Factoring
logic functions

by R. K. Brayton

A factored form is a representation of a logic
function that is either a single literal or a sum or
product of factored forms. Thus it is equivalent
to a parenthesized algebraic expression. it is
one of many possible representations of a logic
function, but seems to be the most appropriate
one for use in multilevel logic synthesis. We give
a number of methods for obtaining different
factored forms for a given logic function. These
methods range from purely algebraic ones,
which are quite fast, to so-called Boolean ones,
which are slower but are capable of giving
better results. One of the methods given is both
fast and gives good results, and is useful in
providing continuous estimates of area and
delay as logic synthesis proceeds. In muiltilevel
logic synthesis, each of the methods given has
a use in a system where run-time and quality are
traded off. We also formulate the problem of
optimal algebraic factorization, and pose its
solution as a rectangle-covering problem for
which a heuristic method is given.

1. Introduction

A Boolean variable is a symbol labeling a single coordinate
of a Boolean space. A literal is a variable or its negation (e.g.,
aor a’). A cube is a product of literals. A disjunctive form is
a sum of cubes. A conjunctive form is a product of sums of
literals. Each of these represents logic function. This paper is
about another form for representing logic functions, factored
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forms, and procedures for obtaining factored forms from
logic functions.

A factored form is either a literal or a sum or product of
factored forms. For example, each of the following is a
factored form:

abc’ + cd,
(ab+c)+b'(a’e+c'(e’ +f)H)b'c+ efg),

where a, a’, b, b’, -- -, g, g’ are literals. The first two
expressions are also literals, cubes, and disjunctive and
conjunctive forms. The third is a cube and disjunctive and
conjunctive form and the fourth is a disjunctive form.
Factored forms include all these other forms.

A factored form is a representation of a logic function
with some attractive properties. Like Bryant’s differential
form [1], the factored form represents both a function and,
by duality, its complement. For multilevel logic synthesis, it
often estimates how the logic function may be implemented
better than other representations. For example, the function

x=ae+ af + ag + bce + bcf+ beg + bde + bdf + bdyg,

represented here in disjunctive form, has 24 literals, but
factored,

x=(a+blc+d)e+f+g),

has only seven literals. The factored form represents better
the complexity of this function.

Factored forms are important for logic synthesis systems
since they can be used for accurately estimating area and
delay if the factoring can be done quickly with good results.
Factoring methods are closely related to techniques for
finding common subexpressions, which are important in
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This paper provides some of the details concerning
algorithms, implementation, and general strategy for
factoring logic functions. Several logic synthesis systems
[2-6] have been based on these or similar ideas, sometimes
called weak division. The algorithms were developed at IBM
Research in Yorktown [7-9], with some later development
and refinements at Berkeley [10]. The concepts for factoring,
and similar concepts for logic synthesis, have been tested on
many sets of logic examples of various types.

In this paper, we give several methods for factoring a logic
function. The methods range from those which are
extremely fast to those which are slower but give more
optimal results. The paper is divided into five sections. We
begin by discussing division, since factoring and division are
closely related. Section 2 describes two notions of division as
applied to logic functions, algebraic division and Boolean
division. Section 3 discusses kernels, which are an important
subset of the algebraic divisors. Section 4 gives three
variations of generic factoring and a new fast method QF
which gives good results. QF has become an important
method since it provides a means, during logic synthesis, for
continually representing all logic functions as factored forms.
In Section 5, we relate optimal algebraic factoring to a
rectangle-covering problem and provide some heuristics for
its solution.

2. Algebraic and Boolean division
We say that a logic function g is a Boolean divisor of fif

f=gh+r,

where / and r are logic functions and g/ # 0. Similarly, we
say that g is a Boolean factor of fif f = gh. Thus a divisor is a
factor of a subset of f.

In the above definitions, any manipulation of fthat
produces an equivalent logic function is allowed. For
example, the function x = a + bc can be expressed as
x = (a + b)a + ¢), but in order to achieve this, knowledge
about logic functions is necessary. On the other hand, if
X =ac + ad + bc + bd, then expressing x = (a + b)(c + d)
requires only algebraic factoring. We have use for both types
of manipulations. The true logic manipulations require more
time but in principle can achieve superior results. On the
other hand, the algebraic manipulations can be made much
faster and in many cases give almost as good results. In logic
synthesis each kind is used selectively in order to achieve a
balance between run-time efficiency and quality of results.

o Algebraic division

In what follows, we are careful to distinguish a logic function
from any of its many different algebraic representations. We
focus partly on disjunctive forms which are minimal with
respect to single-cube containment. This means that any
term (cube) in the disjunctive form is not contained in any
other single term. In practice we normally use disjunctive
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form representations that are irredundant sums of prime
implicants, but these requirements are not strictly necessary.
Formally, a disjunctive form which is minimal with respect
to single-cube containment is called an algebraic or logic
expression or sometimes just an expression. Thus an
expression is a particular kind of representation of a logic
function. Algebraic, not logic, operations on these
expressions transform them into algebraic factorizations.

In order for the manipulation of algebraic expressions to
remain in the domain of algebraic expressions, multiplication
of two expressions g and 4 is defined only when the sets of
variables on which g and / depend are disjoint sets. Thus the
multiplication of a + b with @’ + ¢ is not defined in the
algebraic domain since we would have to know that aa’ =0
to obtain another algebraic expression. However, a + b
multiplied by ¢ + d’ is defined and the resulting expression
is obtained by simple polynomial expansion:

(a+b)c+d)=ac+ad + bc+ bd’.

The disjunctive form associated with a product of two
expressions is an algebraic expression and is unique. Hence
the process of multiplication is invertible and we can extend
the notion of division.

We say that a logic expression g is an algebraic divisor of a
logic expression fif

f=gh+r,

where A and r are logic expressions and # is not null. Here
equality is meant in the sense that the product is defined and
that when we expand the expressions of the right-hand side,
we obtain exactly the same set of terms as in /. Similarly, we
say that g is an algebraic factor of fif f = gh.

Some useful relations between Boolean divisors and
algebraic divisors of the function and its complement are
given below.

Lemma 1 A logic function g is a Boolean factor of a logic
function fif and only if fg’ = 0, i.e., g’ Cf (fC g).

Proof 1If f= gh, then g’f= 0. Conversely, g’f'= 0 implies
that f=fg+ fg' = fe=g(f+r),where rC g’ ie, f=gh. O

Lemma 2 g is a Boolean divisor of fif and only if fg # 0.

Proof Sincef=fg+ fg' = (f+ k)g + r, where k C g’, then
if fg#0,f= hg + r, where gh # 0. Conversely, f=gh + r
implies that fg = gh + gr. Since gh # 0, then fg # 0.0

Lemma 3 If fis a sum of prime implicants, and g is an
algebraic divisor of £, then g’ is a Boolean divisor of /.

Proof f=gh+ rimpliesthat /" =g'r’ + h'r’. If g'r’' =0,
then f” = h’r’ or f= h + r, implying that f'was not a sum of
primes. Thus g’r’ # 0 and hence g’ is a Boolean divisor of

f.o
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Lemma 4 If g is an algebraic divisor (algebraic factor) of f,
then g is a Boolean divisor (Boolean factor) of /.

Proof Trivial.

The first two lemmas show that for any logic function f
there are many Boolean factors and divisors; in fact, any
function containing fis a Boolean factor of fand any
function not orthogonal to fis a Boolean divisor of £, This
poses a problem in choosing a best divisor since there are so
many. Lemma 4 states that the algebraic divisors are a subset
of all the Boolean divisors. Experimentally, the algebraic
divisors have provided a reasonably good subset from which
to choose. The fact that these can be determined quite
quickly, as we shall see, makes them good candidate divisors
in a logic synthesis system, for either factoring the logic
functions or finding common divisors among many
functions.

In general, we face two tasks in using either notion of
division for factoring. First, to find a good candidate divisor,
and second to effect the division, i.e., to determine, given g
and f, the coefficient 4 and remainder r so that f= gh + r.

For notation later, we define the quotient of fand g
(denoted f/g) as the largest algebraic expression 4 such that
f=gh + r. Thus f= (f/g)g + r, and the remainder has the
property that g is not one of its algebraic divisors.

The following is a sketch of the algorithm for carrying out
algebraic division; given fand g it returns the quotient / and
remainder r:

ALG_DIV(/, g):

U = restriction of f'to the literals in g.

V = restriction of fto the literals not in g.
/* note that u v, is the jth term of f*/
V.= {vje V: uj=g,.}.

h=nNnV.

r=f—gh.

return (A, r).

Care should be taken to make this algorithm as fast as
possible since it is a key subroutine of many of the
algorithms used in a logic synthesis system. One way to
accomplish this with complexity of O(n log n), where # is the
total number of terms in fand g, is to numerically encode
the cubes of U, V, and g. By sorting these numbers, the
comparisons required to compute ¥, and 4 can be made
efficient, and by keeping track of the indices during the
sorting process, the remainder r is an easy consequence.

e Boolean division and Boolean procedures

By restricting attention to algebraic expressions for Boolean
functions, very fast methods for transforming networks of
logic functions are possible. However, the full power of
Boolean function manipulation is needed also.
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For instance, the Boolean function
f=a'b+a'c+a'd+ba+b'c+b'd+c’a
+c’b+c’'d+da+d'b+dc
can be factored algebraically as
S=d+c)a +b)+(a+b)c' +d')
+c'd+a'b+cd +ab’.
However, fcan be expressed more simply as
f=(a+b+c+d)a’ +b +c' +d).

Since the two factors above have a common set of variables,
the last result could not have been achieved by the algebraic
methods.

Boolean procedures are those that use the identities of
Boolean algebra suchasaa’ =0,aa=qg,anda+a’ = 1.
The two-level logic minimization algorithm, ESPRESSO-II
[t1], and subprocedures for manipulating logic, such as
COMPLEMENT, TAUTOLOGY, REDUCE, etc., are
Boolean procedures. Boolean procedures are typically slower
than the algebraic procedures and hence must be used
discriminantly.

Since, in practice, we are interested in expressing a logic
function in its simplest form, we would like a procedure for
Boolean division which returns f = gh + r, where % and r are
as simplified as possible. In this section we discuss some of
the algorithms which are used to define such a procedure for
Boolean division.

Minimizing logic functions with different objectives

The representation resulting from minimizing a logic
function fusing a heuristic logic minimizer, such as
ESPRESSO-II, is dependent on the heuristics and procedures
used. Even with exact minimizers, such as McBOOLE [12]
or ESPRESSO-EXACT [13], the result is only guaranteed to
have a minimum number of terms. Typically, two-level logic
minimizers have as their primary objective the minimum
number of terms, because the output of the minimizer is
usually implemented as a PLA where the area is
proportional to the number of terms. However, with
multilevel logic as the method of implementation, the
number of terms is one of the least important objectives.
Rather, minimization objectives such as the number of

o literals

e variables that the function depends on (variable support)
o literals that the function depends on (literal support)

o literals in a factored form

are more directly related to the implementation. The last
objective, which is probably the most important one,
indicates that even the notion of finding a minimum (in

some sense) disjunctive form is not sacrosanct. The middle 189
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two objectives reflect a relation between the least number of
variables or literals and good factoring or easier wiring
problems. These are called minimum support objectives and
are used as heuristics in defining an algorithm for Boolean
division.

Minimum support algorithms

Let /= {/, d, r} be an incompletely specified logic function,
where fis the onset, d the don’t-care set, and r the offset.
Suppose that F, D, and R are given cube covers for the logic
functions f, d, and r, respectively. Given a cube ¢’ € F, the
variable blocking matrix [11] is defined as

for ’ € R,
for r’ € R,

1 if c,=1and r, =0
(B = 1

0 otherwise.

if ¢, =0and r} =1

The super-variable blocking matrix B is composed of all the
rows of all the B'. Note that B has | F| x | R| rows.

A row cover of B is a binary vector v, v, € {0, 1}, such that
Bv = | where ] is the vector of all I’s.

Theorem 5 If v is a row cover of B and v, = 0, then there
exists a cover for f/ which is independent of the variable x,.

Proof For any cube ¢' € F define

b C p#k,

=P
€=3 p=k.
Since Bv = [ and v, = 0, then &' is orthogonal to all r, ‘
r’ € R. Hence ¢ is an implicant of ff containing ¢'. Thus {¢'}
is a cover independent of v,. O

Corollary 5 If v is a minimum row cover of B (|v| is
minimum), then a minimum variable support for f'is the set
of variables {x; v, = 1.

In the above formulation, the resulting prime irredundant
cover for /' may depend on both x, and x;, but this is
counted only once in determining the minimal variable
support. Since each unique literal appearing in a cover may
represent a wire which must be routed to the function in an
implementation, a minimum literal support may be
desirable. This is solved in a similar way.

For each ¢' € F, define the literal blocking matrix B' as

(B, = I ifc,=1andr,=0, r €R,
%~ 0  otherwise;
A 1 ifci=0andrj=l, reR,
Bk = ‘ .

0 otherwise.

Let B be the super—li(eral blocking matrix composed of all
the rows of all the B,

Theorem 6 If vis a row cover of Band v, = 0, k < n, then

there exists a cover of f/independent of x; ifv,,, = 0, k < n,
then there exists a cover of f/ independent of x;.

R. K. BRAYTON

Proof The proof is similar to that of Theorem 5.

Corollary 6 If v is a minimum row cover of B, then a
minimum literal support for ffis the set

xev, =1 U ixsv,, =1}

In practice, these various row-covering problems can be
solved heuristically with very good results. For one of the
best such techniques, see [13].

Boolean division for incompletely specified functions
For an incompletely specified function /= {f, d, r}, Boolean
division is defined as

f=gh+emodd and gh 0 modd,

meaning that equivalence is not required on the don’t-care
set d. We call gh + e a cover of ff if f{v) = | implies
g()h(v) + e(v) = 1 and r(v) = 1 implies g(v)h(v) + e(v) = 0.
g is a Boolean divisor of ffif there exist 4, e such that gh € 4
and gh + e is a cover of f. We require that g, A, and e be
either completely specified logic functions or functions with
d as the don’t-care set. Note that if the completely specified
f is a cover of ff, then any factorization of f is also a cover
of ff.

If there exists a cover of ff'that can be expressed as
gh mod d, then we say that g is a Boolean factor of ff, or that
g divides f evenly.

In applying Boolean division to factoring, the two
problems to be solved are the following:

1. Given a logic function g and an incompletely specified
function ff, compute logic functions # and ¢ such that
gh + eis a cover of ffand such that 4 and e are minimal
in some sense.

2. Given f, find a function g such that gh + e is a cover of f
and such that g, /2, and e are minimal in some sense.

The minimal conditions on g, 4, ¢ make these problems
interesting. It is not hard to find divisors of f, but it is
difficult to find divisors which lead to simple factorizations.

Theorem 7

Given g and ff = (f, d, r), define an extended don’t-care set
d=d+ xg' + x'g, where x is a new variable. Suppose

f = xh + e is a cover ofi (with the extended don’t-

care set d), where & and e are independent of x and x’. Then
gh + eis a cover of ff.

Proof

We denote the original function by ff = (f, d, r), and the
extended one by ff = (F, d, /), where d = d + xg’ + x'g,
f=/fd' and 7= rd’. Since d’ = d’(xg + x’g’), then [ =
fd'(xg+ x'g’)y=f(xg+ x’g’). Similarly, 7= r (xg + x’g’).
Suppose f(v) = 1; then f(v, x) = xg + x’g’. Thus f(v, x) = 1
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if x = g(v). Since f (v, X) = xh + e is a cover of ff, then also
f(w, x) = 1 if x = g(v) and f(v) = 1. Thus f(v) = 1 implies
2)h(v) + e(v) = 1. Next suppose r(v) = 1; then #(v, X) =
xg + x’g’ or iv, x) = 1 if x = g(v). Again, sincefis a cover
off7, then f(v, Xx) = xh(v) + e(v) = 0if x = g(v) and r(v) = 1.
Hence r(v) = | implies that g(v)h(v) + e(v) = 0.0

Theorem 7 provides a solution to the first problem, in that
f/x is the minimized cofactor 4 given a candidate divisor g.
This method of division has three basic steps:

1. Form a larger don’t-care set d + xg’ + x’g expressing
that x # g is a don’t-care condition, where x is a new
variable.

2. Minimize f using this new don’t-care set with any two-
level logic minimizer that allows don’t-cares. During the
minimization, force x’ to be eliminated.

3. Return ( f/x, e), where ¢, the remainder, is the terms of f
which do not include x.

The procedure BOOL_DIV below uses the heuristic for
obtaining the minimum literal support as discussed earlier.
This is done by a call to procedure MINLIT passing as
arguments the care onset fof f? and the care offset 7 of ﬁ
MINLIT solves the relevant row-covering problem and
returns a slightly expanded cover, where the literals not in
the minimum support have been eliminated.

BOOL_DIV(/, g, d):
n = number of variables
g’ = COMPLEMENT(g)
/* add the implied don’t-care set to & using */
/* the n + 1 variable as a new one */
*DC=d+gv,, , +gv,, *
DC = APPEND((d, 2),APPEND((g, 0).(g’, 1)))
/* form the care offset */
r=COMPLEMENT(APPEND(/, DC))
/* form the care onset */
f=COMPLEMENT(APPEND(r, DC))
/* expand fto its minimum literal support */
/* removing v, */
/=REMOVE(f, v., )
f=MINLIT(f, r)
/* expand finto primes and make an irredundant */
/* cover */
f=EXPAND(/, 1)
f=IRREDUNDANT(f, DC)
/¥ compute f /v, ,, */
h = COFACTOR(f, v,,,))
/* REMAINDER returns terms not multiplying */

/* vn+l */
e=REMAINDER(f, v,,,)
return(h, e)
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We assume here that f'is a given cover of ff, d is the don’t-
care set for ff, and g is a given candidate divisor. The first
step forms a new don’t-care set and the corresponding onset
and offset, thus giving a new incompletely specified function
(f; DC, r) in the larger Boolean space. Next v, is removed
from the onset and the minimum literal heuristic is applied.
At this point, any two-level logic minimizer could be
applied, but here only the EXPAND and IRREDUNDANT
steps are used. Finally, the coefficient of v _, | is returned as A,
and the remaining terms as e.

n+l

3. Kernels
The notion of a kernel [7] of a logic expression was
introduced to provide an efficient means for finding
common subexpressions. In this paper, we see that kernels
are a bridge between algebraic expressions and factored
forms.

A kernel of an expression fis defined by the following two
rules:

1. A kernel k of an expression fis the quotient of fand a cube
c k=fc.

2. A kernel k is “cube-free.” (k cannot be rewritten as
k = dg, where d is a nontrivial cube and g is an expression.)

For example, suppose that
f=abc + abde.

Then f/a = bc + bde is the quotient of fand the cube a, but it
is not cube-free since the cube b is a factor of f/q,

fla=b(c + de).

However, f/ab = ¢ + de is cube-free and hence a kernel.

Since no single cube is cube-free, a kernel must consist of
at least two cubes. Also, since the universal cube, 1, is a cube
and f/1 = f, then if fis cube-free, fis considered one of its
own kernels.

Associated with each kernel is a cube, called its co-kernel,
which is simply the cube divisor used in obtaining the
kernel. Since the same kernel may be obtained in several
ways by dividing /" by different cubes, the co-kernel of a
kernel is not unique.

A kernel is said to be of level 0 if it has no kernels except
itself. Similarly, a kernel is of /evel n if it has at least one
level-n — 1 kernel but no kernels (except itself) of level n or
greater.

For example,

x=(ab+c)+d)eg’ +g(f+ e+ b+c)Xh+))

has, among others, the kernels b + ¢ and a(b + ¢) + d, which
are level 0 and level 1, respectively, while x is a kernel of
level 2 since it has level-1 kernels but no level-2 kernels

other than itself. Note that 191
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y=jab+c)+d)eg’ +g(f+e))+(b+)h+i)
is a kernel of level 3 since it contains the level-2 kernel
(alb+c)+d)eg’ +g(f+e’))

with co-kernel j.
The following is an algorithm for computing all the
kernels of an expression f

KERNELS(f):
¢ = largest cube factor of f
K =KERNELI(0, f/c)
if (fis cube-free){
return fU K
}

return K

KERNELI(/j, g):
R=g
for (i=j+1;i<n; i++)}
if (/, appears in only one term) continue
¢ = largest cube dividing g//; evenly
if (/, notin ¢ forall k <i)
R =R UKERNELI(, g/, N ¢))
}

return R

The algorithm works as follows. The argument j in
KERNELLI is a pointer to the literals already factored out
(all literals <j have been processed). KERNEL] is designed
to find all kernels associated with any cube divisor not
containing any of the literals /, for i < j. The recursive call to
KERNELI restricts the function being processed to the
subset of terms containing literal i. This computes the
kernels which have as co-kernel a cube whose literals include
/; and the literals of c, the largest cube factor of g//.. The
recursion is done only if the cube ¢ has no literals k < |,
since all co-kernels associated with this recursion will involve
the literals of ¢, and if one of these has been factored already,
we would just reproduce a kernel and co-kernel already
found. This makes the algorithm such that it only processes
unique co-kernels. Also, it gives the algorithm a very
effective tree-trimming strategy for searching for kernels.

A few of the important properties of kernels are discussed
below. We use the notation K(f) to refer to the set of all
kernels of f.

Theorem 8 [7]  If two expressions fand g have the property
that any k€ K(f) and any k, € K{g), which implies that k,
and k have at most one term in common, then fand g have
no common algebraic divisors with more than one term.
This theorem is used for detecting whether two or more
expressions have any common algebraic divisors other than
single cubes. This can be done by computing the set of
kernels for each logic expression and forming nontrivial
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(more than one term) subkernels among kernels from
different functions. If this set of subkernels is empty, then we
need only look for divisors consisting of single cubes (which
is an easier task). Thus we do not need to compute the set of
all algebraic divisors for each expression to determine
whether there are common nontrivial algebraic divisors. This
leads to great run-time efficiency since the set of kernels is
much smaller than the set of algebraic divisors, and,
secondly, in the algorithm for computing kernels, the cube-
free property of kernels provides a very effective means to
trim the search tree for kernels.

The next theorem leads to very fast methods for factoring,
for finding the prime factorization of a single expression, and
for finding the greatest common divisor of several
expressions. We use it in this paper for factoring.

Theorem 9 If pis a kernel of fand is prime (cannot be
factored algebraically), then p is a kernel of exactly one of
the prime factors of f.

Proof Suppose /= ILf. Let d be a co-kernel of p. We can
uniquely write d = TI¢’, where support (¢) C support ( IAN
Since p = fld = II( /‘,./ci), then p can be prime only if ¢’ is a
cube of f, for all but one i. Thus p = ﬁ/ci and since p is cube-
free, then p is a kernel of f. O

Corollary 9 Let k be a level-0 kernel of /. Then k is a
kernel of exactly one of the algebraic prime factors of f.

Proof A level-0 kernel is prime. [
To help understand this result, consider the expression

(a(b+ ) + d)eg’ + g(f+ e")).

This factors into two prime factors a(b + ¢) + d and
eg’ + g(f+ ¢’). Note that the level-0 kernel b + ¢ occurs
in only one of the prime factors, while the level-1 kernel
(b + c)(f+ e’) spans several of the prime factors. We see
later how this can be used to obtain a very fast effective
method for factoring logic expressions.

Several algorithms (such as quick factor QF) will need to
find just one level-0 kernel. This is obtained by a trivial
modification to algorithm KERNEL1:

ONE_LEVEL_0O_KERNEL(g):
if(|g| = 1) return 0
if (L = LITERAL_COUNT(g)) < 1) return g
for (i = 1; i < n; i++)}
if(L(§) < 1) continue
¢ = largest cube dividing g//, evenly
return ONE_LEVEL_O_KERNEL(g/(/; N c))
J

This algorithm terminates on finding the first level-0 kernel.
Here LITERAL_COUNT returns a vector giving the
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number of times each literal appears in a given expression. If
all counts are <1, then g is a level-0 kernel which is returned
and the algorithm terminates. Otherwise, the first literal with
a count greater than one is chosen. It and all literal factors
are divided out and the algorithm recurs until no literal
appears more than once.

4. Factoring
In this section, we discuss three algebraic methods for
factoring logic expressions and two Boolean methods.

o Generic factoring
Most algebraic or Boolean factoring methods can be
described by the following recursive procedure:

GFACTORC(f):

If( | f] < 1)return f

k = CHOOSE_DIVISOR(f)

(h, ry = DIVIDE(, k)

return (GFACTOR(k) GFACTOR(4) + GFACTOR(r))

The method first chooses a divisor of fand performs the
division to obtain a partial factorization /= kh + r. At this
point, k, 4, and r are expressions or logic functions which
also must be factored. Hence, in the last line, GFACTOR is
called for each of these. The factored product plus factored
remainder is then formed and returned. Internally, the
factored forms can be represented by either series-parallel
trees or parenthesized expressions.

Several variations of factoring can be obtained by
choosing different algorithms for CHOOSE_DIVISOR and
DIVIDE. The simplest method merely selects the best literal
divisor (CHOOSE_LITERAL) and DIVIDE performs single
literal division (ALG__DIV). This provides a very fast but
suboptimal method for factorization. We call this LF, for
“literal factorization.”

As an example of literal factorization, consider the
expression

x=ac+ad+ ae+ ag+ bc+ bd
+ be+ bf+ ce+ ¢f+ df + dg.

CHOOSE_LITERAL might choose k = a and ALG_DIV
wouldreturn s =c+d+ e+ gand r = bc + bd + be + bf +
ce + ¢f + df + dg. Continuing in this way, LF might obtain
(depending on which literals are chosen in sequence)

LFx)=a(c+d+e+ g+ bc+d+e+f)
+cle+N+d(f+g).

We can do better by replacing CHOOSE_DIVISOR with
CHOOSE_KERNEL, which computes all kernels of fand
returns the one with greatest “value.” This is a slower but
better-quality factorization and will be called XF.
Continuing with the example,
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XFx)=(c+d+ea+b)+flb+c+d)+gla+d)+ce.

Although XF is slower because it takes longer to compute
the kernels and to choose a best one, it always gives better
factorizations than LF (in the example, 14 versus 16 literals).

Replacing CHOOSE_DIVISOR with CHOOSE_KERNEL
and DIVIDE with BOOL_DIV leads to the procedure BF
(for Boolean Factorization). This applied to the above
example gives the same results as XF. However, for

x=ab'+ac’+ad +a'b+bc’ +bd’
+a'c+bc+cd ta'd+b'd+c'd,
we obtain
BFx)=(a+b+c+d)a +b +c' +d),
whereas
LFx)=a’(b+c+d)+b'(a+c+d)
+ca+b+d)+d'(a+b+c),
XFx)=a'(b+c+d)+(a+b)c'+d)+c(b'+d)+c'd

Note that the result of BF is not an algebraic factorization.

These three methods, LF, XF, BF, use a generic recursive
factoring scheme GFACTOR and two different methods for
selecting a divisor,

CHOOSE_LITERAL—pick the best literal (very fast),
CHOOSE_KERNEL—compute all kernels and choose best
one (slow),

and the two variations of DIVIDE.

ALG_DIV—algebraic (weak) division (fast),
BOOL_DIV—Boolean (strong) division (slow).

These provide a spectrum of speed and quality of results for
factoring.

o Quick factoring
A variation on the generic factoring schema above is

GFACTOR2 (f):
If(] f| <1)return f
k = CHOOSE_DIVISOR( /)
(h, r) = DIVIDEC(/, k)
If (4 1s not a cube){# = CUBE_FREE(h)}
else- {h = ONE_LITERAL_OF(h)}
(k, ry = DIVIDE(/, h)
return GFACTOR2(k) GFACTOR2(#) + GFACTOR2(r)

The heuristic used here is that having chosen the divisor £,
we obtain 4 and are in the process of forming the partial
factorization f= kh + r. Given that & will be used as a
factor, we might as well collect everything that can be
multiplied by A. If 4 is not prime, the same could be said

about the factors of 4. However, we cannot afford to factor 193
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h, except to eliminate any literal factors of &
(CUBE_FREE). Then we perform the second DIVIDE to
obtain a new k, which must include at least the old k. This
scheme is designed for situations where the best divisor &
was not chosen, perhaps because of run-time considerations.

A fast variation of factoring is obtained then by replacing
CHOOSE_DIVISOR with ONE_LEVEL_0_KERNEL,
which determines a single level-0 kernel, and DIVIDE with
ALG_DIV. This leads to the procedure QF (for quick
factor).

In the example

x=ac+ ad+ ae+ ag+ bc+ bd

+ be+ bf+ ce+ ¢f + df + dg,
QF and XF give different but similar-quality factorings,
XFx)=(c+d+ea+b)+flb+c+d)+gla+d) +ce,
QFx)=gla+d)+(a+ b)c+d+ey+cle+ )+ f(b+d),

but QF is much faster because it only needs to determine
one level-0 kernel for each factor. However, for

x = abeg’ + abfg+ abe’g + aceg’ + acfg + ace’g
+deg’ + dfg+de’'g+ bh + bi+ ch + ci,
QF(x)=(a(g(e’ +f)+eg’ )Y+ i+ h)(b+c)
+d(gle’ +f)+eg),

but XF obtains the better result (13 literals versus 16
literals),

XF(x)=(atb+c)+dYeg’ +g(f+e")+ b+ )h+ 1),

by working harder to find the best kernel to be used at the
top level of the recursion.

In more recent implementations of logic synthesis
algorithms [10], QF has become an important tool because it
is so fast and effective. QF is used continuously during
synthesis to estimate area and delay.

e Factoring using duality

The final method of factoring simply recognizes that a
factored form can be obtained by factoring the complement
of a function by any of the methods discussed, and then
using duality or DeMorgan’s law to obtain a factoring of the
function. For example, suppose we have factored

F’ = FACTOR(x")
= (ab’ + a’'b)cda’ + &)+ c'(b'e+[)) + bce.

By using DeMorgan’s law, a factored form for x is obtained
as

DUAL(F")=((a’ + b)a + b")

+(c'+d +aec+b+e)f)Nb +c +e').
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The procedure, outlined below, is denoted by DF for
DeMorgan Factoring:

DF(fY:

f = COMPLEMENT( )

F’ =FACTOR( f)using LF, QF, XF, or BF)
return DUAL(F")

5. Optimal algebraic factoring and rectangle-
covering problems

Rectangles and rectangle coverings of Boolean matrices have
several applications in logic synthesis [14]. We discuss one of
these here, namely, optimal algebraic factoring.

e Rectangle coverings
A rectangle of a Boolean matrix B, B, o= {0, 1} is a subset of
rows and columns (R, C) such that i € R, j € C implies
B, =1

A prime rectangle P = (R, C) of B is one not strictly
contained in another rectangle of B.

We say that B is covered by the set of rectangles {(Rk, C k)}
if
B,=1 implies i€ Rk, jE C*  for some rectangle k.

A covering need not be disjoint, so that a 1 in B may be
covered by several rectangles. In general we are interested in
the weighted covering problem where we assign each
rectangle (R, C) a weight defined by a weight function,

w(R, C). The weight of a cover {(Rk, Ck)} is defined as the
sum

T w(RF, Ch.
k

The rectangle-covering problem is to find a cover of B with
minimum weight.

One straightforward way to approach the rectangle-
covering problem is to formulate it as a row-covering
problem. We first find all prime rectangles of B. (Because
kernels and prime rectangles are related [14], we can use a
procedure like KERNEL for finding all prime rectangles of
B.) Now construct another Boolean matrix M which has a
row for each 1 in B and a column for each prime rectangle.
M, = 1 if the prime P’ covers the 1 in B associated with row
i of M. Otherwise M,; = 0. Since we want 1o find a covering
of least weight, each column of M is given a weight W, equal
to the weight of the associated prime rectangle P’;

W, = w(P’). By solving

Minimize: W x
such that: Mx =1,

we obtain a minimum prime rectangle covering of B of least
weight.

e Heuristic coverings
Because of the obvious complexity of finding an optimum
rectangle cover, and because an optimum cover may include
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nonprime rectangles, we resort to heuristics. The following is
a greedy procedure for determining a good rectangle cover. It
proceeds in two phases. In the first, we attempt to find an
optimal prime rectangle cover. In the second phase, we
attempt to decrease each of these rectangles in an optimal
way to obtain a cover with smaller rectangles. If the weight
of a rectangle decreases with smaller size, then the reduced
covering of nonprime rectangles is better. During the
iteration, as primes are chosen greedily, an increasing
number of 1’s in B are marked as “don’t-care” points,
indicating that the 1 is covered but it is permissible for
another rectangle to cover the same point. However, the
weight function should be defined such that there is no
advantage or disadvantage in covering a don’t-care point:

RECTANGLE_COV(B):
P=0
while (there are “cares” in B)f
P, = prime rectangle of greatest value.
Mark as don’t-care any 1 in B associated with P,
P=PUP,
}
P =IRREDUNDANT(Z?, B)
return P=REDUCE_R(B, P)

Similarly to the ESPRESSO-II procedure for logic
minimization, IRREDUNDANT selects a subset of P which
still covers B. REDUCE_R maximally reduces each of the
rectangles in the cover by deleting rows or columns of the
prime rectangle to decrease its weight. This can be done if
the other rectangles jointly cover a row or column of a
rectangle:

REDUCE_R(B, P):

for (i=|P| -1 to 1){
P=pP-{P}.
P, = rectangle of least weight covering P, ~ P.
}

return {P}

Note that in RECTANGLE_COV we have stated that 1’s,
which are “associated” with 1’s of B covered, are marked as
don’t-care. Later we will have a general notion of a 1 of M/
being associated with a rectangle. In some applications this
means simply that it is covered by the rectangle, but in other
applications it is important to be able to have 1’s
indirectly associated with each other. The procedure
RECTANGLE_COV is analogous to the EXPAND,
IRREDUNDANT, and REDUCE sequence of ESPRESSO-
I1 [11], with REDUCE being necessary if smaller rectangles
have less weight. This operation can be iterated, as done in
ESPRESSO-II, by restricting the first part to select and
expand to prime each rectangle of a given rectangle covering,.
These are made irredundant and reduced, with the reduced
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rectangles becoming the input to the first part for re-
expansion. Iteration would continue until no decrease in
weight is obtained.

We will see how the RECTANGLE_COV procedure can
be applied to optimal algebraic factoring. This type of
factorization can be extended to multiple functions [14].

& Optimal algebraic factorization using rectangle covering
and overlap

An optimum algebraic factorization is one with the least
number of literals. In general, it is obtained by allowing one
or more terms to be repeated; i.e., a term may be produced
by more than one product. As an example,

x=ac+ad+ ae+ ag+ bc + bd + be

+ bf+ce+cf+de+df+dg
can be factored optimally as
x=(a+b+e+fc+d)+(@a+d)e+ g+ Me+f).

Note that in expanding this, the term de is produced twice.
However, each of the products combines expressions with
disjoint variables and hence they are algebraic
multiplications.

The idea of allowing repeated terms (overlap) is a natural
consequence of rectangle covers with overlapping rectangles.

An optimum factorization is a sum of products of sums of
products, etc. At the top level, each product represents a
subset of the terms of f which can be algebraically factored.
One way to obtain an optimum factoring is to choose these
subsets correctly and then to recursively optimally factor
cach of their prime factors.

We say that a subset of terms of f'is a product of fif it can
be factored algebraically into two or more prime factors. A
maximal product of fis a product not contained in another
product of f. For example, for

x=ac+ad+ bc+ bd+ ec+ ed + ¢f,

the subset ac + bd + ad + bc is a product of x but it is not
maximal since

(a+bc+d)Ca+b+e)c+d)Cx.

However, both e(c + d + f) and (a + b + €)(c + d) are
maximal products of x.

An optimum algebraic factorization of fis a sum of
products, but in general each product need not be a maximal
product. However, each product is contained in some
maximal product. Thus an appropriate set of maximal
products could in theory be reduced in an optimal way,
thereby obtaining an optimal factorization. We relate these
ideas to a rectangle-covering problem using Theorem 10
below, which relates maximal products to kernels. In turn,
kernels are related to rectangles of an appropriate Boolean

matrix. 195
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Definition A subkernel of fis any expression with at least
two terms obtained as the maximal set of terms common to
each kernel of any set of kernels of 1.

For notation, if {¢] is a set of expressions, then S({e}) is
the maximal set of terms common to all the expressions:

Se}) =1t ¢ € e, for all i}.

Thus a subkernel is S({k}) if it has at least two terms.

Theorem 10 Let s be a maximal product of /. Then s can
be written as

s=cll g,
!
where ¢ is a cube and each g; is a cube-free subkernel.

Proof Since s is a product, it can be written as
s=cgh,

where ¢ is a cube and g and / are either cube-free
expressions or 1. Let & = {h'). If cg # S({f/h'}), since

cg C S(f7h'Y), then S({f/h' Dk is a product of f containing
s = cgh, contradicting that s is maximal. Thus

cg = S(f1h'}) and

s = cS({f/ch'hh.
Similarly for A, so

s=cS({f/ch'S({f1cg"}).

Hence, s can be written as a cube times the product of cube-
free subkernels of /. [

Recall the KERNEL procedure of Section 3. During this
procedure, we record a kernel defined as a cube-free quotient
f/c for some cube ¢, the co-kernel. Each of the co-kernels is
unique by the nature of the KERNEL procedure.

We build a Boolean matrix M for an algebraic expression f
as follows. Each row corresponds to a unique co-kernel, and
each column corresponds to a cube, dj, of any kernel found.
The &’ associated with the columns are made unique.

M, =1 if cube d’_is a term of kernel k% otherwise M,;=0.
Since the cubes d’ are unique, then a prime rectangle

(R, C) of M corresponds to the subkernel of the set of
kernels associated with the rows R.

T heorem‘ 1] A rectangle (R, C) of M is prime if and only
if g = {d’; j € C} is a subkernel of f.

Proof Assume (R, C) is prime. Then R and C are
maximal and S({k'; i € R}) = {@’; j € C}. Conversely, if
g = S(ik’; i € R}), then C = {; &’ € g} is maximal, hence
(R, C) is prime. O

As an example, with

x = ade+ af + bcde + bef+ g,
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then M is

a bc de f
a 0 0 1 1
bc 0 0 1 1
de 1 1 0 0
f 1 1 0 0

Here, the second kernel (row 2) was obtained by dividing x
by bc (the second cube on the left). This kernel is de + f.
For optimal factoring, we order the terms of f = {t'] and
define a mapping
k ifcdd =1

70 otherwise.

Two I’s in M are associated if m;; = m,,.
In the example, if the terms of x are ordered

term number 1 2 3 4 5

terms ade af bede bef g

then the terms associated with the Boolean matrix are

a bc de f
a 0 0 1 2
bc 0 0 3 4
de 1 3 0 0
S 2 4 0 0

i.e., m,; = 1 since (a)(de) = ade = ¢! m,, = 3 since

(de)(be) = bede = 1, etc., and (4, 1) is associated with (1, 4).
A rectangle (R, C) of M is associated with (or covers) a

subset of terms of f°

TR, C)={t"I'=m,,i€ R, jE C}.

ij?
Note that no term is covered more than once by a single
rectangle; i.e., if m;; = m,, and i, k € R, j, k € C for some
rectangle (R, C), theni =k, j=[ Anentry M,,;= 1 in

M is said to be associated with a rectangle (R, C) if

m,; € T(R, C). Note that this is different from an entry being
covered by a rectangle. For example, entry M, is associated
with rectangle ({1, 2}, {3, 4}) since

m,, =3 € T({1, 2}, {3, 4 =11, 2, 3, 4}.

In applying the procedure RECTANGLE_COV to M
with m used to associate entries in M, it is necessary to give
a weight to a rectangle (R, C). In the greedy procedure in the
first part, we want to choose a prime rectangle P, with two
objectives: first, to cover as many care points as possible with
the next choice of P; second, to choose a rectangle with least
weight.

This motivates the following weight function. First, let the
“cost” of a cube, c(c'), be equal to the number of literals in
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it. Suppose (R, C) is a prime rectangle. Let R C R be the set
of rows R which contain at least one care point, and
similarly for C C C. The cost of (R, C) is then defined as

UR, C)= % c(c)+ I c(d).
i€R jE€cC

Here, {c¢'} and {d’} are the cubes of the co-kernels and
kernels, respectively. We sum over only those rows and
columns which contain “care” points, since we do not want
to penalize prime rectangles for covering don’t-care rows or
columns.

In the example, if all points are care points, the cost of
({1, 2}, {3, 4}) is the number of literals in the factorization
represented by the rectangle, (a + bc)(de + f) = 6. However,
if points (1, 4) and (2, 4) are don’t-care, then the cost is S,
since (a + bc)(de + f) can be implemented as (a + bc)de.

Finally, the weight of (R, C) is defined as

R, C)
number of care points covered by (R, C)

w(R, C)=

i.e., w(R,C) is the average cost of each care term covered by
(R, C).

With these notions of the weight of a rectangle, and of
which of the 1’s in M are associated with a rectangle, we can
apply RECTANGLE_COV to obtain a near-optimal
factorization of f. This is discussed later in this section after
we explore how to find a rectangle with least weight.

e Choosing a rectangle of least weight

A heuristic for finding the rectangle of small weight is
composed of three algorithms: GREEDR, GREEDC, and
PING__PONG. Each receives as input a matrix B,
B,€{0,1, 2}, where 2 indicates a don’t-care point. A “cost”
for each row and column is also given by the vectors, w”,

w . GREEDR and GREEDC are also given an index, k, of a
row or column, respectively:

GREEDR(B, k, w*, w):

R={K
C=1{j; B,#0}
P=(R,C)
while (| C| > 1)§
. W
/= argmin ———;
r€R ()
By=1,j€C

R=RUY{))
C=1{j;B,;#0, foralli € R}

if (w(R, C) is best yet) P= (R, C)
}

return P

In the above procedure, we start the rectangle with the given
row k, and the columns are simply the nonzero (1’s or 2’s)
columns of row k. Next we choose a row / not in R which
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minimizes the quotient shown. The sum in the denominator
is maximized by choosing a row with many care columns
(B,; = 1) in common with C, each of small weight. Then / is
added to R, and C is updated in a way (B, # 0) which allows
don’t-care points in the rectangle. If the present rectangle is
the best seen so far, it is recorded. This is iterated until C has
only one column. During GREEDR, a sequence of prime
rectangles is observed starting with one of maximal width
and ending with one of maximal height.

The procedure GREEDC is the same as GREEDR except
that the roles of rows and columns are interchanged.

The procedure PING_PONG below alternates between
GREEDR and GREEDC until a rectangle is repeated:

PING_PONG(B, w*, w°):

k= argmin (w)/ 3 (ch)_l
Bkj=l

P=P =0
while (P, & P){
P, = (R, C) = GREEDR(B, k, w", w°)
P=PUP,

TwH

Jj =argmin (wf)
jec By=1

P, = (R, C) = GREEDC(B, j, w", w°)

P=PUP,

owy!

k = argmin (wf)
kER By=1

J

return P,.

e Optimal factoring, OF
Finally, a near-optimal factoring procedure is the following:

OF(f):
Build Boolean matrix M and term map m using kerneling
procedure on f.
Compute w”*, w® from co-kernels {c'} and kernel cubes {d'}.
B=M
P=0
while (B, = 1 for some ij){
P, = (R, C) = PING_PONG(B, w*, w°)
P, =EXTEND(P,, B, w*, w°)
P=PUP,
for (all j){
if (4, j associated with P))B; =2
}
}
P =IRREDUNDANT(P, M, m)
P=REDUCE_R(M, m, P)
for (i=1;i=<|P|)

fi={csjERY
g=1\djeC
}
return (3 OF( f)) X OF(g)) 197
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OF uses PING_PONG to determine a near-optimal
selection of the first level of factorization, i.e., the first set of
products in the sum of products representation. After each
rectangle, P,, has been selected by PING_PONG, we
recognize that it may not be the best rectangle. Hence,
similar to what is done in GFACTOR?2, this rectangle is used
to try to find a better one by the procedure EXTEND. This
examines the expression determined by the columns of P, to
see if it is a product. If it is a product, then each factor will
be represented by a subset of columns since the kerneling
process used to form the Boolean matrix, M, found all
kernels. The associated rectangle of each factor is examined
to see if it is better than P, and if so, it replaces P,.

An irredundant subset of P is selected IRREDUNDANT)
and each of these is reduced (REDUCE_R). Each of the
factors associated with R’ and C' is recursively optimally
factored by applying OF to the expressions f; and g, formed
by the co-kernels of the rows and cube kernels of the
columns of the reduced rectangles.
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