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Some  duality  results  for  integer  programming 
based on  subadditive  functions are presented 
first  for  linear  programs  and  then  for  the  group 
problem. A similar  result  for  the  knapsack 
problem is  given  and  then  a  relationship 
between  facets for the  group  relaxation  and 
facets of the  knapsack  problem  is  given.  The 
mixed  integer  cyclic  group  problem  is  then 
considered  and  a  dual  problem  given. A 
common theme  is  to  try  to characterize  the 
strongest  possible  dual  problem  or  equivalently 
the  smallest  possible  cone of  subadditive 
functions. 

1. Introduction 
A shortcoming of integer programming theory is that it has 
not provided a dual problem to use algorithmically as the 
dual linear programming problem is used. Dual variables in 
linear programming are also used as prices and for  local 
sensitivity  analysis  when the right-hand side is perturbed by 
very small amounts. We ignore this use of the dual problem 
for the simple reason that we do not know, in general,  how 
to give a price interpretation to the dual problem. 
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The dual problem of linear programming provides 
another major benefit,  however: It gives an optimality 
criterion toward which the simplex algorithm moves. That is 
to say, if a primal solution and a dual solution can be found 
so that their objective  values are equal, then the solutions are 
both optimal to their respective problems. Even more, the 
complementary slackness conditions are sufficient conditions 
for the solutions to be optimal without knowing the 
objective  values, and it  is  these conditions that  the simplex 
method, in its usual form, maintains while  working toward 
dual feasibility. We do not discuss solution methods here, 
but it  is our hope that the above uses  of the linear 
programming dual will carry over, to some extent, to the 
integer programming problem. 

Linear programming duality is presented in Section 2 in 
this way. A different dual problem for linear programs is 
presented in order to introduce the idea of a dual problem 
involving functions and in order to show two duals, one of 
which  is  weaker than the other. Section 3 gives a more 
general primal problem for  which this dual is still a correct 
dual problem. 

One way to get a dual problem to integer programming 
problems is to form the convex  hull  of  integer solutions and 
then use linear programming duality on  the resulting linear 
program. The difficulty  with this statement is that a system 
of defining inequalities is required in order to have the linear 
program in a form that dual variables can be  assigned to 
linear equations and inequalities. From a pricing point of 
view, the meaning of dual variables  assigned to inequalities 
not originally  present presents major difficulties. From an 
algorithmic point of  view, it is frequently not possible. 
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2. Linear  programming  duality 
The standard form of the linear programming (primal) 
problem [ 1 1  is to minimize cx subject to 

Ax = b and x 2 0, (1) 

and the dual problem is then to maximize ab subject to 

aA 5 C. (2) 

The weak duality theorem says that cx z ab for all x 
satisfying (1) and a satisfying (2). The strong duality theorem 
asserts that there exists an x satisfying (1) and a a satisfying 
(2) such that cx = ab. Such an x and a will obviously be 
optimal solutions to the primal and dual problems, 
respectively. 

The complementary slackness theorem ([I], p. 136) 
implies that  an x satisfying (1) is optimal whenever there is a 
dual solution a satisfying ( 2 )  and the additional condition 

x, > 0 implies *A' = cj, 

There are other dual problems that also satisfy weak and 
strong duality. In order to introduce the notion of a dual 
problem over a cone of functions and the notion of stronger 
dual classes,  we  give another dual problem [2]. For a fixed m 
(number of  rows in A ) ,  let C be the cone of functions 

C = {f: R" + R I Xf(x) = ~ ( X X )  for any x E R" and X 2 0, 

and f ( x  + y )  5 f(y), all x,  y E R" ). 

The alternative dual problem is 

maximize a( b )  subject to 

=(A') 5 c,, and 

a E c. 

The normal dual is  for functions that are, in fact, linear over 
R". Such linear functions are a subspace contained in C. 
The functions in C are  the positively homogeneous and 
convex functions on R" and  are called  gauge functions when 
they are nonnegative [3]. 

The proofs  of both weak and strong duality are easy  for 
this alternative dual problem. We can say that it  is a weaker 
dual in that strong duality continues to hold  for a proper 
subset  of C, namely the linear functions. The linear 
functions are  the smallest  subset  of C for  which strong 
duality holds for all problems on m rows  because  for any 
given  vector a in R" we can find a linear program so that 
the dual is uniquely optimized over linear functions by a. 
We conjecture that C is the largest  convex cone of functions 
for  which weak duality holds. 

3. Linear  programs with  multiple  right-hand 
sides 
The (primal) problem considered in this section is to 
minimize cx subject to 

x 2 0, and Ax E R, (3) 

where R is a finite  set of acceptable right-hand-side  values. 
The dual problem we claim is similar to the alternative dual 
from the preceding section: 

maximize (min a( b)  I b E R ) subject to 

a (A') 5 C,, and 

a E c, 

where C is the cone of functions in  Section 2. Weak duality 
is  again  easy to prove: 

min ~ ( b )  5  AX) 5 a(A')xj 5 cjxj , 
b€R j j 

for any a E C and x satisfying (3). In [2], the problem is 
considered in inequality form, and both weak and strong 
duality are proven. The proofs are not difficult. The result is 
also given there that a linear dual suffices  if and only if the 
primal problem is equivalent to 

Ax E conv (R), x 2 0, 

where conv (R)  denotes the convex  hull  of the vectors in R. 
An example given  where a linear dual works is when A is a 
Leonteif substitution matrix. 

In order to get a stronger dual problem for the general 
problem, the cone C of dual functions can be characterized 
by linear inequalities (Theorem 1 1 of [3]). One way to view 
the necessary inequalities is  by means of support functions. 
Positively homogeneous convex functionsfare in fact 
support functions; i.e., there is some convex  set S such that 

f ( x )  = min ( x .  y I y E S) .  

The question considered in [3] is: What are  the convex  sets S 
such that the resulting support functionfgives a facet  of the 
convex  hull  of solutions x to (3)? Just as in the proof in the 
next section, linear programming duality and a facet 
characterization give a strongest dual problem in our sense. 
Without going into details, a stronger dual problem for a 
given matrix A is given  by requiringfto be in the cone 

C,, = If: R" "-* R I f ( x )  = max ( x . x *  Ix* E P*)), 

where P* can be any polyhedron of the form 

P* = {x* Ix*.Aj 5 hi). 

4. The  group  problem 

c c(g) t (g)  

The group problem is to minimize 

*G+ 

subject to 

g f ( g )  = b, f 2 0 and integer, 
%G+ 207 
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where G is a finite  Abelian group and G, denotes the 
nonzero elements of G. By gt(g), where t (g)  is a nonnegative 
integer, we mean g added to itself t (g)  times. The problem as 
stated is sometimes called a muster  problem because there is 
a variable t(g) for  every nonzero group element. A problem 
with  only a subset of these elements present is  called a 
subproblem. Gomory showed relationships between master 
problems and subproblems ([4], Theorems 12 and 13), and 
in this section we restrict  ourselves to master problems. 

Gomory introduced this problem as a relaxation of a pure 
integer programming problem. He also proved an 
“asymptotic” theorem that gives  sufficient conditions for the 
integer programming problem to be solved by solving the 
group relaxation. Here we focus on  another of Gomory’s 
results:  his subadditive characterization of  facets ([4], 
Theorem 18),  which  leads to a duality result. 

problem is to maximize X( 6 )  subject to 
The problem we present as the dual problem to the group 

The set of functions S, is  clearly a polyhedral cone that we 
will call the b-complementary subadditive cone. 

We still  have the weak duality result r( b )  5 cx and  the 
strong duality theorem X( b )  = cx for some solution to the 
two problems. The proof of  weak duality is easy: 

5 c r(gt(g)) 5 c dg) t (g )  5 c c(g)t(g). 
g g 8 

This proof  also  shows  what is needed  for equality to hold: 
t ( g )  2 1 implies r(g) = c(g); and x(g) 2 1 and x( h )  2 1 
[or x(g) 2 2, i.e., g = h] implies r(g + h )  = r(g) + ~ ( h ) .  
The first  of these conditions is complementary slackness, and 
we refer to the second as complementary linearities. 

The strong duality result  is  based on linear programming 
duality and Gomory’s subadditive characterization of  facets 
[4]. That characterization implies that  the group problem is 
equivalent to  the linear program 

minimize c(g)t(g) subject to 

t(g) = 0, 

r ( g ) t ( g )  2 r(b),  for  all X E S,, 
S G +  

in that there is an optimal answer to the above linear 
program that is integer for any objective function c for  which 
the problem has an  optimum; i.e., c(g) 2 0, all g E G,. As 
stated, the above problem is not exactly a linear program in 
that there is a constraint for  every X E S,; i.e., there are an 
infinite number of constraints. However, S, is a polyhedral 208 
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cone, as is clear from its definition, so the infinite number of 
constraints can be  reduced to  one constraint for a X on each 
extreme ray  of S,; i.e., 

minimize c(g) t (g)  subject to 

x(g) > 0, 

rk(g) t (g)  2 x k ( b ) ,  k = 1, ..., K, 
gEc, 

where rk, k = 1, . . . , K, are vectors, one  on each extreme 
ray  of S,. Gomory’s result ([4], Theorem 18), says that all of 
these inequalities are required for master problems. That is, 
if any one of the inequalities corresponding to some extreme 
ray rk of S is dropped from the inequality system, then there 
will  be some objective function c(g), g E G,, such that  the 
linear program has  only noninteger optimal solutions. In 
other words, Gomory gave the smallest linear inequality 
system  for master group problems. Of course, there may be a 
huge number of these inequalities even  for moderate size 
groups.  Also, the extreme rays are not very  well 
characterized, so they cannot be  easily produced or 
identified. However, they are, in a sense, characterized as 
extreme rays  of S,, and  to  that extent we have a linear 
programming equivalent of the group problem. 

Gomory’s characterization of this linear programming 
equivalent of the group problem together with linear 
programming duality gives the dual problem previously 
introduced. To see this result,  let X, be the linear 
programming dual variable corresponding to  the constraint k 
in the above linear program. Then,  the dual linear 
programming problem is 

maximize 2 X k r k ( b )  subject to 
K 

k= I 

Xk 2 0, k = 1, . . ., K, and 

Since s b  is a convex cone and since X k  2 0, k = 1, . . . , K, 
the function 

K 
X(g)  = XkXk(g)  

k= I 

is in sb and is the desired dual function. Thus, an optimal 
solution X k  to the linear programming dual will produce an 
optimal dual function X in sb, and strong duality is proven. 
Gomory’s result that all of the inequalities rk are needed 
implies that sb is the smallest  convex cone for  which strong 
duality holds for master group problems. In other words, it is 
the smallest cone that works  for any subproblem of a given 
master problem. We remark that weak and strong duality 
both hold for the larger cone s b  obtained by dropping the 

IBM J .  RES. DEVELOP. \ ‘OL. 31 NO. 2 MARCH 1987 



conditions that f ( b )  = f (g)  + f ( b  - 8). In the proof of  weak 
duality, that condition was not used, so weak duality still 
holds. Strong duality obviously holds because we have just 
expanded the cone Sb. However, expanding Sb gives a 
weaker dual in the sense already discussed in Section 2. 

5.  Knapsack  problem 
The master knapsack problem is 

minimize &,x, subject to 

x, t 0 and integer, j = I ,  . . ., n, and 

n 

C jx, = n, 

where n is any positive  integer and c E R". The dual problem 
for the knapsack problem is 

/=I 

maximize x( n )  subject to 

x ( j )  s e,, j = 1, . . ., n, and 

x E T, = I f :  7, + R I f (n)  = f ( j )  + f ( n  - j ) ,  and 

f ( i  + j )  9 f(i) + f ( j )  

whenever i + j 5 nl, 

where 7, = ( I ,  . . ., n ) ,  the set  of  integers from 1 to n. 

[6] and Aroaz and Johnson [7]). A subadditive lifting 
method [8] based on this dual has  been  given. 

introduce a semi-group addition over 7, defined to be 

This result  first appeared in Aroaz [5] (see also Johnson 

One way to view the cone T, as a subadditive cone is to 

i + j ,  if i + j s n ,  
i + j =  

- I.. otherwise. 

In [6] this unifying approach was presented, and there an 
infeasible element was  used in place of 0. In [9], the 
convention that  the  sum of two elements may  simply  be an 
empty set  was adopted and has the same effect in defining 
the subadditive cone T,,: no inequality is imposed on the pair 
f(i), f (  j )  whenever i + j > n. 

For example, letting n = 3 gives the problem x ,  + 2x2 + 
3x3 = 3. There are only three solutions: x = (3, 0, 0), 
( I ,  1,0), and (0, 0, 1). The convex  hull of these three points 
is shown in Figure 1 and has the inequality description 

x ,  t 0, x, t 0, x,  5 0, 

x ,  + 2x, + 3x, = 3, 

x ,  + x j  L 1. 

The addition table here  is 

3 

. .  

Convex hull of knapsack solutions. 

+ I 2 3  

1 2 3 0  

2 3 0 0  

3 0 0 0  

The subadditive cone T,, is  defined by the two inequalities 

f ( 3 )  = f ( l )  + f ( 2 ) ,  

f ( 2 )  5 2 f ( l ) ,  

and is drawn in Figure 2. It  has  lineality generated by 
( I ,  2, 3), giving the equation x, + 2x2 + 3x3 = 3,  and 
generating ray ( 1,0, I) ,  giving the inequality x ,  + x3 2 1. 

The dual problem here  is to maximize 4 3 )  subject to the 
above equation and inequality; i.e., 4 3 )  = x( 1) + 4 2 )  and 
4 2 )  5 2 r (  I ) ,  and satisfying x ( j )  5 c,, j = 1, . . . , 3, where c,, 
e,, c, are the coefficients in the primal objective function. 

The dual problem can also be stated in terms of the linear 
programming dual as 

maximize 3X,  + X, subject to X, 2 0 and 

X, + X, 5 e,, 

2X, 5 c,, 

3 4  + X, 5 e,. 

The relationship between this dual problem and the dual 
function is that the function x is  given  by 

x = X,( I ,  2, 3 )  + X,( 1, 0, 1). 

Conversely, if a dual function x in Tb is  given, then x is a 
linear combination of (1, 2, 3 )  and ( I ,  0, l), where the 209 
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3 

Subadditive cone. 

1P and LP objective function values. 

coefficient X, of (1, 0, 1) must be nonnegative. These 
multipliers give the values  of X, and X, for the linear 
programming dual. 

6. Cyclic  group  relaxations of the knapsack 
problem 
Gilmore and Gomory [ 101 considered methods for  solving 
knapsack problems in order to generate columns for the 
linear programming formulation of the stock cutting 
problem. In the process they showed a periodicity  of the 
solutions. We  give an example. Consider the knapsack 
problem (not a master problem) 

minimize x, + 2x, + 3x3 subject to 

xJ 2 0 and integer, j = 1,2, 3, and 

210 3x, + x, + 8x3 = 10. 
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For a moment, consider that  the right-hand side  is not 10 
but a parameter that is  varied  while the remainder of the 
problem  is  fixed. Then the solutions are given in Table 1. 

point on, x, = 0, x, = 0,2, 1, and then repeats,  whereas 
x, = 5 ,  0, 3, then 6, I ,  4, then 7, 2, 5 ,  etc. The general 
pattern is that from some point on there is some one 
variable .xf, j = j*,  that increases by one every time b 
increases by aJ, and  the other variables simply repeat with 
period a,. The objective function increases by cj every  period 
(see Figure 3). 

In general, a knapsack problem (not a master problem) 
has the form 

The periodicity in the solution begins at b = 15. From that 

minimize clxI + c2x2 + + . . + c,,x, subject to 

xJ 2 0 and integer, j = 1, . . ., n, and 

U,X, + U,X, + . . . + U,X, = b, 

where uf is a positive integer less than or equal to b, a 
positive  integer, and cj is a real number that can be assumed 
to be positive, without loss of generality, by adding the 
equation to the objective function. Let us assume that the x 
have  been ordered so that 

c,/a, 5 cj/u,, j = 2, . 1 s ,  n. 

Then, the optimal linear programming solution is x, = b/a,, 
with  cost c, b/a ,. If the nonnegativity condition on x, is 
relaxed, then the problem becomes 

minimize ( e ,  - U ; ~ , ) X ,  + . . . + e, - a x,, subject to ( n:) 

u2x2 + . . . a,x, = b(mod a,), 

xj 2 0 and integer, j = 2, . . ., n, 

which is a special  case  of the group problem from Section 4 
but is not generally a master group problem. The answer to 
the group problem gives  values (x:, . + . , x;) for the 
nonbasic variables  which are optimal to the original 
knapsack problem provided x, given  by 

xI = (b - (U,X; + . . .  + a,x:))/a, 
is nonnegative. This x1 is integer  because a,xf + . . . + a,x; 
is congruent to b modulo a ,. 
relaxing nonnegativity of x, is 

In the example given, the group problem obtained by 

minimize 1-x, + -xj subject to 1 1  
3 3  

x, + lox, = b(mod 3) and xJ 2 0 and integer, j = 2, 3. 

There are three different optimal solutions for  different 
values of the right-hand side b: (x,,  x,) = (0,O) for b 
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Table 1 Knapsack  solutions. 

b 1 2 3 4 5 6 7 8 9 10 11 12  13  14 15 16 17 18 19 20 21 

x , 0 0 1 1 1 2 2 0 3 3 1 4 4 2 5 0 3 6 1 4 7  

x2 1 2 0 1 2 0 1 0 0   1 0  0 1 0  0 0 0 0 0 0  0 

x 3 0 0 0 0 0 0 0 1 0  0 1 0  0 1 0  2 1 0  2 1 0  

o b j 2 4 1 3 5 2 4 3 3  5 4 4 6 5 5 6 6 6 I 7  7 

congruent to 0 modulo 3, (x2, x,) = (0,2) for b congruent to 
1 modulo 3, and (x2, XJ = (0, 1) for b congruent to 2 
modulo 3. These three solutions are optimal to the knapsack 
problem  when b 2 0, b 2 16, and b 2 8, respectively,  for the 
three different  values of b modulo 3. 

Aroaz and Johnson [9] have  shown that very many facets 
of the knapsack  problem  can be obtained from  facets  for the 
group relaxation. This result  can  be contrasted with the 
above  result on getting solutions to the knapsack  problem 
from solutions for the group relaxation. Consider the master 
knapsack  problem 

Ix, + 2x2 + . . . + nx, = n, xJ 2 0 and integer, 

and its group relaxation, which can be  written 

= n(mod d),  tj 2 0 and integer, 

where d is a positive  integer d < n and n (mod d )  is not 
equal to zero. A valid inequality for the group relaxation 

can be expanded to a valid inequality for the knapsack 
problem 

in the periodic way indicated above. The result of  Aroaz and 
Johnson is that if  we start with a facet  for the group 
relaxation of the master knapsack  problem and if 
d < n/2 + 1, then the resulting  valid inequality for the 
knapsack  problem is also a facet  for that problem. Thus the 
facets of group relaxations  may  give  facets  for  knapsack 
problems and always do under the condition above. 

7. Dual  functions  for mixed integer  cyclic  group 
problems 
In order to introduce the mixed  integer programming dual, 
we  begin  with a special case: the cyclic group problem  with 
continuous variables.  This  problem was introduced by 
Gomory and Johnson [ 1 I], and the results  given  here appear 
there except that the dual problem is not  explicitly  stated 
there but is a consequence of their results. 211 
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The cyclic group problem  with continuous variables  is 

minimize ct + c+s’ + c-s- subject to 

$rOandinteger, j= 1, ..., n ; s + 2 O ; s - r O ;  
n 

air, + s+ - s- = b(mod 1). 
j = ,  ” 

Thus, s+ and s- are continuous variables. For such a 
problem, it  only  makes  sense to have at most  two 
continuous variables  since there is  only one constraint and 
any other variables  could  be  scaled to have a coefficient  of 
plus or minus one. The aj are real numbers but can be 
assumed to be  in the interval (0, 1). Since we can have any 
vector ( a  ,, - . . , a,,), for any n 2 1, the solutions c can  be 
considered to be functions on the unit interval having  finite 
skeleton;  i.e., t (a)  = 0 except on a finite  set. 

The dual problem is 

maximize T( b )  subject to 

*(a ) c. *+ 5 c+, *- I c-, * E c, 
J - I’ 

where C is the cone 

f(a + a’) 5 f(a) + f(a’), all a,  a’ E [O, I]], 

and f has direction derivatives at 0 and 1. The *+ and P- are 
defined to be the directional derivatives 

Although the convex  hull  of  all solutions t is not 
polyhedral (not even  closed),  if we fix a,, . . . , a, to be 
rational numbers in the unit interval (0, I), then the 
restriction of the solutions to this subproblem does  have a 
polyhedral  convex  hull, and the facets of it are all given  by 
functionsfin C. In [ 1 I], some of these functions are 
identified as always  giving  facets  for  every rational 
subproblem. 



References 
1 .  G. B. Dantzig, Linear Programming and Extensions, Princeton 

2. D. Granot, F. Granot, and E. L. Johnson, “Duality and Pricing 
University  Press, Princeton, NJ, 1963. 

in  Multiple Right-Hand Choice Linear Programming Problems,” 
Math.  Oper.  Res. 7, 545-556 (1982). 

Hand Choice Linear Programs,” Math. Program. Study 14, 112- 
142 (1981). 

Problems,” Linear Alg.  Appl. 2, 451-558 (1969). 

Computer Science and Applied  Analysis,  University of 
Waterloo, Waterloo, Ontario, Canada, 1973. 

6. E. L. Johnson, “Integer Programming:  Facets, Subadditivity and 
Duality for Group  and Semigroup Problems,” CBMS-NSF 
Regional Conference Series in Applied Mathematics, Vol. 32, 
Society  for Industrial and Applied Mathematics, Philadelphia, 
PA, 1980. 

7. J. Aroaz and E. L. Johnson, “Some Results on Polyhedra  of 
Semigroup Problems,” SIAM J. Alg. Disc. Math. 2, 244-258 
(I98 1). 

8. E. L. Johnson, “Subadditive Lifting Methods for Partitioning 
and Knapsack Problems,” J.  Algorithms 1,75-96  (1980). 

9. J. Aroaz and E. L. Johnson, “Mappings and Liftings  for Group 
and Semigroup Problems,” in preparation. 

10. P.  C. Gilmore and R. E. Gomory, “The Theory and 
Computation of Knapsack Fractions,” Oper.  Res. 14, 1045- 
I074 ( 1966). 

I I .  R. E. Gomory and E. L. Johnson, “Some Continuous Functions 
Related to Corner Polyhedra,” Math. Program. 3,23-85 and 
359-389 (1972). 

3. E. L. Johnson, “Characterization of  Facets  for Multiple Right- 

4. R. E. Gomory, “Some Polyhedra  Related to Combinatorial 

5. J. Aroaz, Polyhedral Neopolarities, Ph.D.  Thesis, Department of 

Received  September 2, 1986; accepted for publication 
November 4 ,  1986 

212 

ELLIS L. JOHNSON 

Ellis Lane Johnson IBM Thomas J.  Watson Research Center, 
P.O. Box 218, Yorktown Heights, New York 10598. Dr. Johnson is 
manager  of the mathematical programming and modeling group in 
the Mathematical Sciences Department of the Thomas J. Watson 
Research Center, which  he joined in 1968. His principal work has 
been on the theory, computational methods, and applications of 
integer programming. He  received a B.S. in mathematics from the 
Georgia Institute of  Technology, Atlanta, in 1960 and the Ph.D. in 
operations research  from the University of California at Berkeley in 
1965. He  was adjunct professor at the University  of  Waterloo, 
Ontario, from 1970 to 1976 and has been a part-time professor in 
applied mathematics at the State University  of New York, Stony 
Brook,  since 1983. He spent 1980-1981 at the University  of Bonn, 
Federal Republic of Germany, as a recipient  of the Alexander 
von Humboldt Senior Scientist  Award and 1981-1982 as a visiting 
professor  in mathematics at the University of Pisa,  Italy.  Dr. 
Johnson received the Lanchester Prize  for co-authoring the best 
paper in operations research  in 1983 and the Dantzig Prize in 1985 
for  his  research  work  in mathematical programming. 

IBM 1. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987 


