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In crystallography  one  has  to  compute  finite 
Fourier  transforms  that are  often  very  large  and 
often  respect  crystallographic  symmetries.  In 
this  paper  we  discuss  efficient  finite  Fourier 
transform  algorithms  on 5 x 5 x 5 points  that 
respect a collection  of  crystallographic 
symmetries.  Although  the size  is too  small  for 
any  practical  problems,  the  methods  indicated  in 
this  paper  can be extended to  problems  of 
meaningful  size. 

1. Introduction 
Although  crystallographic groups were  classified about 1890 
and a problem  related to them occurred in the celebrated 
Hilbert problems at the turn of the 20th century, many 
mathematicians do not know  these groups or why they are 
important. But what  is  probably more of a mystery to a 
mathematician is the title of this paper.  What  does it mean 
for a Fourier transform to respect  crystallographic group 
symmetries, and why is  it important to understand such 
transforms? We take a little time in this introduction to 
answer  these questions. 
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Let R(3) denote the group of  rigid motions of Euclidean 
3-space. Then R(3) contains the normal subgroup T of 
translations, and R(3) is the semidirect product of the 
orthogonal group O(3) and T, which  we denote by 
O(3) K T. Now let C be a collection of labeled atoms that we 
think of as forming the atomic arrangements of a crystal C. 
We think of a crystal  as  being  regularly repeating so that we 
can  imagine an idealized  crystal as filling  3-space.  Let the 
subgroup R of R(3) be the group of symmetries of C or the 
collection of  rigid motions that provides a 1 to I 
correspondence between the labeled atoms of C. R is called 
the group of the crystal C, or a crystallographic  group. 

Let us now examine some properties of R. Since atoms 
are at a finite distance from  each other, there cannot exist a 
subset of R that forms a Cauchy  sequence and so R is a 
discrete subgroup of R(3). Next, we come back to the 
concept  of  “regularly  repeating.” By this we mean that if  we 
have a piece  of a crystal, we can in our mind create a crystal 
to fill all of  3-space. This can be formulated by the precise 
hypothesis that the quotient space R(3)lR is compact. 

We formalize this in the following  definition: A 
crystallographic group R is 

1. A subgroup of R( 3). 
2. A discrete  subset of R(3). 
3. Such that R(3)/R is compact. 

L. Bieberbach [ 11 about 1910 showed that if R is a 
crystallographic group, then R n T = L is a lattice, where T 
is the group of translations. In other words,  every 
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crystallographic group contains 3 linearly independent 
translations t , ,  t,, t ,  such that 

R n T =  2 a,t,la, E Z = L. { ,  i= I I 
Now although crystallographic  groups  were  classified in 

189 1 and studied by Bieberbach,  they  were not used until 
19  19  by crystallographers. It was not until after the advent of 
X-ray  diffraction techniques in the study of crystallography 
that the crystallographic  groups became important. Indeed, 
until X-ray  diffraction techniques were available,  given a 
crystal, there was no way  of determining its crystallographic 
group. Let us now  very  briefly indicate the type of 
information about a crystal that X-ray  diffraction  yields. 

invariant under the crystallographic group, i.e., 

D(rx) = D(x) ,  r E R. 

Now let L C R be its lattice subgroup. Then D is L-invariant 
and so may  be  considered as either triply  periodic or living 
on the torus TIL. As such, it has a Fourier expansion 

D ( X )  = A,e2*i'.x, 

where the dot denotes the dot product. Stated in its briefest 
form, the result of an X-ray  diffraction  of a crystal  is the 
determination of the absolute value of A,, 1 A,I . Phase 
information is  lost in X-ray  diffraction.  But  what we are 
interested in is D(x) .  Thus we  see that the basic  problem of 
X-ray  diffraction in its simplest  form  is the following: Given 
I A, I , l  E L, determine D. The reason this can  even  be  solved 
is that not all triply  periodic functions D(x)  can actually 
occur because of  physical and chemical constraints. 

This explains why  we are concentrating our attention on 
computing Fourier transforms of functions that are invariant 
under crystallographic  groups. 

Now  let us assume we know the crystallographic group R 
of our crystal. Then we  have 

Consider D(x) ,  the electron density in the crystal. D(x)  is 

E L  

D(rx) = D(x),  r E R. 

This implies relations among the A, that can greatly  simplify 
computations involved in crystallographic  studies. 

In order to explain the relations among the A,, we  have to 
look further at the structure of crystallographic groups R.  We 
have  already  seen that R 3 L, a lattice of pure translations. 
Clearly, L is a normal subgroup of R and so we  may 
consider the quotient group RfL = G or the exact  sequence 
of groups 

l + L + R + G + l .  

We call G the point group of the crystallographic group R. It 
follows  from the fact that R(3)/R is compact that G is  finite. 
This gives us the following intrinsic characterization of 
crystallographic  groups. 
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Let Z3 denote the direct sum of 3 copies of the integers. A 
crystallographic group R is any group that satisfies the exact 
sequence 

where G is a finite group and Z 3  is a maximal Abelian 
normal subgroup of  R. There is another intrinsic 
formulation of a crystallographic group that is  also  useful. 
Let us now  look at a bit of structure that will enable us to 
formulate this alternative definition. 

Consider the exact  sequence of groups 

where  we assume A to be  Abelian as well as normal. Let 
Aut(A) be the group of automorphisms of the group A.  
Then the above exact  sequence determines a 
homomorphism or representation 7 of C into Aut (A) ,  

KC + Aut(A), 

as follows: For c E C, let j - ' ( c )  be  any element b such that 
j ( j - I ( c ) )  = c. Consider j (c)A( j- '(c))-' .  This is an 
automorphism of A which  will  be denoted by ~ ( c ) .  Since A is 
commutative, ~ ( c )  is  well defined. 

Let R satisfy 

with G finite and T(G) an isomorphism. Then R is a 
crystallographic group. Since  Aut ( Z 3 )  can be  identified  with 
3 X 3 matrices with  integer entries and determinant & 1, 
GL(3, Z), 7 provides a faithful representation of G by such 
matrices. 

For the rest  of this paper, we make some simplifying 
assumptions in order to expose in a reasonable amount of 
space the most important features of our results. 

Henceforth we make the following  assumptions: 

1. R = G K Z 3 .  
2. det(T(g)) = 1, g E G. 

It follows that we are dealing  with a very  small  class  of 
crystallographic  groups.  Indeed, out of the possible 230 
crystallographic  groups, we treat only 65 explicitly.  However, 
the general  crystallographic group can be dealt with by a 
slight  modification  of the method presented  here. 

For this class  of  crystallographic  groups, it is  very simple 
to write  down the relations between the Fourier coefficients. 
This is because of the following  well-known  result.  Let L be 
a lattice in 3-space and let D ( x  + I) = D(x) ,  I E L. Let g be 
a linear transformation of  3-space  such that g(L) = L. Then, 
if D(gx) = D(x) ,  

where ( denotes the transpose. 
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Hence we should be able to reduce the input and output 
of the computation of the Fourier transform by a factor that 
is about the order of the group G. 

We are now  faced  with the problem of actually  carrying 
out the computation. We do it by sampling and computing 
the finite Fourier transform. For  sampling  size N X N X N, 
this requires time proportional to 3N310gN.  Now the above 
discussion  shows that if r is of the order of  G, then we can 
reduce  the computation to evaluating an (N3/r) X (N3/r) 
matrix acting on  N3/r vectors. A brute force computation 
would  require N6/rZ arithmetic operations compared to 
3N310gN, and since N is  large compared to r, the symmetry 
would not help.  The essential problem is to  show that we can 
take advantage of crystallographic  symmetry and still arrive 
at a computation  for which a fast  algorithm  exists. 

In this paper we show  how this can be done for  certain 
toy-size  problems.  Recently the method  has  been camed out 
for  certain  realistic  problems, and it is clear that it can 
always be done. Our basic  strategy  is to produce skew- 
circulant blocks to which  Winograd's  fast convolution 
algorithms can be applied. 

2. G-invariant  finite  Fourier  transforms 
Let f be a continuous function on R3 that is G K L- 
invariant. Then certainly f is L-invariant, and so we may 
view f as a continuous function on R3/L, a three- 
dimensional torus. As such, it has a Fourier  expansion which 
may be made  explicit as follows:  Let I,, l,,  1, be a basis  of L 
so that 

L = {nl l l  + n,lz + n,l,ln, E Z, a = 1, 2, 31, 

and let x = x,ll + x212 + x313.  As usual, we suppress the basis 
I,, 1,,  1, and write  elements  of L as (nl, n2, n,) and elements 
of R3 as (xl, x,,  x,). Then 

Ax) = 1 A, exp(2d.x). 
I€L 

Let g E G. Then gL = L. Let h be a function in L2(R3/L) 
with Fourier expansion 

h(x) = B, exp(2d.x). 

Consider the function h(gx): 

h(gx) = B, exp(2ril.g~) 

E L  

E L  

= B, exp(2~ig'l.x). 
b L  

Let I' = g'l. Then 1 = (gf)-Il', and if g* = (g')-I,  then 

h(gx) = Be/ exp(2ril'  .x). 

But h(gx) has a Fourier series, 

P E L  

h(gx) = C, exp(2~il.x). 

Hence C, = Bel, I E L. 

E L  
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Finally, if h(gx) = h(x), we have B, = Be,, for  all 1 E L 
and g* E G*. Notice that the set of elements of  G*  really 
constitutes a group,  because 

(g,g,)* = ((glg,Y) = (g2g1) = (g1)  (gz) = g:g:. 
t 1 - I  t -1 t -1 

Now  we  replace a continuous function by a function on a 
finite  set, so that we can use digital computers to make the 
computation. This is  called the sampling  process and 
introduces an error called the aliasing error. We  now  show 
how to do this while introducing a group of symmetries 
analogous to the crystallographic group symmetries on the 
finite  set. 

Let N be a fixed  positive  integer and consider the lattice 
( l/N)L, 

(1IN)L = Kl/N)l I 1 E  Lt. 

Then (l/N)L/L = Z/N @ Z/N 03 Z/N = A C R3/L. 
Clearly,  since G maps L onto itself and is linear, G maps 
(l/N)L onto itself  also. Thus we have a representation 7 of 
G,  G,,  by automorphisms of the group A. Our first  task  is to 
compute the kernel of 7. Let I denote the identity mapping 
of R3. We  claim that g E G is the kernel of 7 if and only if 
(g - I):( l/N)L + L. To see  this,  notice that if g is  in the 
kernel of 7, then for  every 1' E (l/N)L, g(1') = 1' + 1, where 
1 E L.  Hence g - I maps (l/N)L onto L. The converse.  is 
obvious. 

Remark If  we represent g as an integer  matrix, M,, relative 
to the  above coordinate system, we have that g is in the 
kernel of 7 if and only  if reduction of the entries of M, to 
mod N is the identity  matrix. 

invariant. Then f I A = & is  well  defined and& is  easily  seen 
to be GA-invariant. But& as a function on the Abelian group 
A has a Fourier transform  off*, Our first  task is to relate f*, 
t o y ,  the Fourier  transform ofJ Since 

f(x) = 1 A,exp(2d.x), 

Now  let f be a continuous function that is G K L- 

/€L 

&(a) = f(a) = Alexp(2uil.l'/N), a = l'/N, 
/€L 

= kc4 (2 E L  Ak+,,,,)exp(2~ik.I'/N). 

Now  let C, = EA,,,, k E A, and view a as an element of 
LINL. Then we have 

f(a) = C Ckexp(2xik.a/N) 
kul 

and 

f*,(k) = C, = C f(a)exp(-2uik.a/N). 

We  now  see the relation  between the Fourier transform off 
and f̂ ,. If A,, approximates A,,  we may  use the finite 

kul 
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G,. orbits. We  now  see  how to use this to reduce the 
N3 X N3 matrix representing the linear transformation of the 
Fourier transform to a smaller  matrix. 

From each G, orbit choose a point a and denote the orbit 
containing a by O(a). Denote the space of  GA orbits by X ,  
and view a E X,. Make a similar construction for G,. acting 
on A.  Denote the elements of X,. by b and  the orbits by 
O(b).  Then 

Y(b) = ( exp(2rib-c/wf(a)). b E x,. 

This linear transformation from G,-invariant functions to 
GAS-invariant functions will  be called the G-invariant Fourier 
transform on A. 

acU, r€o(a) 

3. Point groups 
Although the point groups  were  classified a long time ago, 
we  now  list them by their intrinsic group structure. This is 
not done just to be  elegant; we need them in this 
presentation to construct G, and G,. orbits. 

or 6.  Since T( G) is faithful, T( G) E SL(3, Z )  and T(g) has 
determinant 1, the'characteristic polynomial of T(g) has 
integer  coefficients, and (because G is  finite)  every element of 
T( G) has at least one eigenvalue 1. Hence we know that the 
characteristic polynomial of T(g) has the form 

Let us first  see that every element of G has order 2, 3,4, 

(X - 1)(x2 + ux + b). 

Because the determinant is 1, we  have that b = 1 and 

X' + U.X + I = (X - e)(X + @, 

where 1 1 9 1  = 1. Hence a = 2cosa or a = 0, +1, -12. This 
corresponds to rotations of 2u/n, n = 1, 2, 3,  4,  6, or groups 
of order 1, 2, 3, 4, or 6. 

It  follows from the classification of the point groups that 
they are all  solvable. We use this fact to organize the list  of 
the point groups with  positive determinant. 

Abelian  groups Z/2, 213, 214, 216, 212 03 212 
Let p,, n = 3,4,6,  be the automorphism of period two that 
takes a into -a in an Abelian group. Then we form 2-step 
solvable  groups (8,) K Z/n  and 213 K (212 03 Z/2), where 
213 is a cyclic  shift on the 3 nonzero elements of 212 (3 212. 

3-Step solvable  group 

1 + 212 03 212 4 G 4 P(3) + 1, 

where P(3) is the permutation group on 3 elements.  P(3) 
satisfies 

214 (-8 ; ;). 

To represent (p,) K Z/n,  n = 3,4,6, we only  need to 
represent a generator of Z / n  and a matrix B, of 8" such that 

where M,, generates Zln, n = 3, 4, 6.  Following  is the 
respective  list  of B,, for the above  list  of Zln: 

B3 (8 0 0 1 -1 :); (-8 -A :). 
0 -1 

B6 

(-A : :) 
0 0 - 1  

To represent  213 K (212 03 Z/2), we need a representation T 
for (212 03 212) and a matrix B such that 

BT(a)B" = T(b), 

BT(b)B-' = 7(c), 

B ~ ( c ) B - '  = 7(a), 

where  1, a, 6, and c are the elements of 212 03 212: 

B =  (8 8). 
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To represent the 3-step  solvable group, we  need 
representation 7 of Z / 3  K (212 Q 212) and  the matrix P(3)  
such that 

P(3)7(a)P(3)-I = 6, 

P(3)7(b)P(3)-I = a, 

where a and b are the elements of order 3: 

P(3 )  = (-8 ; ;). 
When we finitize the problem to G,, where A = Z / N  Q 

Z / N  Q ZJN and N is  relatively prime to 2 or 3, we  have for 
each G only one matrix representation up to conjugation in 
GL(3,  Z/N).  We always use the representation listed  first in 
the above table. These groups are denoted as follows  (we use 
the notation of  crystallographers): 

P,; 212. 

P,;  213. 

P,; 214. 

P6; 216. 

P,,,; 212 Q 212. 

p321;  B, K 213. 

P422; B4 K 214. 

p622; B6 z/6. 

P,,,; B K (212 Q 212). 

P,,,; the 3-step  solvable  group. 

4. Examples of a  G-invariant  finite  Fourier 
transform 
We choose N = 5 and consider A = Z/5 Q Z/5 8 Z/5 with 
the automorphism group P, generated by 

g =  (I: ;); 

(1: ;) ($. 

da+  (: s1 :), 

0 0  

g is of order 3 with entries in Z/5 and acting on (x, y ,  z )  E A 
by 

Notice that since Z/5 is a field, the nonzero elements of 
Z/5 form a multiplicative cyclic group ( Z / S r  of order 4. If 
we represent a E (Z /5r  by 

O O a  

we have that d(a) and g commute. [Although in practice one 
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Table 1 (275)" orbits in A" = A - { O ,  0, 0)  (orbits are listed 
vertically). 

001 010 011 012 013 014 100 101 102 103 
003 030 033 031 034 032 300 303 301 304 
004 040 044 043 042 041 400 404 403 402 
002 020 022 024 021 023 200 202 204 201 

104 110 111 112 113 114 120 121 122 123 
302 330 333 331 334 332 310 313 311 314 
401 440 444 443 442 441 430 434 433 432 
203 220 222 224 22 1 223 240 242 244 241 

124 130 131 132 133 134 140 141 142 143 
3 12 340 343 341 344 342 320 323 321 324 
431 420 424 423 422 421 410 414 413 412 
243 210 212 214 211 213 230 232 234 231 

144 
322 
41 I 
233 

could use the group ( Z/5)x x ( Z / 5 r  to obtain a bigger group 
which commutes with g, we  have chosen to use (Z/5r to 
simplify the discussion.]  Let 0 be a P3 orbit. Then d(a)O is a 
P3 orbit, because 

d(a)gb = gd(a)b, b E A ,  

and so if 0 is the P,  orbit determined by b, d(a)O is the P3 
orbit determined by d(a)b. If a # 1, then d(a)O n 0 = 0 
because 

(;)=(I: @) 
implies that (x, y,  z)' is an eigenvector of the matrix g or g'. 
But the characteristic equation of g or g2 is x' + x + 1, 
which has no roots modulo 5, and so neither g nor g' can 
have an eigenvector. 

Hence, once we  know a (Z/5r orbit decomposition, we 
can use it to determine a P3 orbit picture. See Tables 1 
and 2. 

Now, to compute 

f 7b )  = C ( C exp(2?rib.c/5)f(a) , b E XP,, 
"€Xp3 c e q a )  ) 

we can read off the elements a E XP3 and c E O(a) from 
Table 2 of P3 orbits and the elements b E XP3, from Table 3 
of P,. orbits. 

Consider  now (8,) K 213. Then, since B, normalizes 213, 
we  have 

B3(gx) = gZB,(x). 

Thus B, of the P3 orbit is a P3 orbit and we have the orbit 
picture for P321 = B, K P3 presented in Table 4. 
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Table 2 P3 orbits in AX. 

a E XP, O W  a E XP, O(a) a E XP, O(a) 

a 001 001 010 010 100 440 011 011 101 441 
3a 003 003 030 030 300 220 033 033 303 221 
4a 004 004 040 040 400 110 044 044 404 114 
2a 002 002 020 020 200 330 022 022 202 332 

a 012 012 102 442 013 013 103 443 014 014 104 444 
3a 031 031 301 221 034 034 304 224 032 032 302 222 
4a 043 043 403 113 042 042 402 1 12 041 041 401 111 
2a  024 024 204 334 021 021 201 331 023 023 203 333 

a 120 120 140 340 121 121 141 341 122 122 142 342 
3a  310 310 320 420 313 313 323 423 311 311 321 421 
4a 430 430 410 210 434 434 414 214 433 433 413 213 
2a  240 240 230 130 242 242 232 132 244 244 234 134 

a 123 123 143 343 124 124 144 344 
3a  314 314 324 424 312 312 322 422 
4a  432 432 412 212 431 431 411 211 
2a  241 241 231 131 243 243 233 133 

Table 3 P3. orbits in AX. 

a E XPP O(a) a E Xp3. O(a) a E Xp3. 

a 001 001 010 010 400 140 011 011 401 141 
3a 003 003 030 030 200 320 033 033 203 323 
4a 004 004 040 040 100 410 044 044 104 414 
2a  002 002 020 020 300 230 022 022 302 232 

a 012 012 402 142 013 013 403 143 014 014 404 444 
3a  031 031 201 321 034 034 204 324 032 032 202 322 
4a 043 043 103 413 042 042 102 412 041 041 101 411 
2a 024 024 304 234 021 021 301 231 023 023 303 233 

a 120 120 220 210 121 121 221 211 122 122 222 212 
3a 310 310 110 130 313 313 113 133 311 311 111 131 
4a 430 430 330 340 434 434 334 344 433 433 333 343 
2a  240 240 440 420 242 242 442 422 244 244 444 424 

a 123 123 223 213 124 124 224 214 
3a 314 314 114 134 312 312 112 132 
4a  432 432 332 342 431 431 331 341 
2a 241 241 441 421 243 243 443 423 

The P,,,-invariant Fourier transform is then 

~ ( b )  = c ( c exp(2*ib.c/5)f(a) , b E 
c€O(a) 1 

As before, the elements a E Xp,,, and c E @a) are read off 
from Table 4 of the P,,, orbits and b E Xp,,,, from the P,,,. 
orbits presented in Table 5. 

Consider now the group P, = Z/6. Then, since P, is 
normal in  P,, P, of a P, orbit is  again a P, orbit, and we 
have the orbit picture of P, presented in Tables 6 and 7. 

The P6-invariant Fourier transform is 

~ ( b )  = c ( c exp(2nib.c/~(a)),  b E x.,.. 
m X p 6  c € q a )  

With the orbit picture for P6, we  now consider the group 
P622 = B, K P,. B, normalizes P,, and B6 of a P6 orbit is 
again a P6 orbit. We  have the P,,, orbit picture given in 
Tables 8 and 9. 

The P,,,-invariant Fourier transform is 

5. An algorithm 
Once we order X ,  and X,, we can  represent the G-invariant 
Fourier transform as a matrix. We use the ordering or 
indexing  suggested by the (Z/5r orbits in X ,  and X,: We 
view every (Z/5r orbit as ordered by a generator 3. Then by 
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Table 4 P321 orbits in A'. 

a E Xp321 O W  

a 010 010 100 440 
3a 030 030 300 220 
4a 040 040 400 110 
2a 020 020 200 330 

a 01 1 011 101 441 104 014 444 
3a 033 033 303 223 302 032 222 
4a 044 044 404 114 401 041 111 
2a 022 022 202 332 203 023 333 

a 012 012 102 442 103 013 443 
3a 03 1 031 301 221 304 034 224 
4a 043 043 403 113 402 042 112 
2a 024 024 204 334 201 021 331 

a 001 001 004 
3a 003 003 002 

a 120 120  140  340 210  410  430 
3a 310 310  320  420 130  230  240 

a 121 121  141  341  214 414  434 
3a 313 313  323  423  132  232  242 

a 122 122  142  342 213 413 433 
3a 31 I 311  321  421  134 234  244 

a 123 123  143  343  212  412  432 
3a  314 314  324 424  131  231  241 

a 124 124  144  344 211  411  431 
3a  312 312  322 422  133  233  243 

Table 5 P32,. orbits in A'. 

a E XP,,,. O(a) 

a 120 120 220 210 
3a 310 310 110 130 
4a 430 430 330 340 
2a 240 240 440 420 

a 121 121 221 211 214 224 124 
3a 313 313 113 133 132 112 312 
4a 434 434 334 344 341 331 431 
2a 242 242 442 422 423 443 243 

a I22 122 222 212 213 223 123 
3a 31 1 311 111 131 134 114 314 
4a 433 433 333 343 342 332 432 
2a 244 244 444 424 421 441 241 

a 001 001 004 
3a 003 003 002 

a 010 010 400 140  100  040  410 
3a 030 030 200  320  300  020  230 

a 01 1 011  401  141  104  044  414 
3a 033 033 203  323  302  022  232 

a 012 012  402 142 103 043 413 
3a 03 I 031  201 321  304 024  234 

a 013 013 403  143  102  042  412 
3a 034 034  204  324  301  021  231 

a 014 014  404  144 101 041  411 
3a 032 032  202  322  303 023 233 

Table 6 P6 orbits in Ax. 

a E XP, 

a 001 001 
3a 003 003 
4a 004 004 
2a  002 002 

a 01 1 011 101 441 401 111 041 
3a 033 033 303 223 203 333 023 
4a 044 044 404 114 104 444 014 
2a 022 022 202 332 302 222 032 

a 012 012 102 442 402 112 042 
3a 03 1 031 301 221 201 331 021 
4a 043 043 403 113 103 443 013 
2a 024 024 204 334 304 224 034 

a 121 121 141 341 411 211 431 
3a 313 313 323 423 233 133 243 
4a 434 434 414 214 144 344 124 
2a 242 242 232 132 322 422 312 

a 122 122 142 342 412 212 432 
3a 31 I 311 321 421 231 131 241 
4a 433 433 413 213 143 343 123 
2a 244 244 234 134 324 424 314 

a 010 010 100 440 400 110 040 
3a 030 030 300 220 200 330 020 

a 120 120 140 340 410 210 430 
3a 310 310 320 420 230 130 240 

Table 7 P6. orbits in AX. 

a E XP, O W  

a 001 001 
3a 003 003 
4a 004 004 
2a 002 002 

a 01 1 011 401 141 101 411 041 
3a 033 033 203 323 303 233 023 
4a 044 044 104 414 404 144 014 
2a 022 022 302 232 202 322 032 

a 012 012 402 142 102 412 042 
3a 03 1 031 201 321 301 231 021 
4a 043 043 103 413 403 143 013 
2a 024 024 304 234 204 324 034 

a 121 121 221 211 341 431 331 
3a 313 313 113 133 423 243 443 
4a 434 434 334 344 214 124 224 
2a 242 242 442 422 132 312 112 

a I22 122 222 212 342 432 332 
3a 31 1 311 111 131 421 241 441 
4a 433 433 333 343 213 123 223 
2a 244 244 444 424 134 314 114 

a 010 010 400 140 100 410 040 
3a 030 030 200 320 300 230 020 

a 120 120 220 210 340 430 330 
3a 310 310 110 130 420 240 440 
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Table 8 pbz2 orbits  in A' 

a E XP, O W  

a 001 001  004 
3a 003 003  002 

a 010 010 100  440 400 110 040 
3a 030 030 300  220  200  330 020 

a 01 1 011 101  441  401 111 041  114  404 044 104  014  444 
3a 033 033 303  233  203  333 023 332  202  022  302  032  222 

a 012 012 102  442 402 112 042  113 403 043 103 013 443 
3a 03 1 03 1 301  221  201 33 1 021  334  204  024  304  034  224 

a 120 120  140  340 410  210  430 
3a  310 310  320  420  230  130  240 

a 121 121  141  341  411 211  431  124  344  144  214  414  434 
3a 313 313  323 423 233  133  243  412  422  322  132  232  242 

a 122 122  142  342  412  212 432  123  343  143  213 413 433 
3a 31 1 311  312  421  231  131 241  314  424  324  134  234  244 

Table 9 P622. orbits in AX. 

a E xp,,. 

a 001 
3a 003 

a 010 
3a 030 

a 01 1 
3a 033 

a 012 
3a 03 1 

a 120 
3a 310 

a 121 
3a 313 

a 122 
3a 31 1 

O W  

001 004 
003 002 

010  400  140  100  410 040 
030 200  320  300  230 020 

011  401  141  101  411  041  014  144  404  414  104 044 
033 203  323  303  233 023 032  322  202  232  302  022 

012  402 142  102  412 042 013 143 403 413 103 043 
031  201  321  301  231  021 034 324  204  234  304  024 

120  220  210  340  430  330 
310 110 130  420  240  440 

121  221  211  341  431  331  434  344  334  224  124  214 
313  113  133  423  243 443 242  422  442  112  312  132 

122 222  212  342  432  332 433 343  333  223  123  213 
311 111 131  421  241  441 244  424  444  114  314  134 

220 

placing  tails to heads of the (Z/5)" orbits, we have the 
indexing of X ,  and X,,. The matrix we obtain this way 
consists of blocks corresponding to ( Z / S r  orbits. Let FG 
denote the matrix representation of a G-invariant Fourier 
transform. Then the indexed output vector [ f l (b ) ] ,  b E X p  
is obtained by the matrix multiplication 

[ F G I [ f ( a ) l o E x G  9 

where [ f(a)] is the indexed input vector.  Since the (Z/5r 
orbits are ordered by a (multiplicative) generator, the square 
blocks constituting F, are skew-circulant. Hence the square 
blocks  can be diagonalized by multiplication by the 
one-dimensional  finite Fourier transform on both sides.  Let 
S( 0*, Oi) be a square block corresponding to (Z /5r  orbits 

O* and Oi in X ,  and X,, respectively. Then we  may 
replace S( 0*, Oi) by the diagonal matrix D( 0*, Oi) = 
F(n)S( 0*, OJF( n), where F( n) is the one-dimensional finite 
Fourier transform matrix, to compute 

[f70*)1, = F-'(n)D(O*, ~ i ~ ~ ~ - ' ~ ~ ~ ~ f ~ ~ i ~ l ~ ,  

where [ f^(O*)], = S(O*, Oi)[ f (O,)] ,  and [ f(0J is the 
subvector of [ f ( a ) ]  corresponding to the orbit Oi. 

The matrix representation of the P3-invariant Fourier 
transform is  44 X 44 and consists of  12 1 4 X 4 skew- 
circulant submatrices. The matrix representation of the 
P,,,-invariant Fourier transform is  24 X 24, consisting of 
four 4 X 4 and 36 2 X 2  skew-circulant  submatrices, 12 2 X 

4 and 12 4 X 2  submatrices. The P,-invariant Fourier 
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transform matrix is 24 X 24, consisting of 25 4 X 4 and four 
2 x 2 skew-circulant  matrices, 10 2 X 4 and 10 4 X 2 
matrices. The P,,,-invariant Fourier transform matrix is 14 
X 14, consisting of 49 2 X 2 skew-circulant  matrices. 

Now there exist  Winograd  fast algorithms for evaluating 
skew-circulant  matrices. Thus, the above calculations can be 
done efficiently  with  fast  algorithms. 

6. Summary 
In this paper we have  shown that for the subset of 
crystallographic  symmetries  with no screw motions and that 
preserve orientation, we can, for 5 X 5 X 5 sample points, 
reduce the size  of the problem to take advantage of the 
crystal symmetries and amve at a calculation that can be 
done by a fast  algorithm.  It  is  clear that these or similar 
procedures will enable one to carry out this program  for  all 
crystallographic groups and problems of  realistic sizes. 

Appendix 
In this appendix, we  briefly discuss  G-invariant  finite Fourier 
transforms for the series of groups P2, P222, PZ3, P432, P4, and 

Before  we  give the orbit pictures  of the above groups,  let 
us observe a fact that will greatly  simplify the orbit pictures. 

‘422‘ 

Table 10 p2 orbits. 

If a group G2 contains G, as a normal subgroup, then we can 
find X., in X,-,. Hence, we only  need to find the G2 orbits in 

We  use the (Z/5y orbit decomposition presented in Table 
1 to write the orbit pictures.  (Because G = G* for the groups 
G listed  above, the orbit pictures  for G and G* are the same.) 

Using the information in Table 10 to order the elements 
in X., by the (Z/5r orbits, we have the matrix of the 
P,-invariant Fourier transform matrix. This matrix is of  size 
64 X 64, consisting of 169 4 x 4 and 36 2 X 2 skew- 
circulant submatrices, 78 4 X 2 and 78 2 x 4 matrices. 

construct Table 11, the P222 orbits in Xp2.  Ordering the 
elements of XP2=, we  have the matrix of the P,,,-invariant 
Fourier transform of  size 34 X 34, consisting of 16 4 X 4 
and 81 2 X 2 skew-circulant  matrices, 36 2 X 4 and 36 
4 X 2 matrices. 

x., . 

P222 contains P2 as a normal subgroup. This enables us to 

Let us pause for a moment to compare the matrices  of the 
P2-invariant Fourier transform and the P,,,-invariant 
Fourier transform. The P,-invariant Fourier transform is 

~ ( b )  = c ( c exp(2rib.c/5)f(a) , b E X p 2 ,  
“ap2 c€@a) 1 

where O(a) denotes the P2 orbit of a. The P,,,-invariant 

a 
3a 
4a 
2a 

a 
3a 
4a 
2a 

a 
3a 
4a 
2a 

a 
3a 
4a 
20 

a 
3a 
4a 
2a 

a 
3a 
4a 
2a 

a 
3a 
4a 
2a 

001 
003 
004 
002 

012 
03 1 
043 
024 

102 
30 1 
403 
204 

112 
33 1 
443 
224 

122 
311 
433 
244 

132 
34 1 
423 
214 

142 
32 1 
413 
234 

001 
003 
004 
002 

012 
03 1 
043 
024 

102 
30 1 
403 
204 

112 
33 1 
443 
224 

122 
31 1 
433 
244 

132 
34 1 
423 
214 

142 
32 1 
413 
234 

042 
02 1 
013 
034 

402 
20 1 
103 
304 

442 
22 1 
113 
334 

432 
24 1 
123 
314 

422 
21 1 
133 
344 

412 
23 1 
143 
324 

010 
030 

100 
300 

110 
330 

120 
310 

130 
340 

140 
320 

010 
030 

100 
300 

110 
330 

120 
3 10 

130 
340 

140 
320 

040 
020 

400 
200 

440 
220 

430 
240 

420 
210 

410 
230 

01 1 
033 
044 
022 

101 
303 
404 
202 

111 
333 
444 
222 

121 
313 
434 
242 

131 
343 
424 
212 

141 
323 
414 
232 

01 1 
033 
044 
022 

101 
303 
404 
202 

111 
333 
444 
222 

121 
313 
434 
242 

131 
343 
424 
212 

141 
323 
414 
232 

041 
023 
014 
032 

40 1 
203 
104 
302 

4 4 1  
223 
114 
332 

43 1 
243 
124 
312 

42 1 
213 
134 
342 

41 1 
233 
144 
322 
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Table 11 p222 orbits  in x4. Table 14 p4 orbits in xP2. 

a 111 111 414 112 112 413 
3a  333 333 232 331 331 234 
4a 444 444 141 443 443 142 
2a  222 222 323 224 224 321 

a 121 121 424 122 122 423 
3a  313 313 212 311 311 214 
4a  434 434 131 433 433 132 
2a  242 242 343 244 244 341 

a 001 001 004 010 010 
3a 003 003  002 030 030 

a 011 011 014 012  012  013 
3a  033 033  032 031 031 034 

a 100 100  101  101 
3a  300 300 303 303 

a 102 403  110  110  410 
3a  301 204  330  330  230 

a 120 120  420 
3a  310 310  210 

Table 12 p3= orbits  in x~,. 

a E XP, O W  c Xp,  a E XP, W )  C Xpm 

a 
3a 
4a 
2a 

a 
3a 

a 
3a 

111 111 112 112 121 211 
333 333 331 331 313 133 
444 444 433 433 334 343 
222 222 244 244 442 242 

001 001 010 100 011 011 110  101 
003  003 030 300  033  033  330  303 

012  012 120  201 
031 031 310  103 

Table 13 P , ~ ~  orbits  in xP3,. 

a 111 111  141  112  112  142 
3a  333 333  323  331  331  321 

a 001 001 011 011 101 
3a  003 003  033  033  303 

a 012 012  120 

Fourier  transform  is 

f 7 b )  = C ( C ex~(2*jb.c/Slf(a) , 6 E Xpu2, 
" Y p n 2  C € O ( d  ) 

where O(a) here  denotes  the P222 orbit of a. 
But  the P222 orbit of a contains  the  P2  orbit of a; i.e., part 

222 of the  inner  sum in (2) has  been  computed  in (1). 

a E Xp4 U(a) C Xp, a E Xp4 O(a) C Xp, 

a 
3a 
4a 
2a 

a 
3a 
4a 
2a 

a 
3a 
4a 
20 

a 
3a 
4a 
2a 

a 
3a 

a 

001 001 
003 003 
004 004 
002 002 

012 012 102 
031 031 301 
043 043 403 
024 024 204 

112 112 142 
331 331 321 
443 443 413 
224 224 234 

131 131 341 
343 343 423 
424 424 214 
212 212 132 

010 010 100 
030 030 300 

120 120 240 

011 011 101 
033 033 303 
044 044 404 
022 022 202 

111 111 141 
333 333 323 
444 444 414 
222 222 232 

121 121 241 
313 313 123 
434 434 314 
242 242 432 

330 330 320 
110 110 140 

130 130 340 

Table 15 p422 orbits  in Xp,. 

a E Xp4, O(a) c Xp4 a E XP,, O(a)  c Xp, 

a 121 121 134 
3a  313 313 342 
4a  434 434 421 
2a  242 242 213 

a 001 001 004 010 010 040 
3a 003 003 002 030 030 020 

a 011 011 044  012  012  043 
3a 033 033  022 031 031 024 

a 110 110  140  111  111  114 
3a 330 330 320  333  333  322 

a 112 112  143 
3a  331 331 324 

a 120 120  130 

Furthermore, X.,, is contained in Xp2. This implies,  in  the 
matrix  representation,  that  the  matrix  of  the  P,,,-invariant 
Fourier  transform  is  obtained  from  that of the  P2-invariant 
Fourier  transform  by  crossing  out  the  blocks of rows  indexed 
by elements b Xp222, then  adding  the  blocks of columns 
indexed  by  the  elements a E Xp2 belonging to the  same P222 
orbits  in Xp2. 

P322 contains  P222  as  a  normal  subgroup,  and  we  have  the 
P322 orbit  picture in Xp2, given in Table 12. 

Ordering  the  elements  by (Z/S)" orbits in X.,,, we  have 
the  matrix  representation of the  P,,,-invariant  Fourier 
transform of size 14 X 14, consisting of four 4 X 4 and  nine 
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2 X 2 skew-circulant  matrices,  six 2 X 4 and six 4 X 2 
matrices. This matrix can be obtained from the matrix of the 
P,,,-invariant Fourier transform. 

P432 contains P,,, as a normal subgroup and Table 13 
gives the P432 orbit picture. By this orbit picture, we  have 
that the matrix of the P,,,-invariant Fourier transform is 
9 X 9, consisting  of 16 2 X 2 skew-circulant  matrices, four 
1 X 2 and four 2 X 1 matrices. 

P4 contains P2 as a normal subgroup, and we have the 
orbit picture of P4 in Table 14. The P4-invariant Fourier 
transform matrix is then 34 X 34, consisting of 49  4 X 4 
and four 2 X 2 skew-circulant  matrices, 14 2 X 4 and 14 
4 X 2 matrices, 14 1 X 4,  14  4 X l ,  four 1 x 2, four 2 X 1, 
and four 1 X 1 matrices. 

Let us now consider P4,, = B4 IK PC Since B4 normalizes 
P4, we  have the orbit picture of P422 as presented in Table 
15. The matrix of the P4,,-invariant Fourier transform is 
19 X 19, consisting of one 4 X 4 and 49 2 X 2 skew- 
circulant matrices,  seven 2 X 4, seven 4 X 2, seven 1 X 2, 
seven 1 X 2, and one 1 X 1 matrix. 
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