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A factored  form is a  representation of a  logic 
function  that is either  a  single literal or a sum  or 
product of factored forms.  Thus it is equivalent 
to a  parenthesized  algebraic  expression. It  is 
one  of  many possible  representations of a  logic 
function,  but  seems  to  be  the  most  appropriate 
one  for  use in multilevel  logic  synthesis. We give 
a number  of  methods  for obtaining  different 
factored  forms  for a given  logic  function.  These 
methods  range  from  purely  algebraic  ones, 
which  are  quite  fast, to so-called  Boolean ones, 
which  are  slower  but  are  capable of giving 
better  results. One  of the  methods  given is both 
fast  and  gives  good  results,  and is useful in 
providing  continuous  estimates of  area  and 
delay  as  logic  synthesis  proceeds.  In  multilevel 
logic  synthesis,  each  of  the  methods  given  has 
a use in a system  where  run-time  and  quality  are 
traded  off. We also  formulate  the  problem  of 
optimal  algebraic  factorization,  and  pose its 
solution as a  rectangle-covering  problem  for 
which  a  heuristic  method is given. 

1. Introduction 
A Boolean variable is a symbol labeling a single coordinate 
of a Boolean space. A literal is a variable or its  negation (e.g., 
a or a ’). A cube is a product of literals. A disjunctive  form  is 
a sum of cubes. A conjunctive form is a product of sums of 
literals. Each of these  represents logic function. This paper  is 
about  another  form for  representing logic functions, factored 
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forms, and procedures  for obtaining factored forms from 
logic functions. 

factored forms. For example,  each of the following is a 
factored form: 

A factored form is either a literal or a sum  or  product of 

a, 
a’, 
abc’, 
abc‘ + cd, 
(a(b + c) + b’(a’e + c’(e’ + f ) ) ) (b’c  + efg), 

where a,  a’, 6, b’, . . . , g,  g’ are literals. The first two 
expressions are also literals, cubes, and disjunctive and 
conjunctive  forms. The  third is a cube and disjunctive and 
conjunctive  form and  the fourth is a disjunctive  form. 
Factored forms include all these other forms. 

A factored form is a representation of a logic function 
with some attractive properties. Like Bryant’s differential 
form [ 11, the factored  form  represents both a function  and, 
by duality,  its complement.  For multilevel logic synthesis, it 
often  estimates how the logic function may be implemented 
better than  other representations. For example, the  function 

x = ae + af + ag + bce + bcf+ bcg + bde + bdf + bdg, 

represented  here in disjunctive form,  has 24 literals, but 
factored, 

x = (a  + b(c + d)) (e  + f + g) ,  

has  only seven literals. The factored form represents  better 
the complexity of this  function. 

Factored  forms are  important for logic synthesis systems 
since they can  be used for  accurately  estimating area  and 
delay if the factoring can be done quickly with good results. 
Factoring methods  are closely related to techniques  for 
finding common subexpressions, which are  important  in 
optimally synthesizing logic as a multilevel logic network. 187 

R. K. B R A M O N  



188 

This  paper provides some of the details concerning 
algorithms, implementation,  and general strategy for 
factoring logic functions. Several logic synthesis systems 
[2-61 have been based on these or similar ideas, sometimes 
called weak division. The algorithms were developed at IBM 
Research in  Yorktown [7-91, with some later development 
and refinements at Berkeley [ 101. The concepts  for  factoring, 
and similar concepts for logic synthesis, have  been  tested on 
many sets of logic examples  of  various types. 

In  this paper, we give several methods for  factoring a logic 
function.  The  methods range from  those which are 
extremely fast to those which are slower but give more 
optimal results. The  paper is  divided into five sections. We 
begin by discussing division,  since  factoring and division are 
closely related. Section 2 describes  two notions of division as 
applied to logic functions, algebraic division and Boolean 
division.  Section 3 discusses kernels, which are  an  important 
subset of the algebraic divisors. Section 4 gives three 
variations of generic  factoring and a new fast method Q F  
which gives good results. Q F  has  become an  important 
method since  it  provides a means, during logic synthesis, for 
continually  representing all logic functions as  factored  forms. 
In Section 5 ,  we relate optimal algebraic factoring to a 
rectangle-covering problem and provide some heuristics  for 
its  solution. 

2. Algebraic and Boolean  division 
We say that a logic function g is a Boolean divisor off if 

f = g h  + r, 

where h and r are logic functions  and gh # 0. Similarly, we 
say that g is a Boolean factor off iff = gh. Thus a divisor  is a 
factor of a subset off: 

In  the above  definitions, any  manipulation off that 
produces an equivalent logic function is allowed. For 
example, the  function x = a + bc can be expressed as 
x = (a  + b)(a + c), but  in  order  to achieve  this, knowledge 
about logic functions is necessary. On  the  other  hand, if 
x = ac + ad + bc + bd, then expressing x = (a  + b)(c + d) 
requires  only algebraic factoring. We have use for  both  types 
of manipulations.  The  true logic manipulations require more 
time  but  in principle can achieve  superior results. On  the 
other  hand,  the algebraic manipulations  can be made  much 
faster and in many cases give almost as  good results. In logic 
synthesis  each  kind is used selectively in  order  to achieve a 
balance between run-time efficiency and quality of results. 

form  representations that  are  irredundant  sums of prime 
implicants, but these requirements  are  not strictly necessary. 
Formally, a disjunctive form which is minimal with respect 
to single-cube containment is called an algebraic or logic 
expression or sometimes just  an expression. Thus  an 
expression is a particular  kind of representation  of a logic 
function. Algebraic, not logic, operations  on these 
expressions transform them  into algebraic factorizations. 

In order for the  manipulation of algebraic expressions to 
remain in  the  domain of algebraic expressions, multiplication 
of two expressions g and h is defined only when the sets of 
variables on which g and h depend  are disjoint sets. Thus  the 
multiplication of a + b with a’ + c is not defined in the 
algebraic domain since we would  have to know that aa‘ = 0 
to  obtain  another algebraic expression. However, a + b 
multiplied by c + d‘ is defined and  the resulting expression 
is obtained by simple  polynomial  expansion: 

(a  + b)(c + d’)  = ac + ad‘ + bc + bd’. 

The disjunctive  form associated with a product of two 
expressions is an algebraic expression and is  unique. Hence 
the process of multiplication is invertible and we can extend 
the  notion of  division. 

We say that a logic expression g is an algebraic divisor of a 
logic expression f if 

f = g h + r ,  

where h and  rare logic expressions and h is not null. Here 
equality  is meant in the sense that  the  product is defined and 
that when we expand  the expressions of the right-hand side, 
we obtain exactly the  same set of terms as inf: Similarly, we 
say that g is an algebraic factor off iff = gh. 

Some useful relations between Boolean divisors and 
algebraic divisors of the  function  and its complement  are 
given below. 

Lemma 1 A logic function g is a Boolean factor  of a logic 
function f if and only if fg’ = 0, i.e., g’ C f  ( f  C g). 

Proof Iff = gh, then g’f = 0. Conversely, g’f = 0 implies 
that f = f g  + fg’ = fg  = g( f + r), where r G g’, i.e., f = gh. 0 

Lemma 2 g is a Boolean divisor off if and only if fg  # 0. 

Proof Since f = fg  +fs‘ = ( f  + k)g + r, where k C g‘, then 
if fg  # 0, f = hg + r, where gh # 0. Conversely, f = gh + r 
implies that f g  = gh + gr. Since gh # 0, thenfg # 0. 0 

Algebraic division 
In what follows, we are careful to distinguish a logic function 
from any of  its many different algebraic representations. We 
focus  partly on disjunctive  forms which are  minimal with 
respect to single-cube containment.  This  means  that  any 
term (cube) in  the disjunctive form is not  contained in any 
other single term.  In practice we normally use disjunctive 

Lemma 3 I f f  is a sum of prime implicants, and g is an 
algebraic divisor off;  then g’ is a Boolean divisor of f .  

Proof f = gh + r implies thatf = g‘r‘ + h’r’. Ifg’r’ = 0, 
thenf = h ’r’ or f = h + r, implying that f was not a sum of 
primes. Thus g’r’ # 0 and hence g‘ is a Boolean divisor  of 
f . 0  

R. K. BRAYTON IBM J .  RES. DEVELOP. VOL. 31 NO. 2 MARCH 1987 



Lemma 4 If g is an algebraic divisor (algebraic factor) off; 
then g is a Boolean divisor (Boolean factor) off: 

Proof Trivial. 

there  are  many Boolean factors and divisors; in fact, any 
function  containing f is a Boolean factor off  and any 
function not orthogonal to f is a Boolean divisor off:  This 
poses a problem in choosing a best divisor  since there  are so 
many. Lemma 4 states that  the algebraic divisors are a subset 
of all the Boolean divisors. Experimentally, the algebraic 
divisors have provided a reasonably  good  subset  from which 
to choose. The fact that these can  be  determined  quite 
quickly,  as we shall see, makes them good candidate divisors 
in a logic synthesis system, for either factoring the logic 
functions or finding common divisors among  many 
functions. 

The first two lemmas show that for any logic function f 

In general, we face two  tasks  in using either  notion of 
division for factoring. First, to find a good candidate divisor, 
and second to effect the division, i.e., to  determine, given g 
andf;  the coefficient h and  remainder r so that f = gh + r. 

For  notation later, we define the quotient off  and g 
(denotedflg)  as  the largest algebraic expression h such that 
f = gh + r. Thus f = (flg)g + r, and  the remainder has the 
property that g is not  one of  its algebraic divisors. 

The following is a sketch of the algorithm  for  carrying out 
algebraic division; given f and g it returns  the  quotient h and 
remainder r :  

ALG-DIV(f; 8): 
U = restriction off to  the literals  in g. 
V = restriction off  to  the literals not in g. 
/* note  that u , ~ ,  is the  jth  term  off */ 

h = n  V,. 
r =  f - g h .  
return (h,  r) .  

vi = {v, E v: u, = gJ. 

Care  should be taken to  make  this algorithm  as fast as 
possible since  it is a key subroutine of many of the 
algorithms used in a logic synthesis system. One way to 
accomplish this with complexity  of O(n log n), where n is the 
total number of terms  infand g, is to numerically encode 
the cubes of U, V, and g. By sorting  these numbers,  the 
comparisons required to  compute V, and h can be made 
efficient, and by keeping track of the indices during  the 
sorting process, the  remainder r is an easy consequence. 

0 Boolean division and Boolean procedures 
By restricting attention  to algebraic expressions for Boolean 
functions, very fast methods for  transforming  networks  of 
logic functions  are possible. However, the full power  of 
Boolean function  manipulation is needed also. 

For instance, the Boolean function 

f=a‘b+a‘c+a’d+b‘a+b’c+b’d+c’a  

+ c’b + c’d + d ’ a  + d’b  + d’c  

can be factored algebraically as 

f = ( d  + c)(a’ + b’ )  + (a + b)(c’ + d ’ )  

+ c ’d  + a’b  + cd‘ + ab’. 

However,fcan be expressed more simply as 

f = ( a + b + c + d ) ( a ’ + b ’ + c ’ + d ’ ) .  

Since the two  factors  above have a common set of variables, 
the last result could not have  been achieved by the algebraic 
methods. 

Boolean procedures are those that use the identities  of 
Boolean algebra such as aa’ = 0, aa = a, and a + a’ = 1. 
The two-level logic minimization algorithm, ESPRESSO-I1 
[ 1 11, and subprocedures for manipulating logic, such  as 
COMPLEMENT,  TAUTOLOGY,  REDUCE, etc., are 
Boolean procedures. Boolean procedures are typically slower 
than  the algebraic procedures and hence must  be used 
discriminantly. 

Since, in practice, we are interested in expressing a logic 
function in its simplest form, we would like a procedure  for 
Boolean division which returns f = gh + r, where h and rare 
as simplified as possible. In  this section we discuss some of 
the algorithms which are used to define such a procedure  for 
Boolean division. 

Minimizing logic functions with different objectives 
The representation resulting from minimizing a logic 
function f using a heuristic logic minimizer,  such as 
ESPRESSO-11, is dependent  on  the heuristics and procedures 
used. Even with exact minimizers,  such as McBOOLE [ 121 
or ESPRESSO-EXACT [ 131, the result is  only  guaranteed to 
have a minimum  number of terms. Typically, two-level logic 
minimizers have as their  primary objective the  minimum 
number of  terms, because the  output of the  minimizer is 
usually implemented as a PLA where the  area is 
proportional to  the  number of  terms.  However, with 
multilevel logic as  the  method of implementation,  the 
number of terms is one of the least important objectives. 
Rather, minimization objectives such  as the  number of 

literals 
variables that  the function depends  on (variable support) 
literals that  the  function  depends  on (literal support) 
literals in a factored form 

are  more directly related to  the  implementation.  The last 
objective, which is probably the most important  one, 
indicates that even the  notion of  finding a minimum (in 
some sense) disjunctive  form is not sacrosanct. The  middle 189 
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two objectives reflect a  relation between the least number of 
variables or literals and good factoring or easier wiring 
problems.  These are called minimum  support objectives and 
are used as heuristics in defining an algorithm  for Boolean 
division. 

Minimum support algorithms 
Let ff = {f; d,  r }  be an incompletely specified logic function, 
where f is the onset, d the don't-care set, and r the offset. 
Suppose that F, D, and R are given cube  covers for the logic 
functionsf; d, and r, respectively. Given  a cube c' E F, the 
variable blocking matrix [ 1 11 is defined as 

I i f c ; = l a n d r ; = O  f o r r J E R ,  

(B')Jk = 1 if c; = 0 and r i  = 1 for rJ E R, 

0 otherwise. 

The super-variable blocking matrix B is composed  of all the 
rows of all the B'. Note  that B has I F I X I R I rows. 

Bv 2 1. where I is the vector of all 1's. 
A row cover of B is a  binary vector v ,  vk E {O, l ) ,  such that 

Theorem 5 If v is a row cover  of B and vk = 0, then  there 
exists a  cover forfwhich is independent of the variable x,. 

Proof For any cube c' E F define 

Since Bu 2 I and vk = 0, then E' is orthogonal to all rJ, 
rJ E R.  Hence E' is an  implicant  offcontaining c'. Thus (C'} 
is  a cover independent of vk. 0 

Corollary 5 If v is a minimum row cover of B (I v I is 
minimum),  then a minimum variable support for ff is the set 
of variables {x,;  v ,  = I } .  

In the above formulation,  the resulting prime  irredundant 
cover  for ff may depend  on  both x ,  and xi ,  but this is 
counted only once  in  determining  the  minimal variable 
support. Since each unique literal appearing  in  a cover may 
represent a wire which must be routed  to  the  function in an 
implementation, a minimum literal support  may  be 
desirable. This is solved in  a  similar way. 

For each c' E F, define the literal blocking matrix B' as 

(B' ) ,  = 
1 if c; = 1 and r/k = 0, rJ E R, 
0 otherwise; 

I i f c ; = O a n d r i =  1 ,  r J E R ,  
(")J.n+k = 0 otherwise. 

Let B be the super-literal blocking matrix composed of all 
the rows of all the B'.  

Theorem 6 If v is a row cover of B and vk = 0, k 5 n, then 
there exists a  cover offindependent of xk; if v,+, = 0, k 5 n, 
then  there exists a cover of f f  independent of x;. 190 
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Proof The proof is similar to  that of Theorem 5 .  

Corollary 6 If v is a minimum row cover of B ,  then a 
minimum literal support  forfis  the set 

{xk; v k =  I ]  u {x& v,+k= I ) .  

In practice, these  various row-covering problems can be 
solved heuristically with very good results. For one of the 
best such  techniques, see [ 131. 

Boolean division for incompletely  specified  functions 
For an incompletely specified functionf= {f; d, r } ,  Boolean 
division is defined as 

f = gh + e mod d and gh # 0 mod d ,  

meaning  that equivalence is not required on the don't-care 
set d .  We call gh + e a cover offiff(u) = 1 implies 
g(v)h(v) + e(v)  = 1 and r(v) = 1  implies g(v)h(v) + e(v) = 0. 
g is a Boolean divisor offif  there exist h, e such that gh d 
and gh + e is  a cover of# We require that g,  h, and e be 
either  completely specified logic functions or functions with 
d as  the don't-care set. Note  that if the completely specified 
/is a  cover of& then  any factorization o f j i s  also a cover 
of f 

If there exists a cover of ff that  can be expressed as 
gh mod d, then we say that g is a Boolean factor of& or  that 
g dividesfevenly. 

problems to be solved are  the following: 
In applying Boolean division to factoring, the two 

1. Given  a logic function g and  an incompletely specified 
function&  compute logic functions h and e such that 
gh + e is a cover offand such that h and e are  minimal 
in some sense. 

2. Givenfi find a function g such that gh + e is a  cover  off 
and such that g,  h, and e are minimal in some sense. 

The  minimal conditions on g, h, e make these  problems 
interesting. It is not hard to find divisors of&  but it is 
difficult to  find divisors which lead to simple  factorizations. 

Theorem 7 
Given g and ff = (f; d,  r), define an extended don't-care set 
2 = d + xg' + x'g,  where x is a new variable. Suppose 
j =  xh + e is a cover o f 3  (with the extended don't- 
care set $, where h and e are independent of x and x ' .  Then 
gh + e is a cover of& 

Proof 
We denote  the original function by f f  = (f; d,  r), and  the 
extended one b y 7  = (7, 2, i), where 2 = d + xg' + x'g, 
f= f z ,  and i = r z .  Since 3 = d'(xg + x'g') ,  then f= 
fd'(xg + x 'g ' )  = f (xg + x'g') .  Similarly, i = r (xg + x'g') .  
Suppose f ( v )  = I ;  then f ( v ,  x )  = xg + x'g' .  Thus 7 ( v ,  x )  = 1 
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if x = g(v). Since f ( u ,  x) = xh + e is a  cover offf,  then also 
f ( u ,  x) = 1 if x = g(v) and f ( v )  = I .  Thus f (u)  = 1 implies 
g(v)h(v) + e(u) = 1. Next  suppose r(u) = 1; then i (u ,  x) = 

xg + x’g’ or i ( v ,  x) = 1 if x = g(u). Again, sincefis a  cover 
offf,  then f ( u ,  x) = xh(u) + e(v) = 0 if x = g(v) and r(u) = I .  
Hence r(v) = 1 implies that g(v)h(v) + e(v) = 0. 0 

Theorem 7 provides  a  solution to  the first problem,  in that 
f /x  is the minimized  cofactor h given a candidate divisor g. 

This  method of division  has three basic steps: 

1. Form a larger don’t-care set d + xg’ + x ’g  expressing 
that x # g is a  don’t-care condition, where x is  a new 
variable. 

2. Minimize f using this new don’t-care set with any two- 
level logic minimizer  that allows don’t-cares. During  the 
minimization, force x’ to be eliminated. 

3. Return ( f i x ,  e), where e, the remainder, is the  terms  off 
which do not include x. 

The procedure BOOL-DIV below uses the heuristic  for 
obtaining  the  minimum literal support as discussed earlier. 
This is done by a call to procedure MINLIT passing as 
arguments  the care  onset 7 o f 3  and  the care offset i o f 8  
MINLIT solves the relevant row-covering problem and 
returns a slightly expanded cover, where the literals not in 
the  minimum  support have been eliminated. 

BOOL-DIV(1; g, d): 
n = number of variables 
g’ = COMPLEMENT( g) 

/* add  the implied  don’t-care set to d using */ 
/* the n + 1 variable as a new one */ 
/* DC = d + e:+, + g’v,+l */ 

DC= APPEND((d,  2),APPEND((g, O),(g’ ,  1))) 
/* form the care offset */ 

r = COMPLEMENT(APPENDU DC)) 
/* form the care  onset */ 

f=  COMPLEMENT(APPEND(r, DC)) 
/* expandfto its minimum literal support */ 
/* removing */ 

f = REMOVE(J; u;+,) 
f = MINLIT(J; r) 

/* expand f into primes and  make  an  irredundant */ 
/* cover */ 

f= EXPANMA r) 
f= IRREDUNDANT(J; DC) 

/* computef /u,+l *I 
h = COFACTORV; v,,,,)) 

/* REMAINDER  returns  terms  not multiplying */ 
/* V,+I */ 

e = REMAINDERU u,+J 
return(h, e) 

We assume here that f is a given cover o f x  d is the don’t- 
care set f o r 6  and g is a given candidate divisor. The first 
step  forms  a new don’t-care set and  the corresponding  onset 
and offset, thus giving a new incompletely specified function 
(f; DC, r) in  the larger Boolean space. Next v:+l is removed 
from the onset and  the  minimum literal heuristic is applied. 
At this point,  any two-level logic minimizer  could be 
applied, but here  only the  EXPAND  and  IRREDUNDANT 
steps are used. Finally, the coefficient of v,+~ is returned  as h, 
and  the  remaining  terms  as e. 

3. Kernels 
The notion of a kernel [7] of  a logic expression was 
introduced to provide an efficient means for finding 
common subexpressions. In this  paper, we see that kernels 
are a bridge between algebraic expressions and factored 
forms. 

A  kernel  of an expression f is defined by the following two 
rules: 

1. A kernel k of an expression f is the  quotient off and a cube 

2. A kernel k is “cube-free.’’ ( k  cannot be rewritten as 
c; k =f lc .  

k = dg, where d is a  nontrivial  cube and g is an expression.) 

For example,  suppose that 

f = abc + abde. 

Thenfla = bc + bde is the  quotient off and  the cube a, but it 
is not cube-free since the cube b is a  factor offla, 

f lu  = b(c + de). 

However, flab = c + de is cube-free and hence  a kernel. 
Since no single cube is cube-free, a  kernel must consist of 

at least two cubes. Also, since the universal cube, I ,  is a cube 
andfll = f; then iff is cube-free, f is considered one of  its 
own kernels. 

Associated with each kernel is a  cube, called its co-kernel, 
which is  simply the cube  divisor used in  obtaining  the 
kernel. Since the  same kernel may be obtained  in several 
ways by dividing f by different cubes, the co-kernel of a 
kernel is not  unique. 

itself. Similarly, a kernel is of level n if it  has at least one 
level-n - I kernel but  no kernels (except itself) of level n or 
greater. 

A kernel is said to be of level 0 if it  has no kernels except 

For example, 

x = (a(b + c) + d)(eg’ + g( f + e’)) + (b  + c)(h + i) 
has, among others, the kernels b + c and a(b + c) + d, which 
are level 0 and level 1, respectively, while x is a kernel of 
level 2 since  it  has level- 1 kernels but  no level-2 kernels 
other  than itself. Note  that 191 
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y =j(a(b + c) + d)(eg’ + g ( f +  e’)) + (b  + c)(h + i) 
is a kernel of level 3 since  it contains  the level-2 kernel 

( 4 b  + c) + + g ( f +  e’)) 

with co-kernel j .  
The following is an algorithm for computing all the 

kernels of an  expressionj 

KERNELS( f ): 
c = largest cube  factor off 
K = KERNEL 1 (0,flc) 
if (fis cube-free)( 

returnfu K 
I 

return K 

KERNEL](;, g): 
R = g  
for (i = j  + 1; i I n; i++){ 

if (1, appears in  only one  term)  continue 
c = largest cube dividing g/li evenly 
if (1, not in c for all k I i) 

I 
R = R u KERNELl(i, g/(l, n c)) 

return R 

The algorithm works as follows. The  argument j in 
KERNEL1 is a pointer  to  the literals  already  factored out 
(all literals 5; have  been processed). KERNEL1 is designed 
to find all kernels associated with any cube  divisor not 
containing  any of the literals 1, for i 5 j .  The recursive call to 
KERNEL1 restricts the  function being processed to  the 
subset of terms  containing literal i. This  computes  the 
kernels which have as co-kernel a cube whose literals include 
1, and  the literals of c, the largest cube factor  of g/l,. The 
recursion is done only if the  cube c has no literals k 5 i, 
since all co-kernels associated with this recursion will involve 
the literals of c, and if one of these  has been factored  already, 
we would just reproduce a kernel and co-kernel already 
found. This  makes  the algorithm  such that  it only processes 
unique co-kernels. Also, it gives the algorithm a very 
effective tree-trimming strategy for  searching  for kernels. 

below. We use the  notation K ( f )  to refer to  the set of all 
kernels off: 

A few of the  important properties of kernels are discussed 

Theorem 8 (71 If two  expressions f and g have the property 
that  any k,€ K(f) and  any kg E K( g), which implies that kg 
and k, have at most one  term  in  common,  then fand g have 
no  common algebraic divisors with more  than  one  term. 

This  theorem is used for detecting  whether two or more 
expressions have any  common algebraic divisors other  than 
single cubes. This  can be done by computing  the set of 
kernels for each logic expression and forming  nontrivial 
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(more  than  one  term) subkernels among kernels from 
different functions. If this set of  subkernels is empty,  then we 
need only  look  for divisors consisting of single cubes (which 
is an easier task). Thus we do  not need to  compute  the set of 
all algebraic divisors for each expression to  determine 
whether there  are  common nontrivial algebraic divisors. This 
leads to great run-time efficiency since the set of kernels  is 
much smaller than  the set of algebraic divisors, and, 
secondly, in the algorithm  for computing kernels, the cube- 
free property of kernels provides a very effective means  to 
trim  the search  tree  for kernels. 

The next theorem leads to very fast methods for factoring, 
for finding the  prime factorization of a single expression, and 
for finding the greatest common divisor  of several 
expressions. We use it in  this paper for factoring. 

Theorem 9 If p is a kernel offand is prime  (cannot  be 
factored algebraically), then p is a kernel of exactly one of 
the  prime factors  off: 

Proof Suppose f = nf;. Let d be a co-kernel of p.  We can 
uniquely write d = Id, where support (c’) C support (L). 
Since p = f l d  = II(f;/c’), then p can be prime only if c’ is a 
cube  of& for all but  one i. Thus p = f / c ‘  and since p is cube- 
free, then p is a kernel ofh. 0 

Corollary 9 Let k be a level-0 kernel off:  Then k is a 
kernel of exactly one of the algebraic prime factors off: 

Proof A level-0 kernel is prime. 0 
To help understand this  result,  consider the expression 

(a(b + c) + d)(eg’ + g ( f +  e’)). 

This factors into two prime factors a(b + c) + d and 
eg’ + g( f+ e’). Note  that  the level-0 kernel b + c occurs 
in  only one of the  prime factors, while the level-I kernel 
(b  + c ) ( f +  e’) spans several of the  prime factors. We see 
later  how this  can be used to  obtain a very fast effective 
method for factoring logic expressions. 

find just  one level-0 kernel. This is obtained by a trivial 
modification to algorithm KERNEL1 : 

Several algorithms  (such as quick  factor QF) will need to 

ONE-LEVEL-0-KERNEL( g): 
if(lg1 I 1)returnO 
if ( (L  = LITERAL-COUNT( g)) 5 1) return g 
for ( i  = 1; i I n; i++){ 

if(L(i) 5 1) continue 
c = largest cube  dividing g/l, evenly 
return ONE-LEVEL-0-KERNEL( g/(l, n c)) 
I 

This algorithm terminates  on finding the first level-0 kernel. 
Here LITERALCOUNT returns a vector giving the 
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number of times each literal appears  in a given expression. If 
all counts  are 5 1, then g is a level-0 kernel which is  returned 
and  the algorithm  terminates. Otherwise, the first literal with 
a count greater than  one is chosen. It  and all literal factors 
are divided out  and  the algorithm  recurs until  no literal 
appears  more  than once. 

4. Factoring 
In this section, we discuss three algebraic methods for 
factoring logic expressions and two Boolean methods. 

Generic  factoring 
Most algebraic or Boolean factoring methods  can be 
described by the following recursive procedure: 

GFACTOR( f ): 
If( I f I 5 1) returnf 
k = CHOOSE-DIVISOR( f )  
(h, r) = DIVIDE(J; k) 
return  (GFACTOR(k)  GFACTOR(h) + GFACTOR(r)) 

The  method first chooses a divisor offand performs the 
division to  obtain a partial factorizationf= kh + r. At this 
point, k, h, and r are expressions or logic functions which 
also must be factored.  Hence, in  the last line, GFACTOR is 
called for each  of  these. The factored product plus factored 
remainder is then  formed  and  returned. Internally, the 
factored  forms can be represented by either series-parallel 
trees or parenthesized expressions. 

choosing different algorithms  for CHOOSEJIVISOR  and 
DIVIDE. The simplest method merely selects the best literal 
divisor (CHOOSE-LITERAL) and DIVIDE  performs single 
literal division (ALG-DIV). This provides a very fast but 
suboptimal  method for  factorization. We call this LF, for 
“literal factorization.” 

Several variations  of  factoring can be obtained by 

As an example  of literal factorization,  consider the 
expression 

x = a c + a d + a e + a g + b c + b d  

+ be + bf + ce + cf + df + dg. 

CHOOSE-LITERAL might  choose k = a and ALG-DIV 
w o u l d r e t u r n h = c + d + e + g a n d r = b c + b d + b e + b f +  
ce + cf + df + dg. Continuing  in  this way, LF might obtain 
(depending on which literals are chosen  in  sequence) 

L F ( x ) = a ( c + d + e + g ) + b ( c + d + e + f )  

+ c(e +f) + d ( f  + g). 

We can do better by replacing CHOOSE-DIVISOR with 
CHOOSE-KERNEL, which computes all kernels off  and 
returns  the  one with greatest “value.” This is a slower but 
better-quality  factorization and will be called XF. 
Continuing with the example, 
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X F ( x ) = ( c + d + e ) ( a + b ) + f ( b + c + d ) + g ( a + d ) + c e .  

Although XF is slower because it  takes  longer to  compute 
the kernels and  to choose a best one,  it always gives better 
factorizations than  LF (in the example,  14 versus 16 literals). 

Replacing CHOOSE-DIVISOR with CHOOSE-KERNEL 
and DIVIDE with BOOL-DIV leads to  the procedure BF 
(for Boolean Factorization). This applied to  the above 
example gives the  same results as  XF.  However,  for 

x=ab’+ac’+ad‘+a‘b+bc’+bd’ 

+ a’c  + b‘c + cd’ + a ’ d  + b’d + c‘d, 

we obtain 

BF(x) = (a + b + c + d)(a’ + b’ + c’ + d’), 

whereas 

LF(x) = a’(b + c + d)  + b’(a + c + d) 

+ c’(a + b + d)  + d’(a + b + c), 

XF(x) = a’(b + c + d)  + (a + b)(c’ + d’) + c(b’ + d’ )  + c‘d. 

Note  that  the result of BF is not  an algebraic factorization. 
These three  methods,  LF, XF, BF, use a generic recursive 

factoring scheme GFACTOR  and two different methods for 
selecting a divisor, 

CHOOSE-LITERAL-pick the best literal (very fast), 
CHOOSE-KERNEL-compute all kernels and choose best 
one (slow), 

and  the two  variations  of  DIVIDE. 

ALG-DIV-algebraic (weak) division (fast), 
BOOL-DIV-Boolean (strong) division (slow). 

These  provide a spectrum of speed and quality  of results for 
factoring. 

Quick  factoring 
A variation on  the generic factoring  schema  above  is 

GFACTOR2 (f  ): 
If ( I  f I 5 1)  returnf 
k = CHOOSE-DIVISOR( f )  
(h, r) = DIVIDE(f; k) 
If (h is not a cube)(h = CUBE_FREE(h)) 

else. h = ONE-LITERAL-OF(h)) 
(k, r) = DIVIDE(f; h)  
return GFACTOR2(k)  GFACTOR2(h) + GFACTOR2(r) 

The heuristic used here is that having  chosen the divisor  k, 
we obtain h and  are in the process of  forming the partial 
factorizationf= kh + r. Given that h will be used as a 
factor, we might  as well collect everything that  can be 
multiplied by h. If h is not prime, the  same  could be said 
about  the factors of h. However, we cannot afford to factor 193 
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h, except to  eliminate  any literal factors of h 
(CUBEIREE).  Then we perform the second DIVIDE  to 
obtain  a new k, which must include at least the old k. This 
scheme is designed for situations where the best divisor k 
was not chosen, perhaps because of run-time considerations. 

A fast variation of factoring is obtained  then by replacing 
CHOOSE-DIVISOR with ONE-LEVEL-0-KERNEL, 
which determines a single level-0 kernel, and  DIVIDE with 
ALG-DIV. This leads to  the procedure Q F  (for quick 
factor). 

In the example 

x = a c + a d + a e + a g + b c + b d  

+ be + bf + ce + cf + df + dg, 

QF  and  XF give different but similar-quality factorings, 

X F ( x ) = ( c + d + e ) ( a + b ) + f ( b + c + d ) + g ( a + d ) + c e ,  

QF(x) = g(a  + d )  + ( a  + b)(c + d + e)  + c(e  + f )  + f ( b  + d ) ,  

but QF is much faster because it only needs to  determine 
one level-0 kernel for each factor. However,  for 

x = abeg‘ + abfg + abe‘g + aceg’ + acfs + ace‘g 

+ deg’ + dfg + de’g + bh + bi + ch + ci, 

QF(x) = (a(  g(e’ + f )  + eg’) + i + h)(b + e )  

+ d M e ’  +f) + eg’), 

but XF obtains  the better result ( 1  3 literals versus 16 
literals), 

XF(x) = (a(b + c) + d)(eg’ + g ( f +   e ’ ) )  + ( b  + c)(h + i), 
by working harder  to find the best kernel to be used at  the 
top level of the recursion. 

In  more recent implementations of logic synthesis 
algorithms [lo],  QF has  become an  important tool because it 
is so fast and effective. Q F  is used continuously during 
synthesis to  estimate  area  and delay. 

Factoring using duality 
The final method of factoring simply recognizes that a 
factored  form can be obtained by factoring the  complement 
of a  function by any of the  methods discussed, and  then 
using duality or DeMorgan’s law to  obtain a  factoring of the 
function. For example,  suppose we have factored 

F’ = FACTOR@’) 

= (ab’ + a’b)(cd(a’ + e)  + c’(b’e + f ) )  + bce. 

By using DeMorgan’s law, a  factored form for x is obtained 
as 

DUAL(F’) = ((a’ + b)(a + b’) 

194 + (e’ + d‘ + ae’)(c + ( b  + e ’ ) f ) ( b ’  + e‘ + e’). 
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The procedure,  outlined below, is denoted by DF for 
DeMorgan  Factoring: 

DF(f  1: 
f = COMPLEMENT(j”) 
F‘ = FACTOR(f)(using LF, QF, XF, or BF) 
return  DUAL(F’) 

5. Optimal  algebraic  factoring  and  rectangle- 
covering  problems 
Rectangles and rectangle coverings of Boolean matrices  have 
several applications  in logic synthesis [ 141. We discuss one of 
these here, namely, optimal algebraic factoring. 

Rectangle coverings 
A rectangle of a Boolean matrix B, B,, E (0, 1 ] is a  subset of 
rows and  columns (R, C) such that i E R ,  j E C implies 
B,, = 1. 

A prime rectangle P = (R, C )  of B is one  not strictly 
contained  in  another rectangle of B. 

We say that B is covered by the set of rectangles ((R’, C’)] 
if 

B,, = 1 implies i E Rk,  j E Ck for some rectangle k. 

A  covering  need not be disjoint, so that a 1 in B may be 
covered by several rectangles. In general we are interested  in 
the weighted covering problem where we assign each 
rectangle (R, C) a weight defined by a weight function, 
w(R, C). The weight of a  cover ( (Rk ,  C’)) is defined as  the 
sum 

w(Rk,  Ck).  
k 

The rectangle-covering problem is to find a cover of B with 
minimum weight. 

One straightforward way to approach the rectangle- 
covering problem is to formulate  it as a row-covering 
problem. We first find all prime rectangles of B. (Because 
kernels and  prime rectangles are related [ 141, we can use a 
procedure like KERNEL for finding all prime rectangles of 
B.) Now construct another Boolean matrix M which has  a 
row for each 1 in B and a column for each prime rectangle. 
M,, = 1 if the prime P‘ covers the 1 in B associated with row 
i of M. Otherwise M!, = 0. Since we want to find a  covering 
of least weight, each column of M is given a weight W, equal 
to  the weight of the associated prime rectangle P‘; 
W, = w(P‘). By solving 

Minimize: WT x 
such  that: Mx 2 1, 

we obtain  a minimum  prime rectangle covering of B of least 
weight. 

Heuristic coverings 
Because of the obvious  complexity of finding an  optimum 
rectangle cover, and because an  optimum cover may  include 
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nonprime rectangles, we resort to heuristics. The following  is 
a greedy procedure for determining a good  rectangle  cover.  It 
proceeds  in  two  phases.  In the first, we attempt  to find an 
optimal prime rectangle  cover.  In the second phase, we 
attempt to decrease each of these rectangles in an optimal 
way to obtain a cover with smaller rectangles. If the weight 
of a rectangle  decreases  with smaller size, then the reduced 
covering of nonprime rectangles is better. During the 
iteration, as primes are chosen greedily, an increasing 
number of 1’s in B are marked as  “don’t-care’’ points, 
indicating that the 1 is  covered but it  is  permissible  for 
another rectangle to cover the same point. However, the 
weight function should be defined such that there is no 
advantage or disadvantage in covering a don’t-care point: 

RECTANGLE-COV(  B): 
P=O 
while (there are “cares” in B)( 

P, = prime rectangle  of  greatest  value. 
Mark as don’t-care any 1 in B associated with P, 
P= PU P,, 
1 

P = IRREDUNDANT(P, B) 
return P = REDUCE-R(B, P) 

Similarly to  the ESPRESSO-I1 procedure for  logic 
minimization, IRREDUNDANT selects a subset  of P which 
still  covers B.  REDUCE-R maximally  reduces  each  of the 
rectangles in the cover by deleting rows or columns of the 
prime rectangle to decrease its weight. This can be done if 
the  other rectangles jointly cover a row or column of a 
rectangle: 

REDUCE-R(B, P): 
for ( i= I PI - 1 to 1)( 

8= P- {P,]. 
P, = rectangle of  least  weight covering P, - F. 
1 

return (Pi) 

Note that in RECTANGLE-COV  we have stated that l’s, 
which are “associated” with 1’s of B covered, are marked as 
don’t-care. Later we  will  have a general notion of a 1 of M 
being  associated  with a rectangle. In some applications this 
means simply that it  is  covered by the rectangle, but in other 
applications it  is important to be able to have 1’s 
indirectly associated  with  each other. The procedure 
RECTANGLE-COV is analogous to the EXPAND, 
IRREDUNDANT, and REDUCE sequence of  ESPRESSO- 
I1 [ 1 11, with REDUCE being  necessary if smaller rectangles 
have less  weight. This operation can be iterated, as done in 
ESPRESSO-11,  by restricting the first part to select and 
expand to prime each  rectangle  of a given  rectangle  covering. 
These are made irredundant and reduced, with the reduced 
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rectangles  becoming the input to the first part for re- 
expansion. Iteration would continue until no decrease  in 
weight is obtained. 

be applied to optimal algebraic  factoring. This type  of 
factorization can be extended to multiple functions [ 141. 

We  will  see  how the RECTANGLE-COV procedure can 

Optimal algebraic factorization using rectangle covering 
and overlap 
An optimum algebraic factorization is one with the least 
number of  literals. In general, it is obtained by allowing one 
or more terms to be repeated; i.e., a term may be produced 
by more than one product. As an example, 

x = a c + a d + a e + a g + b c + b d + b e  

+ bf+  ce + cf+ de + df + dg 

can be factored optimally as 

x = ( a + b + e + f ) ( c + d ) + ( a + d ) ( e + g ) + b ( e + f ) .  

Note that in expanding this, the term de is produced twice. 
However,  each  of the products combines expressions with 
disjoint variables and hence  they are algebraic 
multiplications. 

The idea  of  allowing  repeated terms (overlap) is a natural 
consequence of rectangle  covers  with overlapping rectangles. 

An optimum factorization is a sum of products of sums of 
products, etc. At the  top level,  each product represents a 
subset of the terms off which can be algebraically factored. 
One way to obtain an  optimum factoring is to choose  these 
subsets correctly and then to recursively optimally factor 
each of their prime factors. 

be factored algebraically into two or more prime factors. A 
maximal product off is a product not contained in another 
product of$ For example, for 

x = a c + a d + b c + b d + e c + e d + e $  

the subset ac + bd + ad + bc  is a product of x but it  is not 
maximal since 

(a + b)(c + d) C (a + b + e)(c + d)  C x. 

However, both e(c + d + f )  and (a + b + e)(c + d) are 
maximal products of x. 

An optimum algebraic factorization off is a sum of 
products, but in  general  each product need not be a maximal 
product. However,  each product is contained in some 
maximal product. Thus  an appropriate set  of maximal 
products could in theory be reduced in an optimal way, 
thereby obtaining an optimal factorization. We  relate these 
ideas to a rectangle-covering problem using Theorem 10 
below,  which relates maximal products to kernels. In turn, 
kernels are related to rectangles of an appropriate Boolean 
matrix. 

We say that a subset  of terms off is a product off if it can 
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196 

DeJinition A subkernel off is any expression with at least 
two terms  obtained as the  maximal set of terms  common  to 
each kernel of any set of kernels of$ 

For notation, if {e,] is a set of expressions, then S({e,))  is 
the  maximal set of terms  common  to all the expressions: 

S( {e , ] )  = ( tJ ;  t' E e, for all i ] .  

Thus a subkernel is S( ( k,))  if it  has at least two  terms. 

Theorem 10 Let s be a maximal  product  off:  Then s can 
be written  as 

s = c n  q, ,  
I 

where c is a cube  and each q, is a cube-free subkernel. 

Proof Since s is a product, it can be written  as 

s = cgh, 

where c is a cube  and g and h are either cube-free 
expressions or I .  Let h = {h ' ] .  Ifcg z S({f/h')), since 
cg C S({f/h')),  then S(( f / h ' ) )h  is a product  offcontaining 
s = cgh, contradicting  that s is maximal. Thus 
cg = S({f/h')) and 

s = cS( {f/ch'))h. 

Similarly for h, so 

s = cS((f/ch'))S((f/cg')).  

Hence, s can be written as a cube  times  the  product of  cube- 
free subkernels off: 0 

Recall the  KERNEL procedure of Section 3. During this 
procedure, we record a kernel defined  as a cube-free quotient 
f/c for some  cube c, the co-kernel. Each  of the co-kernels is 
unique by the  nature of the  KERNEL procedure. 

as follows. Each row corresponds to a unique co-kernel, and 
each column  corresponds  to a cube, d', of any kernel found. 
The d' associated with the  columns  are  made  unique. 
M ,  = 1 if cube d' is a term of  kernel k'; otherwise Mil = 0. 
Since the cubes d' are  unique,  then a prime rectangle 
(R, C) of M corresponds to  the subkernel  of the set of 
kernels associated with the rows R. 

We build a Boolean matrix M for an algebraic expression f 

Theorem 11 A rectangle (R, C) of M is prime if and only 
if q = IdJ; j E C )  is a subkernel off: 

Proof Assume (R, C )  is prime. Then R and C are 
maximal and S( {k'; i E R ) )  = id'; j E C).  Conversely, if 
q = S( { k t ;  i E RJ), then C = 1 j ;  d' E q) is maximal, hence 
(R, C) is prime. 0 

As an example, with 

x = ade + af + bcde + bcf + g, 
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then M is 

a bc de f 

U 0 0 1 1 
bc 0 0 1 1 
de 1 1 0 0 
f I 1 0 0 

Here, the second kernel (row 2) was obtained by dividing x 
by be (the second  cube on  the left). This kernel is de + f :  

For optimal factoring, we order  the  terms  off = {t') and 
define a mapping 

k if c'd' = tk ,  
= 0 otherwise. 

Two 1's in M a r e  associated if m,, = mk/. 
In the example, if the  terms of x are ordered 

term  number I 2 3 4 5 
terms ade af bcde hcf P 

then  the  terms associated with the Boolean matrix are 

a bc de f 

U 0 0 1 2 
bc 0 0 3 4 
de 1 3 0 0 
. f 2 4 0 0 

i.e., m I 3  = 1 since (a)(de) = ade = t i ,  mI4 = 3 since 
(de)(bc) = bcde = t 3 ,  etc., and (4, 1) is associated with (1, 4). 

A rectangle (R, C) of M is associated with (or covers) a 
subset of terms  off: 

Note  that  no  term is covered more  than  once by a single 
rectangle; i.e., if m,, = mkl and i, k E R, j ,  k E C for some 
rectangle (R, C),  then i = k, j = 1. An entry Mil = 1 in 
M is  said to be associated with a rectangle (R, C )  if 
m,, E T(R, C). Note  that  this is different from  an  entry being 
covered by a rectangle. For example, entry  M32 is associated 
with rectangle ( I  1, 21, (3 ,4) )  since 

In applying the procedure RECTANGLE-COV to M 
with m used to associate entries in M, it is necessary to give 
a weight to a rectangle (R, C). In  the greedy procedure in  the 
first part, we want  to choose a prime rectangle P, with two 
objectives: first, to cover as  many  care  points as possible with 
the next choice of P,; second, to choose a rectangle with least 
weight. 

This motivates the following weight function.  First,  let the 
"cost" of a cube, c(c'), be equal to  the  number of literals in 
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it. Suppose ( R ,  C )  is a prime rectangle.  Let R G R be the set 
of  rows R which contain at least one care point, and 
similarly  for G C. The cost of (R, C) is then defined  as 

2(R, C )  = 1 c(c') + 1 c(d'). 
IES 

Here, (c') and (d') are the cubes of the co-kernels and 
kernels,  respectively.  We sum over only those rows and 
columns which contain "care" points, since we do not want 
to penalize prime rectangles  for  covering don't-care rows or 
columns. 

In the example, if all points are care points, the cost of 
(( 1, 21, (3, 4)) is the number of literals in the factorization 
represented by the rectangle, ( a  + bc)(de + f) = 6. However, 
if points (1,4) and (2, 4) are don't-care, then the cost  is 5 ,  
since ( a  + bc)(de + f) can be implemented as ( a  + bc)de. 

Finally, the weight  of (R ,  C )  is defined as 

w(R, C )  = 

i.e., w(R,C) is the average cost of  each care term covered by 

With these notions of the weight  of a rectangle, and of 
which  of the 1's in M are associated  with a rectangle, we can 
apply RECTANGLE-COV to obtain a near-optimal 
factorization off: This is  discussed later in this section after 
we explore how to find a rectangle  with  least  weight. 

W ,  C )  
number of care points covered by ( R ,  C)' 

(R, C).  

Choosing a rectangle of least weight 
A heuristic for finding the rectangle  of  small  weight is 
composed of three algorithms: GREEDR, GREEDC, and 
PING-PONG. Each  receives as input a matrix B, 
Bij E (0, 1, 21, where 2 indicates a don't-care point. A "cost" 
for each  row and column is also  given by the vectors, wR, 
w'. GREEDR and GREEDC are also  given an index, k, of a 
row or column, respectively: 

GREEDR(B, k, wR,  wc): 
R = (k )  
C =  (j; Bkj#O) 
P = (R, C )  
while ( I  CI > 1)( 

R 
W .  

BIJ=I,jEC 

R = R U(1) 
C = ( j ;  B, # 0, for  all i E R) 
if (w(R ,  C )  is best  yet) P = (R ,  C )  
1 

return P 

In the above procedure, we start the rectangle  with the given 
row k, and  the  columns are simply the nonzero (1's or 2's) 
columns of row k. Next we choose a row I not in R which 
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minimizes the quotient shown. The sum in the  denominator 
is maximized by choosing a row  with many care columns 
(B,, = 1)  in common with C, each of small weight. Then I is 
added to R, and C is updated in a way  (B,, # 0) which  allows 
don't-care points in the rectangle. If the present rectangle is 
the best  seen so far, it is recorded. This is iterated until C has 
only one column. During GREEDR, a sequence of prime 
rectangles  is  observed starting with one of maximal width 
and ending with one of maximal height. 

that the roles of  rows and columns are interchanged. 

GREEDR and GREEDC until a rectangle is repeated: 

PING-PONG(B, wR,  wc): 

k = argmin (wf) 1 (w,",-' 

P= PI = o  

The procedure GREEDC is the same as GREEDR except 

The procedure PING-PONG  below alternates between 

I 

R C  i ,  B .  = I  

k€R / Bki= I 

while (PI P)( 
PI = (R ,  C )  = GREEDR(B, k, wR,  wc) 
P=PU P, 

j = argmin (w,", 1 (wf)" 

PI = (R, C) = GREEDC(B, j ,  wR, wc) 
P = P U  PI 

k = argmin ( w f )  1 (w,"," 

1 
return PI. 

Optimal factoring, OF 
Finally, a near-optimal factoring procedure is the following: 

OF( f 1: 
Build  Boolean matrix M and term map m using kerneling 
procedure on f: 
Compute wR,  wc from co-kernels IC') and kernel cubes (d'). 
B = M  
P=O 
while (Bi, = 1 for some i j ) (  

PI = (R ,  C )  = PING-PONG(B, wR, wc)  
PI = EXTEND(P,, B, wR, wc)  

for (all o)( 
P = P U  PI 

if ( i ,  j associated  with PI)Bij = 2 
1 

1 
P = IRREDUNDANT(P, M, m )  
P = REDUCE-R(M, m, P) 
for ( i  =l; i I I PI)( 

x= (c ' ; j  E R')  
g, = (d ' ; j  E C') 
1 

return (C W f i )  x OF(&?')) 

R. K. BRAYTON 



OF uses  PING-PONG to determine a near-optimal 
selection  of the first  level  of factorization, i.e., the first  set  of 
products in the sum of products representation. After  each 
rectangle, PI, has  been  selected by PING-PONG, we 
recognize that it  may not be the best  rectangle. Hence, 
similar to what is done in GFACTOR2, this rectangle  is  used 
to try to find a better one by the procedure EXTEND. This 
examines the expression determined by the columns of PI to 
see  if  it  is a product. If it  is a product, then each factor will 
be represented by a subset of columns since the kerneling 
process  used to form the Boolean matrix, M, found all 
kernels. The associated  rectangle  of  each factor is examined 
to see  if  it is better than PI, and if so, it  replaces PI. 

and each  of these is  reduced  (REDUCE-R).  Each  of the 
factors associated  with R‘ and C‘ is recursively optimally 
factored by applying OF  to the expressionsf; and g, formed 
by the co-kernels of the rows and cube kernels of the 
columns of the reduced rectangles. 
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