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The  computer  has  given  rise  to  a  new  mode of 
scientific  practice,  and  today  computational 
science  stands  beside  theory  and  experiment as 
a  fundamental  methodology.  The  impact  of  the 
computer  revolution  on  science  can be projected 
from  current  trends.  The  demands  to be made 
on  computing  methodologies will be reviewed. 
One  of  the  demands  is  an  ongoing  need  for 
excellence in  computational  methodologies. 
Generic  difficulties  encountered  in  meeting 
these  challenges  will be discussed.  Recent  work 
of the  authors  and  others will be reviewed in  this 
context. 

1. The  computer  revolution 
The ages  of  history are demarcated as much by the rise and 
fall  of  ideas and technology as by the rise and fall  of empires 
and nations. In this sense the  computer age  is a turning 
point for human events, as  was the earlier industrial 
revolution based upon mechanical energy. With a narrower 
focus, we consider the impact of the computer revolution on 
science. Turning points in  science are marked by the 
introduction of  new ideas and new tools, and especially by 
developments which are both tools and ideas. With the 
invention of calculus, the electron microscope, and DNA 
sequencing, one finds an ability to formulate, understand, 
and solve a range  of problems which  had  previously  been 
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inaccessible. Judged from this perspective, the computer 
revolution will have an impact on science at least as large  as 
did these three examples. 

mathematical equations. In most cases the solutions to these 
equations cannot be obtained without recourse to numerical 
computation. In the thirty years  since the advent of 
mainframe computers, an impressive  range of problems have 
been  solved  with the aid of computers. Running a modern 
wind tunnel to test  airfoil  designs  costs 150 million dollars 
per year. Supercomputers can explore a much larger  range  of 
ideas than can actually be tested, and expensive  test  facilities 
can be  reserved  for the most promising designs. In fact, a 
broad range  of two-dimensional fluid-flow problems are 
under reasonable scientific control, due primarily to progress 
on numerical computation on these problems. The list of 
such  successes could be extended to considerable length. 
Looking to the future, there can be little doubt that the 
mathematization of various subfields  of  biology  is 
impending. As indications we can cite the recent computer- 
assisted determination of the three-dimensional structure of 
the polio and cold viruses [ 1,2], computer simulation of the 
heart with natural and artificial  valves [3], and algorithms for 
the analysis  of DNA sequences [4]. 

explore the unknown. Feigenbaum discovered universal 
order in the behavior of chaos [ 5 , 6 ]  through computer 
experiments, a development which  has stimulated and 
rejuvenated several branches of mathematics and physics. 

Computers can simulate experimentally difficult or 
unattainable parameter ranges, such as the conditions in the 
interior of the sun or a few microseconds after the big  bang 
origin  of the universe.  They can also simulate undesirable 

Very  large parts of  science are described in terms of 

Computers can also be  used  as an experimental tool to 
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parameter ranges such as occur in  safety studies to avoid 
accidents in chemical or nuclear reactors. There have  been 
three types of limits proposed for the ultimate scope of the 
computational method. However,  it is not clear how  firm 
these limits will turn out to be, and in the authors’ 
judgment, it is no more possible to set ultimate limits on the 
scope  of the computational methodology in science than  it is 
to set limits on  the scope  of future progress in theory or 
experiment. It has been  proposed that fundamental physical 
limits such  as the speed  of  light  will limit the speed of future 
computers. However, the development of parallel computers, 
which do many operations concurrently, may permit an end 
run  around this problem. A class  of combinatorial problems, 
known as NP-complete problems, are effectively outside of 
practical computation. The extent to which the  important 
problems which  fall into this class can be restricted to 
subproblems which do not lie  in this class or can be 
otherwise  modified so as to be  effectively computable is not 
known. Finally, it has  been  proposed that problems with 
producing complex computer code in debugged and reliable 
form may provide an outer limit for the use of computers to 
solve certain types  of problems. Again, there are several 
strategies  which  may mitigate this problem. We mention in 
particular portable operating systems and software tools, 
high-level  languages and standardized calling  sequences, and 
modular libraries to allow interchangeability of reliable 
software components which can be  used and thus tested 
through time in a variety of applications. 

There is no shortage of current limits. For all of its 
astonishing successes,  scientific computation provides much 
less than science and technology need.  In most important 
scientific applications, the solutions are undercomputed 
relative to the scientific requirements. The gap between 
needs and performance is often substantial (and includes 
almost all three-dimensional problems). Narrowing this gap 
will depend on progress  in both hardware and computational 
methodologies. To assess the current achievements and 
shortfalls of  specific computational methods is  like trying to 
decide whether a glass  of water is  half  full or half empty. It 
can perhaps wryly be  observed that those with  responsibility 
for supporting and maintaining a code tend to believe that it 
is correct and adequate; those who  use  it tend to believe that 
the code is rather imperfect, but can nevertheless  serve  as a 
guide to the wise scientist or engineer; and those who 
develop new methods tend to be acutely aware of the flaws 
in existing  codes. 

2. The method of scientific  computing 
What are the methodologies which  define  scientific 
computing as a distinct approach to science, complementing 
the traditional approaches of theory and experiment? 
Scientific computing begins  with mathematical modeling, 
whereby  essential features of a scientific problem are 
expressed  in terms of mathematical equations. Typically, 170 
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important compromises and judgments are made at this 
stage. In order to carry out later computational steps, 
unimportant and sometimes important problem features 
must be suppressed. These judgments lead to a sequence of 
models  which capture different aspects  of the same problem. 
The different models may be integrated hierarchically in that 
a fine-scale model may be  used to set the parameters of a 
coarser model, or they may be integrated only in the final 
judgments of the scientist or engineer  using them. 

After the mathematical equations have  been formulated, 
they must be  cast in a form suitable for numerical 
computation. This usually requires that they be discretized 
in one way or another. The key step is the formulation of a 
solution algorithm to solve the discretized equations. This 
step is so important  that it often influences the preceding 
steps  of model formulation and discretization. 

The next  stage  is testing and validation of the solution 
algorithm. Validation may  be accomplished by the following 
methods: comparison with  known analytic solutions, 
comparison with  previously  validated computations, 
comparison with laboratory experiments, and internal 
consistency  checks.  Such internal checks include 
convergence under mesh refinement, analysis  of solution 
errors, and analysis  of diagnostic data. Truncation errors and 
convergence rates can be analyzed mathematically. 
Occasionally there may be a mathematical convergence 
theorem for the solution algorithm. 

The final  stage  in  scientific computing is to use a validated 
and debugged code for scientific or engineering purposes. 

The preceding outline for  scientific computing would 
strike most practitioners as glib, as it omits all  discussion  of 
difficuities.  We  focus on  the difficulties inherent in the 
solution algorithm stage.  Dealing  with these difficulties 
defines the subject of numerical analysis. 

Typical  methodological  difficulties, as they manifest 
themselves to a user,  show the following symptoms: slow 
convergence, nonconvergence, numerical instabilities, and 
numerical simulation of spurious physical  effects. 
Nonconvergence  is normally the sign  of an incorrect 
algorithm, but in listing it here, we have in mind more subtle 
possibilities, such as solution convergence in an L, norm, 
while solution values at specific points (L, convergence) may 
be invalid. The trap is  easy to fall into, since the solution 
value at some singular point (such as a crack tip) may  be 
both the most important and the least convergent part of the 
solution. The discretization process  is a modification of the 
mathematical equations and consequently of the physics or 
problem formulation which the equations represent. In some 
cases the original physical  process  is unstable or only  weakly 
stable to changes in the equations or equation parameters. In 
such  cases, there is the danger that numerical discretization 
errors may  grossly  change the nature of the solution. Even 
for stable physics,  these errors may change the solution 
quantitatively to an unacceptable degree. 
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The symptoms which a user  may  observe as a sign  of poor 
performance typically  have their origin in difficulties 
inherent in the original mathematical equations and their 
solutions. In general, finite-difference and finite-element 
methods give satisfactory performance when computing 
smooth solutions to regular problems in a space of not too 
high a dimension. We want to emphasize two somewhat 
unrelated types of problem difficulties. The first  has to do 
with rapid solution variation, large  space or time derivatives, 
and  jump discontinuities or other solution singularities. Such 
features are ubiquitous. They  arise in and give rise to 
boundary layers. Chemical reactions are a typical source of 
multiple time scales,  also known as stiff  systems. Problems 
with multiple material interfaces or shock  waves  have 
discontinuous solutions. To explain this point more fully, we 
note that  the shock  width in gas dynamics is  of the order of 
a mean free path, which is about lo” cm and far smaller 
than  the macroscopic dimensions of typical flow  fields. The 
pressure gradient within the shock  might then be  of the 
order of lo7 or more using dimensional units appropriate to 
the problem. Likewise, a flame front width could be lo-* 
cm, but such numbers are  highly problem-dependent. For 
example, in an oil  reservoir  fire  flood, the flame  width could 
be 20 feet, and still small compared to macroscopic 
dimensions. Chemical reaction rates within a single problem 
can easily  vary by a factor of 10” because of their 
exponential dependence on activation energies. The 
importance of discontinuities and singularities has  long  been 
recognized by the community working on hyperbolic 
equations. However,  they are just as important for elliptic 
problems such as steady-state elasticity or multi-fluid 
incompressible flow, due  to crack tips, corners, and material 
or phase boundaries, a fact  which appears to have  been  given 
less emphasis than it  deserves. 

The second major class  of problem difficulties we discuss 
has to do with the occurrence of a large or infinite number 
of  essential  degrees  of freedom. Problems having these 
features arise in the study of turbulence, statistical mechanics 
and equations of state, quantum field theory, and stochastic 
partial differential equations. This class  of  difficulties is the 
more intractable of the two, and the examples of  scientific 
studies [ 7- 121 which can be cited fall far short of the 
systematic needs  for computational solutions in  these areas 
due to slow convergence. Looking ahead to our proposed 
methodology  for the first  class  of problems, we observe that 
the problems with an infinite number of  degrees  of freedom 
are also very difficult  from a theoretical point of  view, and 
that theoretical ideas have not yet provided the means to 
devise numerical methods with the required enhanced 
capabilities or convergence properties. 

3. The  Grand  Unified  Scheme  (GUS) 
As a general principle, we propose the maximal use  of 
analytic knowledge  of solution properties. This principle has 

been  successfully  used  in the case of smooth solutions, where 
the known solution regularity  is  used to devise  higher-order 
methods which give accelerated convergence. For the case of 
solution singularities, which give  rise to  the first  class  of 
difficulties mentioned in the previous section, we propose 
maximal use  of analytic knowledge of those solution 
singularities. Perhaps paradoxically, the solution singularities 
can be a source of problem simplification, in that  the 
idealized or asymptotic behavior in the neighborhood of the 
singularity  may poss~ss a simpler structure or higher 
symmetry than does the full solution. Thus  the singularity 
may  be an opportunity for theoretical progress; there may 
also be a considerable body of knowledge concerning the 
singularities. Our proposal  is to use this body of knowledge 
within the numerical algorithm itself, and where  necessary to 
create the required knowledge.  An instance of this circle of 
ideas  is the vortex method, which  uses  vortices to represent 
idealized  fluid elements in (for example) shear layers and 
turbulent flow  fields (9, 10, 13- 171. Related ideas are the 
interface methods based on boundary integral methods 
[18, 191, and conformal mapping [20]. 

The Grand Unified  Scheme is a version of the general 
principles discussed above, suitable for  compressible  reactive 
fluid  flow. These  ideas are an outgrowth of  work carried out 
over  several  years  with many colleagues, and were  presented 
in preliminary form in [2 I]. The scheme could also be called 
the Kitchen Sink Scheme (KSS) because the main idea  is to 
use everything. There are four main components to this 
scheme, and we discuss  each  briefly in this section. The four 
components are: interior schemes, front tracking, automatic 
mesh refinement, and automatic asymptotic reactive 
chemistry (or automatic mode selection). 

ideas:  flux limiters to control overshoots and numerical 
oscillations and approximate Riemann solvers to achieve 
upwind  differencing [22-251. 

The main idea  of front tracking is to introduce, as an 
independent computational degree  of freedom, the surfaces 
of jump discontinuity which  may occur within a solution. 
This method will  be explained in more detail in the 
following section. 

Automatic mesh refinement is the idea of  using  fine  grids 
in  regions  where the solution is  singular or rapidly varying, 
coupled  with coarse grids  in  regions  where the solution has a 
regular behavior. This method has given  rise to a large 
ongoing enterprise, from which we cite representative works 

Automated asymptotics or automated mode selection  for 
reactive chemistry is the proposal to determine the ambient 
conditions from the neighbors  of a given  mesh  block and on 
the basis  of these conditions to determine rate-limiting 
reactions and simplified chemistry, so that  the rapid 

High-quality interior schemes have  been built around two 

[26-291. 

reactions are replaced by frozen or quasi-steady-state 
conditions. A hierarchy  of time scales  would  be identified, 171 
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Computational [Incident shock 
rectanele  boundarv 

Reflected  shock 

The grids used by front tracking for a shock on ramp problem. A 
rcgular two-dimensional grid is superimposed on a one-dimensional 
front (grid).  The latter consists of the incident and retlected shock, 
the ramp boundary, and the boundary ofthe computational rectangle. 
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and in this hierarchy, the rapid times would  be treated as 
quasi-steady-state, the intermediate times would be treated 
implicitly, while the slowest times would be treated explicitly 
and  the transients for  these time scales  would  be  fully and 
accurately resolved. 

There have  been  several attempts to date  to implement 
this unified proposal. In [30], the  modem interior schemes 
were  successfully combined with a limited version  of front 
tracking. In [31], automatic mesh refinement was 
successfully added to  the above.  However,  efforts to combine 
mesh refinement with modem interior schemes in the 
absence of tracking led to spurious waves generated by 
strong shocks at the boundaries of the fine  meshes. For a 
problem which does not contain strong shocks, the 
successful combination of mesh refinement with a high- 
quality interior scheme has  been obtained [32]. The 
automated analysis  of critical modes and solution 
asymptotics as proposed above is an ambitious undertaking 
and has not been attempted to date. 

Hybrid schemes have obvious software complexity 
problems which  will  be mentioned below. More serious are 
the scientific  difficulties. Here we would like to stress the 
problems of a fundamental mathematical nature. Riemann 
problems define the scale-invariant large time solution 
asymptotics to leading order and pose a number of problems 
both for their behavior in the large and their behavior in 
higher dimensions [33,34]. Such considerations have 
inspired a study of Riemann problems in a variety  of 
physical contexts and have  led to the discovery of  new and 
striking mathematical phenomena [35-391, including shocks 
which  violate most proposed  physical admissibility 
conditions. A related problem is the hyperbolic problem 
with an embedded elliptic region, a notoriously difficult 
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Convergence under mesh refinement in the two-dimensional compu- 
tation. Convergence of the front and interior schemes. The pressure 
errors in the interior and at  the front are shown for  N x Ngrids  at  the 
time indicated by Figure 2(a). The # signs represent the interior er- 
ror, where 

The front error (error bars) gives the range of the  errors  at the front, 
defined as 

Front error = 100% X 'd , 
[P  1 

where [ P  ] is the pressure jump  at the front in the one-dimensional 
computation at the same  time.  The asterisks represent the error of the 
average pressure behind the front, namely 

Front error (average pressure) = 100% X P2d average - 4d . 
[P  1 

problem  which  arises in a variety  of contexts including 
transonic flow, elasticity,  oil  reservoirs, multi-phase flow, 
and  the relativistic hydrodynamics of a quark-gluon plasma 
[40-451. 

4. Front tracking 
Front tracking can be most adequately described by a 
picture. In Figure 1 we show the grids  used  for a front 
tracking solution. Note that there is a regular  two- 
dimensional grid  covering a channel, including the wedge, 
which is an obstacle in the channel. The front includes a 
shock wave incident on  the wedge, the channel walls, and 
the wedge, as well as the inlet and outlet surfaces.  It is 
represented by a lower-dimensional (one-dimensional) grid, 
which  moves in time, using  velocities derived from the jump 
conditions (the Riemann problem) of  gas dynamics. 
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Comparison of one- and two-dimensional computations for a cylin- 
drically symmetrical detonation front computation. A plot  of pres- 
sure vs. radius is shown. The solid curve shows the results obtained 
by the one-dimensional random choice computation.  The vertical 
lines represent the range of pressure values in the two-dimensional 
front tracking solution at a fixed radius as the angle varies. Thus the 
vertical lines show the range of angular dependence on the solution. 
The grid is 40 by 40. 

Automated bifurcation of tracked fronts illustrated in a j e t  pinch-off 
instability in an oil reservoir study. Here water has  been injected Into 
fivc wells located at the bottom of the figurc, and oil is produced at 
five wells located at the top of the figure. The reservoir parameters 
represent stable displacement. and so the water-oil interface does not 
finger. However, for thebe parameters, the oil  is more mobile, and 
consequently forms a jet between the injection wells. 

The plan to use front tracking was initiated by 
0. McBryan and one of the authors seven  years  ago; a clear 
and early statement of the method and the scientific 
program is contained in [46]. This program was developed 
and implemented in a series  of more than 40 papers by the 
authors, Oliver  McBryan, and other co-workers;  see,  for 
example, [46-531. In  these  papers, proof of principle and 
scientific  validation has been established.  Validation has 
been  accomplished  by comparison to analytic solutions, 
laboratory experiments, elementary one-dimensional 
calculations, and previously  validated computer codes, as 
well as convergence under mesh  refinement.  These  tests  have 
been conducted in the context of a variety of different 
applications. In Figure 2 we  show convergence under mesh 
refinement and comparison of a two-dimensional 
computation to a simpler one-dimensional (radially 
symmetric) computation for a cylindrically  symmetrical 
detonation front, in work  by B. Bukiet [47]. 

At the outset the concept of front tracking was considered 
to be  hopelessly  wrong, and the plan to initiate this approach 
in a serious way prompted considerable  controversy. The 
concerns were of three types: This method might not work 
scientifically, it was too complicated to implement, and it 
might  never  be able to handle problems of even moderate 

engineering  complexity.  Actually there was a record of 
previous attempts with this method, which  provided 
encouragement that the method was fundamentally sound 
[54-561. The scientific  validation  was  discussed  above. 
Various numerical issues  such as the coupling scheme 
between the interior and the front have  been examined but 
deserve further study.  Local  behavior in the neighborhood of 
co-dimension  two-intersection points of tracked 
discontinuities also  needs further study. 

The  software  complexity  issues were handled through a 
strategy  which  is  different  from that normally  employed in 
computational fluid dynamics and which  might  be  worthy  of 
consideration by others.  These  issues  have  been [57,58] and 
will  be  discussed  elsewhere. 

On the basis  of this success  with  scientific  validation and 
control of software  complexity,  it  can  be stated that a proof 
of scientific  principle for front tracking has  been  achieved. 
Next  we discuss the transition of the front tracking method 
from benchmark validation  studies to problems  of moderate 
engineering  complexity. A central research  issue  involved in 
this transition is the ability to allow  bifurcations or changes 
in front topology due to the interaction or crossing of 
tracked waves. This program is partially complete, and we 
report on progress  achieved  by  co-workers. 

e 
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a Tm~e = 0 :/1 Time = 0.OXI 

Time = 0.15 
E Xme = 0.22 

a shock on ramp problem. An inci- 
goes bifurcation to a regular reflec- 
node reaches the  top of the  ramp, a 
occurs.  This Mach triple point is 
ave has zero strength at the triple 

3 Xme = 0 u 
l lme = 0.93 

lime = 2.3 

7 

- 
lime = 2.9 

Compressible Kelvin-Helmholtz roll-up, including passage of the 
front through a periodic boundary. The grid is 40 X 40 and the rela- 

174 

E 
Time = 0 

Time = 0.5 

r-" 

Xtnc = 0.04 - 
Time = 0.12 

/i 
Time = 7 Tme = 3 

1 A series of frames showing a shock contact collision interaction. 
Both gases are polytropic withy = 1.4. The pressure ratio across the 
incident shock is 100, and the density ratio (above to below) across 

1 the original contact is 2.86. The grid is 40 X 80. This figure was 
1 taken from unpublished work of J.  Grove. 

In Figure 3 we show a computation of a line drive well 
configuration  taken from  an oil reservoir study  in which the 
jet pinch-off instability leads to successive front bifurcation 
[531. 

In Figure 4 we show successive stages in  the  front 
topology as a shock wave hits a ramp,  forms a regular 
reflection, and finally a Mach stem [48]. 

In Figure 5 we show Kelvin-Helmholtz  roll-up  for 
compressible gas dynamics, with the tracked slip line  exiting 
and reappearing through periodic boundaries [48]. 

In Figure 6 we show successive stages in  front topology as 
a shock wave hits a contact  in  initiation of  Meshkov 
instability, taken from  unpublished  work  of J. Grove [59]. 
There  are  two remarkable points in this  computation.  One is 
the change in  front topology which occurs  within the 
computation, a transition which has always been regarded as 
a significant obstacle to  the use of this method.  The  other 
concerns  contiguous waves, as discussed in the next 
paragraph. 

front  tracking effort. First we mention a calculation of 
Grove [59] in which a contact separates highly compressible 

There have  been several definitive achievements  of the 
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(y = 1.1) SF, from air (see Figure 7). When  hit from a shock 
on  the  air side, the  transmitted shock in  the SF, and  the 
contact itself lie almost  on  top of  each other, making  this 
problem virtually impossible to  compute correctly by 
standard methods.  Grove’s solution, calculated easily on a 
20 x 20 grid, shows the efficacy of front  tracking. 

J.  Jones [60] determined  the leading-order endothermic 
effect of  radial  cooling on reactive chemistry  in  curved 
detonation fronts. This piece of  asymptotic analysis solved a 
major  open problem  in reactive hydrodynamics;  it was 
prompted by the requirement of front  tracking for analytic 
knowledge of solution  behavior. 

King, Lindquist, and Reyna [61] solved a 20-year-old 
problem posed by Ratchford [62], a leading  petroleum 
engineer.  They showed that finite-difference methods  can 
duplicate the  phenomena of viscous fingering with 
immiscible  displacement and capillary diffusion, as  is 
observed in  laboratory  experiments. This achievement 
resulted from the need for a benchmark calculation  for 
comparison to  front tracking  studies [ 5  11. 

5. Conclusions 
Science requires computational  methods with enhanced 
capabilities which go beyond  currently  available  techniques. 
A promising strategy for meeting  these  needs is to use 
methods which are  adapted  to known  solution behavior. An 
outline for  pursuing this strategy in the  context of 
compressible reactive flow has  been  presented.  Work 
directed at  implementing this strategy has  been discussed, 
with an emphasis on  the front  tracking  program. 
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