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control  schemes 

Control  schemes  (charts) are widely  used  in 
industrial  quality  control as means of  monitoring 
the  quality of manufactured  products.  These 
schemes  provide  a  set of criteria  for  testing 
whether a  given  sequence of observations 
corresponds  to  an  “on-target”  state  of  the 
production  process.  In  the  present  work  we 
consider  some  graphical,  computational,  and 
statistical  aspects of  control  charting-criteria 
of performance,  methods of derivation,  analysis, 
design,  etc.  We  introduce  the  class of “Markov- 
type”  control  schemes  and  discuss  some of its 
properties. 

1. Introduction:  Control  schemes  and 
characterization of their  performance 
Let x,, x,, . . . be a sequence  of  observations  related to a 
certain process. The observation x, may represent, for 
example, 

0 Sample  percentage of defective chips in the ith produced 

0 Total number of defects found in the ith  produced  wafer; 
Sample mean of four diameters of  ball  bearings  chosen at 

0 Sample standard deviation of ten simultaneous 

lot; 

random during the ith production period; 

measurements (corresponding to various locations) of 
polyethylene  film  thickness taken during the ith sampling 
period; 
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0 Waiting time of the ith customer in the queue; 
Discrepancy  between the actual amount of product 
shipped in the ith month and that predicted by a given 
model; 

and so on; for  purposes of our discussion the nature of 
incoming observations  is immaterial. In  most  practical 
situations we  would  like our observations to behave in a 
certain way, for example to fall as close as possible to some 
target  value, to stay  below some prescribed limit, etc. Failure 
of the observations to comply  with this desired  behavior  is 
considered  as an out-of-control situation; we would  like to 
detect  such  behavior as early as possible. 

In order to monitor sequences of observations, we  use 
control schemes. A control scheme is a set  of criteria by 
which to test, at any given moment of time, whether the 
process  generating the observations is under control. Clearly, 
many  different control schemes can be associated with the 
same sequence of observations; some of the better known 
include Shewhart  schemes,  moving  average  schemes of 
various  types,  etc. In order to compare different  types of 
schemes we  need to introduce some criterion of performance 
of a control scheme. The most important one is  represented 
by the run length (RL) of a scheme. If the input observations 
correspond to  an on-target situation, we  would like the RL 
to be as long  as  possible;  otherwise,  it should be as short as 
possible.  Since the RL is a random variable, the actual 
comparison between control schemes is  usually  based on 
some of its characteristics,  such as average run length (ARL), 
median or some other quantile of the run length,  etc. 

For example,  let  us  assume that the observations are 
independent, identically distributed (iid), and normal, with 
mean p and s.d. u = 1. The target level  of the process  is 
p = 0. Then for  every control scheme we can  draw an ARL 
curve as a function of the process level p. In particular, for a 
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two-sided  Shewhart  scheme [a signal  is  triggered  if a single 
observation  falls outside the interval (-3,  3)] the on-target 
ARL is 370 and the ARL corresponding to p = 1 (i.e., a shift 
in mean by one standard deviation) is 45. One can find an 
alternative control scheme (Cusum) with the same degree of 
protection against  false alarms, but much better sensitivity 
with  respect to an assumed  shift in mean: For this scheme 
ARL ( p  = 1) = 10. Thus, one way to characterize the 
performance of a control scheme  with  respect to a certain 
change  in the process level would be in terms of its 
“resolution,” which in the case of a fixed sampling interval 
can  be  defined as a ratio between the ARLs corresponding to 
acceptable (‘‘good”) and unacceptable (“bad”) levels  of the 
process  (these  levels are determined on the basis  of practical 
and/or economic considerations). 

In situations where the sampling interval is not a fixed 
number, it is natural to characterize the performance of a 
scheme  in terms of the time to signal (TS) instead of the run 
length;  in  such  cases one can define the resolution as a ratio 
between the ATSs  (average time to signal) corresponding to 
“good and “bad” levels  of the process  (several  examples of 
this approach can be found in [I]). Such situations may 
occur either because  of the inherent properties of the 
underlying  process or because of the sampling policy,  which 
calls,  for example, for tightened, normal, or reduced 
sampling intensity depending on the current assessment of 
the process  behavior. 

The sampling intensity needed to achieve a certain 
resolution  may by  itself serve as an alternative criterion for 
comparison between control schemes. To illustrate this 
point, let us ask the following question: If (in the example 
above) we took n observations at a time and applied a 
Shewhart  scheme to their sample means, how  large should n 
be to ensure the same sensitivity at p = 1 as our Cusum 
scheme? One can show that to achieve that we  need to take 
n = 3; a direct conclusion is that in some situations by using 
a Cusum scheme instead of a Shewhart one can  reduce the 
sampling intensity by a factor of 3 and still  keep the same 
“resolution” between “good” and “bad” levels  of the process. 

In most practical situations one can identify a set of 
several control schemes  which are likely to have a 
“reasonable” resolution; once one limits the choice to 
representatives of this set, other features may  become 
important, depending on the particular application. For 
example, in quality control applications one may  be 
especially interested in schemes that enable easy  visual 
(graphical) interpretation, including intuitively appealing 
procedures for estimating the current level  of the controlled 
process, that are robust with  respect to slight departures from 
the assumed  features of the model  (e.g., normality), that are 
based on few signal criteria, etc.  In  some other applications 
(e.g., robot control) one may  be primarily interested in 
“parsimoniod schemes that are not associated  with 
excessive computational effort or memory requirements. 200 
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However, one of the most  universally  desired  features of a 
good control scheme  is its “designability.”  In other words, 
once the “good” and “ b a d  levels  of the process as well as 
corresponding sensitivity requirements are specified, one 
would  like to be able to design, in a relatively  straightforward 
way, a scheme of a given type and determine the sampling 
intensity needed to meet  these requirements. Clearly, a 
“designable”  type of a control scheme  must  also be 
“analyzable”;  i.e., one must be  able to examine (preferably 
by analytic means) the RL  behavior of a scheme  with  respect 
to relevant stochastic patterns of incoming observations. As 
we shall  see,  these requirements give strong support to 
“Markov-type’’  schemes,  especially  when the monitored 
sequences of observations typically correspond to an iid 
process.  In quality control applications, Cusum schemes are 
especially attractive because of their simplicity,  easy 
graphical interpretation, availability of approximations for 
some  more  general (non-iid) inputs, etc.  (see [2-51). 

Analysis  of the RL and careful  design of control schemes 
are especially important in situations where measurements 
are taken and processed automatically and/or where  several 
parameters are controlled simultaneously.  In  such situations 
frequent out-of-control signals  associated  with practically 
nonimportant changes in process parameters may  cause 
frequent unjustified  corrective actions and eventually ruin 
the discipline of the operator; on the other hand, failure to 
detect a truly out-of-control situation rapidly  may  result in a 
substantial amount of poor-quality product. 

For example,  consider the following situation related to 
the production of surface-mounted printed circuit boards. 
Assume that a board  has 400 pads,  each containing a certain 
amount of solder  paste  deposited by squeezing  it through a 
mask.  Before the components are mounted on the board and 
the solder  is  reflowed, the volumes of solder  paste on each 
pad are measured by an optical scanner. If the 
measurements corresponding to some pad  show an erratic 
behavior  (which  may be caused,  for example, by a partially 
clogged slot in the mask), an out-of-control signal  is 
triggered. It is  clear that use of a 3-sigma  Shewhart scheme 
to control the subsequent volumes on a pad  would  result, on 
the average, in one false out-of-control signal  per  board! 
(Indeed, as we mentioned earlier, its on-target  ARL  is  370.) 
So, if  we wanted the probability of a false alarm within an 
eight-hour  shift not to exceed 5%, we should have undergone 
the appropriate design and analysis  procedure. The final 
control scheme  would  probably  represent some kind of a 
compromise between the desired  sensitivity and degree  of 
protection against false alarms. 

standard control schemes  considered in some Quality 
Control textbooks to situations involving simultaneous 
control of  several  parameters. Yet, such situations are rather 
common in modem industry, and it  is not unusual to see 
thousands of sequences monitored simultaneously. To 

This example  makes  it  clear that one cannot blindly  apply 
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summarize, any control scheme associated  with automatic 
data processing and/or simultaneous control of  several 
parameters should be thoroughly analyzed before it can be 
recommended for use. The analysis should involve 
identification of various possible patterns of incoming 
observations and assessment  of the corresponding run length 
distributions. Its ultimate aim is to ensure that  the run 
length of the scheme under consideration is  sufficiently long 
if the changes in process parameters are  not practically 
important,  and sufficiently short if they are. 

In the context of modern process control, another 
property of a control scheme becomes crucial, namely, its 
capability to incorporate new information immediately upon 
its arrival, and update itself  accordingly. This criterion 
corresponds to one of the weakest points of Shewhart control 
schemes,  which are typically  associated  with  first 
subgrouping observations into samples and only then 
updating the scheme. Clearly, in situations where 
observations (measurements) are not “naturally” grouped, 
but rather arrive one at a time, such artificial subgrouping 
leads to waste  of time and loss of resolution power  of the 
scheme; it  is not inherently tied to the problem of control 
itself. One of the main reasons  for creating artificial samples 
when running Shewhart schemes is related to concern that 
individual observations may  have other than normal 
distribution; by using sample averages one could bring the 
scheme characteristics closer to those predicted by the 
normal model. 

Some other types  of  schemes,  however, are free of such 
drawbacks. For example, in the case  of Cusum-Shewhart 
schemes the process  of cumulative summation itself  brings 
us (by virtue of the Central Limit Theory) into  the normal 
domain, eliminating any necessity  for  artificial grouping. In 
general, every scheme considered in the present work is 
based on the principle of immediate utilization of incoming 
information introduced in [I]; in this work one can also  find 
discussion on some additional reasons of an economic or 
statistical nature for not updating the schemes immediately. 

The area of statistical control is  by no means limited to 
analysis of control schemes and their run length 
characteristics. Other important aspects include the problems 
of estimating the current process mean and detecting the 
points of change [6-111, forecasting and adaptive control 
[ 12-  141, cost analysis and economic design  of control 
procedures [ 15- 171, and many others. The scope  of the 
present work also does not enable us to discuss the questions 
related to actions following an out-of-control signal [various 
possibilities include an immediate stopping of the 
production process until the situation is  clarified and the 
problems (if any) dealt with; increasing the sampling 
intensity and/or switching to a tighter mode of operation 
which, in turn, could lead to either more drastic actions or 
return to the normal operating mode-depending on 
subsequent behavior of the process; introducing an 

appropriate feedback correction, etc.]. The last topic is 
discussed in several  books,  e.g., [ 18, 191; for  results 
related to Cusum schemes see also the monographs by 
van Dobben de Bruyn [20], Woodward and Goldsmith [21], 
and Bissell [22], and  the guide by the British Standards 
Institution [23]. 

2. How to derive a “good” control scheme 
In this section we  give several intuitively appealing ways  of 
obtaining control schemes with  good resolution properties. 
One can probably approach this problem from four different 
directions, which in many cases  lead to the same result. We 
assume that  the controlled parameter is the level (mean) of 
the sequence (x,}. 

The first approach calls  for trying to estimate the current 
process  level,  analytically or by graphical means (e.g.,  see 
[6]), and trigger an out-of-control signal if the resulting 
estimate falls too far from the target  region. This approach 
immediately leads to a Shewhart  scheme  (where estimation 
is  based on  the last  observed point) and  to a weighted 
moving  average scheme based on the sequence of linear 
unbiased estimators 

Mi = wox, + ”lx,-l + . . . + wk”IX,-k+l, 

i = 1, 2, . . ., ( I )  

where { w,) is some (finite or infinite) sequence of  weights 
satisfying c,w, = 1. Graphically, it uses a pair of horizontal 
lines  as  signal criteria; the signal  is  triggered at the first time 
the trajectory (Mi} falls outside the strip defined by these 
lines. Some special  cases include the simple (nonweighted) 
moving  average  scheme and  the geometric moving average 
scheme [24, 251: 

M I =  (1 - w)M,-, + wx,, i =  1 , ,  2 . . .  , (2) 

(0 < w < 1);  clearly,  it corresponds to an infinite sequence of 
geometrically  decreasing  weights. 

In  general,  moving  average  schemes  have a strong 
“inertia”; i.e., they are typically slow in detecting large 
changes in the process  level.  Assigning  larger  weights to most 
recent observations may substantially reduce the “inertia” 
but leaves us with a control scheme based on  too many 
parameters, which complicates the problem of  designing a 
scheme  with  specified properties. Other unpleasant features 
of the moving average trajectory are  related to its graphical 
representation: strong serial correlation within this sequence 
frequently produces an illusion of  cycles [26], a single outlier 
enters into several  averages and may create an illusion of a 
shift  in the process  level,  etc.  We must note, however, that 
the geometric moving  average  process is widely  used in 
problems of forecasting and feedback control, and as a two- 
sided control scheme, primarily because  of its simplicity, 
reasonable resolution, and ability to provide a simple 
estimate of the current process  level [27, 281. 201 
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The second approach can be  based on  the likelihood ratio 
considerations. Let us suppose that&(x) andfi(x) represent 
the density of observations under on-target and off-target 
conditions, respectively (for simplicity, we assume that 
observations are realizations of a continuous random 
variable). Now  we can suggest a control scheme which  calls 
for an out-of-control signal at time n if for some r the last r 
observations (xn-,+,, x ~ - ~ ~ ,  . . ., x,) are “significant” in the 
likelihood ratio sense, Le.,  if for some h 

the value of h serves primarily to determine the trade-off 
between the desired  degree  of protection against false alarms 
and sensitivity requirements. Each term of the above sum 
represents a score contributed by an appropriate observation. 
The scheme (3) can be alternatively formulated as  follows 
(Page’s scheme):  Define the process IS,, i = 0, 1, . . . ] by 
means of 

and trigger an out-of-control signal if S, > h. One can see 
that this method is essentially  based on a sequence of SPRTs 
(Sequential Probability Ratio Tests)-we start accumulating 
information (scores) in an attempt to reject the hypothesis 
that the observations come from the on-target population. If, 
however, the test leads to acceptance (i.e., So = 0 for some 
i)-we immediately re-initiate the test. This interpretation 
enables one to derive formulas which relate the RL 
characteristics of the Page’s scheme to quantities typically 
considered in the context of sequential hypothesis testing 
[29, 301. 

As an example, consider the normal case, where&(x) and 
fi(x) are both normal with a common standard deviation u 

and means p,, and pl > p,,, respectively. Then  the “score” is 

i.e., this type of control scheme suggests accumulating 
differences  between observations and “reference value” k, 
and triggering a signal as soon as the process 

S,, = 0, Si = (Si-, + X, - k)’ (6) 

exceeds some signal  level h 2 0. What we have obtained is 
the classical upper Page’s scheme for detecting changes  of the 
process  level  upwards. 

The scheme (4) was introduced by  Page [29] and has  been 
extensively studied since then. One of the reasons  for its 
popularity is related to the fact that  it has a very  good 
resolution; in fact, Lorden [31]  proved its asymptotic “worst- 
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case” optimality as the signal  level h tends to infinity. The 
meaning of  worst-case  is that the off-target ARL is computed 
under the assumption that at the moment the change  occurs, 
the scheme is in the worst  possible state, i.e., 0. [As opposed 
to that, we can consider the situation where at the moment 
of change the value of a control scheme has some “steady- 
state” distribution (see [32]), which  may  lead one  to  the 
notion of a “steady-state’’ optimality.] Another reason  is 
related to  the availability  of an alternative graphical 
representation; for example, in the normal case one can just 
sequentially accumulate the successive deviations of the 
observations from the target, and then apply a V-mask  [6] to 
the resulting cumulative sum trajectory; for that reason, the 
Page’s schemes are also  known as Cumulative Sum (Cusum) 
control schemes. 

The third approach calls  for  testing, at each moment of 
time n, the hypothesis H,: No change in distribution 
occurred before time n-against the alternative H,: A change 
occurred before time n. In the case of iid observations with 
known on-target and off-target  densities, this approach leads 
to the following likelihood ratio test:  Reject H, at stage n 
(Le., trigger an out-of-control signal at time n) if 

”“r 

n &(x,) 
i= I 

in other words, if for some 1 5 r 5 n the last r observations 
are  “significant.” Thus, in this case the control scheme 
merely reduces to Page’s scheme considered earlier. It is 
clear that our third approach involves estimation of the 
change point (in the process  of maximizing the likelihood in 
the numerator); the post-signal estimate of the change point 
is  simply the last point at which the Page’s scheme (4) had a 
value 0. 

However, (7) represents a much more general approach, as 
it can be  easily  generalized to the case in which either&(x) or 
fi(x) or both are unknown. So, for example, one can develop 
a control scheme to detect an increase of some given 6 in the 
population mean without actually knowing the on-target 
mean. To the best of our knowledge, run length 
characteristics of control schemes obtained by using this 
approach have  never  been  discussed in the literature, though 
the “static” problem of inference about  the change point has 
been considered by several authors (e.g.,  see Hinkley [S, 91). 
It seems that such an approach might be especially  useful  for 
the purpose of controlling the process  variability: It enables 
one to detect the presence  of a new “assignable”  cause  of 
variability by just tracking the  data, i.e., without specifying 
the on-target region. 

Finally, our fourth approach could be based on Bayesian 
considerations, assuming some a priori knowledge about 
how  likely  each point of time is to become a change point. 
One of the most robust results  is obtained under the 
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assumption that  the underlying distribution of observations 
may  switch from& tof, only as a result of some “shock” the 
time to which  is exponentially distributed (i.e., the on-target 
lifetime has a constant hazard rate). Thus, we can assume 
that for some small probability p ,  the process  develops  as 
follows:  If the current density is&, at the  time  the next 
observation is taken it will stay the same with probability 
(1 - p )  or switch tof, with probability p .  After the change 
the observations will  be generated byf; until the change  is 
detected (see [25 ,  331). 

In this “random shock”-type model, it is reasonable to 
adopt a control scheme which  calls  for a signal at time n 
once the posterior probability that  the change occurred 
before n (given the  data) exceeds some prescribed limit II; 
i.e., the signal is triggered at time n if 

where 
n- I , n 

cn = c ( 1  - PI> n .&(XJ) n f , ( X J ) .  (9) 
-0 j =  I I 

In other words, the scheme calls for an out-of-control signal 
at time n if 

This approach leads to an interesting (upper) control scheme 
in the normal case; by denoting 3, = A log Sn [see ( 5 ) ]  we 
obtain the scheme with 3, = --Q, and 

3, = A log(1 + + [x,, - k - A log(1 - p)] ,  (11) 

the structure of  which looks very similar to  that of the Page’s 
scheme (6); in fact, when A tends to zero  (i.e., the difference 
between on-target and off-target means becomes  larger and 
larger  with  respect to U )  the scheme ( 1  I )  turns  into  an upper 
Page’s scheme. 

3. Markov-type  control  schemes 
As  we  have  seen in the previous section, one can find some 
“good” (even optimal) control schemes of a Markov type; 
i.e., the value  of a control scheme at any given moment of 
time depends only upon the new information which  has 
arrived at this moment of time and the previous value of the 
scheme. To put this more formally, let us suppose that we 
are interested in detecting change of a certain process 
parameter upward. The Markov-type scheme to achieve this 
goal can be, in general, viewed  as an operator transforming 
the original sequence of observations {x,) into the sequence 
of  values  of the scheme (Si 2 0 )  of the type 
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S, = g(S,-,, x,, 4, (12) 
where g is a monotonically increasing function in its first 
and (in many cases, but not necessarily) second argument, 
and ii is the vector of  scheme parameters. The signal  level 
h > 0 is  chosen so as to achieve the desired  trade-off  between 
the desired  degree of protection against false alarms and 
sensitivity; the signal  is  triggered at time n if Sn > h. The 
initial value of the scheme, 0 5 So 5 h (headstart), is  usually 
zero;  however, in some cases a nonzero value is used to 
implement the so-called FIR (fast initial response) feature 
(see [34, 351). It is clear that at each point of time i, the 
value Si summarizes our evidence in support of the 
hypothesis that  the process  is  presently out of control. The 
signal  level, therefore, reflects the degree  of accumulation of 
information in support of this hypothesis that we are able to 
tolerate; one can see that selecting h = 0 prevents us from 
any accumulation of evidence, i.e., turns  our control scheme 
into a pure Shewhart scheme in which a signal  is  triggered 
on  the basis  of the last observation only. 

The function g is  chosen in such a way that  the control 
scheme  is a supermartingale when the process is in control 
(i.e., the sequence possesses a sort of “anchor” which  presses 
it to zero and thus keeps it from drifting away  toward the 
signal  level) and a submartingale when  it  is out of control; 
i.e., in this case the evidence supporting the out-of-control 
hypothesis is able to outweigh the “anchor” and cause the 
scheme to “float up” and signal. This property explains the 
rationale for  using a positive headstart to implement the FIR 
feature, which  provides an instrument for detecting initially 
present out-of-control conditions earlier than similar 
conditions occurring later. Indeed, when the process is on 
target, the scheme will  be (most likely) brought to the 
vicinity of zero by the anchoring mechanism, so that in this 
case the expected  effect  of the headstart is minimal; 
otherwise,  however, the out-of-control signal will be  triggered 
much sooner. 

Examples  of the upper Markov-type scheme include the 
“reflected”  version of the geometric moving average scheme, 

So = fixed, Si = (cYS,, + (1  - a)x,)+, (13) 

the Girshick-Rubin scheme (1  1) and  the Page’s scheme 
[(4), (6)] .  In the latter cases one can see that the role of the 
“anchor” is played by the reference  value k, which is usually 
chosen to be midway  between the “acceptable” and 
“unacceptable” levels  of the controlled process. 

Because  of the process  of accumulation of evidence 
associated  with  every  non-Shewhart control scheme, the 
latter always has some degree  of “inertia” which  may  delay 
its reaction with  respect to sharp changes in the process  level. 
To remove some of this inertia, one can supplement the 
scheme  with a Shewhart control limit c, i.e., introduce a 
supplementary signal criterion which  calls  for an immediate 
signal at time i if x, > c. Clearly, this action does not affect 
the Markovian property of the scheme. 203 
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In a  similar way, we can define a lower Markov-type 
scheme  in order  to detect  changes  downward in  the level of 
the controlled  parameter. For example, if the  parameter of 
interest is the  mean of the sequence of observations {x,}, it is 
natural  to select some upper scheme and apply  it to  the 
sequence  of reflected observations {-x,}. For example, the 
lower Page’s scheme  for  controlling the  mean  can be defined 
in terms of a signal level h- 2 0, reference value k- [clearly, 
(-k-) should be chosen close to midway between the 
acceptable and (lower) unacceptable process level], and a 
headstart 0 5 Si 5 h-, 

s; = [S,, + (-xi - k 3 + ,  i = 1 > >  2 . ‘ .  3 (14) 

signal if S; > h-. 
One of the most  attractive  properties  of the class of 

Markov-type  schemes is that they are relatively easily 
“analyzable.” Among  the various  approaches to  the problem 
of analysis we can  mention  the  method of integral equations 
originally suggested by Page [29], the  method of systems of 
linear algebraic equations [36], the direct approach  method 
[37], Brownian motion  approximations [ 2 ,  31, and  the 
method of Markov  chains [38]. From  the author’s 
experience, the latter approach seems to  be  the simplest and 
the most efficient [5]. It is based on discretizing the interval 
(0, h )  into d parts and  then,  at each step, rounding  the value 
of a control scheme to  the  center of the  appropriate 
discretization  interval. By doing this, we essentially replace 
our control scheme  trajectory with its discretized version, 
and therefore turn  the scheme into a  simple Markov chain 
with (d + 1) states, the last one being the absorbing  state 
corresponding to a signal; the  run length  behavior can  then 
be obtained in a relatively straightforward way from  the 
associated transition  matrix. The efficiency of  this approach 
is primarily related to  the fact that  there is typically no need 
for high levels of discretization to  obtain good results; the 
levels of magnitude d = 30 are usually sufficient for  most 
practical  purposes [ 1, 51. Indeed,  when the process is out of 
control,  the  run length characteristics depend primarily on 
the  magnitude of drift  toward the signal level rather  than  on 
the value of d. On  the  other  hand, when the process is on- 
target, one  can expect the  approximation  to be good because 
of the  compensation of  roundoff  errors. 

One  can also expect the Markov-type  schemes to be 
relatively easily “designable.” For a class of  Cusum-Shewhart 
schemes, the problem of design was considered in [4] and 
[ 5 ] .  Solving this  problem usually requires  performing  a 
repetitive analysis of  a  sequence of schemes with fixed 
parameters.  Since  such analysis is typically associated with 
an extensive computational effort, the  number of steps 
needed to complete the design could be substantially reduced 
by the availability of procedures  for efficient sensitivity 
analysis both by scheme and distribution  parameters. For  the 
class of Cusum-Shewhart  schemes  such  procedures were 
developed  in  [39]; some of the results can be generalized for 
more general Markov-type schemes. 
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Now consider the  situation  in which one is interested in 
detecting  rapidly  both  types of shift of the process from its 
on-target level. Such two-sided control  can be achieved in 
one of two ways. The first type  of two-sided scheme calls for 
separate design of an  upper  and a lower one-sided scheme, 
and  then  for  running  them in parallel. The second  type 
defines a single scheme which, if the process is in control, is 
supposed to stay within  certain prescribed control bounds. 
The usual  geometric  moving average scheme (2) is  probably 
the most  frequently used representative  of this class of two- 
sided schemes (the  “Cusum” analog of such  a  type  of  scheme 
was recently considered by Crossier [40]). The  main benefit 
of using a two-sided scheme based on a single sequence  is 
related to  the fact that  the  latter  can usually be defined in 
such  a way that its value at  any given moment of time 
provides an estimate  of the  current process level. (We must 
mention, however, that  some schemes of the first type may 
be as  good in  this respect; for  example, the V-mask version 
of a  Cusum-Shewhart control scheme  provides  a very simple 
and efficient way of  estimating the  current process mean [6].) 

On the  other  hand, however, two-sided schemes of the 
first type  have  a much  better resolution with respect to  the 
“worst case” scenario; i.e., they are  better  tuned  to respond 
to most  recent  events.  Indeed,  consider the case in which the 
process level is at  the lower bound of the target region, and 
then shifts  upward. The two-sided scheme based on a single 
sequence is then likely to be near  its lower signal level at  the 
moment  the shift occurs. In such  a case it  must waste some 
time in first coming back to  the  center line;  only then  can  it 
proceed further toward the  upper signal level. In 
comparison, schemes  of the first type  have an “always ready” 
upper  scheme which never drops below zero and, therefore, 
in situations as described above, is able to signal much 
earlier. Moreover,  schemes of the first type  are less likely to 
produce  a signal indicating  change of the process level in  one 
direction  when the actual  change is in  the opposite  direction. 

Except for this worst-case comparison,  the two-sided 
schemes of both  types typically show  a roughly similar 
performance. From  the  point of view of  analysis and design, 
the schemes of the first type usually allow more flexibility 
and in some cases (e.g., for Cusum-Shewhart schemes, see 
[32]) require  a  smaller computational effort, since the 
analysis of  such two-sided schemes can be decomposed into 
a  separate  analysis of upper  and lower schemes. It is the 
opinion of the  author  that in  most cases one will be more 
interested  in  schemes with better worst-case sensitivity, i.e., 
two-sided schemes which represent  a combination of an 
upper  and a lower scheme run  in parallel. 
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