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Some stability
techniques
for multistep
methods

by F. Odeh

A partial survey is given of sundry results in the
stability theory of multistep formulae when these
are used to integrate time-varying or nonlinear
stiff systems, with emphasis on systems arising
in circuit analysis.

1. Introduction

This paper is a short, informal, and quite partial survey of a
few of the results in the stability of difference methods
obtained by various people in or closely associated with the
Mathematical Sciences Department at IBM in Yorktown.
These results are mainly concerned with the stability of
methods obtained by applying linear multistep formulae
(LMF) to the numerical integration of initial value problems
for systems of ordinary differential equations which may be
characterized as being stiff. Following what is by now a time-
honored tradition, no precise definition of this class of
equations will be given. Loosely speaking, it usually denotes
a system which is stable in some sense but exhibits a wide
difference in the behavior of its individual solutions. For
example, in linear systems, X = Ax, this happens when the
time constants, i.e., the reciprocals of the eigenvalues of A, of
the system are very widely different. Such behavior is
frequently encountered in the analysis of simple linear
circuits, where the different sizes of the electrical
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components, e.g., large resistances and moderate
capacitances and inductances, would lead to many orders of
magnitude differences in the circuits’ time-constants.

The classical theory of numerical integration methods for
systems, x = f(1, x), is quite well established and is described
in, for example, the textbooks of Henrici [1] and Stetter [2].
It is based on assuming that one chooses time-steps, 4, so
that the norm of AJ, where J is the Jacobian of f, is rather
small. There are basically two reasons why the classical
theory is inappropriate for stiff systems. First, the time-step
has to be small with respect to the reciprocals of the /arge
eigenvalues of J. In a standard RLC circuit with the typical
values of R = 1000 @, L = 1 nH, C = 1 pF, this would
restrict the time-step to be of the order of 107" ns even
though the time variations of the current and voltage—apart
from a short initial phase—are of the order of 1 ns. Second,
the bounds on the numerical error provided by the classical
theory are of the order of exp (LT), where (0, T) is the
relevant time of numerical integration and L is the Lipschitz
constant of fin some domain surrounding the solution and
is therefore always quite large for a stiff system. One of the
objectives of the results which are highlighted below is to
derive methods and stability and error-estimation techniques
which are more or less free of the above difficulties. This, of
course, can be accomplished only by restricting the class of
differential systems, e.g., to those satisfying one-sided
Lipschitz conditions such as negative monotone (dissipative)
systems and their relatives. This class seems adequate to
describe most of the systems arising in circuit applications.

We now outline the paper’s plan. In Section 2, some
preliminaries are given about multistep methods, their
asymptotic stability regions, and Dahlquist’s famous
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restriction on the accuracy of 4-stable methods, i.e., those
whose stability region includes the left-half complex plane.
Section 3 is concerned with the fixed-A stability of 4-stable
and related methods when applied to various classes of
nonlinear monotone systems. Here, we introduce the
multiplier technique, related in spirit to the corresponding
technique in control theory, for the study of global error
estimation of multistep methods. The behavior, in the
nonlinear regime, of methods based on 4(«a)-stable formulae
is also described. In Section 4, two Liapunov-like techniques
which are appropriate for studying, or minimizing, the
effects of time variations in the system and/or the size of the
time-step are given. One is a method for constructing
polyhedral norms for studying the stability of such systems,
and the other is a method for constructing methods which
are quite robust under time variations. Section 5, which is
concerned with applications to circuit analysis, deals with
the behavior of the global Picard-like iteration method
known as Waveform Relaxation and the convergence of its
discretized version.

2. Preliminaries
A linear multistep formula (LMF) is given by
k k
Lx(t) = Yayx,,, — hEBX,, =0, (1)

where # is the time-step, k is the step number, and the dot
denotes differentiation with respect to time. If E denotes
translation by /4 and the usual polynomials (p, ¢) are defined
by

o) = Tat’, o) = T8, @)

then (1) has the form
Lx(1) = ,:p(E) - ho(E) g—[]x(t) = 0. 3)

The order of accuracy, p, of L is defined by applying L to
smooth functions y(¢) and expanding in powers of 4 to
obtain

L(1) = 0(h™") ~ local truncation error. 4)

Combining (3) with a smooth system

x = f{t, x), )
one obtains the algebraic system
N(x,) = p(E)x, — ho(E)(1,, x,) = 0 ©)

for the numerical solution x, which approximates the exact
solution x(f = nh) = x(n). Since the exact solution is
assumed smooth, it satisfies

Nx(n)) ~ O(h"Y). 0

It is clear that if the local errors do not get unduly
amplified, i.e., the method is stable, the global error
e(n) = x — x(n) should converge to zero like #” as h — 0.
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This is in fact the case if [} A/, || is small, as shown by
Dahlquist when the method is small-# stable, which may be
characterized algebraically by the condition

o§)=0=|§I =1,
and the roots on the unit circle are simple. 8)

It is noteworthy that even this (relatively weak) stability
requirement restricts the order of accuracy to about half
what one would expect from counting the degrees of
freedom in (1), i.e., to p ~ k instead of p ~ 2k.

Since for stiff systems one does not wish to so severely
restrict /1 to render || 4f_ || small, another stability concept,
introduced again by Dahlquist [3], is more appropriate.
Consider the linear model problem

X=X, ®

where A is a complex constant. Then the region of (absolute)
stability, S, of a numerical method is the set of A\ such that
all the numerical solutions of the model problem with fixed
step # will remain bounded when # — . Since the model
problem is stable for A in the left-half plane C, it is
desirable that S contain as much of C~ as possible. A
method is called A4-stable if S contains C™; a simple and
widely used example is the trapezoidal rule. A-stability,
which seems a natural, albeit rather extreme, requirement,
severely restricts multistep methods (1) to be implicit 8, # 0
and to have low order, as the following barrier result shows:

Barrier: The order of accuracy

of an A-stable LMF (1) cannot exceed two. (10)

The original proof of this pretty result, given in [3], depends
on two small calculations which algebraically quantify the
accuracy and stability requirements. First apply L to

Y1) = € asin (4) to obtain

o9 _ log¢ ~ c(¢ — 17 near ¢ = 1.

a({)

For convenience, introduce the Greek-Roman
transformation

=+ 1z - 17,

then

Ew-to, (i

and the accuracy requirement reads, near z = o,

r o z+l_ <Z>p+l
s Bo—1 \Z)

and hence, for p > 2,

r 2 -
z3 2+3z + .- (12) 179
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On the other hand, A4-stability requires that /s be regular
and have positive real part for z € C*, and therefore can be
represented, by the Riesz-Herglotz theorem, as the transform
of a nonnegative measure

£(2)=f L duo).

z— it

xf(x)=f X de(1) (13)
s x>+ )

The behaviors, as x — , of the right sides of (12), (13)
contradict each other since the integrand in (13) is
nondecreasing in x for every fixed ¢. A more natural proof—
a counting argument—was given much later using the
order-stars theory [4].

Naturally, there have been lively activities in
circumventing the above barrier. One approach is to relax
the stability requirement so that S contains a reasonable
part, but not all, of C™. For example, in A(a)-stable
methods, S contains a wedge of angle « around the negative
x-axis, and backward differentiation formulae (BDF) are a
prime example thereof. Other approaches use higher-order
derivatives in (1), or postprocessing of solutions obtained by
A-stable methods [5], or nonlinear methods of integration,
but such approaches have not been as popular, at least in the
U.S,, as the simple LMF.

3. Nonlinear stability and multipliers
The asymptotic stability concept described in Section 2 via
the model problem (9) is adequate for linear systems X = Ax
where A is a constant matrix. In that case, by the spectral
theorem, the numerical solutions (and errors) corresponding
to (6) decay (or stay bounded) if the eigenvalues of 4 lie
within the stability region S. Intuitively, one suspects that for
“reasonable” nonlinear systems, the numerical solution will
be stable if the spectrum of the Jacobian f, is always inside S.
The reason is that the error would satisfy a more-or-less-
linear time-varying variational equation, and hence the error
growth could be controlled. This approach involves
considerable care, since it is easy to obtain exponentially
increasing solutions for systems which are quite stable when
the coefficients are frozen, e.g, in the damped Mathieu
equation. Liapunov-like methods ( G-stability) were used by
several authors to obtain global error estimates, but these
methods are most applicable to A-stable, hence only
low-order, methods. In this section we briefly describe [6] an
approach for directly estimating such errors which also
works for high-order methods.

From (6), (7) the global error satisfies

o(Ee, + ha(E)F, = hp, ., , (14)

where F, = f(nh, x(nh) + e,) — f(nh, x(nh)), x is the exact
solution, and where we have replaced f by —f for notational
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convenience. Under mild restrictions on (p, ¢) this may be
written as

v+e, + hF, = hq,, 15)

where # is the 4-sequence defined by oo () = Eng'_j and =
denotes convolution. If the nonlinearity f is monotone,

fx) =)y, x—yy = ulx = yl%,

or satisfies similar circle conditions, then a useful device for
studying the stability of 4-stable methods is to scalar
multiply (15) by ¢, and use the monotonicity (16) together
with the A-stability—which implies the positivity of the
quadratic form Z{e, y*e)—to obtain error bounds. For
A(a)-stable methods,

u>0, (16)

a< 5 s

this quadratic form could become negative, since the root-
locus, i.e., the image of the unit circle under po”', intersects
the left-half plane. One, however, can obtain weighted
equalities by scalar multiplying by u+e,, where u is an /,
sequence, to obtain

2{uxe, vxe,) + X(uxe, F,) = X(ure, q,). (17)

If a(r) = Eune_i"’, then u is called a multiplier for (p, o) if

Zu,” is rational, Re ji(r) > 0, and

Re{p(r)po e =0  forall 7. (18)

Then, by Parseval, the first term on the left side of (17) is
nonnegative. If the method does possess a multiplier which
is in some sense simple, then, under some monotonicity
conditions stronger than (16), one can show that the second
term is positive, and (17) could be thought of as a weighted
energy inequality which may be used to obtain global
bounds on e,. The analysis naturally separates into three
parts: the relation between methods and “their” multipliers,
the relation between such multipliers and the nonlinearities,
and finally the error behavior; we say a few words about
each part. First, one can show the existence of a multiplier
for any A (a)-stable method. More precisely, one has
Theorem 1.

o Theorem 1

If a method (p, ¢) is A(B)-stable, then, for any 0 < a < 8,
there exists a multiplier of finite support, u = mj;g’, for (p, o)
such that

|arg ilr)| <5~ . (19)
Since it is easy to see that (19) implies A(«x)-stability,
Theorem | may be interpreted as saying that the linear
stability of an A(«)-stable method can be “seen” through the
multiplier. This multiplier is produced by judiciously
modifying and truncating a fractional power of pa™'(¢)
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which is chosen so that (18) holds. Thus, such a multiplier
would in general be a complicated sequence and seems to be
useful for investigating the stability of linear problems only.
For in such cases, assuming /= 4 with |arg spectrum of 4 |
< a, one can find a scalar product such that |arg (v, Av) |

< a. The positivity of the second term of (17) then follows
from (19). To treat nonlinear problems, it turns out that
multipliers should have additional properties in the time
domain, e.g.,

Low=0 for j > 0,

and

2z Xlul with a large w = 1. 20)
Jj=1
Thus the best of all multipliers would be u = {1, —5} with
very small n > 0. This is the analogue of the Popov
multiplier in control theory, and a method with such a
simple multiplier enjoys very good stability properties in the
nonlinear regime. A graphical method can be devised to
check whether (p, ¢) has such multipliers u, and one finds
that the BDF of orders two to five have such u with 5 =0,
0.0836, 0.2878, 0.8160, while the BDF of order 6 needs a
more complicated u to exhibit its linear stability.

Another use of this multiplier language is to derive a
quantitative form of the barrier result (10) in the form of an
uncertainty principle showing the incompatibility of extreme
stability and accuracy of an LMF. If L, denotes the linear
functional (1), then the Peano-kernel of the method (p, o) is
given by

g-1
+

"(g— 1)

the local truncation error may be written as

Kq(s)=L 2=qg=<p+1,

V]
L,x(1) =K f Kq(s)x(q)(t — hs)ds, 2n
—k
and one may measure this error by the size of || 1A<q I; for p
accurate methods choose ¢ = p + 1. The departure from
A-stability may be measured by the size of 5, and one has
Theorem 2.

e Theorem 2
For every k, there exists C, > 0 such that, if {1, —p} is a
multiplier for the k-step method (p, o), then, as 5 — 0,

T{EX Bl (22)

which shows the blowup of the error if p > 2 and 7 — 0. The
main ideas in proving this result are that 1) || K| is as large
as the largest a; where p({) ~ r(z) = Eajzj ; this is proved by
soft arguments. Then, some detailed function theory
arguments show that 2) a large amount of stability (n small)
forces a; 1o grow so that
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1—19 r
ap_12< 6 n) a.

The interaction between the multiplier and the nonlinearity
is given by the second term in (17), and one wishes this term
to be positive. This requirement is a sort of generalized
correlation inequality and can be shown to hold under a
variety of restrictions on the nonlinearity and on the
sign/size of . Some examples follow.

o Example 3

Let # = @(v) be convex and nonnegative and ¥(0) = 0.
Assume g, < 0 for j > 0 and let P, be the sequence of partial
sums of x. Then

Yusv, grad @) = (Pux®),,

and hence the sum is nonnegative if u, = —Zu; .

(23)

o Example 4
If f is o-angle bounded, i.e., satisfies

fx) =),y = 2) = o{fix) — Az), x — 2),
and f{0) = 0, then
Xuv, f) 20

if u, < 0 forj>0and u, = (1 + 6)Zg;. Such functions are
basically gradient-like monotone functions, e.g., 3-cyclic
monotones which satisfy

24

3
2 =X, fx) =0,  x,=x,.
=1

A more interesting case relates the multiplier to the
asymmetry and the variability of the problem. If one
measures these two effects by K|, K, defined by

K
(u, Jvy < 7‘ K, Juy + (v, vy} 25

and
(u, J(x)u)y = K, (u, J(y)u), (26)
then one has Example 5.

o Example 5
The nonlinear energy term in (17) is nonnegative if

1+ K,
K, 2lel =n.
j=1

2 27
In studying the convergence behavior of the numerical
method one needs (26) for | x — y| = 0(4) and thus
K, ~ 1 + 0(h). For example, if p = (1, —n), then (27) reduces
to K,n s 1, which shows that as the asymmetry of the
problem increases one has to decrease n and thus use more
stable methods. A strategy for changing the order of the

integration method to keep the asymmetry (just) under 181
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control can thus be devised which together with local error
control would ensure the convergence of the numerical
solution obtained by high-order methods; see [6] for details.

Finally, error bounds are obtained by combining the
above positivity results with the G-stability theory, which
says that the behavior of 4-stable methods can be seen via
the construction of a Liapunov function, which is a
quadratic with a positive matrix, G, constructed algebraically
by a sort of continued-fraction expansion from the method
(p, o) [7]. Consider now the error equation

px, + hoF, = hp,,, . (28)

Operate on (28) by ¢~ and scalar-multiply by m/_‘xn, where
the multiplier x, being rational, may be written as v
where =, v are polynomials of degree / Then one gets the
energy equality

(v_lrxn, a_]pxn) + h{u=x,, F) = h(vsx, q,). 29)

When the variable y, = o~ '»"'x,, | is introduced, the first
term in (29) becomes (wey,_,, vpy,_,). Noting that, by (18),
the “method” (vp, 7o) is A-stable, there exists [7] a definite

quadratic form G such that
G( Y,,) - G( Y,,-[) = 2Re<7ray,,_|’ prn—])’ (30)

where Y, = (¥,, - -+, ¥,,4..,)- Substituting in (29),
summing, and using the positivity of the second term, one
obtains

G(Y,) < 2h3 (usx,, 4,). 31)

Further manipulation of (31) then yields the following.

o Theorem 6
If p is a multiplier for (o, ¢) and fis such that Z{u»»,, F,) is
positive, then, for some C,

|x,| < Ci(initial data) + A X |p;|}. 32)

If the above positivity still holds with freplaced by /' — « for
some « > 0, i.e., there is some dissipation in the problem,
one obtains

sup | (error), | < ¢ sup |local errors| . (33)
<M a n=M
The above, as well as other estimation and convergence
results given in [6], indicates that it is possible to develop, for
typical stiff systems, a stability theory which is free from
Lipschitz constant restrictions and is quite analogous to the
classical one,

4. Variability and contractions

There are a variety of reasons for considering the effects of
time variation on the stability of LMF. Among them is that
the efficient numerical integration of a differential system
dictates the use of variable time-steps. The strategy of such a

change is usually controlled by local error considerations
which leave the question of the stability of the numerical
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scheme in doubt. Two approaches to ensure stability are
briefly described. One is a rather general method for
constructing, when it exists, a (nonsmooth) Liapunov
function for dynamical systems. The other is to design
methods which are contractive, in a fixed norm, under
arbitrary time variations of the model problem x = A(7)x
and of the time-step size.

o Liapunov approach [8]
Consider the variable LMF

k
Lh,nx = Zaj,n'xn+j

- h 38 x . =0. (34)

Jn"ntj

Applying (34) to X = Ax, one obtains a recurrence relation
of the form

Zn+l = ann ’ (35)

where z, = (x,, -~ -, X, )

To show the stability of (35), it is sufficient to construct a
Liapunov function w, e.g., a quadratic or some other norm,
such that

w(M z) = w(z). (36)

To construct w from M, it is useful to give a more generous
definition of stability. Consider a set 4 = {4, B, -..} of
square stable matrices and let _¢’ be the semi-group
generated by _¢ (i.e., all finite products); then one defines _¢
to be stable (at the origin 0) if for every neighborhood U of 0
there is a neighborhood V so that MV C U for all M € _¢’.
Then one can show that the stability of _4 is equivalent to
the boundedness of ¢’ or to the existence of a bounded
balanced convex set W which is invariant under 4’. The
norm sought after in (36) above then has W as the unit ball
and the stability question reduces to that of constructing the
invariant set. Before describing this constructing it may be
noted that

1. The stability of every finite product of {M} is not
sufficient for the stability of _4. For example, suppose
A =1{A, B}, where

i
_ (e q, _(-10
A‘(O 1>’B‘< 01>’

where 8/x is irrational; then it is easy to see that every
M € 4’ has the form

eMlX
0o 1)

where ¥/ is irrational and hence M is stable. However,
for the sequence

eiﬂk a
A = k
k (0 1 )

defined by 4, = 4,
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A, = A; if Ree™ = 0,

=Ai3

one has Re (¢”#') = 0. Then

k+1

if not,

if),
|G| = 11+ €™l a]

zx/ilakl,

which shows the instability of 4.

2. The set W must have corners. For it is easy to see that if,
for some M € _4, there exists one eigenvalue A on the
unit circle and £ is its eigenvector (normalized to belong
to dW), then the plane = passing through £ and parallel
to the complementary subspace is a support plane of W
at £. Hence, if there are two matrices M, as above, with
the same right eigenvector £ but with two different left
eigenvectors 5, W must have at £ two different support
planes; i.e., it has corners. Candidates for the norm w
are generalized max. norm

w(z) = max| X Cz]|.

An iterative algorithm to determine the stability of a set
of matrices, in virtually all cases, is based on the
following construction.

e Theorem 7

Given a finite set 4= {M, M|, ---, M, _} of m distinct
matrices, let W, be a bounded neighborhood of the origin
and define

W,=H [L') M;Wk_l], k' = (k- 1) mod m, (37
where _ denotes the convex hull. Then _4 is stable if W =

U W, is bounded.

The above result is made constructive by choosing W, to
be a polyhedral region; hence, by tracking extreme points, all
the subsequent W, are also polyhedral, and one has to
generate extreme points of W, and add these to the extreme
points of W,_,. The main computational step is, therefore, to
check whether all the extreme points have been generated by
applying M = M, to the extremes of W,_, or, equivalently,
to find whether at any stage of the construction, one more
application of M, takes one into the convex hull of the
previous extreme points. This can be accomplished by using
the (first phase of) the linear program: Maximize O (any
constant) such that

x=Mx, = I\x,,

Ihn=1, A\=z0
The construction was proved to be finite in many interesting
cases [8].

In applying the above method to numerical methods one
encounters an infinite set _¢ of matrices, but it usually has a
finite set of extreme points, and it is clear that the stability of
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the convex hull of _4 is equivalent to that of its extreme set.
This has been used to show the stability of the backward
differentiation method of order two if the step ratio does not
exceed 1.2, and was accomplished by constructing an
invariant set W with 76 vertices!

o Constructive methods [9]

Since the solutions to the model problem X = Ax, Re A < 0,
decay in time, it seems reasonable to design LMF (1) so that
the discrete solution enjoys a similar property. Formally, one
says that a formula is contractive at g = A\ if the solutions to

o(E)x, — (h\)o(E)x, = 0 (38)

satisfy | X, | < |X,|, where X, =(x,, ---, x,,,_,) and ||
denotes a chosen norm; the standard max. norm turns out
most useful. Clearly contractivity at ¢ implies stability there,
and thus the contractivity region K, i.e., the set of ¢ at which
a formula is contractive, is contained in S. Because the
concept is local, one obtains stability for contractive LMF
when it is applied to variable step-size and variable model
equation x = A(f)x, even though one tests with constant A
only. This holds only when the formula is implemented in a
one-leg fashion, i.e., when ¢ and f in the algebraic system (6)
are permuted so that one has to consider, for each n, only
one g = h,\(28,,4,,;) which is assumed to belong to XK.
Various concepts of stability have their contractivity twins,
but it is generally much easier to devise algebraic conditions
sufficient for the latter. For example, (p, o) is i) contractive at
the origin if o, > 0 and «; = 0 j < k; 1) contractive at
infinity if 8, > 2| g,|. It is also easy to show that 4K is
smooth (except possibly at its intersection with the real axis)
and that K is closed and, in contrast to .S, is connected, in
fact by arcs of circles. However, one should note that
characterizing A-contractive methods (methods which are
contractive for all ¢ € C7) is quite delicate. For example, for
two-step second-order methods there is only a one-parameter
family of methods which connect the two extremes of the
one- and two-step trapezoidal rule. They may be derived
roughly as follows: The contractivity condition may be
written as

k—1
Fl(q)E Z laj_ qﬁjl - |ak_ qﬂkl = 0.

The critical case occurs on the imaginary axis g = iy.
Letn = y2, substitute in (39) and expand near n = 0 to
obtain

(39)

2
k B,
Py =~34(32

) +0(n") = =C + 0(r").

One can show that C > 0 contradicts accuracy, hence C =0
is a necessary condition which is actually achievable by
maximizing C under accuracy constraints. This local
argument may be extended to show that F,(iy) < 0 by using
the geometric-arithmetic means inequality. Hence, the three

accuracy constraints and C = 0 restrict the class to a one- 183
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parameter set which may be given different convenient
parameterizations.

Contractive methods enjoy a lot of robustness when
applied to fast-varying systems, again because their stability
is derived from local properties. For example, it is easy to
show the stability of A(0) contractive methods when applied
to diagonal-like dissipative nonlinear systems

X=A(t, x)x+ b (40)

by modification of arguments valid for scalar equations.
Also, if the nonlinearity f is maximal accretive in some
Barach space, and the method satisfies mild contractivity
conditions together with

& <2 B <0,

e k

then one can bound global errors in terms of sums of local
ones [9]. A-contractive methods have even more remarkable
stability properties. Recall, from the previous section, that
every A-stable method has a positive definite quadratic
function exhibiting its stability; i.e., for (p, o), there is a

G > 0—see (30)—such that

G(Y,,) — G(Y,) = 2Re(oy,, py,). (41)

Since applying the one-leg LMF to X = f{x) results in an
error equation,

oy, = hlflox, + oy,) — flox,)]. (42)
Then, for dissipative f,

Re(oy,, py,) =0,

and (41) shows the decay of Y in the G norm. However, for
variable time-steps, the coefficients of (p, ¢) vary with »n, and
so does G. It was shown in [10] via a constructive procedure
that the only A-stable, p = 2, k = 2 methods which have a
Jfixed G—thus immediately guaranteeing stability—consist of
the A-contractive class. The constancy of G in fact defines a
unique extension of the methods from the case of uniform to
that of variable time-steps. An implementation of a specially
selected A-contractive method has recently been
incorporated into a code for the robust simulation of
electromechanical systems.

5. Waveform relaxations for circuits

The stable implicit methods described in the last two
sections reduce the simulation of a differential system to the
solution of a nonlinear algebraic system (6). This solution is
obtained in standard codes by combining Newton-like
methods and sparse matrix “technology.” When the system
(6) is very large, as for example in digital circuits, the
approach becomes quite expensive, requiring ~0.2 minute
per device on a 3081, and is thus limited to 0(102) devices, a
small number in a VLSI era. Decomposition of such large
systems together with relaxation techniques offers obvious
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advantages in both storage and speed requirements. There
are basically two approaches for carrying out such
relaxations. One, at the “algebraic” level of solving (6) or
some linearized version, is by blocking it into subcircuits and
relaxing in some fashion. This is referred to as the
incremental approach; see [11, 12]. The other, introduced in
[13] and called waveform relaxation, WR, is simply to lift
the procedure to a “function-space” level and solve for the
values of the unknowns in a subcircuit for a// (or most of)
the relevant time before feeding these values as inputs for the
other subcircuits. This procedure proved to be very efficient
for special classes of metal-on-oxide (MOS) digital circuits.
Intuitively this happens because of the loose coupling of
MOS devices and because WR allows each subcircuit to be
integrated at its own optimum speed, i.e., with time-steps
dictated by that possibly quiescent circuit and not by distant
active ones which for large portions of time have little effect
on that particular circuit. To describe the WR iteration,
assume that a large system was decomposed into m blocks.
Then the governing equations have the form

Vi=Fys ¥, ¥), I=m 43)

Combining (43) with some chosen relaxation procedure
leads to the iteration

= f0, XL AT, (44)

where x is the whole vector of unknown functions and f is
obtained from F, and the relaxation procedure. For example,
for MOS circuits, (43) is given by

Cvyv + f(v) = 0. (45)

Node-by-node decomposition of (45), together with Gauss-
Seidel relaxation, leads to the iteration

ZCU( ‘s V,, V,+1’ N )V + 2 CIJ(
J=i+1 (46)

k
+f( *s Vi ,+1s' )"

The discretized version of (44), at least for constant
time-steps, formally reads

Qi

= O, X7 § . (47)

1 1
h h
Let J,, J,, J; be bounds on the Jacobians of f with respect to
its arguments. Then the behavior of the discretized WR for
Lipschitz systems and small 4 may be described by the

following,

o Proposition 8 [14]
Assume that i) (p, o) is consistent with the roots of ¢ and
p(¢ — 1)"" inside the unit disk and ii) J,, J, are bounded and
J, < 1. Then the iteration (47) converges, for small enough
h, on finite time intervals.

An easy proof follows from considering (47) as an
iteration on
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Since x is basically an “integral” of y, it can be thought of, in
a standard manner, as a small operator on y in an
appropriate exponential norm. Then (47), because J, < 1,
defines a convergent contraction in that norm.

There are a fair number of other results which show the
robustness of WR under a variety of more practical
conditions. For example, the stability of WR under small
errors, or when combined with function-space Newton as
well as a detailed proof of the convergence of the important
case (46), were given in [15]. The effect of truncating a
(MOS) large circuit, to minimize storage, and relaxing
between a few neighboring circuits only was discussed in
[14], where a bound was given for the error caused by this
truncation in space. In recent, to-be-published results, [16],
the convergence of Gauss-Seidel WR in the uniform norm
for special monotone systems X = f{x) was shown; also,
since the implementation of WR generally involves
interpolation, the above convergence proposition was
modified to take account of linear interpolation.
Convergence results, in /-norms, for WR which do not
assume Lipschitz continuity of the system were given in [17].
Considered there is the model iteration

X ge(x™hy = g(xh), (48)

where 8¢ is the subdifferential of a convex function in some
real Hilbert space H. The function g was assumed Lipschitz
with a small constant <1 (this corresponds to small
capacitive feedback in MOS); then boundedness estimates
for (48), as well as its one-leg discretization with, e.g.,
backward differentiation methods of order up to 5, were
given. These estimates are independent of the time-steps and
rely heavily on the work of Section 3 above. For the iteration

% px™ 4 80(ox™"y = g<% px"), (49)
the strong convergence for fixed time and the weak
convergence in 4(H) of the iterates x” to the unique fixed
point of (49) were proved. When the nonlinearity f is not a
gradient but is a Lipschitz perturbation on a linear operator,
uniform convergence was shown on “time-windows” whose
size depends only on the Lipschitz part.

Finally we remark that WR is quite suitable for being
implemented on parallel machines, especially for digital
circuits. This is because large digital circuits tend to be wide;
that is, rather than being like one loop chain which has to be
simulated serially, they are like many parallel chains with
some interaction between them. The amount of parallelism
can be improved by timepoint-pipelining, where, once a first
timepoint is generated by the first processor, a second
processor could begin computing the first timepoint for a
second subcircuit, while the first processor computes the
second timepoint for the first subcircuit. An implementation
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of WR on a nine-processor configuration with shared
memory, and on a variety of increasingly larger problems,
was carried out [18], with the moral that parallelism scales
with size, so that one can, in WR, effectively use more and
more processors as the problem size increases.
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