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Drop formation
by DOD ink-jet
nozzles:

A comparison
of experiment
and numerical
simulation

by T. W. Shield
D. B. Bogy
F.E. Talke

This paper presents a comparison of a
numerical simulation of drop formation and
ejection from a drop-on-demand (DOD) ink-jet
nozzle with experimental observations from a
particular nozzle-transducer design. in the
numerical simulation, first the pressure waves in
the transducer chamber are calculated using
inviscid compressible flow theory to obtain the
pressure history at the inner face of the nozzle
plate. Then a viscous momentum integral
computation is applied to the nozzle to obtain
the velocity history at the outer face of the
nozzle plate. Finally, the free surface shape is
calculated using finite-difference methods on the
one-dimensional equations for an inviscid
incompressible free jet with surface tension that
uses the nozzle exit velocity history as the
driving boundary condition. The computations
are compared with drop formation photographs
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obtained from a particular nozzle-transducer
design. Encouraging agreement is obtained, but
the numerical model will require added
sophistication before detailed agreement can be
expected.

1. Introduction

In this paper a numerical simulation of the drop formation
in drop-on-demand (DOD) ink-jet printer devices is
described. Bogy and Talke [1] deduced that the pressure at
the inner face of the nozzle plate of a squeeze-tube ink-jet
transducer is due to the constructive interference of acoustic
pressure waves created in the fluid cavity by the expansion
and contraction of the piezoelectric sleeve that surrounds the
glass lining of this type of nozzle. This is in contrast to the
incompressible model presented by Beasley [2] to explain the
fluid mechanics inside the transducer chamber.

In [3] we presented two numerical solutions for the drop
formation process outside the nozzle that are based on one-
dimensional jet theories, one with and one without radial
inertial effects. These models are for inviscid fluids with
surface tension, and they require an axial velocity boundary
condition at the outside face of the nozzle plate. These
schemes use a Eulerian formulation. A numerical solution
for the drop formation outside of the nozzle based on one-
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dimensional equations without radial inertia and with a
Lagrangian formulation was presented by Adams and Roy
[4]. This free surface drop formation problem was also
considered by Fromm [5], who used a numerical solution of
the axisymmetric Navier-Stokes equations.

In our previous work an artificial pressure history inside
the nozzle plate was used with a momentum integral method
through the nozzle to obtain the nozzle exit velocity
boundary condition for the free surface jet problem.

The purpose of the present paper is to combine the
calculations in the three regions of the ink-jet device to allow
prediction of drop behavior that can be compared with
experiments. First, in Section 2, an experimental apparatus
is described and experimental results showing drop
formation and ejection at various instants during the process
are presented for water and ethylene glycol under various
driving conditions. Next, in Section 3, the acoustics inside
the transducer cavity are described using a method of
characteristics in a manner similar to that used for analyzing
pressure transients in pipes (water-hammer analysis). This
yields the pressure history at the inside of the nozzle plate
that results from the expansion and contraction of the
piezoelectric tube. Then, this pressure history is used in the
nozzle momentum integral equations to predict the velocity
outside the nozzle plate. Finally, this velocity boundary
condition is used with the numerical solution for the free jet
equations to predict the drop formation process leading to
drop size and velocity. In the last section, Section 4, the
numerical predictions are compared with the experimental
observations, and some comments are made concerning the
limitations of the numerical simulator and the need for
further work.

2. Experimental observations

o The apparatus and its operation

The experimental apparatus consists of a nozzle transducer,
an electronic driver, and a video system. The transducer has
a fluid cavity that is composed of a glass tube surrounded by
a piezoelectric cylinder over a portion of its length. One end
of the tube is closed off by a thin silicon plate that contains a
small orifice, about 50 micrometers in diameter. The other
end of the tube is connected by a larger-diameter tube to a
fluid reservoir. The dimensions of the device are shown in
Figure 1.

The nozzle is driven by periodic rectangular pulses at a
fixed frequency around 1 kHz. By using a strobe light it is
possible to view the formation of the drops with a television
camera equipped with a microscope lens. The drop
formation is viewed at various times by using a variable
delay between the driving pulse and the strobe flash. As the
delay is increased, the effect is to produce a slow-motion
picture of the formation of the drop. Since the drop
formation process is extremely repeatable, even down to the
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smallest detail, this technique provides a smooth, stable
picture of the drop evolution.

A block diagram of the electronic equipment used to
control the experiment is shown in Figure 2. The main
control unit allows control of frequency, pulse length, and
strobe delay. The light source of the strobe is a LED that is
driven by a constant power source. Its intensity does not
vary with the pulse length or frequency. The driver for the
piezoelectric crystal uses a logic-level signal from the main
control unit to modulate the output of the high-voltage
power supply. The television camera is a high-sensitivity
black and white commercially available closed-circuit
camera, which is directly connected to a TV monitor. The
lens is a standard microscope lens that is screwed into an
adjustable-length microscope nosepiece. Typically, a 10X
microscope objective lens is used. Although higher-power
objectives would show more detail, they require more light
and hence do not give a clear picture.

The drop transducer is mounted so that it can be moved
vertically and horizontally to allow different parts of the
drop stream to be viewed. The drop transducer is connected
to the fluid reservoir by a plastic tube which allows the
reservoir to be fixed, keeping its free surface at the
approximate elevation of the nozzle exit so that static
pressure does not tend to drive the fluid out of the nozzle.
Leaking of fluid would wet the nozzle face and make it
impossible for well-formed drops to be produced.

The device must be carefully primed to remove all air
from the chamber, since air bubbles in the chamber absorb
the pressure waves produced by the piezoelectric crystal and
prevent a drop from forming. It is usually advisable to start
with fluids such as water or alcohol, which wet surfaces
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better than ethylene glycol, and then to switch fluids after
the chamber is free from air bubbles. In order to prime the
device the fluid reservoir can first be pressurized with air to
approximately 6 to 9 psi to force fluid through the orifice.

The optimum pulse length for driving the device can be
determined experimentally by observing the breakup of a
continuous, pressurized jet. Since this particular transducer
design relies on the constructive interference of pressure
waves, caused by the rise and fall of the driving pulse to eject
the drops, the pulse length is the critical parameter for
proper drop ejection. The easiest way to find the optimum
pulse length (the “tuned” or resonance pulse length) is to
adjust it for the shortest-length breakup of the continuous
jet, since it is at this condition that the pressure pulse at the
nozzle is the strongest.
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The best driving voltage can also be found during
continuous-jet operation simply by increasing the voltage
until the jet breaks up reasonably close to the nozzle.

The experimental results are presented in the next section
in the form of drop shapes at various times during the drop
formation and ejection process. The main control unit
directly displays the strobe delay time in microseconds,
thereby providing convenient timing of the drop profiles. It
is possible to measure the distance the drop travels in a given
time interval; however, the drop velocity is not constant
until after the drop has separated from the nozzle and has
become spherical. Thus, this method is only suitable for
average velocity measurements. The parameters,
corresponding to the numerical simulation, are the pulse
length, driving voltage, and choice of fluid.
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o Experimental results

The experimental results are presented as a sequence of
photographs taken directly from the video monitor by use of
an oscilloscope camera. Two different fluids were used,
ethylene glycol and water, because of their material
properties and because they are commonly used as the base
fluids for inks in ink-jet printing. Their surface tensions are
not very different, but their viscosities are quite different,
and they are observed to behave quite differently in our
experiment. The physical properties of the two fluids and
some other parameter values are listed in Table 1. A
summary of the conditions for the photographs presented in
the figures is given in Table 2.

The photographs were taken at 30-us time intervals, The
driving voltage needed to eject the drops varied greatly
depending on the fluid and pulse length. The ethylene glycol
needed a higher driving voltage than the water.

Figure 3 shows a low-magnification picture of the nozzle
end and a sequence of three equally spaced droplets after

ejection from the nozzle. Figures 4(a)—4(d) show four Table 1 Typical values of some physical parameters that
. .. characterize ink-jet printing,

sequences of drop formation and ejection for ethylene glycol.

All times mentioned are from initial pulse rise. In Figure Ethylene glycol Water

4(a) the pulse length is 10 us, the shortest pulse-length Density (/o) 102 0.997
.. . . nsity (g/cm . .

resonance_condmon, and the pulse arr'xphtude is 90 volts. Surface tension (g/5?) 60.0 65.0

Here the time of the first photograph is at 30 us. The Viscosity (g/(s- m)) 3.0 0.89

sequence shows that the drop forms without a satellite drop
and detaches after about 120 us. A second positive pressure
pulse, which results from a reflection, occurs at 90 us. In Nozzle diameter, a 50.0 pum

. . . Reference velocity, V, 1.0 m/s
F1gur§ 4(b) the pulse lengtl.l }s 15 us, which does no’f . Reference time, a/V, 50.0 s
establish a resonance condition, and the pulse amplitude is
70 volts. Again, the first photograph was taken at 30 us.
Although drops are ejected under these conditions, a Table 2 The driving voltage applied at each pulse length for
comparison of Figures 4(a) and 4(b) shows that the drops are  the two fluids used in the experiments along with a conversion table

. . from microseconds to the nondimensional time.

smaller in the latter case and two drops are formed in place
of one. This is explained in the next section when the Water
numerical model is discussed. In Figure 4(c) the pulse length

Other parameters

is 20 us, twice the resonance pulse length, and the pulse bulse length Driving voltage

amplitude is 70 volts. The first photograph is taken at 30 us, 10.0 55.0

and the sequence appears to be very similar to that in Figure 15.0 45.0

4(a). It may be somewhat surprising that the second 3(5)8 45'26%5'0

resonance condmon. requires a lowelj pu.lse amphtude than Ethylene glycol

the first one to obtain similar drop ejection. This can also be

explained when the numerical solution is discussed. Figure Pulse length Driving voltage

4(d) shows another drop sequence for a 20-us pulse length, 10.0 90.0

but with a pulse amplitude of 90 volts, as in Figure 4(a). The 15.0 70.0

first photograph here is at 60 s [the photograph at 30 us is 20.0 70.0, 90.0

the same as in Figure 4(a)], and an overdriven condition is Time in Nondimensional

evident, with a satellite drop being formed. microseconds time
Figures 5(a)-5(d) show four sequences of drop formation

and ejection for water. Here it is observed that the drop ggg ?gg

formation process is not as well controlled as for ethylene 90.0 1.80

glycol. In Figure 5(a) the pulse length is 10 us, the shortest 120.0 240

pulse-length resonance condition, and the pulse amplitude is iggg :3;2?)

55 volts, as compared to 90 volts in Figure 4(a) for ethylene 99
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Ethylene glycol ejected by a pulse of (a) 90.0 V for 10.0 ws; (b) 70.0 V for 15.0 ps; () 70.0 V for 20.0 ps; and (d) 90.0 V for 20.0 ps.

glycol. A clean drop is formed without satellites. In Figure
5(b) the pulse length is 15 us, not a resonance condition, and
the pulse amplitude is only 45 volts. As in the case of
ethylene glycol in Figure 4(b), the drops are smaller for 15 us
in Figure 5(b) than for the 10-us pulse length in Figure 5(a).
In this case the second drop does not separate, but is
recaptured by the meniscus at the nozzle.

In Figure 5(c) the pulse length is 20 us and the pulse
amplitude is 45 volts, causing well-formed drops to be
ejected without satellites. In Figure 5(d) the pulse length is
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maintained at 20 us, but the driving voltage is raised to 55
volts. This causes an overdriven condition and a somewhat
erratic drop formation process.

The sequences of drop formation pictures for both
ethylene glycol and water show some similar characteristics.
Both show good operation at the fundamental and first
harmonic pulse lengths, and both show that multiple smatl
drops are formed at the intermediate pulse length. Also, both
show that overdriving leads to satellite formation at
resonance pulse lengths.
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by apulse of (a) 5.0 V for 10.0 ps; (b) 45.0 V for 15.0 us; () 45.0'V for 20.0 s; (d) 55.0 V for 20.0 s; and (e) 50.0V for 25.0 w.
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3. Numerical simulation from the application of a rectangular voltage pulse to the
The first step in the numerical simulation is to derive the piezoelectric sleeve. The response of the piezoelectric crystal
pressure history at the nozzle end of the.chamber due to the  tube itself was studied in Bugdayci et al. [6], in which the
expansion and contraction of the chamber walls resulting inner cylindrical wall displacement of the tube was
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of the pressure waves in the device chamber.

calculated for an applied voltage step. In this analysis we
make the simplifying assumption that the expansion and
contraction of the transducer chamber follows that of the
piezoelectric sleeve, and it is also linearly proportional to the
applied voltage step. We leave this proportionality constant
undetermined so that there remains a free parameter in the
solution, which can be used to match the final drop
velocities obtained from the experiment and computation.

o Pressure history calculation at the inner nozzle face
Pressure transients inside deformable pipes have been
studied extensively in water-hammer analysis for piping
systems. A nonlinear form of the one-dimensional
continuity equation for compressible flow in elastic pipes
with linearly varying diameters is derived in Chapter 17 of
Streeter and Wylie [7]. This equation can be written in the
form

p, + pa’u, + up_+ 2pa’Bu/D =0, )

where p(x, ?) and u(x, ) are the pressure and velocity
functions, p is the density, assumed constant, a is the wave
speed in the elastic pipe, D(x, ¢) is the pipe inner diameter,
and B is the slope of the undeformed pipe diameter.
Subscripts denote partial differentiation. The wave speed, q,
depends on the fluid and the wall properties, and is given by

a=c [1 + pc? (BC—‘H_W )
Ee ’

where E is Young’s modulus, e is the pipe wall thickness, c is
the acoustic wave speed in the fluid, and ¢, equals (1 — ¢/2),
(1 — &%), or 1 (where ¢ is Poisson’s ratio of the pipe),
depending on whether the pipe is anchored at its upstream
end only, is anchored throughout against axial movement, or
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is anchored with expansion joints throughout. The
expansion of the pipe due to the internal pressure is ignored;
hence D is a function of x only in this analysis.

A one-dimensional momentum equation with frictional
drag based on the Darcy-Weisbach equation is also derived
in [7], and it has the form

P+ plu, + uu) + pfulu|/2D = 0. 3)

The friction factor is obtained from a force balance on a
fixed length of pipe with steady flow producing a viscous
drag. For the short time scales in our application, the friction
factor has very little effect on the solution and was ignored in
our calculations.

The method of characteristics provides a convenient
approach for solving (1) and (3). The corresponding
characteristic equations are derived in [7] and have the form

1 2a8  fulu)

papt+u,+ D “t5p =0, “)
- 4tae on c’, (5)

B S L. I 1 L]
i sy =0, (6)
il a onC, 7

where the C* and C~ characteristic lines in the x-¢ plane are
defined by (5) and (7), and they are curved lines since u is a
function of x and ¢. This set of characteristic equations can
be put in finite difference form and then solved numerically,
as described in [7]. The use of these nonlinear equations is
necessary in very flexible tubes where the wave speed, a, is of
the same order of magnitude as the fluid velocity, u. For
application to pressure transients in the ink-jet transducer of
interest in this study, the channel walls are made of glass and
piezoelectric ceramic, which have relatively high elastic
moduli, so that the wave speed, a, does not fall much below
1500 m/s. On the other hand, the drop velocity is observed
to be between 3 and 5 m/s. Therefore, it is reasonable to
expect that ¥ < g in (5) and (7), and so only small errors
will result from neglecting u in these equations. If this is
done, the characteristics become straight lines in the x-¢
plane with slopes +a. We make this approximation here for
convenience of analysis, and therefore we replace (5), (7) by

dx dx

—~=ag onC', ==-a onC. 8
dt dt ®
This is tantamount to using linear acoustics except for the
viscous drag term.

Next the finite-difference solution of the characteristic
equations for the transducer cavity shown in Figure 1 is
briefly described. Divide the pipe section into N increments
Ax in length, as shown in Figure 6. The time step is
computed from

At = Ax/a ©)
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so that the first of (8) is satisfied by the line AP in Figure 6.
If u and p are known at point A, then (4), which is valid
along C”, can be integrated between A and P to relate Up, Dp
to u,, p,- Likewise, integration along C™ is used to relate u,,
Dp 10 Uy, Py In terms of the index i in Figure 6, we can write
these two equations as

C*:p, = Cp — KBu,, (10)

C :pp = Gy, + KBu,, (11)

where C, and C,, are along C *and C”, respectively, and are
given by
MB

Co=p,_, + KBu,_, — % u_ lu_y | — Z U, (12)
Cy = Dy — KBu,, +%u,.+,|ui+l| —%um, (13)
with

KB = pa, LR = pfAx/2, MB = 2apBAx. (14)
Solving (10) and (11), we obtain

Pr=Co+ C)2  thp = (p, = Cp)/2. (15)

When p and u are known at the present time step, we can
advance to the next time step at the interior points. In order
to update the values of p and « at the end points of the
chamber, we must make use of the boundary conditions. For
the nozzle end it is assumed that the orifice is small
compared to the chamber cross section, and therefore we
invoke a closed-end boundary condition and use (10) and
(12) to obtain

uPNH =0, mel = CP' (16)

At the inlet end we assume that a reservoir pressure p,
prevails, and with this (11) and (13) yield

Pp (p, — C\)/KB. (17)

1 =Dy Up 1 =
Finally, initial conditions at ¢ = 0 (the pulse rise time) and
jump conditions at ¢ = £, (the pulse fall time) must be
specified. It is assumed that an instantaneous pressure p,(x)
results from the response of the piezoelectric tube. The
pressure per volt was determined in Bugdayci et al. [6] under
the assumption of uniform conditions along its length. It was
also found there that for the PZT (ceramic piezoelectric)
tubes in use, a positive voltage step at the outer electrode
caused the inside diameter of the tube to increase, leading to
an initial pressure drop. The pulse length, 7, is an important
design parameter for nozzle operation, as shown in Bogy and
Talke [1]. After the time interval £, the voltage is dropped
back to zero, causing a contraction of the tube and adding a
corresponding pressure jump at that instant. A new set of
pressure waves is thereby superimposed on those remaining
from the initial voltage step. Therefore, the initial conditions
are
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pix, 07) = —py(x),  ulx,0") =0. (18)
Then at time ¢ = ¢, the jump conditions are

px, 13) = p(x, 1) + pox),  ulx, £3) = u(x, 1). (19)
The function p,(x) representing the axial distribution of
pressure resulting from the voltage step is unknown. In the
present application we assume a uniform value over the
region of the piezoelectric sleeve with a linear ramp to zero
near the ends of the sleeve.

A FORTRAN program was written to implement the
solution presented here for the nozzle chamber in Figure 1.
The resulting histories at the inner face of the nozzle plate
are shown for various pulse lengths as dashed lines in Figures
7-10. These figures show that the first disturbance is the
negative pressure resulting from the initial expansion of the
piezoelectric sleeve. The first positive pressure pulse to arrive
at the nozzle is the reflection from the reservoir end of the
chamber of the initial pressure pulse caused by the
expansion of the crystal, which may be reinforced when the
voltage drops and the piezoelectric sleeve contracts at ¢ =1,
In Figure 7, where ¢, is 10 us, near the lowest resonance
pulse length (which is 10.4 us), reinforcement does occur,
producing a double-amplitude pressure pulse. This illustrates
the tuning that occurs when the pulse length is chosen to
match the chamber length. In Figure 8, where ¢, is 15 gs,
which is not a resonance condition, the two positive pulses
arrive at different times and no reinforcement occurs. In
Figure 9, ¢, is 20 us, which is near the second resonance
condition; thus the pressure rise due to the contraction of the
crystal reinforces the pressure pulse caused by the initial
expansion of the crystal after it has reflected from both the
nozzle and the reservoir ends of the chamber. In Figure 10,
£, is 25 us, and the pressure pulses arrive at separate times
without reinforcing each other.

o Velocity history calculation at outer nozzle face

The numerical schemes we developed in [3] for drop
formation require a velocity boundary condition at the outer
nozzle face. An equation based on momentum integral
techniques was derived in that paper that relates this velocity
to the pressure history at the inner nozzle face. This
derivation involves several assumptions: 1) The velocity
profile has an assumed dependence on the radial coordinate
r that satisfies the viscous no-slip boundary condition inside
the nozzle. 2) The flow is assumed to be incompressible; i.e.,
the volume flow rate Q is a function of  only. 3) The
entrance flow comes from such a large section that no work
is required in this section to accelerate the fluid into the
nozzle. 4) The outer flow back pressure is negligible. 5) The
fluid is Newtonian, and 6) the fluid always completely fills
the nozzle region which is taken as the control volume. The
equation obtained for determining the nondimensional
volume velocity Q is

5.784 _ 242
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Calculations with a pulse length of 10.0 ps for (a) Scheme A, W =
1.0; (b) Scheme A, W = 5.0; (¢) Scheme B, W = 1.0; and
(dyScheme B, W = 5.0,
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Calculations with a pulse length of 15.0 ps for (a) Scheme A, W =
1.0; (b) Scheme A, W = 5.0; (¢) Scheme B, W = 1.0; and
(Y Scheme B, W = 5.0.

in which the numerical constant is a shape parameter
obtained from integrating the assumed flow profile function
of r. R is the Reynolds number based on the nozzle exit
radius and a reference velocity of the flow, and has a value
of about 2.5. The nozzle is assumed to be conical with length
L, inner radius b, and outer radius of 1. P(¢) is the driving
pressure history at the inner nozzle face, which is assumed to
be known.

In our previous work the driving pressure was an assumed
analytical form that allowed (20) to be solved in closed form.
In the present work the pressure is obtained from the
numerical solution of the characteristic equations described
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in (1)-(19) and is presented in Figures 7-10, so (20) must be
numerically solved with a simple trapezoidal integration
scheme. Also appearing in Figures 7-10 are the volume
velocity histories corresponding to these pressure histories.
The velocity units are to be discussed presently. In Figure 7
the maximum velocity amplitude is slightly more than four
dimensionless units. In Figures 8-10 it reaches about eight.
From these figures the relationship between the pressure
history at the inside nozzle face to the velocity history at the
outside nozzle face is revealed as almost an integral one,
which implies that the second term in (20) is not very
important in the calculation.
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Calculations with a pulse length of 20.0 ws for (a) Scheme A, W =
1.0; (b) Scheme A, W = 5.0; (¢) Scheme B, W = 1.0; and
(d) Scheme B, W = 5.0.

e Drop formation calculations

The numerical schemes we developed can now be used with
the velocity history just obtained, which provides the
required boundary condition. Two schemes, called Scheme
A and Scheme B, were presented in our previous paper.
Scheme A is more complicated and includes effects of radial
inertia, whereas Scheme B is simpler since it neglects the
radial inertial effects. Both schemes have a single parameter,
the Weber number, W, defined by

W= pr,VyT, @n

where T is the surface tension of the fluid and r, is the exit
radius of the nozzle. The value of the Weber number can
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Calculations with a pulse length of 25.0 ps for (a) Scheme A, W =

é 1.0; (b) Scheme A, W = 5.0; (c) Scheme B, W = 1.0; and
% (d) Scheme B, W = 5.0.

either be prescribed, thus determining the reference velocity
V, for a given fluid, or it is determined from a chosen
reference velocity. If the reference velocity is chosen as the
capillary wave speed of a given fluid, then the Weber
number is unity for that fluid. The other possible choice for
the reference velocity comes from the boundary conditions.
Choosing the nondimensional amplitude of the exit velocity
amounts to picking the reference velocity. By comparing the
computation to the experiments, we can determine V; to
force agreement of the final velocities.

Another parameter in the numerical simulation is the time
t, at which the free surface flow calculations can begin
relative to the initial rise of the pressure pulse. Since the
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Table 3 Nondimensional times at which drop profiles are shown for the combinations of parameters used. W is the Weber number and
L is the pulse length in microseconds. The number in parentheses is the index at which breakoff occurred.

SCHEME A (At = 0.001, Az = 0.05)

t, = 25.0 20.0 15.0 10.0
ly = 0.66 0.61 0.57 0.51
W= 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0
0.76 0.76 0.71 0.71 0.67 0.67 0.61 0.61
0.86 0.86 0.81 0.81 0.77 0.77 0.678 0.71
0.96 0.96 0.91 0.837 (4) 0.802 (5) 0.87 0.81
1.052 (4) 1.045 (4) 1.053 (4) 0.91 0.87 1.006 (4) 0.968 (-)
1.16 1.16 1.062 1.11 0.914 1.07
1.467 1.289 1.084 1.164 1.27
1.482
SCHEME B (At = 0.001, Az =0.05)
t, = 25.0 20.0 15.0 10.0
L, = 0.66 0.61 0.57 0.51
W= 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0
0.76 0.76 0.71 0.71 0.67 0.67 0.61 0.61
0.86 0.86 0.81 0.81 0.77 0.77 0.71 0.71
0.96 0.96 0.91 091 0.87 0.87 0.81 0.81
1.107 (5) 1.109 (7) 1.053 (5) 1.068 (8) 1.015 (5) 0.994 (5) 1.01 0.851 (-)
1.16 1.16 1.11 1.11 1.07 1.07 1.055 (4)
1.36 1.36 1.31 1.31 1.27 1.27 1.21
1.657 1.66 1.479 1.57 1.57
2.054 1.945 2.07
Recalculation Recalculation
with a different 1, with twice the driving pressure
1, = 250 f, = 100
= 06l fy = 051
W= 350 W= 50
Scheme A B Scheme A B
0.71 0.71 0.61 0.61
0.81 0.81 0.71 0.71
091 0.91 0.81 0.802 (6)
1.045 (4) 1.11 0.906 (4) 0.81
1.11 1.130 (6) 1.01 1.01
1.31 1.288 1.156 1.232
1.45

computation cannot start with a flat meniscus, the numerical
schemes were developed in [3] to begin the calculation with
a hemispherical initial drop profile. For the simplified
pressure history discussed there, it was sufficient to
determine when the volume of fluid ejected from the nozzle
reached that of a hemisphere and then use that as the
starting time for the free surface flow calculation. However,
with the numerically calculated pressure history to be used
here, this simple procedure does not give usable results. The
value calculated in this manner is too large, coming
practically at the end of the positive part of the exit velocity
history. It is still necessary to start the free surface
calculation from a hemispherical initial shape, but the
starting time has to be adjusted to allow a reasonable part of
the exit velocity history to be used. Thus, a new parameter is
introduced into the simulation, £, the time delay from the
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start of the pressure history to the time the free surface
calculation can begin.

Four parameters are needed to fully specify the numerical
simulation for a given fluid: Weber number W (or reference
velocity V), driving pulse length ¢, pressure pulse amplitude
P,, and time to start the free surface calculation #,. This does
not include the parameters required to determine the device
geometry for the pressure history calculation. Since we are
interested in comparing our calculations with a single
experimental device, we only present results for the device
shown in Figure 1. With the transducer design fixed, the
major factor in determining the exit velocity history is pulse
length £, and hence it will be one of the parameters varied ii:
our parameter study. The other major variable is the Weber
number, which is determined by the surface tension of the
fluid. Pressure pulse amplitude P, and initial time for the
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free surface calculation will only be changed when it appears
that a more reasonable simulation could be obtained with
different values of these parameters. The circled data points
on the velocity curves in Figures 7-10 show the points at
which the free surface calculations begin.

With the use of the exit velocity histories shown in Figures
7-10, the drop formation sequences were computed for two
Weber numbers and for both Scheme A and Scheme B, and
they are also shown in these figures. The calculation
parameters are summarized in Table 3, which gives the
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Axial velocity variation with position at satellite detachment calculated with (a) Scheme A for (i) L= 15.0, W = 5.0; (ii) L= 20.0, W = 5.0; (iii)
1,= 25.0, W = 1.0; and (b) Scheme B for (i) 1= 15.0,W = 1.0; (ii) t,= 20.0, W = 1.0; (iii) = 25.0,W = 1.0.

times corresponding to the profiles in the figures. The times
with the breakoff index correspond to the times at which the
drops become detached from the nozzle, after which the
driving velocity no longer has any effect on the calculation.
To determine if the trailing satellites are moving faster or
slower than the main drops, the velocity distributions in the
drops were plotted at the breakup times, and they are plotted
in Figure 11(a) for Scheme A and in Figure 11(b) for
Scheme B. In all cases the satellites are moving slower than
the main drop, but it was found that this can depend on the
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Scheme A and (b) Scheme B.

time £, at which the free surface calculation is started. Figure
12 shows a calculation for both schemes in which the
starting time is changed from that in Figure 10 to the value
t, = 0.61. Figure 13 shows a calculation for both schemes in
which the driving amplitude is twice that used in Figure 7.

e Discussion of numerical results and comparison with
experiment

The main goal of the numerical simulation of the DOD ink
jet is to be able to predict the shape of drops emitted from a
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Recalculation with = 0.61, tp = 25.0, and W = 5.0 using (a)
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Recalculation with twice the driving pressure amplitude with t, =
10.0, W = 5.0 using (a) Scheme A and (b) Scheme B.

given device without experimentation; hence, we are mainly
interested in showing that the behavior predicted is similar
to the behavior observed experimentally. Also, since it is not
possible to completely describe the device, certain
assumptions are embodied in the simulation and their
accuracy needs to be checked. One obvious difficulty with
the simulation can be seen by comparing the experimental
results in Figures 4 and 5 with the pressure and velocity
histories in Figures 7-10. In Figures 4(a)-4(d) one sees that a
second surge in volume occurs at 90 us. However, as shown
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in Figures 7-10, the numerical simulation does not predict
an arrival of a second positive pressure pulse and
accompanying velocity surge before breakoff occurs.

The computations for a pulse length of 25 us shown in
Figure 10 predict that for both Schemes A and B and for
both Weber numbers there is a trailing satellite drop that is
moving slower than the main drop. This is consistent with
the notion that 25 us is not an optimal pulse length for this
transducer chamber. The photographs in Figure 5(e) for
water show a trailing satellite that eventually catches up and
coalesces with the main drop. This suggests that a different
starting time for the computation may be more appropriate.
Figure 12 shows that Scheme A predicts a trailing satellite
moving faster than the main drop, as seen from the velocity
profile along the drop at breakup. Scheme B does not predict
this, as shown in Figure 12, probably because it neglects
radial inertia. The formation of satellites seems to be
associated with waves moving along the drop that finally
cause it to break up into several drops. Since Scheme B
neglects radial inertia, which is very important to the
modeling of oscillations, and the driving velocity is such that
many oscillations are produced in the drop while it is
attached to the nozzle, the predictions of Scheme B are not
expected to be accurate in this case.

The computations for a pulse length of 20 us are shown in
Figure 9. This pulse length is twice the fundamental tuning
pulse length, hence the ejected drops are expected to have
fewer satellites than for a pulse length of 25 us. It is indeed
seen that the trailing tails of the main drops are smaller in
Figure 9 than in Figure 10, especially for Scheme A. Scheme
B, however, still predicts a small trailing drop at the very end
of the tail of the main drop. After we discovered from the
experiment that the driving voltage needed to be increased to
eject drops at a pulse length of 10 us, the experiment was
repeated using this same increased voltage for a pulse length
of 20 us with ethylene glycol, and the results are shown in
Figure 4(d). This shows the same small drop on the end of
the tail of the main drop as predicted by Scheme B. One of
the properties of Scheme B is that when radial inertial effects
do not play a major role in drop formation (say, when the
driving velocity is relatively smooth), the lack of radial
inertia appears to make the predicted behavior more like
that of a more viscous fluid. That is, Scheme B appears to
predict better the behavior of ethylene glycol than that of
water. Scheme A, on the other hand, predicts the satellites
found when water is used, which is also understandable,
since the inclusion of radial inertia makes it possible to
model the less viscous and hence more oscillatory water
drops.

Figure 8 shows the computed results for a pulse length of
15 us, which is the most untuned pulse length studied for the
transducer chamber in Figure 1. Consequently the two
numerical schemes predict the largest satellites of all the
pulse lengths studied. This agrees well with the experimental
evidence. The ethylene glycol photographs in Figure 4(b)
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show a very similar behavior of the drop tail, which actually
forms a second drop almost the same size as the primary
drop.

The 10-us pulse length calculations are shown in Figure 7.
This is the minimum tuned pulse length for our device. As
suggested by the exit velocity profile, the drops ejected
should move slower than those at the longer pulse lengths,
and this is true for the experimental results as well. In fact,
the same driving voltage used at the other pulse lengths did
not eject a drop at this pulse length in the experiment. The
drops predicted by the numerical schemes (when they were
stable) had a very quick breakoff with no tail. This is similar
to the experimental results, although the ethylene glycol
showed a more pronounced tail during ejection. When the
driving pressure, and hence the exit velocity for the
simulation, was increased by a factor of two, Scheme A was
able to predict a longer tail, as shown in Figure 13. However,
Scheme B was unable to produce realistic results because of
the large oscillations produced by the higher-amplitude
driving velocity and the lack of radial inertia in the scheme.

4. Conclusions and suggestions for future work
It has been demonstrated for a particular DOD transducer
design that the numerical simulation developed in our
previous paper [3] can predict most of the behavior observed
in the drop ejection experiment. It is true, however, that all
of the parameters are not directly determined, and the
undetermined ones can be adjusted so as to make the
numerical predictions more closely model the experiment. It
appears that with reasonable improvements the numerical
simulator can be brought to the point where reliable
predictions can be made.

The first improvement should be the inclusion of viscosity
in a systematic way. The numerical model presented by
Adams and Roy [4] included one term that appears in the
Cosserat viscous jet equations derived by Green [8], but it
did not include the other two. Indeed, since most of the inks
are non-Newtonian, the numerical model should include
viscoelastic effects as well. Such one-dimensional Cosserat jet
equations have recently been presented by Bechtel et al. [9].
After that, the next improvement should probably be the
development of a higher-order jet theory that can model the
viscous flow profile inside the nozzle together with the jump
conditions that occur at the nozzle exit. This is required in
order to account for many of the effects observed to be
associated with the profile relaxation just outside the nozzle
on the free jet.
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