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The group
problem

and integer
programming
duality

by Ellis L. Johnson

Some duality results for integer programming
based on subadditive functions are presented
first for linear programs and then for the group
problem. A similar result for the knapsack
problem is given and then a relationship
between facets for the group relaxation and
facets of the knapsack problem is given. The
mixed integer cyclic group problem is then
considered and a dual problem given. A
common theme is to try to characterize the
strongest possible dual problem or equivalently
the smallest possible cone of subadditive
functions.

1. Introduction

A shortcoming of integer programming theory is that it has
not provided a dual problem to use algorithmically as the
dual linear programming problem is used. Dual variables in
linear programming are also used as prices and for local
sensitivity analysis when the right-hand side is perturbed by
very small amounts. We ignore this use of the dual problem
for the simple reason that we do not know, in general, how
to give a price interpretation to the dual problem.
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The dual problem of linear programming provides
another major benefit, however: It gives an optimality
criterion toward which the simplex algorithm moves. That is
to say, if a primal solution and a dual solution can be found
so that their objective values are equal, then the solutions are
both optimal to their respective problems. Even more, the
complementary slackness conditions are sufficient conditions
for the solutions to be optimal without knowing the
objective values, and it is these conditions that the simplex
method, in its usual form, maintains while working toward
dual feasibility. We do not discuss solution methods here,
but it is our hope that the above uses of the linear
programming dual will carry over, to some extent, to the
integer programming problem.

Linear programming duality is presented in Section 2 in
this way. A different dual problem for linear programs is
presented in order to introduce the idea of a dual problem
involving functions and in order to show two duals, one of
which is weaker than the other. Section 3 gives a more
general primal problem for which this dual is still a correct
dual problem.

One way to get a dual problem to integer programming
problems is to form the convex hull of integer solutions and
then use linear programming duality on the resulting linear
program. The difficulty with this statement is that a system
of defining inequalities is required in order to have the linear
program in a form that dual variables can be assigned to
linear equations and inequalities. From a pricing point of
view, the meaning of dual variables assigned to inequalities
not originally present presents major difficulties. From an
algorithmic point of view, it is frequently not possible.
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2. Linear programming duality
The standard form of the linear programming (primal)
problem [1] is to minimize cx subject to

Ax=band x = 0, (1)
and the dual problem is then to maximize =5 subject to
TA < ¢ 2

The weak duality theorem says that cx = =b for all x
satisfying (1) and = satisfying (2). The strong duality theorem
asserts that there exists an x satisfying (1) and a = satisfying
(2) such that cx = #b. Such an x and = will obviously be
optimal solutions to the primal and dual problems,
respectively.

The complementary slackness theorem ([1], p. 136)
implies that an x satisfying (1) is optimal whenever there is a
dual solution = satisfying (2) and the additional condition

x; > 0 implies xd’ = <

There are other dual problems that also satisfy weak and
strong duality. In order to introduce the notion of a dual
problem over a cone of functions and the notion of stronger
dual classes, we give another dual problem [2]. For a fixed m
(number of rows in 4), let C be the cone of functions

C={f:R" > R|M(x)=f(A\x) forany x € R" and A = 0,
and f(x + y) < f(y), all x, y € R™}.

The alternative dual problem is

maximize x(b) subject to
7r(Aj )= ¢, and

reC.

The normal dual is for functions that are, in fact, linear over
R™. Such linear functions are a subspace contained in C.
The functions in C are the positively homogeneous and
convex functions on R™ and are called gauge functions when
they are nonnegative [3].

The proofs of both weak and strong duality are easy for
this alternative dual problem. We can say that it is a weaker
dual in that strong duality continues to hold for a proper
subset of C, namely the linear functions. The linear
functions are the smallest subset of C for which strong
duality holds for all problems on m rows because for any
given vector = in R™ we can find a linear program so that
the dual is uniquely optimized over linear functions by .
We conjecture that C is the largest convex cone of functions
for which weak duality holds.

3. Linear programs with multiple right-hand
sides

The (primal) problem considered in this section is to
minimize cx subject to
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x =2 0, and Ax € R, 3)

where R is a finite set of acceptable right-hand-side values.
The dual problem we claim is similar to the alternative dual
from the preceding section:

maximize {min r(b)|b € R} subject to
m(4) = C, and

T €C,

where C is the cone of functions in Section 2. Weak duality
is again easy to prove:

min x(b) < 7(4x) = T x(4)x,; = T ¢x;,

beR Jj J

for any = € C and x satisfying (3). In [2], the problem is
considered in inequality form, and both weak and strong
duality are proven. The proofs are not difficult. The result is
also given there that a linear dual suffices if and only if the
primal problem is equivalent to

Ax € conv(R), x = 0,

where conv (R) denotes the convex hull of the vectors in R.
An example given where a linear dual works is when 4 is a
Leonteif substitution matrix.

In order to get a stronger dual problem for the general
problem, the cone C of dual functions can be characterized
by linear inequalities (Theorem 11 of [3]). One way to view
the necessary inequalities is by means of support functions.
Positively homogeneous convex functions fare in fact
support functions; i.e., there is some convex set S such that

f(x) = min (x-y|y €S).

The question considered in [3] is: What are the convex sets .S
such that the resulting support function f'gives a facet of the
convex hull of solutions x to (3)? Just as in the proof in the
next section, linear programming duality and a facet
characterization give a strongest dual problem in our sense.
Without going into details, a stronger dual problem for a
given matrix A is given by requiring fto be in the cone

C,={f:R” = R| f(x) = max {x.-x*| x* € P*}),
where P* can be any polyhedron of the form

P* = {x*|x*A = p).

4. The group problem

The group problem is to minimize

2 Qg

#€G,
subject to

Y gt(g) = b, t = 0 and integer,
e, 207
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where G is a finite Abelian group and G, denotes the
nonzero elements of G. By gt(g), where 1(g) is a nonnegative
integer, we mean g added to itself £(g) times. The problem as
stated is sometimes called a master problem because there is
a variable 1(g) for every nonzero group element. A problem
with only a subset of these elements present is called a
subproblem. Gomory showed relationships between master
problems and subproblems ([4], Theorems 12 and 13), and
in this section we restrict ourselves to master problems.

Gomory introduced this problem as a relaxation of a pure
integer programming problem. He also proved an
“asymptotic” theorem that gives sufficient conditions for the
integer programming problem to be solved by solving the
group relaxation. Here we focus on another of Gomory’s
results: his subadditive characterization of facets ([4],
Theorem 18), which leads to a duality result.

The problem we present as the dual problem to the group
problem is to maximize =(b) subject to

m(g) = c(g), and
T ESy={f:G— R|f(g+ h) = f(g) + f(h), and

S(b) = flg) + fb — g

The set of functions S, is clearly a polyhedral cone that we
will call the b-complementary subadditive cone.

We still have the weak duality result =(b) < ¢x and the
strong duality theorem n(b) = cx for some solution to the
two problems. The proof of weak duality is easy:

w(b) = r(Z gt(y)>

= ¥ w(gt(g) = T =(g)ug) = T c(g)!(g).
&g 14 &

This proof also shows what is needed for equality to hold:

t(g) = 1 implies 7(g) = ¢(g); and x(g) = 1 and x(h) = 1

[or x(g) = 2, i.e., g = h] implies w(g + h) = w(g) + =(h).

The first of these conditions is complementary slackness, and

we refer to the second as complementary linearities.

The strong duality result is based on linear programming
duality and Gomory’s subadditive characterization of facets
[4). That characterization implies that the group problem is
equivalent to the linear program

minimize Y, c(g)#(g) subject to
1g) =0,

Y w(g)g) = x(b), forall r € S,,
2€G+
in that there is an optimal answer to the above linear
program that is integer for any objective function ¢ for which
the problem has an optimum; i.e., c(g) = 0, all g € G,. As
stated, the above problem is not exactly a linear program in
that there is a constraint for every = € S,; i.e., there are an
infinite number of constraints. However, S, is a polyhedral
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cone, as is clear from its definition, so the infinite number of
constraints can be reduced to one constraint for a = on each
extreme ray of S; ie.,

minimize c(g)¢(g) subject to

x(g)>0,
T @) = (b) k=1, K,
£€G,
where 7rk, k=1, ..., K, are vectors, one on each extreme

ray of S,. Gomory’s result ([4], Theorem 18), says that all of
these inequalities are required for master problems. That is,
if any one of the inequalities corresponding to some extreme
ray 7" of § is dropped from the inequality system, then there
will be some objective function c(g), g € G,, such that the
linear program has only noninteger optimal solutions. In
other words, Gomory gave the smallest linear inequality
system for master group problems. Of course, there may be a
huge number of these inequalities even for moderate size
groups. Also, the extreme rays are not very well
characterized, so they cannot be easily produced or
identified. However, they are, in a sense, characterized as
extreme rays of S,, and to that extent we have a linear
programming equivalent of the group problem.

Gomory’s characterization of this linear programming
equivalent of the group problem together with linear
programming duality gives the dual problem previously
introduced. To see this result, let A, be the linear
programming dual variable corresponding to the constraint k
in the above linear program. Then, the dual linear
programming problem is

K

maximize ¥, A x*(b) subject to
k=1

AMe=0, k=1, ..., K and

K
k);lka*(g) < c(g).

Since S, is a convex cone and since A\, =0, k=1, ..., K,
the function

K
e =2 A (g)

is in S, and is the desired dual function. Thus, an optimal
solution A, to the linear programming dual will produce an
optimal dual function = in S, and strong duality is proven.
Gomory’s result that all of the inequalities 7* are needed
implies that S;, is the smallest convex cone for which strong
duality holds for master group problems. In other words, it is
the smallest cone that works for any subproblem of a given
master problem. We remark that weak and strong duality
both hold for the larger cone S, obtained by dropping the
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conditions that f(b) = f(g) + f(b — g). In the proof of weak
duality, that condition was not used, so weak duality still
holds. Strong duality obviously holds because we have just
expanded the cone S,. However, expanding S}, gives a
weaker dual in the sense already discussed in Section 2.

5. Knapsack problem
The master knapsack problem is

minimize Yc;x; subject to

x; = 0 and integer, j= 1, ---, n, and

where # is any positive integer and ¢ € R". The dual problem
for the knapsack problem is

maximize x(#n) subject to

w(j)<sc,j=1,---,nand

x€T,={f:Z,— R|f(n) = f()) + f(n — ), and
[+ j) =)+ fO)

whenever i + j < nj,

where Z, = {1, - - -, n}, the set of integers from 1 to n.
This result first appeared in Aroaz [5] (see also Johnson
[6] and Aroaz and Johnson [7]). A subadditive lifting
method [8] based on this dual has been given.
One way to view the cone T, as a subadditive cone is to
introduce a semi-group addition + over Z,, defined to be

. i+,
i+j=
gs

In [6] this unifying approach was presented, and there an
infeasible element was used in place of &. In [9], the
convention that the sum of two elements may simply be an
empty set was adopted and has the same effect in defining
the subadditive cone T; no inequality is imposed on the pair
S, f(j) whenever i + j > n.

For example, letting n = 3 gives the problem x, + 2x, +
3x, = 3. There are only three solutions: x = (3, 0, 0),
(1, 1, 0), and (0, 0, 1). The convex hull of these three points
is shown in Figure 1 and has the inequality description

if i+j=smn,

otherwise.

x,20,x,20,x,20,
X, + 2x, + 3x,=13,
x, +x;z 1.

The addition table here is
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Convex hull of knapsack solutions.

+ (1|23
112130
21310]0
3(0(01|0

The subadditive cone T, is defined by the two inequalities
SB3) = (1) + f(2),
J2) = 2/(1),

and is drawn in Figure 2. It has lineality generated by
(1, 2, 3), giving the equation x, + 2x, + 3x, =3, and
generating ray (1, O, 1), giving the inequality x, + x, = 1.
The dual problem here is to maximize #(3) subject to the
above equation and inequality; i.e., m(3) = =(1) + #(2) and
m(2) < 2x(1), and satisfying #(j) = ¢;,j =1, - -, 3, where ¢,,
¢,, ¢, are the coefficients in the primal objective function.
The dual problem can also be stated in terms of the linear
programming dual as

maximize 3\, + A, subject to A, = 0 and

N+ =0,

2\ =c,y,

INtHN =0

The relationship between this dual problem and the dual
function is that the function = is given by

7 =7(1,2 3) + M1, 0, 1).

Conversely, if a dual function = in T, is given, then 7 is a
linear combination of (1, 2, 3) and (1, 0, 1), where the
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Subadditive cone.

Objective value

IP and LP objective function values.

coefficient X, of (1, 0, 1) must be nonnegative. These
multipliers give the values of A, and ), for the linear
programming dual.

6. Cyclic group relaxations of the knapsack
problem

Gilmore and Gomory [10] considered methods for solving
knapsack problems in order to generate columns for the
linear programming formulation of the stock cutting
problem. In the process they showed a periodicity of the
solutions. We give an example. Consider the knapsack
problem (not a master problem)

minimize x, + 2x, + 3.x, subject to
X,z 0 and integer, j = 1, 2, 3, and

3x, +x, +8x;=10.

ELLIS L. JOHNSON

For a moment, consider that the right-hand side is not 10
but a parameter that is varied while the remainder of the
problem is fixed. Then the solutions are given in Table 1.

The periodicity in the solution begins at » = 15. From that
point on, x, = 0, x, = 0, 2, 1, and then repeats, whereas
x,=5,0,3,then 6, 1, 4, then 7, 2, §, etc. The general
pattern is that from some point on there is some one
variable x;, j = j*, that increases by one every time b
increases by 4;, and the other variables simply repeat with
period a,. The objective function increases by ¢; every period
(see Figure 3).

In general, a knapsack problem (not a master problem)
has the form

minimize ¢, x, + ¢,Xx, + - -+ + ¢,x, subject to

X = 0 and integer, j= 1, ---, n, and

ax, +a,x,+---+ax,=b,

where g, is a positive integer less than or equal to b, a
positive integer, and G is a real number that can be assumed
to be positive, without loss of generality, by adding the

equation to the objective function. Let us assume that the x
have been ordered so that

cla, = cj/aj,j= 2, -, n

Then, the optimal linear programming solution is x, = b/a,,
with cost ¢, b/a,. If the nonnegativity condition on x| is
relaxed, then the problem becomes

o DR YR bi
minimize (¢, — a3, )X, + - - ¢, - a"a, x, subject to
a,x, + --- a,x, = b(mod a,),

X, = 0 and integer, j = 2, ---, n,

which is a special case of the group problem from Section 4
but is not generally a master group problem. The answer to
the group problem gives values (x¥, - - -, x¥) for the
nonbasic variables which are optimal to the original
knapsack problem provided x, given by

x,=(b=-(a,x¥+ --- +a,x¥)a,

is nonnegative. This x, is integer because a,x3 + - -+ + a,x}
is congruent to b modulo a,.

In the example given, the group problem obtained by
relaxing nonnegativity of x, is

T 1 .
minimize l§x2 + 3% subject to

X, + 10x, = b(mod 3) and x, = 0 and integer, j = 2, 3.

There are three different optimal solutions for different
values of the right-hand side b: (x,, x,) = (0, 0) for b
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Table 1 Knapsack solutions.

b 1 2 3 4 5 6 7 8 9 10 1
x 0 0 1 1 1 2 2 0 3 3 1
xz2 1 2 0 1 2 0 1 0 0 1 0
x< 0 0 0 0 0 0 0 1 0 0 1
obj 2 4 1 3 5 2 4 3 3 5 4

12 13 14 15 16 17 18 19 20 21
4 4 2 5 0 3 6 1 4 7
0 1 0 0 0 0 0 0 0 0
0 0 1 0 2 1 0 2 1 0
4 6 5 5 6 6 6 7 7 7

congruent to 0 modulo 3, (x,, x,) = (0, 2) for b congruent to
1 modulo 3, and (x,, x;) = (0, 1) for b congruent to 2
modulo 3. These three solutions are optimal to the knapsack
problem when b = 0, b = 16, and b = 8, respectively, for the
three different values of » modulo 3.

Aroaz and Johnson [9] have shown that very many facets
of the knapsack problem can be obtained from facets for the
group relaxation. This result can be contrasted with the
above result on getting solutions to the knapsack problem
from solutions for the group relaxation. Consider the master
knapsack problem

lx, + 2x, + -+ + nx, = n, x; = 0 and integer,
and its group relaxation, which can be written
I, +2t,+ - +(d— Dty
= p(mod d), t; = 0 and integer,

where d is a positive integer d < n and » (mod d) is not
equal to zero. A valid inequality for the group relaxation

mb, +mb,+ w2 m,

can be expanded to a valid inequality for the knapsack
problem

AT PR i SV PR JEERE N ok JFINY NI S Y T

Tl Ty 2T,

in the periodic way indicated above. The result of Aroaz and
Johnson is that if we start with a facet for the group
relaxation of the master knapsack problem and if

d < n/2 + 1, then the resulting valid inequality for the
knapsack problem is also a facet for that problem. Thus the
facets of group relaxations may give facets for knapsack
problems and always do under the condition above.

7. Dual functions for mixed integer cyclic group
problems

In order to introduce the mixed integer programming dual,
we begin with a special case: the cyclic group problem with
continuous variables. This problem was introduced by
Gomory and Johnson [11], and the results given here appear
there except that the dual problem is not explicitly stated
there but is a consequence of their results.
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The cyclic group problem with continuous variables is

minimize ¢t + ¢*s* + ¢"s” subject to
;= 0andinteger,j=1,---,ms =0;s =0;

at +s —s =b(mod 1).

Trgs

J;

Thus, s and s~ are continuous variables. For such a
problem, it only makes sense to have at most two
continuous variables since there is only one constraint and
any other variables could be scaled to have a coefficient of
plus or minus one. The a; are real numbers but can be
assumed to be in the interval (0, 1). Since we can have any
vector (@, - - -, a,), for any n = 1, the solutions ¢ can be
considered to be functions on the unit interval having finite
skeleton; i.e., t(a) = 0 except on a finite set.

The dual problem is

maximize =(b) subject to

na)=sc, s, =sc, wEC

where C is the cone
C={f:[0, 1] > R| f(b) = fla) + f(b — a),
fla+ a’)= fla) + f(a’), ala,a €]0, 1]},

and f has direction derivatives at 0 and 1. The =* and = are
defined to be the directional derivatives

= limitfga-),
a—0+ a
- . .1 =-a
=] .
i alir}l-tf 1—-a

Although the convex hull of all solutions ¢ is not
polyhedral (not even closed), if we fix a, -- -, a, to be
rational numbers in the unit interval (0, 1), then the
restriction of the solutions to this subproblem does have a
polyhedral convex hull, and the facets of it are all given by
functions fin C. In [11], some of these functions are
identified as always giving facets for every rational

subproblem. 211
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