123 223 213 124 124 224 214

3a 314 314 114 134 312 312 112 132

4a 432 432 332 342 431 431 331 341

2a 241 241 441 421 243 243 443 423

The P,,,-invariant Fourier transform is then

= X <

a€X,
Pan

¥ exp(21rib~c/5)f(a)>, be X, .
cEXNa)

As before, the elements a € X, P and ¢ € O(a) are read off
from Table 4 of the Py, orbits and b € X, from the P;,,.
orbits presented in Table 5.

Consider now the group P, = Z/6. Then, since P, is
normal in P, P, of a P, orbit is again a P, orbit, and we
have the orbit picture of P, presented in Tables 6 and 7.

The Pg-invariant Fourier transform is

> exp(21rib-c/5)f(a)>, be Xp,.-

cEO(a)

fy= X (

Pg
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With the orbit picture for P, we now consider the group
P,,, = B, X P,. B, normalizes P, and B of a P, orbit is
again a P, orbit. We have the P,,, orbit picture given in
Tables 8 and 9.

The P, ,-invariant Fourier transform is

¥ exp(27rib-c/5)f(a)>, bex

Pexpe’
cEXNa)

ro= z

agX,
Fe

5. An algorithm

Once we order X,; and X, we can represent the G-invariant
Fourier transform as a matrix. We use the ordering or
indexing suggested by the (Z/5)” orbits in X, and X .: We
view every (Z/5)" orbit as ordered by a generator 3. Then by
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Table 4 p,, orbitsin 4" Table 5 P, orbitsin 4

aec X,,32| O(a) ae X,,m. O(a)
a 010 010 100 440 a 120 120 220 210
3a 030 030 300 220 3a 310 310 110 130
4a 040 040 400 110 4a 430 430 330 340
2a 020 020 200 330 2a 240 240 440 420
a 011 011 101 441 104 014 444 a 121 121221 211 214 224 124
3a 033 033 303 223 302 032 222 3a 313 313 113 133 132 112 312
4a 044 044 404 114 401 041 111 4a 434 434 334 344 341 331 431
2a 022 022 202 332 203 023 333 2a 242 242 442 422 423 443 243
a 012 012 102 442 103 013 443 a 122 122 222 212 213 223 123
3a 031 031 301 221 304 034 224 3a 311 311 11l 131 134 114 314
4a 043 043 403 113 402 042 112 4a 433 433 333 343 342 332 432
2a 024 024 204 334 201 021 331 2a 244 244 444 424 421 441 24}
a 001 001 004 a 001 001 004
3a 003 003 002 3a 003 003 002
a 120 120 140 340 210 410 430 a 010 010 400 140 100 040 410
3a 310 310 320 420 130 230 240 3a 030 030 200 320 300 020 230
a 121 121 141 341 214 414 434 a 011 Ol1 401 141 104 044 414
3a 313 3130323 423 132 232 242 3a 033 033 203 323 302 022 232
a 122 122 142 342 213 413 433 a 012 012 402 142 103 043 413
3a 311 311 321 421 134 234 244 3a 031 031 201 321 304 024 234
a 123 123 143 343 212 412 432 a 013 013 403 143 102 042 412
3a 314 314 324 424 131 231 241 3a 034 034 204 324 301 021 231
a 124 124 144 344 211 411 431 a 014 014 404 144 101 041 411
3a 312 312 322 422 133 233 243 3a 032 032 202 322 303 023 233
Table 6 P, orbitsin 4™ Table 7 P, orbitsin 4",
a€ X, O(a) aEX,, O(a)
a 001 001 a 001 001
3a 003 003 3a 003 003
4a 004 004 4a 004 004
2a 002 002 2a 002 002
a 011 011 101 441 401 111 041 a 011 011 401 141 101 411 041
3a 033 033 303 223 203 333 023 3a 033 033 203 323 303 233 023
4a 044 044 404 114 104 444 014 4a 044 044 104 414 404 144 014
2a 022 022 202 332 302 222 032 2a 022 022 302 232 202 322 032
a 012 012 102 442 402 112 042 a 012 012 402 142 102 412 042
3a 031 031 301 221 201 331 021 3a 031 031 201 321 301 231 Q21
4a 043 043 403 113 103 443 013 4a 043 043 103 413 403 143 013
2a 024 024 204 334 304 224 034 2a 024 024 304 234 204 324 034
a 121 121 141 341 411 211 431 a 121 121 221 211 341 431 331
3a 313 313 323 423 233 133 243 3a 313 313 113 133 423 243 443
4a 434 434 414 214 144 344 124 4q 434 434 334 344 214 124 224
2a 242 242 232 132 322 422 312 2a 242 242 442 422 132 312 112
a 122 122 142 342 412 212 432 a 122 122 222 212 342 432 332
3a 3 311 321 421 231 131 241 3a 311 311 11 131 421 241 441
4a 433 433 413 213 143 343 123 4a 433 433 333 343 213 123 223
2a 244 244 234 134 324 424 314 2a 244 244 444 424 134 314 114
a 010 010 100 440 400 110 040 a 010 010 400 140 100 410 040
la 030 030 300 220 200 330 020 3a 030 030 200 320 300 230 020
a 120 120 140 340 410 210 430 a 120 120 220 210 340 430 330
la 310 310 320 420 230 130 240 3a 310 310 110 130 420 240 440

219
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Table 8 £, orbitsin A"

a€ X, O(a)

a 001 001 004

3a 003 003 002

a 010 010 100 440 400 110 040

3a 030 030 300 220 200 330 020

a 011 011 101 441 401 111 041 114 404 044 104 014 444
3a 033 033 303 233 203 333 023 332 202 022 302 032 222
a 012 012 102 442 402 112 042 113 403 043 103 013 443
3a 031 031 301 221 201 331 021 334 204 024 304 034 224
a 120 120 140 340 410 210 430

3a 310 310 320 420 230 130 240

a 121 121 141 341 411 211 431 124 344 144 214 414 434
3a 313 313 323 423 233 133 243 412 422 322 132 232 242
a 122 122 142 342 412 212 432 123 343 143 213 413 433
3a 311 311 312 421 231 131 241 314 424 324 134 234 244

Table 9 Pp,,,. orbits in 4%,

A€ Xy, O(a)

a 001 001 004

3a 003 003 002

a 010 010 400 140 100 410 040

3a 030 030 200 320 300 230 020

a 01l 011 401 141 101 411 041 014 144 404 414 104 044
3a 033 033 203 323 303 233 023 032 322 202 232 302 022
a 012 012 402 142 102 412 042 013 143 403 413 103 043
3a 031 031 201 321 301 231 021 034 324 204 234 304 024
a 120 120 220 210 340 430 330

3a 310 310 110 130 420 240 440

a 121 121 221 211 341 431 331 434 344 334 224 124 214
3a 313 313 113 133 423 243 443 242 422 442 112 312 132
a 122 122 222 212 342 432 332 433 343 333 223 123 213
3a 311 311 111 131 421 241 441 244 424 444 114 314 134

placing tails to heads of the (Z/5)" orbits, we have the
indexing of X; and X,,.. The matrix we obtain this way
consists of blocks corresponding to (Z/5)" orbits. Let F;
denote the matrix representation of a G-invariant Fourier
transform. Then the indexed output vector [ f(b)], b € X,
is obtained by the matrix multiplication

[Foll (@) e,

where [ f(a)] is the indexed input vector. Since the (Z/5)*
orbits are ordered by a (multiplicative) generator, the square
blocks constituting F; are skew-circulant. Hence the square
blocks can be diagonalized by multiplication by the
one-dimensional finite Fourier transform on both sides. Let
S(O*, 0,) be a square block corresponding to (Z/5)" orbits

L. AUSLANDER AND M. SHENEFELT

O* and O, in X, and X, respectively. Then we may
replace S(O*, O,) by the diagonal matrix D(0O*, 0)) =
F(n)S(O*, O,)F(n), where F(n) is the one-dimensional finite
Fourier transform matrix, to compute

[S(O%), = F~'(m)D(O*, OXF ' (n) AO)),

where [ f(O%)], = S(O*, O) f(0))], and [ f(O,)] is the
subvector of [ f{(a)] corresponding to the orbit O,.

The matrix representation of the P,-invariant Fourier
transform is 44 X 44 and consists of 121 4 X 4 skew-
circulant submatrices. The matrix representation of the
P,, -invariant Fourier transform is 24 X 24, consisting of
four 4 X 4 and 36 2 X 2 skew-circulant submatrices, 12 2 X
4 and 12 4 X 2 submatrices. The Pc-invariant Fourier
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transform matrix is 24 X 24, consisting of 25 4 X 4 and four  If a group G, contains G, as a normal subgroup, then we can

2 X 2 skew-circulant matrices, 10 2 X 4 and 10 4 x 2 find X; in X; . Hence, we only need to find the G, orbits in
matrices. The P,,,-invariant Fourier transform matrix is 14 X,
X 14, consisting of 49 2 X 2 skew-circulant matrices. We use the (Z/5)" orbit decomposition presented in Table
Now there exist Winograd fast algorithms for evaluating 1 to write the orbit pictures. (Because G = G* for the groups
skew-circulant matrices. Thus, the above calculations can be G listed above, the orbit pictures for G and G* are the same.)
done efficiently with fast algorithms. Using the information in Table 10 to order the elements
in X, by the (Z/5)" orbits, we have the matrix of the
6. Summary P,invariant Fourier transform matrix. This matrix is of size
In this paper we have shown that for the subset of 64 X 64, consisting of 169 4 X 4 and 36 2 X 2 skew-
crystallographic symmetries with no screw motions and that  circulant submatrices, 78 4 X 2 and 78 2 X 4 matrices.
preserve orientation, we can, for 5 X 5 X 5 sample points, P,,, contains P, as a normal subgroup. This enables us to
reduce the size of the problem to take advantage of the construct Table 11, the P,,, orbits in X, . Ordering the
crystal symmetries and arrive at a calculation that can be elements of X, , we have the matrix of the P,,,-invariant
done by a fast algorithm. It is clear that these or similar Fourier transform of size 34 X 34, consisting of 16 4 % 4
procedures will enable one to carry out this program for all and 81 2 X 2 skew-circulant matrices, 36 2 X 4 and 36
crystallographic groups and problems of realistic sizes. 4 X 2 matrices.
Let us pause for a moment to compare the matrices of the
Appendix Py invariant Fourier transform and the P,,,-invariant
In this appendix, we briefly discuss G-invariant finite Fourier ~ Fourier transform. The P,-invariant Fourier transform is
transforms for the series of groups P,, P,,,, P,;, P,,, P,, and
P, =3 ( > exp(21rib-c/5)f(a)>, bEX,,
agX, 7, cEXNa)

Before we give the orbit pictures of the above groups, let
us observe a fact that will greatly simplify the orbit pictures. where O(a) denotes the P, orbit of a. The P,,,-invariant

Table 10 P, orbits.

a€ Xp, O(a) a€ X,,2 O(a) ac X, O(a)

a 001 001 010 010 040 011 011 041
3a 003 003 030 030 020 033 033 023
4a 004 004 044 044 014
2a 002 002 022 022 032
a 012 012 042 100 100 400 101 101 401
3a 031 031 021 300 300 200 303 303 203
4a 043 043 013 404 404 104
2a 024 024 034 202 202 302
a 102 102 402 110 110 440 111 111 441
3a 301 301 201 330 330 220 333 333 223
4a 403 403 103 444 444 114
2a 204 204 304 222 222 332
a 112 112 442 120 120 430 121 121 431
3a 331 331 221 310 310 240 313 313 243
4a 443 443 113 434 434 124
2a 224 224 334 242 242 312
a 122 122 432 130 130 420 131 131 421
3a 311 311 241 340 340 210 343 343 213
4q 433 433 123 424 424 134
2a 244 244 314 212 212 342
a 132 132 422 140 140 410 141 141 411
3a 341 341 211 320 320 230 323 323 233
4a 423 423 133 414 414 144
2a 214 214 344 232 232 322
a 142 142 412

3a 321 321 231

4a 413 413 143

2a 234 234 324

221
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Table 11 P, orbitsin X,,. Table 14 P, orbitsin X,,.

a€X,, 0@)CX, aE€X,, O@CX, a€X, Ol)chXy, aeX, OcXx,
a 11 111 414 112 112 413 ‘31 gg; gg; g;; g;; ;g;
3a 333 333 232 331 331 234 a
4a 44 444 141 443 443 142 4a 004 004 044 044 404
2a 222 222 323 24 224 321 2a 002 002 022 022 202
121 121 424 122 122 423 a 012 012 102 111 111 141
ga 313 313 212 311 311 214 3a 031 031 301 333 333 323
4 434 434 131 433 433 132 4q 043 043 403 444 444 414
2 242 242 343 244 244 341 2a 024 024 204 22 2 23
a 001 001 004 010 010 a 112 112 142 121 121 241
3 003 2 030 030 3a 331 331 321 313 313 123
e 003 00 4a 443 443 413 434 434 314
a otr o1t 014 012 012 013 2a 224 224 234 242 242 432
3a 033 033 032 031 031 034
a 131 131 341
a 100 100 101 101 3a 343 343 423
3a 300 300 303 303 4a 424 424 214
2a 212 212 132
a 102 403 110 110 410
3a 301 204 330 330 230 a 010 010 100 330 330 320
1
. 20 120 420 3a 030 030 300 10 110 140
3a 310 310 210 a 120 120 240 130 130 340
Table 12 P, orbitsin X,,,,. Table 15 P, orbitsin X,,.
a€X,, 0@CX,, a€X,, O@CX,, a€Xy, Ola)CX,, a€X,, O@cCXx,
a 111 112 112 121 211 a 121 121 134
3a 333 333 331 331 313 133 3a 313 313 342
4a 444 444 433 433 334 343 4a 434 434 421
2a 22 122 244 244 442 242 2a 242 242 213
a 001 001 010 100 011 011 110 101 a 001 001 004 010 010 040
3a 003 003 030 300 033 033 330 303 3a 003 003 002 030 030 020
a 012 012 120 201 a o1l 011 044 012 012 043
3a 031 031 310 103 3a 033 033 022 031 031 024
a 110 110 140 1 11 114
3a 330 330 320 333 333 322
Table 13 P, orbitsin X, _. a 112 112 143
3a 331 331 324
aEX,,‘32 O(a)CXPm aEX,,“z O(a)CX“,:‘22 a 120 120 130
a 11 111 141 112 112 142
3a 333 333 323 331 331 321
a 001 001 011 01l 101 pyhermore, X, is contained in X,,. This implies, in th
3a 003 003 033 033 303  LLLACTMOIG Ap, D Ap, 7S IMPICS, I the
matrix representation, that the matrix of the P,,-invariant
a 012 012 120

Fourier transform is obtained from that of the P,-invariant
Fourier transform by crossing out the blocks of rows indexed
by elements b & X, Py then adding the blocks of columns
indexed by the elements a € X, belonging to the same P,,,
orbits in X,

Fourier transform is

o= 3 < ) exp(21rib-c/5)f(a)>, bex

oeX, \ ccow Pz’ P,,, contains P,,, as a normal subgroup, and we have the
P,,, orbit picture in X,,__given in Table 12.
222
where O(a) here denotes the P,,, orbit of a. Ordering the elements by (Z/5)" orbits in X, Py WE have
But the P,,, orbit of a contains the P, orbit of a; i.e., part the matrix representation of the P,,,-invariant Fourier
222 of the inner sum in (2) has been computed in (1). transform of size 14 X 14, consisting of four 4 X 4 and nine
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2 X 2 skew-circulant matrices, six 2 X 4 and six 4 X 2
matrices. This matrix can be obtained from the matrix of the
P,,,-invariant Fourier transform.

P,,, contains P,,, as a normal subgroup and Table 13
gives the P,,, orbit picture. By this orbit picture, we have
that the matrix of the P,,-invariant Fourier transform is
9 x 9, consisting of 16 2 X 2 skew-circulant matrices, four
1 X 2 and four 2 X | matrices.

P, contains P, as a normal subgroup, and we have the
orbit picture of P, in Table 14. The P,-invariant Fourier
transform matrix is then 34 X 34, consisting of 49 4 x 4
and four 2 X 2 skew-circulant matrices, 14 2 X 4 and 14
4 % 2 matrices, 14 1x 4,14 4 x1,four 1 X 2, four 2 X 1,
and four 1 X | matrices.

Let us now consider P,,, = B, X P,. Since B, normalizes
P,, we have the orbit picture of P,,, as presented in Table
15. The matrix of the P,,,-invariant Fourier transform is
19 x 19, consisting of one 4 X 4 and 49 2 X 2 skew-
circulant matrices, seven 2 X 4, seven 4 X 2, seven 1 X 2,
seven 1 X 2, and one | X 1 matrix.
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