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Some  stability 
techniques 
for multistep 
methods 

by F. Odeh 

A partial  survey  is  given of  sundry  results  in the 
stability  theory  of  multistep  formulae  when  these 
are used  to  integrate  time-varying or  nonlinear 
stiff  systems,  with  emphasis  on  systems  arising 
in  circuit  analysis. 

1. Introduction 
This paper is a short, informal, and quite partial survey  of a 
few  of the results  in the stability of difference methods 
obtained by various people in or closely  associated  with the 
Mathematical Sciences Department at IBM in Yorktown. 
These results are mainly concerned with the stability of 
methods obtained by applying linear multistep formulae 
(LMF) to  the numerical integration of initial value problems 
for  systems  of ordinary differential equations which  may  be 
characterized as being st@ Following  what  is by  now a time- 
honored tradition, no precise definition of this class  of 
equations will  be given.  Loosely  speaking, it usually denotes 
a system  which is stable  in some sense but exhibits a wide 
difference in the behavior of its individual solutions. For 
example, in linear systems, x = Ax, this happens when the 
time constants, i.e., the reciprocals of the eigenvalues  of A ,  of 
the system are very  widely different. Such behavior is 
frequently encountered in the analysis of simple linear 
circuits, where the different  sizes  of the electrical 
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components, e.g.,  large resistances and moderate 
capacitances and inductances, would  lead to many orders of 
magnitude differences in the circuits' time-constants. 

The classical theory of numerical integration methods for 
systems, X = f( t ,  x), is quite well established and is described 
in, for example, the textbooks of Henrici [ 11 and Stetter [2]. 
It  is  based on assuming that one chooses  time-steps, h, so 
that the norm of h J ,  where J is the Jacobian off; is rather 
small. There are basically  two  reasons  why the classical 
theory is inappropriate for  stiff  systems. First, the time-step 
has to be small  with  respect to the reciprocals  of the large 
eigenvalues of J. In a standard RLC circuit with the typical 
values  of R = 1000 Q ,  L = 1 nH, C = 1 pF, this would 
restrict the time-step to be  of the order of  ns even 
though the time variations of the current and voltage-apart 
from a short initial phase-are  of the order of 1 ns. Second, 
the bounds on  the numerical error provided by the classical 
theory are of the order of exp (LT),  where (0, T )  is the 
relevant time of numerical integration and L is the Lipschitz 
constant off in some domain surrounding the solution and 
is therefore always quite large  for a stiff  system. One of the 
objectives of the results  which are highlighted  below  is to 
derive methods and stability and error-estimation techniques 
which are more or less free  of the above difficulties. This, of 
course, can be accomplished only by restricting the class of 
differential  systems, e.g., to those satisfying  one-sided 
Lipschitz conditions such as  negative monotone (dissipative) 
systems and their relatives. This class seems adequate to 
describe most of the systems arising in circuit applications. 

We  now outline the paper's plan. In Section  2, some 
preliminaries are given about multistep methods, their 
asymptotic stability regions, and Dahlquist's famous 
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restriction on  the accuracy  of A-stable methods, i.e., those 
whose stability region includes the left-half complex  plane. 
Section 3 is concerned with the fixed-h stability of A-stable 
and related methods when applied to various classes of 
nonlinear  monotone systems. Here, we introduce  the 
multiplier  technique, related in  spirit to  the corresponding 
technique in  control theory, for the study of global error 
estimation  of  multistep  methods. The behavior, in  the 
nonlinear regime, of methods based on A(a)-stable formulae 
is also described. In Section 4, two Liapunov-like  techniques 
which are  appropriate for studying, or minimizing, the 
effects of time variations  in the system and/or  the size of the 
time-step are given. One is a method for  constructing 
polyhedral norms for studying the stability of  such systems, 
and  the  other is a method for  constructing methods which 
are  quite robust under  time variations.  Section 5, which is 
concerned with applications to circuit analysis, deals with 
the behavior of the global Picard-like iteration method 
known  as  Waveform  Relaxation and  the convergence of its 
discretized version. 

2. Preliminaries 
A linear  multistep formula (LMF) is given by 

k k 

L x ( t )  E Ea&+, - hCP,k,+, = 0, ( 1 )  

where h is the time-step, k is the step number,  and  the  dot 
denotes differentiation with respect to  time. If E denotes 
translation by h and  the usual  polynomials ( p ,  u)  are defined 
by 

P(<) = Ea,<', .(<) = CP,K (2) 

then ( 1) has the form 

Lx(t)  = p(E) - hu(E)  [ ( 3 )  

The  order of accuracy, p ,  of L is defined by applying L to 
smooth  functions +( t )  and  expanding in powers of h to 
obtain 

L+(t) = 0(hP+')  - local truncation error. (4) 

Combining ( 3 )  with a smooth system 

x =At, x), ( 5 )  

one  obtains  the algebraic system 

N x , )  = P ( E ) X ,  - hu(Elf(t,, x,) = 0 (6) 

for the numerical  solution x, which approximates  the exact 
solution x( t = nh) = x( n).  Since the exact solution  is 
assumed smooth, it satisfies 

N ( x ( n ) )  - 0(hP+').  (7) 

It is clear that if the local errors do not get unduly 
amplified, i.e., the  method is stable, the global error 
e( n )  = x - x( n )  should  converge to zero like hP as h + 0. 

This is in fact the case if 11 hf, I( is small, as shown by 
Dahlquist when the  method is small-h stable, which may be 
characterized algebraically by the  condition 

p(l.J=O* I<!l 5 1, 

and  the roots on  the  unit circle are simple. (8) 

It is noteworthy that even  this (relatively weak) stability 
requirement restricts the  order of accuracy to  about half 
what one would  expect from  counting  the degrees of 
freedom in ( I ) ,  i.e., to p - k instead  of p - 2k. 

Since for stiff systems one does not wish to so severely 
restrict h to  render 11 hf, 11 small, another stability concept, 
introduced  again by Dahlquist [ 3 ] ,  is more appropriate. 
Consider the linear  model  problem 

x = Xx, (9) 

where X is a complex  constant. Then  the region of (absolute) 
stability, S, of a numerical method is the set of hX such that 
all the  numerical solutions of the model  problem with fixed 
step h will remain  bounded when n + m. Since the  model 
problem is stable  for X in the left-half plane C-, it  is 
desirable that S contain  as  much of C- as possible. A 
method is called A-stable if S contains C-; a simple and 
widely used example is the trapezoidal rule. A-stability, 
which seems a natural, albeit  rather  extreme,  requirement, 
severely restricts multistep methods (1) to be implicit pk # 0 
and  to have low order, as the following bamer result shows: 

Barrier: The  order of accuracy 

of an A-stable LMF (1) cannot exceed two. (10) 

The original proof of this  pretty result, given in [ 3 ] ,  depends 
on two small  calculations which algebraically quantify  the 
accuracy and stability requirements.  First  apply L to 
+( t )  = e' as in (4) to  obtain 

For convenience, introduce  the  Greek-Roman 
transformation 

< = ( z  + l)(z - l)-I, 

then 

and  the accuracy requirement reads, near z = a, 

and hence,  for p > 2, 

(12) 179 
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On  the  other  hand, A-stability requires that r/s be regular 
and have positive real part  for z E C+, and therefore can be 
represented, by the Riesz-Herglotz theorem, as the transform 
of a nonnegative  measure 

- ( z )  = - dw(t).  r 1 
S z - it 

Hence 

The behaviors,  as x + m, of the right sides of ( 12), ( 1  3) 
contradict each other since the integrand in ( 13) is 
nondecreasing in x for every fixed t. A more  natural proof- 
a counting argument-was given much later using the 
order-stars  theory [4]. 

circumventing the above bamer.  One  approach is to relax 
the stability requirement so that S contains a reasonable 
part,  but  not all, of C“. For example, in A(a)-stable 
methods, S contains a wedge of angle a around  the negative 
x-axis, and backward  differentiation  formulae  (BDF) are a 
prime example  thereof. Other approaches use higher-order 
derivatives in (l), or postprocessing of  solutions obtained by 
A-stable methods [ 5 ] ,  or nonlinear  methods of integration, 
but such approaches have not been  as popular,  at least in the 
U.S., as the simple LMF. 

Naturally, there have been lively activities in 

3. Nonlinear  stability and multipliers 
The asymptotic  stability  concept described in Section 2 via 
the model  problem (9) is adequate  for linear systems X = Ax 
where A is a constant matrix. In  that case, by the spectral 
theorem,  the  numerical solutions (and errors)  corresponding 
to (6) decay (or stay bounded) if the eigenvalues of A lie 
within the stability region S. Intuitively, one suspects that for 
“reasonable” nonlinear systems, the numerical  solution will 
be stable if the  spectrum of the  Jacobianf, is always inside S. 
The reason is that  the  error would satisfy a more-or-less- 
linear  time-varying  variational equation,  and hence the  error 
growth could be controlled. This  approach involves 
considerable  care,  since  it is easy to  obtain exponentially 
increasing  solutions  for systems which are  quite stable  when 
the coefficients are frozen, e.g, in  the  damped  Mathieu 
equation. Liapunov-like methods (G-stability) were used by 
several authors  to  obtain global error estimates, but these 
methods  are most  applicable to A-stable, hence  only 
low-order,  methods. In  this section we briefly describe [6] an 
approach for directly estimating  such errors which also 
works for high-order methods. 

From (6), (7) the global error satisfies 

p(E)e,  + ha(E)F, = h ~ , , + ~ ,  (14) 

where F, = f (nh ,  x ( n h )  + e,) - f (nh,   x (nh)) ,  x is the exact 
solution, and where we have  replacedf by -f for notational 
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convenience. Under mild  restrictions on ( p ,  u) this  may  be 
written as 

r:e ,  + hF, = hq,, , (15) 

where y is the l1-sequence defined by pu-l({) = Z-y,{” and * 
denotes convolution. If the nonlinearityf is monotone, 

( f ( X ) - f ( Y X X - Y )  z P I x - Y 1 2 ,  F > O ,  (16) 

or satisfies similar circle conditions, then a useful device  for 
studying the stability of A-stable methods is to scalar 
multiply ( 1  5 )  by e, and use the  monotonicity (16)  together 
with the A-stability-which implies the positivity of the 
quadratic  form Z( e, ?*e)-to obtain  error bounds. For 
A(a)-stable methods, 

a < -  
K 

2 ’  

this quadratic  form could  become negative, since the root- 
locus, Le., the image of the  unit circle under pu-l, intersects 
the left-half plane. One, however, can  obtain weighted 
equalities by scalar multiplying by p e n ,  where p is an I,  
sequence, to  obtain 

c b * e , ,  7%) + c (r*e, ,  F,) = c (p*e,, 4,) .  (17) 

If i ( ~ )  = &ne“n‘, then p is called a multiplier for ( p ,  u)  if 
Zp,{-’ is  rational, Re i ( ~ )  > 0, and 

Re(”*(7)pu-l(e”)) z 0 for all 7. (18) 

Then, by Parseval, the first term  on  the left side of ( I  7) is 
nonnegative. If the  method  does possess a multiplier which 
is in  some sense simple, then,  under  some  monotonicity 
conditions stronger than (1 6), one  can show that  the second 
term is positive, and (1 7) could be thought of as a weighted 
energy inequality which may be used to  obtain global 
bounds  on e,. The analysis naturally  separates into  three 
parts: the relation between methods  and “their”  multipliers, 
the relation between such  multipliers and  the nonlinearities, 
and finally the  error behavior; we  say a few words about 
each part. First, one  can show the existence of a multiplier 
for any A (a)-stable method.  More precisely, one has 
Theorem 1. 

Theorem 1 
If a method ( p ,  u)  is A(@-stable, then, for any 0 < a < 0, 
there exists a multiplier  of finite support, p = (p,),, , for ( p ,  a) 
such that 

M 

I arg i ( 7 )  I < 7 - a. 

Since it  is easy to see that ( I  9) implies A(a)-stability, 
Theorem 1 may be interpreted as saying that  the linear 
stability of an A(a)-stable method  can be “seen” through  the 
multiplier. This multiplier  is  produced by judiciously 
modifying and  truncating a fractional  power  of PO-’( $) 

K 
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which is  chosen so that ( 1  8) holds. Thus, such a multiplier 
would  in general be a complicated  sequence and seems to be 
useful for investigating the stability of  linear  problems only. 
For in such cases, assuming f = A with I arg  spectrum of A I 
< (Y, one  can find a scalar product such that I arg (v, Av) I 
< (Y. The positivity of the second term of ( 1  7) then follows 
from (1 9). To treat  nonlinear problems,  it turns  out  that 
multipliers should have additional properties in  the  time 
domain, e.g., 

1. p, I 0 for; > 0, 

and 

2. po 2 w 2 I p, I with a large w 2 1. (20) 

Thus  the best of  all  multipliers  would be p = { 1, -q} with 
very small q > 0. This is the analogue of the  Popov 
multiplier  in control theory, and a method with  such a 
simple  multiplier  enjoys very good stability properties  in the 
nonlinear regime. A graphical method  can be devised to 
check whether ( p ,  u)  has  such  multipliers p, and  one finds 
that  the  BDF of orders two to five have such p with q = 0, 
0.0836,0.2878,0.8 160, while the  BDF of order 6 needs a 
more complicated p to exhibit its linear stability. 

quantitative  form of the  bamer result (10) in  the  form of an 
uncertainty principle showing the incompatibility  of extreme 
stability and accuracy of an  LMF. If L, denotes  the linear 
functional ( I ) ,  then  the Peano-kernel of the  method ( p ,  u) is 
given by 

j= I 

Another use of this multiplier language is to derive a 

the local truncation error may be written as 

L , x ( t )  = h4 K,(s)X"'(t - hs)& s: (21) 

and  one may  measure  this error by the size of 11 K q  11 ; for p 
accurate  methods choose q = p + I .  The  departure  from 
A-stability may be measured by the size of 1, and  one has 
Theorem 2. 

Theorem 2 
For every k, there exists Ck > 0 such that, if { 1, -7) is a 
multiplier for the k-step method ( p ,  u), then, as q + 0, 

11 '1 ckfz-p > (22) 

which shows the blowup  of the  error if p > 2 and q + 0. The 
main ideas in  proving  this result are  that 1)  11 K 11 is as large 
as the largest a, where p ( { )  - r ( z )  = ZajzJ; this is proved by 
soft arguments. Then,  some detailed  function  theory 
arguments show that 2) a large amount of stability (9  small) 
forces a, to grow so that 

The interaction between the multiplier and  the nonlinearity 
is given by the second term  in ( I  7), and  one wishes this  term 
to be positive. This  requirement is a sort of generalized 
correlation inequality and  can be shown to hold under a 
variety of  restrictions on  the nonlinearity and  on  the 
sign/size of p. Some examples follow. 

Example 3 
Let CP = V ( U )  be convex and nonnegative and CP(0) = 0. 
Assume p, 5 0 for; > 0 and let P, be the sequence of partial 
sums of p. Then 

2 ( w n ,  grad P,,) 2 (PPP), ,  (23) 

and hence the  sum is nonnegative if po 2 - z p j .  

Example 4 
Iff is u-angle bounded, Le., satisfies 

( A x )  - f ( Y ) ,  Y - 2 )  5 4 f ( x )  - f ( z ) ,  x - a ,  

andf(0) = 0, then 

c (P*V,, f , )  2 0 (24) 

if p, 5 0 for; > 0 and po 2 ( I  + u)Zp, . Such functions  are 
basically gradient-like monotone functions, e.g., 3-cyclic 
monotones which satisfy 

3 

A more interesting case relates the multiplier to  the 
asymmetry and  the variability of the problem. If one 
measures  these  two effects by K,, K2 defined by 

Example 5 
The  nonlinear energy term  in ( 17) is nonnegative if 

In studying the convergence  behavior of the numerical 
method one needs (26) for I x - y I = O( h )  and  thus 
K2 - 1 + O( h).  For example, if p = ( 1, -q), then (27) reduces 
to K,q 5 1, which shows that  as  the  asymmetry of the 
problem  increases one has to decrease q and  thus use more 
stable  methods. A strategy for  changing the  order of the 
integration method  to keep the asymmetry (just)  under 181 
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control  can  thus be devised which together with local error 
control would ensure  the convergence of the numerical 
solution obtained by high-order methods; see [6]  for details. 

Finally, error  bounds  are  obtained by combining  the 
above positivity results with the G-stability theory, which 
says that  the behavior of A-stable methods  can  be seen via 
the  construction of a Liapunov  function, which is  a 
quadratic with a positive matrix, G, constructed algebraically 
by a sort of continued-fraction  expansion from  the  method 
( p ,  U) [7 ] .  Consider  now the  error  equation 

px, + huF, = hpn+k. 

Operate  on (28) by u-' and scalar-multiply by  TU"^,,, where 
the multiplier p, being rational, may be written  as TV-' 

where T, u are polynomials  of degree I: Then  one gets the 
energy equality 

(u-'nxn,  u-'~x,) + h(p*x,, F,) = h(v*x,, 4,). 

When the variable y ,  = U-'V-'X,+~ is introduced, the first 
term in  (29)  becomes ~ p y , , - ~ ) .  Noting that, by (18), 
the "method" ( u p ,  TU) is A-stable, there exists [7] a definite 
quadratic form G such that 

G(Yn) - G(Y,,-,) I ~ R ~ ( T u Y ~ - ~ ,  V P Y , - , ) ,  

where YE = ( yn ,  . . ., Y~+~+,-,). Substituting  in (29), 
summing,  and using the positivity of the second term,  one 
obtains 

G( Y,,) 5 2h C (P*x,,, 4,). (31) 

Further  manipulation of (3 1) then yields the following. 

. Theorem 6 
If p is a  multiplier  for (0, U) and f is such that Z(p*un,  Fn) is 
positive, then, for some C, 

I x, I < C((initia1 data) + h I pJ I ). (32) 

If the above positivity still holds withfreplaced by f - a for 
some a > 0, i.e., there is some dissipation in  the problem, 
one  obtains 

sup I (error)" I I - sup I local errors I . 
"sM nsM 

C 
(33) 

The above,  as well as  other  estimation  and convergence 
results given in [6], indicates that it  is possible to develop, for 
typical stiff systems, a stability theory which is free from 
Lipschitz constant restrictions and is quite analogous to  the 
classical one. 

4. Variability and contractions 
There  are a variety of reasons  for  considering the effects of 
time variation on  the stability of LMF.  Among  them is that 
the efficient numerical integration of a differential system 
dictates the use of variable time-steps. The strategy of  such  a 
change is usually controlled by local error considerations 
which leave the question of the stability of the numerical 
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scheme in  doubt.  Two approaches to  ensure stability are 
briefly described. One is a rather general method for 
constructing, when  it exists, a (nonsmooth)  Liapunov 
function  for dynamical systems. The  other is to design 
methods which are contractive, in a fixed norm,  under 
arbitrary time variations of the model  problem x = X( t ) x  
and of the time-step size. 

Liapunov approach (81 
Consider the variable LMF 

L , , n ~  E CaJ,n~n+J - hnCPJ,,Xn+, = 0. (34) 

Applying (34) to .k = Ax, one  obtains a recurrence  relation 
of the  form 

k 

%+I = M A  

where z,, = (x ,  . . ., x ~ + ~ - ' ) .  
To show the stability of (35), it  is sufficient to construct a 
Liapunov  function w, e.g., a quadratic  or  some  other  norm, 
such that 

w(M,z) 5 w(z). (36) 

To construct w from Mn, it is useful to give a more generous 
definition of stability. Consider  a set A = (A ,  B, . . . ]  of 
square  stable  matrices and let A' be the semi-group 
generated by A (Le., all finite products); then  one defines A 
to be stable (at  the origin 0) if for every neighborhood U of 0 
there is a  neighborhood V so that MV C U for all M E A'. 
Then  one  can show that  the stability of A is equivalent to 
the boundedness of A' or to  the existence of a bounded 
balanced  convex set W which is invariant under A'. The 
norm sought  after  in  (36)  above then has Was  the  unit ball 
and  the stability question  reduces to  that of  constructing the 
invariant set. Before describing  this  constructing it  may be 
noted that 

1. The stability of every finite product of { M,) is not 
sufficient for the stability of A. For example,  suppose 
A = (A, B ) ,  where 

where 8 / ~  is irrational; then it is easy to see that every 
M E  A' has the  form 

where $1.. is irrational and hence M is stable. However, 
for the sequence 

defined by A ,  = A ,  
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A,+, = A: if Ree2"* 2 0, 

= A$ if not, 

one has Re (e''*+l) 2 0. Then 

I a,+, I = I 1 + ~ " * I I  a k ~  

2 f i Ia , I ,  

which shows the instability of A. 
2. The set Wmust have comers.  For it is easy to see that if, 

for some M E A, there exists one eigenvalue X on  the 
unit circle and 5 is its eigenvector  (normalized to belong 
to a W),  then  the plane passing through 5 and parallel 
to  the  complementary subspace is a support plane of W 
at 5. Hence, if there  are two  matrices M, as above, with 
the  same right eigenvector 5 but with two different left 
eigenvectors q,, W must have at 5 two different support 
planes; i.e., it  has  comers. Candidates for the  norm w 
are generalized max. norm 

An iterative  algorithm to  determine  the stability of a set 
of matrices, in virtually all cases, is based on  the 
following construction. 

Theorem 7 
Given a finite set A = {M,, M I ,  . . . , M,,,-,) of m distinct 
matrices, let W, be a bounded neighborhood of the origin 
and define 

w, = 4 u M;.W,-, , [ .  1 k' = ( k  - I )  mod m, (37) 

where A denotes  the convex hull. Then A is  stable if W = 
U W, is bounded. 

The above result is made constructive by choosing W, to 
be a polyhedral region; hence, by tracking extreme points, all 
the subsequent W, are also polyhedral, and  one has to 
generate extreme  points of W, and  add these to  the  extreme 
points of W,-,. The main computational step is, therefore, to 
check whether all the  extreme  points have been  generated by 
applying M = Mk,  to  the extremes  of W,-,, or, equivalently, 
to find whether at  any stage of the  construction,  one  more 
application of Mk, takes one  into  the convex hull of the 
previous extreme points. This  can be accomplished by using 
the (first phase of)  the linear  program:  Maximize 0 (any 
constant) such that 

x E Mk'X, = CX,x,, 

EX, = I ,  X, r 0. 

The  construction was proved to be finite in many interesting 
cases [ 81. 

In applying the above method  to numerical methods  one 
encounters  an infinite set A of matrices, but it usually has a 
.finite set of extreme points, and  it is clear that  the stability of 
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the convex  hull of A is equivalent to  that of its extreme set. 
This has  been used to show the stability of the backward 
differentiation method of order two if the step ratio  does  not 
exceed 1.2, and was accomplished by constructing an 
invariant set W with 76 vertices! 

Constructive methods [9] 
Since the solutions to  the model  problem k = Ax, Re X I 0, 
decay in  time,  it  seems  reasonable to design LMF (1 )  so that 
the discrete solution  enjoys a similar  property.  Formally, one 
says that a formula is contractive at q = hX if the solutions to 

p(E)x,  - (hX)u(E)x, = 0 (38) 

satisfy I X,,, I e I X, I, where X,, = (x,,, . . . , and I I 
denotes a chosen norm;  the  standard max. norm  turns  out 
most useful. Clearly contractivity at q implies stability there, 
and  thus  the contractivity region K, i.e., the set of q at which 
a formula is contractive, is contained in S. Because the 
concept  is local, one  obtains stability for  contractive LMF 
when it  is  applied to variable step-size and variable model 
equation x = X( t)x, even though one tests with constant X 
only. This holds  only  when the  formula is implemented  in a 
one-leg fashion, i.e., when u and f in the algebraic system (6) 
are  permuted so that  one has to consider, for each n, only 
one q = h,X( Zpj,,t,+,) which is assumed to belong to K.  
Various  concepts of stability have  their  contractivity twins, 
but it is generally much easier to devise algebraic conditions 
sufficient for the latter. For example, ( p ,  U )  is i) contractive at 
the origin if 01, > 0 and 01, 5 0 j < k;  ii) contractive at 
infinity if p k  > Z I p, I. It is also easy to show that aK is 
smooth (except possibly at its  intersection with the real axis) 
and  that K is closed and,  in contrast to S, is connected, in 
fact by arcs  of circles. However, one should note  that 
characterizing A-contractive methods  (methods which are 
contractive  for all q E C-) is quite delicate. For example,  for 
two-step second-order methods  there is  only a one-parameter 
family of methods which connect  the two  extremes of the 
one- and two-step trapezoidal rule. They may be derived 
roughly as follows: The contractivity condition may be 
written as 

k- I 

F l ( q )  = C I a, - @,I - I - @,I 5 0. 

The critical case occurs on the imaginary  axis q = iy. 
Let 9 = y', substitute  in (39) and expand  near q = 0 to 
obtain 

One  can show that C > 0 contradicts  accuracy,  hence C = 0 
is a necessary condition which is actually achievable by 
maximizing C under accuracy  constraints. This local 
argument  may be extended to show that Fl(iy) I 0 by using 
the geometric-arithmetic means inequality.  Hence, the  three 
accuracy constraints and C = 0 restrict the class to a one- 
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parameter set which may be given different convenient 
parameterizations. 

Contractive  methods enjoy a lot  of  robustness  when 
applied to fast-varying systems, again because their stability 
is derived from local properties. For example,  it is easy to 
show the stability of A(0)  contractive methods when  applied 
to diagonal-like dissipative nonlinear systems 

x = A(t ,  x)x + b (40) 

by modification of arguments valid for scalar equations. 
Also, if the  nonlinearityf is maximal accretive  in some 
Barach space, and  the  method satisfies mild  contractivity 
conditions together with 

then  one can bound global errors in terms of sums of local 
ones [9]. A-contractive methods have  even more remarkable 
stability properties. Recall, from  the previous  section, that 
every A-stable method has a positive definite quadratic 
function exhibiting  its  stability; i.e., for ( p ,  u), there is a 
G > 0-see  (30)-such that 

G(Y,,+,) - G(Y,) 5 2 R e ( ~ , , ,  PYJ. (41) 

Since  applying the one-leg LMF  to x = Ax) results in  an 
error  equation, 

PY,  = h[ f (% + U Y J  -f(uxJI. (42) 

Then, for dissipativeA 

Re (w,, PY,) 5 0, 

and (41) shows the decay of Y in  the G norm. However,  for 
variable time-steps, the coefficients of ( p ,  U )  vary with n, and 
so does G. It was shown in [ IO]  via a constructive  procedure 
that  the only A-stable, p = 2, k = 2 methods which have a 
fixed G-thus immediately  guaranteeing stability-consist of 
the A-contractive class. The constancy of G in fact defines a 
unique extension of the  methods  from  the case of uniform to 
that of variable time-steps. An  implementation of a specially 
selected A-contractive method has recently been 
incorporated into a code for the robust  simulation  of 
electromechanical systems. 

5. Waveform relaxations for  circuits 
The stable implicit methods described in  the last two 
sections  reduce the  simulation of a differential system to  the 
solution of a nonlinear algebraic system (6). This solution is 
obtained  in  standard codes by combining Newton-like 
methods  and sparse  matrix “technology.” When  the system 
(6) is very large, as for  example in digital circuits, the 
approach becomes quite expensive, requiring -0.2 minute 
per  device on a 308 I ,  and is thus limited to O( IO2) devices, a 
small number in a VLSI era.  Decomposition  of  such large 
systems together with relaxation  techniques offers obvious 184 
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advantages  in both storage and speed requirements. There 
are basically two  approaches  for  carrying out such 
relaxations. One,  at  the “algebraic” level of solving (6) or 
some linearized version, is by blocking it into subcircuits and 
relaxing in  some fashion. This is referred to  as  the 
incremental approach; see [ 1 1, 121. The  other,  introduced  in 
[ 131 and called waveform relaxation, WR, is  simply to lift 
the procedure to a “function-space’’ level and solve for the 
values of the  unknowns  in a subcircuit  for all (or most 00 
the relevant time before feeding these values as  inputs for the 
other subcircuits. This procedure  proved to be very efficient 
for special classes of metal-on-oxide  (MOS) digital circuits. 
Intuitively  this happens because of the loose coupling of 
MOS devices and because WR allows each  subcircuit to be 
integrated at its  own optimum speed, i.e., with  time-steps 
dictated by that possibly quiescent  circuit and  not by distant 
active ones which for large portions of time have  little effect 
on  that particular  circuit. To describe the  WR iteration, 
assume that a large system was decomposed into m blocks. 
Then  the governing equations have the  form 

Y, = F,(Yi, YJ, YJ), i 5 m. (43) 

Combining (43) with some chosen  relaxation  procedure 
leads to  the  iteration 

x k  = f@k,  xk-l), (44) 

where x is the whole vector of unknown  functions  and f is 
obtained from F, and  the relaxation  procedure. For example, 
for MOS circuits, (43) is given by 

C( V ) V  + f(  v) = 0. (45) 

Node-by-node decomposition of (49,  together with Gauss- 
Seidel relaxation, leads to  the iteration 

+ A ( .  . ., v , ,  v i+t ,  . ’ .) = 0. k k-l 

The discretized version of (44), at least for constant 
time-steps, formally  reads 

(47) 

Let J, ,  J2,  J3 be bounds  on  the  Jacobians  off with respect to 
its  arguments. Then  the behavior  of the discretized WR  for 
Lipschitz systems and small h may be described by the 
following. 

9 Proposition 8 (141 
Assume that i) ( p ,  u)  is  consistent with the roots  of u and 
p(< - l)-’ inside the  unit disk and  ii) J, ,  J2 are  bounded  and 
J3 < 1. Then  the iteration (47) converges, for  small  enough 
h, on finite time intervals. 

iteration on 
An easy proof follows from considering (47) as  an 
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y = - - x .  I P  
h a  

Since x is basically an “integral” of y ,  it can  be  thought of, in 
a standard  manner,  as a small operator  on y in an 
appropriate exponential norm.  Then (47), because J3 < 1, 
defines a convergent contraction  in  that  norm. 

There  are a fair number of other results which show the 
robustness  of WR  under a variety of more practical 
conditions. For example, the stability of WR  under small 
errors, or when combined with function-space  Newton as 
well as a detailed  proof of the convergence of the  important 
case (46), were given in [ 151. The effect of truncating a 
(MOS) large circuit, to  minimize storage, and relaxing 
between a few neighboring  circuits only was discussed in 
[ 141, where a bound was given for the  error caused by this 
truncation in space. In recent, to-be-published results, [ 161, 
the convergence of Gauss-Seidel WR  in  the uniform norm 
for special monotone systems i = f ( x )  was shown; also, 
since the  implementation of WR generally involves 
interpolation, the above  convergence  proposition was 
modified to  take  account of  linear  interpolation. 
Convergence results, in !,-norms, for WR which do not 
assume Lipschitz continuity of the system were given in [ 171. 
Considered there is the model iteration 

in+! + dP(X”+l) = g(Xfl), (48) 

where d‘P is the subdifferential of a convex function in some 
real Hilbert  space H. The  function g was assumed Lipschitz 
with a small constant < 1 (this  corresponds to small 
capacitive feedback in MOS); then  boundedness estimates 
for (48), as well as  its one-leg discretization with, e.g., 
backward  differentiation methods of order  up  to 5 ,  were 
given. These  estimates are  independent of the time-steps and 
rely heavily on  the work  of  Section 3 above. For the iteration 

(49) 

the strong  convergence for fixed time  and  the weak 
convergence in t2( H )  of the iterates x n  to  the  unique fixed 
point of (49) were proved. When  the nonlinearity f is not a 
gradient but is a Lipschitz perturbation  on a linear  operator, 
uniform convergence was shown on “time-windows’’ whose 
size depends  only  on  the Lipschitz part. 

Finally we remark  that  WR is quite suitable  for being 
implemented  on parallel machines, especially for digital 
circuits. This is because large digital circuits tend  to be wide; 
that is, rather  than being like one  loop  chain which has to be 
simulated serially, they are like many parallel chains with 
some interaction between them.  The  amount of parallelism 
can be improved by timepoint-pipelining, where, once a first 
timepoint is  generated by the first processor, a second 
processor could begin computing  the first timepoint for a 
second  subcircuit, while the first processor computes  the 
second timepoint for the first subcircuit. An implementation 
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of WR  on a nine-processor  configuration with shared 
memory, and  on a variety of increasingly larger problems, 
was carried out [ 181, with the  moral  that parallelism scales 
with size, so that  one  can,  in  WR, effectively use more  and 
more processors as the problem size increases. 
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