Some aspects
of the theory

of statistical
control schemes

by Emmanuel Yashchin

Control schemes (charts) are widely used in
industrial quality control as means of monitoring
the quality of manufactured products. These
schemes provide a set of criteria for testing
whether a given sequence of observations
corresponds to an “on-target” state of the
production process. In the present work we
consider some graphical, computational, and
statistical aspects of control charting—criteria
of performance, methods of derivation, analysis,
design, etc. We introduce the class of “Markov-
type” control schemes and discuss some of its
properties.

1. Introduction: Control schemes and
characterization of their performance

Let x,, x,, - - - be a sequence of observations related to a
certain process. The observation x, may represent, for
example,

¢ Sample percentage of defective chips in the ith produced
lot;

e Total number of defects found in the ith produced wafer;

e Sample mean of four diameters of ball bearings chosen at
random during the ith production period;

e Sample standard deviation of ten simultaneous
measurements (corresponding to various locations) of
polyethylene film thickness taken during the jth sampling
period;
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o Waiting time of the ith customer in the queue;

o Discrepancy between the actual amount of product
shipped in the ith month and that predicted by a given
model;

and so on; for purposes of our discussion the nature of
incoming observations is immaterial. In most practical
situations we would like our observations to behave in a
certain way, for example to fall as close as possible to some
target value, to stay below some prescribed limit, etc. Failure
of the observations to comply with this desired behavior is
considered as an out-of-control situation; we would like to
detect such behavior as early as possible.

In order to monitor sequences of observations, we use
control schemes. A control scheme is a set of criteria by
which to test, at any given moment of time, whether the
process generating the observations is under control. Clearly,
many different control schemes can be associated with the
same sequence of observations; some of the better known
include Shewhart schemes, moving average schemes of
various types, etc. In order to compare different types of
schemes we need to introduce some criterion of performance
of a control scheme. The most important one is represented
by the run length (RL) of a scheme. If the input observations
correspond to an on-target situation, we would like the RL
to be as long as possible; otherwise, it should be as short as
possible. Since the RL is a random variable, the actual
comparison between control schemes is usually based on
some of its characteristics, such as average run length (ARL),
median or some other quantile of the run length, etc.

For example, let us assume that the observations are
independent, identically distributed (iid), and normal, with
mean g and s.d. ¢ = 1. The target level of the process is
u = 0. Then for every control scheme we can draw an ARL
curve as a function of the process level u. In particular, for a
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two-sided Shewhart scheme {[a signal is triggered if a single
observation falls outside the interval (-3, 3)] the on-target
ARL is 370 and the ARL corresponding to u = 1 (i.e., a shift
in mean by one standard deviation) is 45. One can find an
alternative control scheme (Cusum) with the same degree of
protection against false alarms, but much better sensitivity
with respect to an assumed shift in mean: For this scheme
ARL (u = 1) = 10. Thus, one way to characterize the
performance of a control scheme with respect to a certain
change in the process level would be in terms of its
“resolution,” which in the case of a fixed sampling interval
can be defined as a ratio between the ARLs corresponding to
acceptable (“good”) and unacceptable (“bad”) levels of the
process (these levels are determined on the basis of practical
and/or economic considerations).

In situations where the sampling interval is not a fixed
number, it is natural to characterize the performance of a
scheme in terms of the time to signal (TS) instead of the run
length; in such cases one can define the resolution as a ratio
between the ATSs (average time to signal) corresponding to
“good” and “bad” levels of the process (several examples of
this approach can be found in [1]). Such situations may
occur either because of the inherent properties of the
underlying process or because of the sampling policy, which
calls, for example, for tightened, normal, or reduced
sampling intensity depending on the current assessment of
the process behavior.

The sampling intensity needed to achieve a certain
resolution may by itself serve as an alternative criterion for
comparison between control schemes. To illustrate this
point, let us ask the following question: If (in the example
above) we took n observations at a time and applied a
Shewhart scheme to their sample means, how large should »
be to ensure the same sensitivity at u = 1 as our Cusum
scheme? One can show that to achieve that we need to take
n = 3; a direct conclusion is that in some situations by using
a Cusum scheme instead of a Shewhart one can reduce the
sampling intensity by a factor of 3 and still keep the same
“resolution” between “good” and “bad” levels of the process.

In most practical situations one can identify a set of
several control schemes which are likely to have a
“reasonable” resolution; once one limits the choice to
representatives of this set, other features may become
important, depending on the particular application. For
example, in quality control applications one may be
especially interested in schemes that enable easy visual
(graphical) interpretation, including intuitively appealing
procedures for estimating the current level of the controlled
process, that are robust with respect to slight departures from
the assumed features of the model (e.g., normality), that are
based on few signal criteria, etc. In some other applications
(e.g., robot control) one may be primarily interested in
“parsimonious” schemes that are not associated with
excessive computational effort or memory requirements.
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However, one of the most universally desired features of a
good control scheme is its “designability.” In other words,
once the “good” and “bad” levels of the process as well as
corresponding sensitivity requirements are specified, one
would like to be able to design, in a relatively straightforward
way, a scheme of a given type and determine the sampling
intensity needed to meet these requirements. Clearly, a
“designable” type of a control scheme must also be
“analyzable”; i.e., one must be able to examine (preferably
by analytic means) the RL behavior of a scheme with respect
to relevant stochastic patterns of incoming observations. As
we shall see, these requirements give strong support to
“Markov-type” schemes, especially when the monitored
sequences of observations typically correspond to an iid
process. In quality control applications, Cusum schemes are
especially attractive because of their simplicity, easy
graphical interpretation, availability of approximations for
some more general (non-iid) inputs, etc. (see [2-5]).

Analysis of the RL and careful design of control schemes
are especially important in situations where measurements
are taken and processed automatically and/or where several
parameters are controlled simultaneously. In such situations
frequent out-of-control signals associated with practically
nonimportant changes in process parameters may cause
frequent unjustified corrective actions and eventually ruin
the discipline of the operator; on the other hand, failure to
detect a truly out-of-control situation rapidly may result in a
substantial amount of poor-quality product.

For example, consider the following situation related to
the production of surface-mounted printed circuit boards.
Assume that a board has 400 pads, each containing a certain
amount of solder paste deposited by squeezing it through a
mask. Before the components are mounted on the board and
the solder is reflowed, the volumes of solder paste on each
pad are measured by an optical scanner. If the
measurements corresponding to some pad show an erratic
behavior (which may be caused, for example, by a partially
clogged slot in the mask), an out-of-control signal is
triggered. It is clear that use of a 3-sigma Shewhart scheme
to control the subsequent volumes on a pad would result, on
the average, in one false out-of-control signal per board!
(Indeed, as we mentioned earlier, its on-target ARL is 370.)
So, if we wanted the probability of a false alarm within an
eight-hour shift not to exceed 5%, we should have undergone
the appropriate design and analysis procedure. The final
control scheme would probably represent some kind of a
compromise between the desired sensitivity and degree of
protection against false alarms.

This example makes it clear that one cannot blindly apply
standard control schemes considered in some Quality
Control textbooks to situations involving simultaneous
control of several parameters. Yet, such situations are rather
common in modern industry, and it is not unusual to see
thousands of sequences monitored simultaneously. To

IBM J. RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987




summarize, any control scheme associated with automatic
data processing and/or simultaneous control of several
parameters should be thoroughly analyzed before it can be
recommended for use. The analysis should involve
identification of various possible patterns of incoming
observations and assessment of the corresponding run length
distributions. Its ultimate aim is to ensure that the run
length of the scheme under consideration is sufficiently long
if the changes in process parameters are not practically
important, and sufficiently short if they are.

In the context of modern process control, another
property of a control scheme becomes crucial, namely, its
capability to incorporate new information immediately upon
its arrival, and update itself accordingly. This criterion
corresponds to one of the weakest points of Shewhart control
schemes, which are typically associated with first
subgrouping observations into samples and only then
updating the scheme. Clearly, in situations where
observations (measurements) are not “naturally” grouped,
but rather arrive one at a time, such artificial subgrouping
leads to waste of time and loss of resolution power of the
scheme; it is not inherently tied to the problem of control
itself. One of the main reasons for creating artificial samples
when running Shewhart schemes is related to concern that
individual observations may have other than normal
distribution; by using sample averages one could bring the
scheme characteristics closer to those predicted by the
normal model.

Some other types of schemes, however, are free of such
drawbacks. For example, in the case of Cusum-Shewhart
schemes the process of cumulative summation itself brings
us (by virtue of the Central Limit Theory) into the normal
domain, eliminating any necessity for artificial grouping. In
general, every scheme considered in the present work is
based on the principle of immediate utilization of incoming
information introduced in [1]; in this work one can also find
discussion on some additional reasons of an economic or
statistical nature for not updating the schemes immediately.

The area of statistical control is by no means limited to
analysis of control schemes and their run length
characteristics. Other important aspects include the problems
of estimating the current process mean and detecting the
points of change [6-11], forecasting and adaptive control
[12-14], cost analysis and economic design of control
procedures [15-17], and many others. The scope of the
present work also does not enable us to discuss the questions
related to actions following an out-of-control signal [various
possibilities include an immediate stopping of the
production process until the situation is clarified and the
problems (if any) dealt with; increasing the sampling
intensity and/or switching to a tighter mode of operation
which, in turn, could lead to either more drastic actions or
return to the normal operating mode—depending on
subsequent behavior of the process; introducing an
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appropriate feedback correction, etc.}. The last topic is
discussed in several books, e.g., [18, 19]; for results

related to Cusum schemes see also the monographs by

van Dobben de Bruyn [20], Woodward and Goldsmith [21],
and Bissell [22], and the guide by the British Standards
Institution [23].

2. How to derive a “good” control scheme

In this section we give several intuitively appealing ways of
obtaining control schemes with good resolution properties.
One can probably approach this problem from four different
directions, which in many cases lead to the same result. We
assume that the controlled parameter is the level (mean) of
the sequence {x,}.

The first approach calls for trying to estimate the current
process level, analytically or by graphical means (e.g., see
[6]), and trigger an out-of-control signal if the resulting
estimate falls too far from the target region. This approach
immediately leads to a Shewhart scheme (where estimation
is based on the last observed point) and to a weighted
moving average scheme based on the sequence of linear
unbiased estimators

M= wox, + WX, + o F W X

i=1529”'7 (1)

where {w} is some (finite or infinite) sequence of weights
satisfying 3w, = 1. Graphically, it uses a pair of horizontal
lines as signal criteria; the signal is triggered at the first time
the trajectory {M) falls outside the strip defined by these
lines. Some special cases include the simple (nonweighted)
moving average scheme and the geometric moving average
scheme [24, 25]:

M=(1-wM_ +wx, i=12 -, @)

(0 < w < 1); clearly, it corresponds to an infinite sequence of
geometrically decreasing weights,

In general, moving average schemes have a strong
“inertia”; i.e., they are typically slow in detecting large
changes in the process level. Assigning larger weights to most
recent observations may substantially reduce the “inertia”
but leaves us with a control scheme based on too many
parameters, which complicates the problem of designing a
scheme with specified properties. Other unpleasant features
of the moving average trajectory are related to its graphical
representation; strong serial correlation within this sequence
frequently produces an iltusion of cycles [26], a single outlier
enters into several averages and may create an illusion of a
shift in the process level, etc. We must note, however, that
the geometric moving average process is widely used in
problems of forecasting and feedback control, and as a two-
sided control scheme, primarily because of its simplicity,
reasonable resolution, and ability to provide a simple

estimate of the current process level [27, 28]. 201
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The second approach can be based on the likelihood ratio
considerations. Let us suppose that f(x) and f,(x) represent
the density of observations under on-target and off-target
conditions, respectively (for simplicity, we assume that
observations are realizations of a continuous random
variable). Now we can suggest a control scheme which calls
for an out-of-control signal at time # if for some r the last r
observations (x,_,,, X,_,. * **» X,) are “significant” in the

likelihood ratio sense, i.e., if for some A

" Sikx)
B T ®
the value of 4 serves primarily to determine the trade-off
between the desired degree of protection against false alarms
and sensitivity requirements. Each term of the above sum
represents a score contributed by an appropriate observation,
The scheme (3) can be alternatively formulated as follows
(Page’s scheme): Define the process {S,i=0, 1, -- -} by
means of

Jﬁ(xi))+
Jox))

and trigger an out-of-control signal if S; > /. One can see
that this method is essentially based on a sequence of SPRTs
(Sequential Probability Ratio Tests)—we start accumulating
information (scores) in an attempt to reject the hypothesis
that the observations come from the on-target population. If,
however, the test leads to acceptance (i.e., S, = 0 for some
i)—we immediately re-initiate the test. This interpretation
enables one to derive formulas which relate the RL
characteristics of the Page’s scheme to quantities typically
considered in the context of sequential hypothesis testing
[29, 30].

As an example, consider the normal case, where f(x) and
f,(x) are both normal with a common standard deviation ¢
and means u, and g, > p,, respectively. Then the “score” is

S0=0’ Si=<Si_1+10g I = 1’2’ MR (4)

Sa) _ 1

log ) =3

(xl' - k), k= (F’o + ”l)/zy

2
[

A= N )]
Hy = Ho

i.e., this type of control scheme suggests accumulating
differences between observations and “reference value” k,
and triggering a signal as soon as the process

S, =0, S§=(S_,+x-h (6)

exceeds some signal level 4 = 0. What we have obtained is
the classical upper Page’s scheme for detecting changes of the
process level upwards.

The scheme (4) was introduced by Page {29] and has been
extensively studied since then. One of the reasons for its
popularity is related to the fact that it has a very good
resoluticn; in fact, Lorden [31] proved its asymptotic “worst-
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case” optimality as the signal level / tends to infinity. The
meaning of worst-case is that the off-target ARL is computed
under the assumption that at the moment the change occurs,
the scheme is in the worst possible state, i.e., 0. [As opposed
to that, we can consider the situation where at the moment
of change the value of a control scheme has some “steady-
state” distribution (see [32]), which may lead one to the
notion of a “steady-state” optimality.] Another reason is
related to the availability of an alternative graphical
representation; for example, in the normal case one can just
sequentially accumulate the successive deviations of the
observations from the target, and then apply a V-mask [6] to
the resulting cumulative sum trajectory; for that reason, the
Page’s schemes are also known as Cumulative Sum (Cusum)
control schemes.

The third approach calls for testing, at each moment of
time 7, the hypothesis H: No change in distribution
occurred before time n—against the alternative H,: A change
occurred before time #. In the case of iid observations with
known on-target and off-target densities, this approach leads
to the following likelihood ratio test: Reject H,, at stage n
(i.e., trigger an out-of-control signal at time #) if

n—r n

max lj?,(X,-)_ I1 lfl(X,-)

1=r=n j= i=n—r+

- > h, )
£Il fx)

in other words, if for some 1 < r < n the last r observations
are “significant.” Thus, in this case the control scheme
merely reduces to Page’s scheme considered earlier. It is
clear that our third approach involves estimation of the
change point (in the process of maximizing the likelihood in
the numerator); the post-signal estimate of the change point
is simply the last point at which the Page’s scheme (4) had a
value 0.

However, (7) represents a much more general approach, as
it can be easily generalized to the case in which either f,(x) or
/,(x) or both are unknown. So, for example, one can develop
a control scheme to detect an increase of some given 6 in the
population mean without actually knowing the on-target
mean. To the best of our knowledge, run length
characteristics of control schemes obtained by using this
approach have never been discussed in the literature, though
the “static” problem of inference about the change point has
been considered by several authors (e.g., see Hinkley [8, 9]).
It seems that such an approach might be especially useful for
the purpose of controlling the process variability: It enables
one to detect the presence of a new “assignable” cause of
variability by just tracking the data, i.e., without specifying
the on-target region.

Finally, our fourth approach could be based on Bayesian
considerations, assuming some a priori knowledge about
how likely each point of time is to become a change point.
One of the most robust results is obtained under the
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assumption that the underlying distribution of observations
may switch from f; to f; only as a result of some “shock” the
time to which is exponentially distributed (i.e., the on-target
lifetime has a constant hazard rate). Thus, we can assume
that for some small probability p, the process develops as
follows: If the current density is f;, at the time the next
observation is taken it will stay the same with probability

(1 — p) or switch to f, with probability p. After the change
the observations will be generated by f, until the change is
detected (see [25, 33)).

In this “random shock”-type model, it is reasonable to
adopt a control scheme which calls for a signal at time n
once the posterior probability that the change occurred
before n (given the data) exceeds some prescribed limit II;
1.e., the signal is triggered at time # if

“ _ .n
C,+(l —p)"glfo(xj)

where

I fix). 9)

J=r+l

C,= X (1=-pp Il fx)
=0 =1

In other words, the scheme calls for an out-of-control signal
at time # if
C"
S, =—"F—
»1=p) Hl Jolx)
=

Silx)
=(1+S_)—> 1-1])
This approach leads to an interesting (upper) control scheme

in the normal case; by denoting S, = A log S, [see (5)] we
obtain the scheme with S, = — and

(10)

S = Alog(l + ™) + [x, — k—Alog(l ~p), (1)

the structure of which looks very similar to that of the Page’s
scheme (6); in fact, when A tends to zero (i.e., the difference
between on-target and off-target means becomes larger and
larger with respect to ¢) the scheme (11) turns into an upper
Page’s scheme.

3. Markov-type control schemes

As we have seen in the previous section, one can find some
“good” (even optimal) control schemes of a Markov type;
i.e., the value of a control scheme at any given moment of
time depends only upon the new information which has
arrived at this moment of time and the previous value of the
scheme. To put this more formally, let us suppose that we
are interested in detecting change of a certain process
parameter upward. The Markov-type scheme to achieve this
goal can be, in general, viewed as an operator transforming
the original sequence of observations {x;} into the sequence
of values of the scheme {S; = 0} of the type
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S; = &(S;_p» X5 @), (12)

where g is a monotonically increasing function in its first
and (in many cases, but not necessarily) second argument,
and a is the vector of scheme parameters. The signal level

h >0 is chosen so as to achieve the desired trade-off between
the desired degree of protection against false alarms and
sensitivity; the signal is triggered at time # if S, > h. The
initial value of the scheme, 0 < S, < / (headstart), is usually
zero; however, in some cases a nonzero value is used to
implement the so-called FIR (fast initial response) feature
(see [34, 35]). It is clear that at each point of time J, the
value S, summarizes our evidence in support of the
hypothesis that the process is presently out of control. The
signal level, therefore, reflects the degree of accumulation of
information in support of this hypothesis that we are able to
tolerate; one can see that selecting # = 0 prevents us from
any accumulation of evidence, i.e., turns our control scheme
into a pure Shewhart scheme in which a signal is triggered
on the basis of the last observation only.

The function g is chosen in such a way that the control
scheme is a supermartingale when the process is in control
(i.e., the sequence possesses a sort of “anchor” which presses
it to zero and thus keeps it from drifting away toward the
signal level) and a submartingale when it is out of control;
i.e., in this case the evidence supporting the out-of-control
hypothesis is able to outweigh the “anchor” and cause the
scheme to “float up” and signal. This property explains the
rationale for using a positive headstart to implement the FIR
feature, which provides an instrument for detecting initially
present out-of-control conditions earlier than similar
conditions occurring later. Indeed, when the process is on
target, the scheme will be (most likely) brought to the
vicinity of zero by the anchoring mechanism, so that in this
case the expected effect of the headstart is minimal;
otherwise, however, the out-of-control signal will be triggered
much sooner.

Examples of the upper Markov-type scheme include the
“reflected” version of the geometric moving average scheme,

S, =fixed, §,={aS_, +( - a)x}, (13)

the Girshick-Rubin scheme (11) and the Page’s scheme

[(4), (6)]. In the latter cases one can see that the role of the
“anchor” is played by the reference value k, which is usually
chosen to be midway between the “acceptable” and
“unacceptable” levels of the controlled process.

Because of the process of accumulation of evidence
associated with every non-Shewhart control scheme, the
latter always has some degree of “inertia” which may delay
its reaction with respect to sharp changes in the process level.
To remove some of this inertia, one can supplement the
scheme with a Shewhart control limit ¢, i.e., introduce a
supplementary signal criterion which calls for an immediate
signal at time / if x, > . Clearly, this action does not affect
the Markovian property of the scheme.
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In a similar way, we can define a lower Markov-type
scheme in order to detect changes downward in the level of
the controlled parameter. For example, if the parameter of
interest is the mean of the sequence of observations {x}, it is
natural to select some upper scheme and apply it to the
sequence of reflected observations {—x]. For example, the
lower Page’s scheme for controlling the mean can be defined
in terms of a signal level &~ = 0, reference value k™ [clearly,
(—k") should be chosen close to midway between the
acceptable and (lower) unacceptable process level], and a
headstart 0 < S, < 7,

ST =[8_, + (=x, — KO,

i=1,2,--- (14)

signal if 7 > h™.

One of the most attractive properties of the class of
Markov-type schemes is that they are relatively easily
“analyzable.” Among the various approaches to the problem
of analysis we can mention the method of integral equations
originally suggested by Page [29], the method of systems of
linear algebraic equations [36], the direct approach method
[37], Brownian motion approximations [2, 3], and the
method of Markov chains [38]. From the author’s
experience, the latter approach seems to be the simplest and
the most efficient [5]. It is based on discretizing the interval
(0, &) into d parts and then, at each step, rounding the value
of a control scheme to the center of the appropriate
discretization interval. By doing this, we essentially replace
our control scheme trajectory with its discretized verston,
and therefore turn the scheme into a simple Markov chain
with (4 + 1) states, the last one being the absorbing state
corresponding to a signal; the run length behavior can then
be obtained in a relatively straightforward way from the
associated transition matrix. The efficiency of this approach
is primarily related to the fact that there is typically no need
for high levels of discretization to obtain good results; the
levels of magnitude d = 30 are usually sufficient for most
practical purposes [1, 5]. Indeed, when the process is out of
control, the run length characteristics depend primarily on
the magnitude of drift toward the signal level rather than on
the value of d. On the other hand, when the process is on-
target, one can expect the approximation to be good because
of the compensation of roundoff errors.

One can also expect the Markov-type schemes to be
relatively easily “designable.” For a class of Cusum-Shewhart
schemes, the problem of design was considered in [4] and
[5]. Solving this problem usually requires performing a
repetitive analysis of a sequence of schemes with fixed
parameters. Since such analysis is typically associated with
an extensive computational effort, the number of steps
needed to complete the design could be substantially reduced
by the availability of procedures for efficient sensitivity
analysis both by scheme and distribution parameters. For the
class of Cusum-Shewhart schemes such procedures were
developed in [39]; some of the results can be generalized for
more general Markov-type schemes.
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Now consider the situation in which one is interested in
detecting rapidly both types of shift of the process from its
on-target level. Such two-sided control can be achieved in
one of two ways. The first type of two-sided scheme calls for
separate design of an upper and a lower one-sided scheme,
and then for running them in parallel. The second type
defines a single scheme which, if the process is in control, is
supposed to stay within certain prescribed control bounds.
The usual geometric moving average scheme (2) is probably
the most frequently used representative of this class of two-
sided schemes (the “Cusum” analog of such a type of scheme
was recently considered by Crossier [40]). The main benefit
of using a two-sided scheme based on a single sequence is
related to the fact that the latter can usually be defined in
such a way that its value at any given moment of time
provides an estimate of the current process level. (We must
mention, however, that some schemes of the first type may
be as good in this respect; for example, the V-mask version
of a Cusum-Shewhart control scheme provides a very simple
and efficient way of estimating the current process mean [6].)

On the other hand, however, two-sided schemes of the
first type have a much better resolution with respect to the
“worst case” scenario; i.e., they are better tuned to respond
to most recent events. Indeed, consider the case in which the
process level is at the lower bound of the target region, and
then shifts upward. The two-sided scheme based on a single
sequence is then likely to be near its lower signal level at the
moment the shift occurs. In such a case it must waste some
time in first coming back to the center line; only then can it
proceed further toward the upper signal level. In
comparison, schemes of the first type have an “always ready”
upper scheme which never drops below zero and, therefore,
in situations as described above, is able to signal much
earlier. Moreover, schemes of the first type are less likely to
produce a signal indicating change of the process level in one
direction when the actual change is in the opposite direction.

Except for this worst-case comparison, the two-sided
schemes of both types typically show a roughly similar
performance. From the point of view of analysis and design,
the schemes of the first type usually allow more flexibility
and in some cases (e.g., for Cusum-Shewhart schemes, see
[32]) require a smaller computational effort, since the
analysis of such two-sided schemes can be decomposed into
a separate analysis of upper and lower schemes. It is the
opinion of the author that in most cases one will be more
interested in schemes with better worst-case sensitivity, i.e.,
two-sided schemes which represent a combination of an
upper and a lower scheme run in parallel.
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