Numerical
analysis

and the
scientific method

by J. Glimm
D. H. Sharp

The computer has given rise to a new mode of
scientific practice, and today computational
science stands beside theory and experiment as
a fundamental methodology. The impact of the
computer revolution on science can be projected
from current trends. The demands to be made
on computing methodologies will be reviewed.
One of the demands is an ongoing need for
excellence in computational methodologies.
Generic difficulties encountered in meeting
these challenges will be discussed. Recent work
of the authors and others will be reviewed in this
context.

1. The computer revolution

The ages of history are demarcated as much by the rise and
fall of ideas and technology as by the rise and fall of empires
and nations. In this sense the computer age is a turning
point for human events, as was the earlier industrial
revolution based upon mechanical energy. With a narrower
focus, we consider the impact of the computer revolution on
science. Turning points in science are marked by the
introduction of new ideas and new tools, and especially by
developments which are both tools and ideas. With the
invention of calculus, the electron microscope, and DNA
sequencing, one finds an ability to formulate, understand,
and solve a range of problems which had previously been
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inaccessible. Judged from this perspective, the computer
revolution will have an impact on science at least as large as
did these three examples.

Very large parts of science are described in terms of
mathematical equations. In most cases the solutions to these
equations cannot be obtained without recourse to numerical
computation. In the thirty years since the advent of
mainframe computers, an impressive range of problems have
been solved with the aid of computers. Running a modern
wind tunnel to test airfoil designs costs 150 million dollars
per year. Supercomputers can explore a much larger range of
ideas than can actually be tested, and expensive test facilities
can be reserved for the most promising designs. In fact, a
broad range of two-dimensional fluid-flow problems are
under reasonable scientific control, due primarily to progress
on numerical computation on these problems. The list of
such successes could be extended to considerable length.
Looking to the future, there can be little doubt that the
mathematization of various subfields of biology is
impending. As indications we can cite the recent computer-
assisted determination of the three-dimensional structure of
the polio and cold viruses [1, 2], computer simulation of the
heart with natural and artificial valves [3], and algorithms for
the analysis of DNA sequences [4].

Computers can also be used as an experimental tool to
explore the unknown. Feigenbaum discovered universal
order in the behavior of chaos [5, 6] through computer
experiments, a development which has stimulated and
rejuvenated several branches of mathematics and physics.

Computers can simulate experimentally difficult or
unattainable parameter ranges, such as the conditions in the
interior of the sun or a few microseconds after the big bang
origin of the universe. They can also simulate undesirable
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parameter ranges such as occur in safety studies to avoid
accidents in chemical or nuclear reactors. There have been
three types of limits proposed for the ultimate scope of the
computational method. However, it is not clear how firm
these limits will turn out to be, and in the authors’
judgment, it is no more possible to set ultimate limits on the
scope of the computational methodology in science than it is
to set limits on the scope of future progress in theory or
experiment. It has been proposed that fundamental physical
limits such as the speed of light will limit the speed of future
computers. However, the development of parallel computers,
which do many operations concurrently, may permit an end
run around this problem. A class of combinatorial problems,
known as NP-complete problems, are effectively outside of
practical computation. The extent to which the important
problems which fall into this class can be restricted to
subproblems which do not lie in this class or can be
otherwise modified so as to be effectively computable is not
known. Finally, it has been proposed that problems with
producing complex computer code in debugged and reliable
form may provide an outer limit for the use of computers to
solve certain types of problems. Again, there are several
strategies which may mitigate this problem. We mention in
particular portable operating systems and software tools,
high-level languages and standardized calling sequences, and
modular libraries to allow interchangeability of reliable
software components which can be used and thus tested
through time in a variety of applications.

There is no shortage of current limits. For all of its
astonishing successes, scientific computation provides much
less than science and technology need. In most important
scientific applications, the solutions are undercomputed
relative to the scientific requirements. The gap between
needs and performance is often substantial (and includes
almost all three-dimensional problems). Narrowing this gap
will depend on progress in both hardware and computational
methodologies. To assess the current achievements and
shortfalls of specific computational methods is like trying to
decide whether a glass of water is half full or half empty. It
can perhaps wryly be observed that those with responsibility
for supporting and maintaining a code tend to believe that it
is correct and adequate; those who use it tend to believe that
the code is rather imperfect, but can nevertheless serve as a
guide to the wise scientist or engineer; and those who
develop new methods tend to be acutely aware of the flaws
in existing codes.

2. The method of scientific computing

What are the methodologies which define scientific
computing as a distinct approach to science, complementing
the traditional approaches of theory and experiment?
Scientific computing begins with mathematical modeling,
whereby essential features of a scientific problem are
expressed in terms of mathematical equations. Typically,
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important compromises and judgments are made at this
stage. In order to carry out later computational steps,
unimportant and sometimes important problem features
must be suppressed. These judgments lead to a sequence of
models which capture different aspects of the same problem.
The different models may be integrated hierarchically in that
a fine-scale model may be used to set the parameters of a
coarser model, or they may be integrated only in the final
judgments of the scientist or engineer using them.

After the mathematical equations have been formulated,
they must be cast in a form suitable for numerical
computation. This usually requires that they be discretized
in one way or another. The key step is the formulation of a
solution algorithm to solve the discretized equations. This
step is so important that it often influences the preceding
steps of model formulation and discretization.

The next stage is testing and validation of the solution
algorithm. Validation may be accomplished by the following
methods: comparison with known analytic solutions,
comparison with previously validated computations,
comparison with laboratory experiments, and internal
consistency checks. Such internal checks include
convergence under mesh refinement, analysis of solution
errors, and analysis of diagnostic data. Truncation errors and
convergence rates can be analyzed mathematically.
Occasionally there may be a mathematical convergence
theorem for the solution algorithm.

The final stage in scientific computing is to use a validated
and debugged code for scientific or engineering purposes.

The preceding outline for scientific computing would
strike most practitioners as glib, as it omits all discussion of
difficuities. We focus on the difficulties inherent in the
solution algorithm stage. Dealing with these difficulties
defines the subject of numerical analysis.

Typical methodological difficulties, as they manifest
themselves to a user, show the following symptoms: slow
convergence, nonconvergence, numerical instabilities, and
numerical simulation of spurious physical effects.
Nonconvergence is normally the sign of an incorrect
algorithm, but in listing it here, we have in mind more subtle
possibilities, such as solution convergence in an L, norm,
while solution values at specific points (L_ convergence) may
be invalid. The trap is easy to fall into, since the solution
value at some singular point (such as a crack tip) may be
both the most important and the least convergent part of the
solution. The discretization process is a modification of the
mathematical equations and consequently of the physics or
problem formulation which the equations represent. In some
cases the original physical process is unstable or only weakly
stable to changes in the equations or equation parameters. In
such cases, there is the danger that numerical discretization
errors may grossly change the nature of the solution. Even
for stable physics, these errors may change the solution
quantitatively to an unacceptable degree.
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The symptoms which a user may observe as a sign of poor
performance typically have their origin in difficulties
inherent in the original mathematical equations and their
solutions. In general, finite-difference and finite-element
methods give satisfactory performance when computing
smooth solutions to regular problems in a space of not too
high a dimension. We want to emphasize two somewhat
unrelated types of problem difficulties. The first has to do
with rapid solution variation, large space or time derivatives,
and jump discontinuities or other solution singularities. Such
features are ubiquitous. They arise in and give rise to
boundary layers. Chemical reactions are a typical source of
multiple time scales, also known as stiff systems. Problems
with multiple material interfaces or shock waves have
discontinuous solutions. To explain this point more fully, we
note that the shock width in gas dynamics is of the order of
a mean free path, which is about 10~° cm and far smaller
than the macroscopic dimensions of typical flow fields. The
pressure gradient within the shock might then be of the
order of 107 or more using dimensional units appropriate to
the problem. Likewise, a flame front width could be 107
cm, but such numbers are highly problem-dependent. For
example, in an oil reservoir fire flood, the flame width could
be 20 feet, and still small compared to macroscopic
dimensions. Chemical reaction rates within a single problem
can easily vary by a factor of 10" because of their
exponential dependence on activation energies. The
importance of discontinuities and singularities has long been
recognized by the community working on hyperbolic
equations. However, they are just as important for elliptic
problems such as steady-state elasticity or multi-fluid
incompressible flow, due to crack tips, corners, and material
or phase boundaries, a fact which appears to have been given
less emphasis than it deserves.

The second major class of problem difficulties we discuss
has to do with the occurrence of a large or infinite number
of essential degrees of freedom. Problems having these
features arise in the study of turbulence, statistical mechanics
and equations of state, quantum field theory, and stochastic
partial differential equations. This class of difhculties is the
more intractable of the two, and the examples of scientific
studies [7~12] which can be cited fall far short of the
systematic needs for computational solutions in these areas
due to slow convergence. Looking ahead to our proposed
methodology for the first class of problems, we observe that
the problems with an infinite number of degrees of freedom
are also very difficult from a theoretical point of view, and
that theoretical ideas have not yet provided the means to
devise numerical methods with the required enhanced
capabilities or convergence properties.

3. The Grand Unified Scheme (GUS)

As a general principle, we propose the maximal use of
analytic knowledge of solution properties. This principle has
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been successfully used in the case of smooth solutions, where
the known solution regularity is used to devise higher-order
methods which give accelerated convergence. For the case of
solution singularities, which give rise to the first class of
difficulties mentioned in the previous section, we propose
maximal use of analytic knowledge of those solution
singularities. Perhaps paradoxically, the solution singularities
can be a source of problem simplification, in that the
idealized or asymptotic behavior in the neighborhood of the
singularity may posscss a simpler structure or higher
symmetry than does the full solution. Thus the singularity
may be an opportunity for theoretical progress; there may
also be a considerable body of knowledge concerning the
singularities. Qur proposal is to use this body of knowledge
within the numerical algorithm itself, and where necessary to
create the required knowledge. An instance of this circle of
ideas is the vortex method, which uses vortices to represent
idealized fluid elements in (for example) shear layers and
turbulent flow fields {9, 10, 13-17). Related ideas are the
interface methods based on boundary integral methods

[18, 19], and conformal mapping [20].

The Grand Unified Scheme is a version of the general
principles discussed above, suitable for compressible reactive
fluid flow. These ideas are an outgrowth of work carried out
over several years with many colleagues, and were presented
in preliminary form in {21]. The scheme could also be called
the Kitchen Sink Scheme (KSS) because the main idea is to
use everything, There are four main components to this
scheme, and we discuss each briefly in this section. The four
components are: interior schemes, front tracking, automatic
mesh refinement, and automatic asymptotic reactive
chemistry (or automatic mode selection).

High-quality interior schemes have been built around two
ideas: flux limiters to control overshoots and numerical
oscillations and approximate Riemann solvers to achieve
upwind differencing [22-25].

The main idea of front tracking is to introduce, as an
independent computational degree of freedom, the surfaces
of jump discontinuity which may occur within a solution.
This method will be explained in more detail in the
following section.

Automatic mesh refinement is the idea of using fine grids
in regions where the solution is singular or rapidly varying,
coupled with coarse grids in regions where the solution has a
regular behavior. This method has given rise to a large
ongoing enterprise, from which we cite representative works
[26-29].

Automated asymptotics or automated mode selection for
reactive chemistry is the proposal to determine the ambient
conditions from the neighbors of a given mesh block and on
the basis of these conditions to determine rate-limiting
reactions and simplified chemistry, so that the rapid
reactions are replaced by frozen or quasi-steady-state
conditions. A hierarchy of time scales would be identified,
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The grids used by front tracking for a shock on ramp problem. A
regular two-dimensional grid is superimposed on a one-dimensional
front (grid). The latter consists of the incident and reflected shock,
the ramp boundary, and the boundary of the computational rectangle.

and in this hierarchy, the rapid times would be treated as
quasi-steady-state, the intermediate times would be treated

implicitly, while the slowest times would be treated explicitly o

and the transients for these time scales would be fully and
accurately resolved.

There have been several attempts to date to implement
this unified proposal. In [30], the modern interior schemes
were successfully combined with a limited version of front
tracking. In [31], automatic mesh refinement was
successfully added to the above. However, efforts to combine
mesh refinement with modern interior schemes in the
absence of tracking led to spurious waves generated by
strong shocks at the boundaries of the fine meshes. For a
problem which does not contain strong shocks, the
successful combination of mesh refinement with a high-
quality interior scheme has been obtained [32]. The
automated analysis of critical modes and solution
asymptotics as proposed above is an ambitious undertaking
and has not been attempted to date.

Hybrid schemes have obvious software complexity
problems which will be mentioned below. More serious are
the scientific difficulties. Here we would like to stress the
problems of a fundamental mathematical nature. Riemann
problems define the scale-invariant large time solution
asymptotics to leading order and pose a number of problems
both for their behavior in the large and their behavior in
higher dimensions [33, 34]. Such considerations have
inspired a study of Riemann problems in a variety of
physical contexts and have led to the discovery of new and
striking mathematical phenomena [35-39], including shocks
which violate most proposed physical admissibility
conditions. A related problem is the hyperbolic problem
with an embedded elliptic region, a notoriousty difficult
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Convergence under mesh refinement in the two-dimensional compu-
tation. Convergence of the front and interior schemes. The pressure
errors in the interior and at the front are shown for N X N grids at the
time indicated by Figure 2(a). The # signs represent the interior er-
ror, where
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The front error (error bars) gives the range of the errors at the front,
defined as
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where [P] is the pressure jump at the front in the one-dimensional
computation at the same time. The asterisks represent the error of the
average pressure behind the front, namely
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problem which arises in a variety of contexts including
transonic flow, elasticity, oil reservoirs, multi-phase flow,
and the relativistic hydrodynamics of a quark-gluon plasma
[40-45].

4. Front tracking

Front tracking can be most adequately described by a
picture. In Figure 1 we show the grids used for a front
tracking solution. Note that there is a regular two-
dimensional grid covering a channel, including the wedge,
which is an obstacle in the channel. The front includes a
shock wave incident on the wedge, the channel walls, and
the wedge, as well as the inlet and outlet surfaces. It is
represented by a lower-dimensional (one-dimensional) grid,
which moves in time, using velocities derived from the jump
conditions (the Riemann problem) of gas dynamics.
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Pressure

Radius

Comparison of one- and two-dimensional computations for a cylin-
drically symmetrical detonation front computation. A plot of pres-
sure vs. radius is shown. The solid curve shows the results obtained
by the one-dimensional random choice computation. The vertical
lines represent the range of pressure values in the two-dimensional
front tracking solution at a fixed radius as the angle varies. Thus the
vertical lines show the range of angular dependence on the solution.
The grid is 40 by 40.

The plan to use front tracking was initiated by
O. McBryan and one of the authors seven years ago; a clear
and early statement of the method and the scientific
program is contained in [46]. This program was developed
and implemented in a series of more than 40 papers by the
authors, Oliver McBryan, and other co-workers; see, for
example, [46-53]. In these papers, proof of principle and
scientific validation has been established. Validation has
been accomplished by comparison to analytic solutions,
laboratory experiments, elementary one-dimensional
calculations, and previously validated computer codes, as
well as convergence under mesh refinement. These tests have
been conducted in the context of a variety of different
applications. In Figure 2 we show convergence under mesh
refinement and comparison of a two-dimensional
computation to a simpler one-dimensional (radially
symmetric) computation for a cylindrically symmetrical
detonation front, in work by B. Bukiet [47].

At the outset the concept of front tracking was considered
to be hopelessly wrong, and the plan to initiate this approach
in a serious way prompted considerable controversy. The
concerns were of three types: This method might not work
scientifically, it was too complicated to implement, and it
might never be able to handle problems of even moderate

*
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Automated bifurcation of tracked fronts illustrated in a jet pinch-otf
instability in an oil reservoir study. Here water has been injected into
five wells located at the bottom of the figure, and oil is produced at
five wells located at the top of the figure. The reservoir parameters
represent stable displacement, and so the water-oil interface does not
tinger. However, for these parameters, the oil is more mobile, and
consequently forms a jet between the injection wells.

engineering complexity. Actually there was a record of
previous attempts with this method, which provided
encouragement that the method was fundamentally sound
[54-56]. The scientific validation was discussed above.
Various numerical issues such as the coupling scheme
between the interior and the front have been examined but
deserve further study. Local behavior in the neighborhood of
co-dimension two-intersection points of tracked
discontinuities also needs further study.

The software complexity issues were handled through a
strategy which is different from that normally employed in
computational fluid dynamics and which might be worthy of
consideration by others. These issues have been [57, 58] and
will be discussed elsewhere.

On the basis of this success with scientific validation and
control of software complexity, it can be stated that a proof
of scientific principle for front tracking has been achieved.
Next we discuss the transition of the front tracking method
from benchmark validation studies to problems of moderate
engineering complexity. A central research issue involved in
this transition is the ability to allow bifurcations or changes
in front topology due to the interaction or crossing of
tracked waves. This program is partially complete, and we
report on progress achieved by co-workers.
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¥ Bifurcations of front topology in a shock on ramp problem. An inci-
dent shock hits a ramp and undergoes bifurcation to a regular reflec-
tion. When the regular reflection node reaches the top of the ramp, a
bifurcation to a Mach-type node occurs. This Mach triple point is
degenerate in that the reflected wave has zero strength at the triple
point. The grid here is 30 by 30.

Time = 0 Time = 0.93

/\l

N

Time = 2.3 Time = 2.9

Compressible Kelvin-Helmholtz roll-up, including passage of the
front through a periodic boundary. The grid is 40 X 40 and the rela-
tive Mach number between the upper and lower fluids is one.
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A series of frames showing a shock contact collision interaction.
Both gases are polytropic withy = 1.4. The pressure ratio across the
incident shock is 100, and the density ratio (above to below) across
the original contact is 2.86. The grid is 40 X 80. This figure was

2
{
|
§
taken from unpublished work of J. Grove.

In Figure 3 we show a computation of a line drive well
configuration taken from an oil reservoir study in which the
jet pinch-off instability leads to successive front bifurcation
[53].

In Figure 4 we show successive stages in the front
topology as a shock wave hits a ramp, forms a regular
reflection, and finally a Mach stem [48].

In Figure 5 we show Kelvin-Helmholtz roll-up for
compressible gas dynamics, with the tracked slip line exiting
and reappearing through periodic boundaries [48].

In Figure 6 we show successive stages in front topology as
a shock wave hits a contact in initiation of Meshkov
instability, taken from unpublished work of J. Grove [59].
There are two remarkable points in this computation. One is
the change in front topology which occurs within the
computation, a transition which has always been regarded as
a significant obstacle to the use of this method. The other
concerns contiguous waves, as discussed in the next
paragraph.

There have been several definitive achievements of the
front tracking effort. First we mention a calculation of
Grove [59] in which a contact separates highly compressible
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(v = 1.1) SF, from air (see Figure 7). When hit from a shock
on the air side, the transmitted shock in the SF, and the
contact itself lie almost on top of each other, making this
problem virtually impossible to compute correctly by
standard methods. Grove’s solution, calculated easily on a
20 x 20 grid, shows the efficacy of front tracking.

J. Jones [60] determined the leading-order endothermic
effect of radial cooling on reactive chemistry in curved
detonation fronts. This piece of asymptotic analysis solved a
major open problem in reactive hydrodynamics; it was
prompted by the requirement of front tracking for analytic
knowledge of solution behavior.

King, Lindquist, and Reyna [61] solved a 20-year-old
problem posed by Ratchford [62], a leading petroleum
engineer. They showed that finite-difference methods can
duplicate the phenomena of viscous fingering with
immiscible displacement and capillary diffusion, as is
observed in laboratory experiments. This achievement
resulted from the need for a benchmark calculation for
comparison to front tracking studies [51].

5. Conclusions

Science requires computational methods with enhanced
capabilities which go beyond currently available techniques.
A promising strategy for meeting these needs is to use
methods which are adapted to known solution behavior. An
outline for pursuing this strategy in the context of
compressible reactive flow has been presented. Work
directed at implementing this strategy has been discussed,
with an emphasis on the front tracking program.
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