
96 

Drop  formation 
by DOD ink-jet 
nozzles: 
A comparison 
of  experiment 
and  numerical 
simulation 

by T. W. Shield 
D. B. Bogy 
F. E. Talke 

This  paper  presents a comparison  of  a 
numerical  simulation  of  drop  formation  and 
ejection  from a drop-on-demand (DOD) ink-jet 
nozzle  with  experimental  observations  from  a 
particular  nozzle-transducer  design.  In  the 
numerical  simulation, first the  pressure  waves in 
the  transducer  chamber  are  calculated  using 
inviscid compressible  flow  theory to obtain  the 
pressure  history  at  the  inner  face  of  the  nozzle 
plate.  Then a viscous  momentum  integral 
computation is applied to the  nozzle to obtain 
the  velocity  history  at  the  outer  face  of  the 
nozzle  plate.  Finally,  the  free  surface  shape is 
calculated  using finite-difference methods  on  the 
one-dimensional  equations  for an inviscid 
incompressible  free jet with  surface  tension  that 
uses  the  nozzle exit velocity  history as the 
driving  boundary  condition. The computations 
are  compared  with  drop  formation  photographs 
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obtained  from  a  particular  nozzle-transducer 
design.  Encouraging  agreement is obtained,  but 
the  numerical  model will require  added 
sophistication  before  detailed  agreement  can be 
expected. 

1. Introduction 
In this paper a  numerical  simulation of the  drop  formation 
in  drop-on-demand (DOD) ink-jet printer devices is 
described. Bogy and Talke [ 11 deduced that  the pressure at 
the  inner face of the nozzle plate  of  a  squeeze-tube ink-jet 
transducer is due  to  the constructive  interference of acoustic 
pressure waves created in  the fluid cavity by the expansion 
and  contraction of the piezoelectric sleeve that  surrounds  the 
glass lining of this  type of nozzle. This is  in  contrast to  the 
incompressible  model  presented by  Beasley [ 2 ]  to explain the 
fluid mechanics  inside the transducer  chamber. 

In [3] we presented  two  numerical  solutions  for the  drop 
formation process outside the nozzle that  are based on one- 
dimensional jet theories, one with and  one without  radial 
inertial effects. These  models are for inviscid fluids with 
surface tension,  and they  require an axial velocity boundary 
condition at  the outside face of the nozzle plate. These 
schemes use a  Eulerian formulation. A numerical  solution 
for the  drop  formation outside  of the nozzle based on one- 
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dimensional equations without radial inertia and with a 
Lagrangian formulation was  presented  by  Adams and Roy 
(41. This free  surface drop formation problem was also 
considered by Fromm [ 5 ] ,  who  used a numerical solution of 
the axisymmetric Navier-Stokes equations. 

In our previous work an artificial  pressure  history  inside 
the nozzle plate was  used  with a momentum integral method 
through the nozzle to obtain the nozzle  exit  velocity 
boundary condition for the free  surface jet problem. 

The purpose of the present paper is to combine the 
calculations in  the three regions of the ink-jet device to allow 
prediction of drop behavior that can be compared with 
experiments.  First, in Section 2, an experimental apparatus 
is described and experimental results  showing drop 
formation and ejection at various instants during the process 
are presented  for  water and ethylene glycol under various 
driving conditions. Next, in Section 3, the acoustics inside 
the transducer cavity are described  using a method of 
characteristics in a manner similar to that used for analyzing 
pressure transients in pipes (water-hammer analysis). This 
yields the pressure  history at  the inside of the nozzle plate 
that results from the expansion and contraction of the 
piezoelectric tube. Then, this pressure  history  is  used in the 
nozzle momentum integral equations to predict the velocity 
outside the nozzle  plate.  Finally, this velocity boundary 
condition is  used  with the numerical solution for the free jet 
equations to predict the drop formation process  leading to 
drop size and velocity.  In the last  section,  Section 4, the 
numerical predictions are compared with the experimental 
observations, and some comments are made concerning the 
limitations of the numerical simulator and the need for 
further work. 

2. Experimental  observations 

The apparatus  and  its  operation 
The experimental apparatus consists of a nozzle transducer, 
an electronic driver, and a video  system. The transducer has 
a fluid  cavity that is  composed of a glass tube surrounded by 
a piezoelectric cylinder over a portion of its length. One end 
of the tube is  closed  off  by a thin silicon plate that contains a 
small  orifice, about 50 micrometers in diameter. The other 
end of the tube is connected by a larger-diameter tube to a 
fluid  reservoir. The dimensions of the device are shown in 
Figure 1. 

The nozzle  is driven by periodic  rectangular  pulses at a 
fixed frequency around 1 kHz. By using a strobe light  it  is 
possible to view the formation of the drops with a television 
camera equipped with a microscope  lens. The drop 
formation is viewed at various times by  using a variable 
delay  between the driving  pulse and the strobe flash.  As the 
delay  is  increased, the effect is to produce a slow-motion 
picture of the formation of the drop. Since the drop 
formation process  is  extremely  repeatable,  even  down to the 
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LL Driving voltage 

[ The ink-jet device (not to scale). 

smallest detail, this technique provides a smooth, stable 
picture of the drop evolution. 

A block diagram of the electronic equipment used to 
control the experiment is  shown in Figure 2. The main 
control unit allows control of frequency,  pulse  length, and 
strobe delay. The light  source  of the strobe is a LED that is 
driven by a constant power  source.  Its intensity does not 
vary  with the pulse  length or frequency. The driver for the 
piezoelectric  crystal  uses a logic-level  signal  from the main 
control unit to modulate the output of the high-voltage 
power  supply. The television  camera  is a high-sensitivity 
black and white  commercially  available  closed-circuit 
camera, which  is  directly connected to a TV monitor. The 
lens is a standard microscope  lens that is  screwed into an 
adjustable-length  microscope  nosepiece.  Typically, a lox 
microscope  objective  lens  is  used.  Although  higher-power 
objectives  would  show  more detail, they require more  light 
and hence do not give a clear  picture. 

The drop transducer is mounted so that it can be moved 
vertically and horizontally to allow  different parts of the 
drop stream to be  viewed. The drop transducer is connected 
to the fluid  reservoir  by a plastic tube which  allows the 
reservoir to be  fixed, keeping its free  surface at the 
approximate elevation of the nozzle  exit so that static 
pressure does not tend to drive the fluid out of the nozzle. 
Leaking  of  fluid  would  wet the nozzle  face and make it 
impossible  for  well-formed drops to be produced. 

The  device  must be carefully primed to remove  all air 
from the chamber, since air bubbles in the chamber absorb 
the pressure  waves  produced  by the piezoelectric  crystal and 
prevent a drop from  forming.  It  is  usually  advisable to start 
with  fluids  such  as  water or alcohol,  which  wet  surfaces 97 
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better than ethylene glycol, and then to switch  fluids  after 
the chamber is free  from air bubbles.  In order to prime the 
device the fluid  reservoir  can  first  be  pressurized  with air to 
approximately 6 to 9 psi to force  fluid through the orifice. 

The optimum pulse  length  for driving the device can be 
determined experimentally by observing the breakup of a 
continuous, pressurized jet. Since this particular transducer 
design  relies on the constructive interference of pressure 
waves, caused by the rise and fall  of the driving pulse to eject 
the drops, the pulse  length  is the critical parameter for 
proper drop ejection. The easiest  way to find the optimum 
pulse  length (the "tuned" or resonance  pulse length) is to 
adjust it for the shortest-length breakup of the continuous 
jet, since  it is at this condition that the pressure  pulse at the 
nozzle  is the strongest. 

The best driving voltage  can  also  be found during 
continuous-jet operation simply by increasing the voltage 
until the jet breaks up reasonably  close to the nozzle. 

The experimental results are presented in the next  section 
in the form of drop shapes at various times during the drop 
formation and ejection  process. The main control unit 
directly  displays the strobe delay time in microseconds, 
thereby  providing convenient timing of the drop profiles. It 
is  possible to measure the distance the drop travels in a given 
time interval;  however, the drop velocity  is not constant 
until after the drop has separated from the nozzle and has 
become  spherical. Thus, this method is  only suitable for 
average  velocity measurements. The parameters, 
corresponding to the numerical simulation, are the pulse 
length, driving voltage, and choice of fluid. 
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Experimental results 
The experimental results are presented as a sequence of 
photographs taken directly from the video monitor by use  of 
an oscilloscope camera. Two different  fluids  were  used, 
ethylene glycol and water,  because  of their material 
properties and because  they are commonly used as the base 
fluids  for inks in ink-jet printing. Their surface tensions are 
not very different, but their viscosities are  quite different, 
and they are observed to behave quite differently in our 
experiment. The physical properties of the two fluids and 
some other parameter values are listed in Table 1. A 
summary of the conditions for the photographs presented in 
the figures  is  given in Table 2. 

B 

B 

The photographs were taken at 30-ps time intervals. The 
driving voltage  needed to eject the drops varied  greatly 1 
depending On the fluid and pulse length. The glycol 1 Low-magnification view  of ink-jet  nozzle  ejecting a series of drops. 
needed a higher driving voltage than  the water. 

Figure 3 shows a low-magnification picture of the nozzle 
end and a sequence of three equally spaced droplets after 
ejection from the nozzle. Figures 4(a)-4(d) show four 
sequences of drop formation and ejection for ethylene glycol. 
All times mentioned are from initial pulse  rise. In Figure 
4(a) the pulse  length is 10 ps, the shortest pulse-length 
resonance condition, and the pulse amplitude is 90 volts. 
Here the  time of the first photograph is at 30 ps. The 
sequence shows that  the drop forms without a satellite drop 
and detaches after about 120 ps. A second positive  pressure 
pulse,  which  results  from a reflection, occurs at 90 ps. In 
Figure  4(b) the pulse  length is 15 ps, which does not 
establish a resonance condition, and the pulse amplitude is 
70 volts.  Again, the first photograph was taken at 30 ps. 

Although drops are ejected under these conditions, a 
comparison of  Figures 4(a) and 4(b) shows that  the drops are 
smaller in the latter case and two drops are formed in place 
of one. This is explained in the next  section  when the 
numerical model is  discussed. In Figure 4(c) the pulse  length 
is 20 ps, twice the resonance pulse length, and the pulse 
amplitude is 70 volts. The first photograph is taken at 30 ps, 

and the sequence appears to be  very similar to that in Figure 
4(a). It  may  be somewhat surprising that the second 
resonance condition requires a lower  pulse amplitude than 
the first one to obtain similar drop ejection. This can also be 
explained when the numerical solution is discussed.  Figure 
4(d) shows another  drop sequence for a 20-ps  pulse length, 
but with a pulse amplitude of 90 volts, as in Figure 4(a). The 
first photograph here is at 60 ps [the photograph at 30 ps is 
the same as in Figure 4(a)], and an overdriven condition is 
evident, with a satellite drop being formed. 

and ejection for water. Here  it is observed that  the  drop 
formation process is not as well controlled as for ethylene 
glycol. In Figure 5(a) the pulse length is 10 ps, the shortest 
pulse-length resonance condition, and the pulse amplitude is 
55  volts, as compared to 90 volts in Figure  4(a)  for ethylene 

1 

I 

Figures 5(a)-5(d) show four sequences of  drop formation 

Table 1 Typical  values  of  some  physical parameters that 
characterize ink-jet printing. 

Ethylene glycol Water 

Density (g/cm3) 1.02 0.997 
Surface tension (g/sz) 60.0 65.0 
Viscosity (g / ( s .  m)) 3.0  0.89 

Other parameters 

Nozzle diameter, a 50.0 pm 
Reference  velocity, V, 1 .O m/s 
Reference time, a/V, 50.0 ps 

Table 2 The driving voltage applied at each  pulse  length for 
the  two  fluids  used  in the experiments along  with a conversion  table 
from  microseconds to the nondimensional time. 

Water 

Pulse length Driving voltage 

10.0 
15.0 
20.0 
25.0 

55.0 
45.0 

45.0, 55.0 
50.0 

Ethylene glycol 

Pulse length Driving voltage 

10.0 
15.0 
20.0 

90.0 
70.0 

70.0,  90.0 

Time in 
microseconds 

30.0 
60.0 
90.0 

120.0 
150.0 
180.0 

Nondimensional 
time 

0.60 
1.20 
1.80 
2.40 
3.00 
3.60 
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Ethylene  glycol  ejected by a pulse of (a) 90.0 V for 10.0 ps; (b) 70.0 V for 15.0 ps; (c) 70.0 V for 20.0 ps; and (d) 90.0 V for 20.0 p s .  

. " " .  . .."" .." . . .. . . . .. 

glycol. A clean drop is formed without satellites. In Figure 
5(b) the pulse length is 15 ps, not a resonance condition, and 
the pulse amplitude is  only  45  volts. As in the case  of 
ethylene glycol in Figure 4(b), the drops are smaller for 15 ps 

in Figure 5(b) than for the 10-ps pulse  length in Figure 5(a). 
In this case the second drop does not separate, but is 
recaptured by the meniscus at the nozzle. 

In Figure 5(c) the pulse  length  is 20 ps and the pulse 
amplitude is 45 volts, causing well-formed drops to be 
ejected without satellites. In Figure 5(d) the pulse length is 100 

T. W. SHIELD, D. B. BOGY, AND F. E. TALKE 

maintained at 20 ps, but the driving voltage  is  raised to 55 
volts. This causes an overdriven condition and a somewhat 
erratic drop formation process. 

The sequences of drop formation pictures for both 
ethylene glycol and water  show some similar characteristics. 
Both  show  good operation at the fundamental and first 
harmonic pulse lengths, and both show that multiple small 
drops are formed at the intermediate pulse  length.  Also, both 
show that overdriving leads to satellite formation at 
resonance pulse  lengths. 
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The discretization used for the method of characteristics calculation 

calculated  for an applied  voltage  step.  In this analysis we 
make the simplifying assumption that the expansion and 
contraction of the transducer chamber follows that of the 
piezoelectric  sleeve, and it is also  linearly proportional to the 
applied  voltage  step.  We  leave this proportionality constant 
undetermined so that there remains a free parameter in the 
solution, which  can  be  used to match the final drop 
velocities obtained from the experiment and computation. 

Pressure history calculation  at the inner nozzle face 
Pressure transients inside deformable pipes  have  been 
studied extensively in water-hammer analysis for piping 
systems. A nonlinear form of the one-dimensional 
continuity equation for  compressible flow in elastic  pipes 
with  linearly  varying diameters is derived in Chapter 17 of 
Streeter and Wylie [7]. This equation can be written in the 
form 

p, + p d ~ ,  + UP, + 2pa2@u/D = 0, (1) 

where p(x, t )  and u(x, t )  are the pressure and velocity 
functions, p is the density, assumed constant, a is the wave 
speed in  the elastic  pipe, D(x,  t)  is the pipe inner diameter, 
and @ is the slope of the undeformed pipe diameter. 
Subscripts denote partial differentiation. The wave speed, a, 
depends on the fluid and  the wall properties, and is  given by 

r I n n  \ 1-112 

a = c 11  + PC2 (2)J , 
where E is  Young's modulus, e is the pipe wall thickness, c is 
the acoustic wave speed in the fluid, and c, equals (1 - u/2), 
(1  - 02), or 1 (where u is Poisson's ratio of the pipe), 
depending on whether the pipe  is anchored at its upstream 
end only,  is anchored throughout against  axial movement, or 

is anchored with  expansion joints throughout. The 
expansion of the pipe due to the internal pressure is ignored; 
hence D is a function of x only in this analysis. 

A one-dimensional momentum equation with frictional 
drag  based on the Darcy-Weisbach equation is also derived 
in [7], and it has the form 

p, + p(u, + UU,) + pfu I u 1/20 = 0. (3) 

The friction  factor  is obtained from a force  balance on a 
fixed length of pipe  with  steady  flow producing a viscous 
drag.  For the short time scales in our application, the friction 
factor has very little effect on the solution and was ignored in 
our calculations. 

approach for  solving  (1) and (3). The corresponding 
characteristic equations are derived in [7] and have the form 

The method of characteristics provides a convenient 

1 - p , + u , + - - U + "  
pa D 2 0  

2aP f u l u l -  o, 

dx 
dt 
-= u + a, on C+, 

1 2 4  f u l u l -  o, 
--p,+u,-"U+" 

Pa D 2 0  
dx 
dt u - a; on C-, 
-= (7) 

where the C+ and C- characteristic lines in the x-t plane are 
defined  by ( 5 )  and (7), and they are curved lines since u is a 
function of x and t. This set of characteristic equations can 
be put in finite  difference form and then solved  numerically, 
as described in [7]. The use  of  these nonlinear equations is 
necessary in very  flexible tubes where the wave speed, a, is of 
the same order of magnitude as the fluid  velocity, u. For 
application to pressure transients in the ink-jet transducer of 
interest in this study, the channel walls are made of  glass and 
piezoelectric ceramic, which  have  relatively  high  elastic 
moduli, so that the wave  speed, a, does not fall much below 
1500 m/s. On the other hand, the drop velocity  is  observed 
to be  between 3 and 5 m/s.  Therefore, it is reasonable to 
expect that u << a in ( 5 )  and (7), and so only  small errors 
will result from neglecting u in these equations. If this is 
done, the characteristics  become  straight lines in the x-t 
plane  with  slopes +a. We make this approximation here for 
convenience of analysis, and therefore we replace ( 3 ,  (7) by 

dx a on c+, - = -a on C-. dx -= 
dt dt 

This is tantamount to using linear acoustics except for the 
viscous drag term. 

Next the finite-difference solution of the characteristic 
equations for the transducer cavity  shown in Figure 1 is 
briefly described.  Divide the pipe  section into N increments 
Ax in length, as shown in Figure 6. The time step is 
computed from 

At = b / a  (9) 
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so that the first  of (8) is  satisfied  by the line AP in Figure 6. 
If u and p are known at point A ,  then (4),  which  is  valid 
along C+, can be integrated  between A and P to relate up, p p  
to u,, pa. Likewise, integration along C- is  used to relate up, 
p p  to u,, p,. In terms of the index i in Figure 6, we can  write 
these  two equations as 

C':ppi = C p  - KBu,, (10) 

C- : pp, = C ,  + KBu,, , ( 1   1 )  

where C p  and C, are along C' and C-,  respectively, and are 
given  by 

with 

KB = pa, LR = pfAx/2,  MB = 2appAx. (14) 

Solving (10) and ( I  I ) ,  we obtain 

Pp, = ccp + cM)/23 up, = ( P p i  - c M ) / 2 .  (15) 

When p and u are known at the present time step, we can 
advance to the next time step at the interior points. In order 
to update the values of p and u at the end points of the 
chamber, we must make use of the boundary conditions. For 
the nozzle end it  is  assumed that the orifice  is  small 
compared to the chamber cross  section, and therefore we 
invoke a closed-end boundary condition and use (10) and 
( 12) to obtain 

UP,,, = 0 9  PPN+,  = CP. (16) 

At the inlet end we assume that a reservoir  pressure p, 
prevails, and with this (1 1) and ( 1  3) yield 

~ p ,  = pr? up, = ( P ,  - CM)/KB. (17) 

Finally, initial conditions at t = 0 (the pulse  rise time) and 
jump conditions at t = tp (the pulse  fall time) must be 
specified. It is assumed that an instantaneous pressure p,(x) 
results  from the response of the piezoelectric tube. The 
pressure  per  volt  was determined in Bugdayci et al.  [6] under 
the assumption of uniform conditions along its length. It was 
also found there that for the PZT (ceramic piezoelectric) 
tubes in use, a positive  voltage step at the outer electrode 
caused the inside diameter of the tube to increase,  leading to 
an initial pressure drop. The pulse  length, t,, is an important 
design parameter for nozzle operation, as shown in Bogy and 
Talke [ 11. After the time interval t,, the voltage  is dropped 
back to zero, causing a contraction of the tube and adding a 
corresponding pressure jump at that instant. A new set of 
pressure  waves  is  thereby superimposed on those remaining 
from the initial voltage step. Therefore, the initial conditions 
are 

p,(x, 0') = -Po@), u(x, O+) = 0. (18) 

P ( X ,  r:)  = P ( X ,  2;) + P,(x), u(x, t i )  = u(x, 2;). (19) 

Then at time t = t, the jump conditions are 

The function p,(x) representing the axial distribution of 
pressure  resulting  from the voltage step is unknown. In the 
present application we assume a uniform value  over the 
region  of the piezoelectric  sleeve  with a linear ramp to zero 
near the ends of the sleeve. 

A FORTRAN program was written to implement the 
solution presented  here  for the nozzle chamber in  Figure 1 .  
The resulting  histories at the inner face  of the nozzle  plate 
are shown for various  pulse  lengths as dashed lines in Figures 
7-10. These  figures  show that the first disturbance is the 
negative  pressure  resulting  from the initial expansion of the 
piezoelectric  sleeve. The first  positive  pressure  pulse to arrive 
at the nozzle  is the reflection  from the reservoir end of the 
chamber of the initial pressure  pulse  caused by the 
expansion of the crystal,  which  may be reinforced  when the 
voltage drops and the piezoelectric  sleeve contracts at t = 2,. 

In Figure 7, where t ,  is  10 ps, near the lowest  resonance 
pulse  length  (which is 10.4 ps), reinforcement does  occur, 
producing a double-amplitude pressure  pulse. This illustrates 
the tuning that occurs when the pulse  length  is  chosen to 
match the chamber length. In Figure 8, where t, is I5 ps, 

which  is not a resonance condition, the two  positive  pulses 
arrive at different times and no reinforcement  occurs.  In 
Figure 9, t, is 20 ps, which  is near the second  resonance 
condition; thus the pressure  rise due to the contraction of the 
crystal  reinforces the pressure  pulse  caused  by the initial 
expansion of the crystal  after it has  reflected  from both the 
nozzle and the reservoir ends of the chamber. In Figure 10, 
t, is 25 ps, and the pressure  pulses arrive at separate times 
without reinforcing  each other. 

Velocity history calculation at outer nozzle face 
The numerical schemes we developed in [ 31 for drop 
formation require a velocity boundary condition at the outer 
nozzle  face.  An equation based on momentum integral 
techniques was derived in that paper that relates this velocity 
to the pressure  history at the inner nozzle  face. This 
derivation involves  several  assumptions: 1) The velocity 
profile has an assumed dependence on the radial coordinate 
r that satisfies the viscous  no-slip boundary condition inside 
the nozzle. 2)  The flow is  assumed to be  incompressible;  i.e., 
the volume flow rate Q is a function of t  only.  3) The 
entrance flow comes  from such a large  section that no work 
is required in this section to accelerate the fluid into the 
nozzle.  4) The outer flow back  pressure is  negligible. 5 )  The 
fluid  is Newtonian, and 6) the fluid  always  completely  fills 
the nozzle  region  which  is taken as the control volume. The 
equation obtained for determining the nondimensional 
volume  velocity Q is 

Q, + Q = *2b2p(t)/L, 
5.784 

(20) 103 
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' Calculations with a  pulse length of' 10.0 p s  for (a)  Scheme A, W = 

1.0; (b )  Scheme A ,  W = 5.0; (c) Scheme B ,  W = 1.0; and 
(d) Scheme B, W = 5.0. 

~ . - . .. . . .. . " ." " ". 
Calculations with a pulse length of 15.0 p s  for (a)  Scheme A, W = 
1.0; (b )  Scheme A ,  W = 5.0; (c)  Scheme B ,  W = 1.0; and 
(4) Scheme B, W = 5.0. 

104 

in which the  numerical  constant is a shape parameter 
obtained from integrating the assumed flow profile function 
of r. R is the Reynolds number based on  the nozzle exit 
radius and a reference velocity of the flow, and  has a value 
of about 2.5. The nozzle is assumed to be conical  with  length 
L, inner radius b, and  outer  radius of 1. P(t)  is the driving 
pressure history at  the  inner nozzle face, which is assumed to 
be known. 

In  our previous  work the driving pressure was an assumed 
analytical form  that allowed (20) to be solved in closed form. 
In the present  work the pressure is obtained  from  the 
numerical  solution of the characteristic equations described 
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in (1)-(  19) and is  presented in Figures 7-10, so (20) must  be 
numerically solved with a simple  trapezoidal  integration 
scheme. Also appearing  in Figures 7-10 are  the  volume 
velocity histories  corresponding to these  pressure histories. 
The velocity units  are  to be discussed presently. In Figure 7 
the  maximum velocity amplitude is slightly more  than  four 
dimensionless  units. In Figures 8- 10 it  reaches about eight. 
From these figures the relationship between the pressure 
history at  the inside nozzle face to  the velocity history at  the 
outside nozzle face is revealed as almost  an integral one, 
which implies that  the second term in (20) is not very 
important  in  the calculation. 
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Drop formation  calculations 
The  numerical schemes we developed can now be used with 
the velocity history just  obtained, which provides the 
required boundary  condition.  Two schemes, called Scheme 
A and Scheme B, were presented  in our previous  paper. 
Scheme A is more complicated and includes effects of  radial 
inertia,  whereas  Scheme B is simpler since it neglects the 
radial  inertial effects. Both schemes  have a single parameter, 
the Weber number, W, defined by 

W = proV2T, (21) 

where T i s  the surface  tension of the fluid and ro is the exit 
radius of the nozzle. The value  of the Weber number  can 

0 lime 1.2 

either be prescribed, thus  determining  the reference velocity 
Vo for a given fluid, or it is determined  from a chosen 
reference velocity. If the reference velocity is  chosen as  the 
capillary wave speed of a given fluid, then  the Weber 
number is unity for that fluid. The  other possible choice  for 
the reference velocity comes  from  the  boundary conditions. 
Choosing the  nondimensional  amplitude of the exit velocity 
amounts  to picking the reference velocity. By comparing  the 
computation  to  the experiments, we can  determine Vo to 
force agreement  of the final velocities. 

to at which the free surface flow calculations can begin 
relative to  the initial rise of the pressure pulse. Since the 

Another parameter  in  the numerical simulation is the  time 

IBM J. RES, DEVELOP. VOL. 31 NO. I JANUARY 1987 T. W. SHIELD, D. B. BOGY, P 

105 

iND F. E. TALKE 



Table 3 Nondimensional times at which drop profiles are shown for the combinations of parameters used. W is the Weber number and 
t, is the pulse  length  in  microseconds. The number in parentheses is  the  index at which  breakoff occurred. 

SCHEME A (At = 0.001, Az = 0.05) 
t, = 25.0 
to = 0.66 
W =  1.0 5.0 

0.76 0.76 
0.86 0.86 
0.96 0.96 
1.052 (4) 1.045  (4) 
1.16 1.16 
1.467 1.289 

20.0 
0.6 1 

I .o 5.0 

0.71 0.71 
0.81 0.81 
0.9 1 0.837 (4) 
1.053 (4) 0.9 1 
1.062 1 . 1 1  
1.084 1.164 

15.0 10.0 
0.57 0.5 1 

I .o 5 .O 1 .o 5 .O 

0.67  0.67  0.6 I 0.61 
0.77  0.77  0.678  0.7 I 
0.802 ( 5 )  0.87  0.8 I 
0.87  1.006  (4)  0.968 (-) ' 

0.914 1.07 
1.27 
1.482 

SCHEME B (At = 0.001, Az = 0.05) 
t, = 25.0 20.0 15.0 10.0 
to = 0.66 0.6 1 0.57 0.5 1 
w =  1.0 5 .O 1 .O 5.0 1 .o 5 .O 1 .o 5.0 

0.76 0.76 0.71 
0.86 0.86 0.8 I 
0.96 0.96 0.91 
1.107 ( 5 )  I .  109 (7) 1:053 (5) 
1.16 1.16 1.11  
1.36 1.36 1.31 
1.657 I .66 1.479 

2.054 

0.71  0.67  0.67  0.61 
0.81 

0.6 1 
0.77  0.77  0.71  0.7 1 

0.91  0.87  0.87  0.81 
1.068 (8) 1.015 (5) 0.994 ( 5 )  1.01 0.851 (-) 

0.8 1 

1.31  1.27 1.27  1.21 
1.57 1.57 
1.945 2.07 

1.11 1.07  1.07 I .055 (4) 

Recalculation 
with a different to 

tp = 25.0 
to = 0.61 
W =  5.0 

Scheme A B 
0.7 I 0.7 1 
0.8 I 0.8 1 
0.9 I 0.91 
1.045 (4) 1.11 
1.11 1.130 (6) 
1.31  1.288 
1.45 

Recalculation 
with twice the driving pressure 

tp = 10.0 
to = 0.51 
W =  5.0 

Scheme A B 
0.61 0.6 1 
0.7 1 0.71 
0.8 1 0.802 (6) 
0.906 (4) 0.8 1 
1.01 1.01 
1.156 1.232 

106 

computation cannot start with a flat  meniscus, the numerical 
schemes were developed in [3] to begin the calculation with 
a hemispherical initial drop profile. For the simplified 
pressure  history  discussed there, it was sufficient to 
determine when the volume of  fluid  ejected  from the nozzle 
reached that of a hemisphere and then use that as the 
starting time for the free  surface flow calculation. However, 
with the numerically  calculated  pressure  history to be  used 
here, this simple procedure does not give usable  results. The 
value  calculated in this manner is too large, coming 
practically at the end of the positive part of the exit  velocity 
history. It is  still  necessary to start the free  surface 
calculation from a hemispherical initial shape, but the 
starting time has to be adjusted to allow a reasonable part of 
the exit  velocity  history to be  used. Thus, a new parameter is 
introduced into the simulation, to, the time delay from the 

start of the pressure  history to the time the free  surface 
calculation  can  begin. 

Four parameters are needed to fully  specify the numerical 
simulation for a given fluid Weber number W(or reference 
velocity V,), driving pulse  length t,, pressure  pulse amplitude 
Po, and time to start the free  surface calculation to This does 
not include the parameters required to determine the device 
geometry for the pressure  history calculation. Since we are 
interested in comparing our calculations with a single 
experimental device, we only  present  results  for the device 
shown in Figure 1. With the transducer design  fixed, the 
major factor in determining the exit  velocity  history  is  pulse 
length t,, and hence  it will  be one of the parameters varied in 
our parameter study. The other major variable  is the Weber 
number, which  is determined by the surface tension of the 
fluid.  Pressure  pulse amplitude Po and initial time for the 
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free  surface calculation will only be changed  when it appears 
that a more reasonable simulation could  be obtained with 
different  values of these parameters. The circled data points 
on the velocity  curves  in  Figures 7- 10 show the points at 
which the free  surface calculations begin. 

With the use of the exit  velocity  histories  shown in Figures 
7-10, the drop formation sequences  were computed for  two 
Weber numbers and for both Scheme A and Scheme B, and 
they are also  shown in these  figures. The calculation 
parameters are summarized in Table 3, which  gives the 

times corresponding to the profiles in the figures. The times 
with the breakoff  index correspond to the times at which the 
drops become detached from the nozzle,  after  which the 
driving  velocity no longer has any effect on the calculation. 
To determine if the trailing satellites are moving  faster or 
slower than the main drops, the velocity distributions in the 
drops were plotted at the breakup times, and they are plotted 
in Figure ll(a) for  Scheme A and in Figure ll(b) for 
Scheme B. In all  cases the satellites are moving  slower than 
the main drop, but it was found that this can depend on the 107 
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time to at which the free surface  calculation is started. Figure 
12 shows  a  calculation  for both schemes in which the 
starting time is changed from  that  in Figure 10 to  the value 
to = 0.6 1. Figure 13 shows a  calculation for  both schemes in 
which the driving amplitude is twice that used in Figure 7. 

Discussion of numerical results and comparison with 
experiment 
The  main goal of the numerical simulation of the DOD ink 
jet is to be able  to predict the  shape of drops  emitted  from a 

5 
z 

10 

8 x 
P 
- 
3! 

r 

0.0 1 1 1  
0 10 

(b) z 

given device without experimentation; hence, we are mainly 
interested in showing that  the behavior  predicted is similar 
to  the behavior observed experimentally. Also, since it is not 
possible to completely describe the device, certain 
assumptions  are  embodied  in  the simulation and their 
accuracy  needs to be checked. One obvious difficulty with 
the  simulation  can be seen by comparing  the experimental 
results in Figures 4 and 5 with the pressure and velocity 
histories in Figures 7-10. In Figures 4(a)-4(d) one sees that a 
second surge in volume occurs at 90 ps. However, as shown 
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in Figures  7- 10, the numerical simulation does not predict 
an amval of a second  positive  pressure  pulse and 
accompanying velocity  surge  before  breakoff  occurs. 

The computations for a pulse  length  of 25 ps shown in 
Figure 10 predict that for both Schemes A and B and for 
both Weber numbers there is a trailing satellite drop that is 
moving  slower than the main drop. This is consistent with 
the notion that 25 ps is not an optimal pulse  length  for this 
transducer chamber. The photographs in Figure 5(e) for 
water  show a trailing satellite that eventually catches up and 
coalesces  with the main drop. This suggests that a different 
starting time for the computation may  be more appropriate. 
Figure 12 shows that Scheme A predicts a trailing satellite 
moving  faster than  the main drop, as seen from the velocity 
profile  along the drop  at breakup. Scheme B does not predict 
this, as shown in Figure 12, probably  because  it  neglects 
radial inertia. The formation of satellites  seems to be 
associated  with  waves  moving along the drop  that finally 
cause  it to break up into several drops. Since  Scheme B 
neglects  radial inertia, which  is  very important to the 
modeling of oscillations, and  the driving velocity  is  such that 
many oscillations are produced in the drop while it is 
attached to the nozzle, the predictions of Scheme B are not 
expected to be accurate in this case. 

Figure 9. This pulse  length  is  twice the fundamental tuning 
pulse  length,  hence the ejected drops are expected to have 
fewer satellites than for a pulse  length  of 25 ps. It is indeed 
seen that the trailing tails of the main drops are smaller in 
Figure 9 than in Figure 10, especially  for  Scheme A. Scheme 
B, however,  still  predicts a small trailing drop at the very end 
of the tail of the main drop. After  we discovered  from the 
experiment that the driving  voltage  needed to be  increased to 
eject drops at a pulse  length  of 10 ps, the experiment was 
repeated  using this same  increased  voltage  for a pulse  length 
of 20 ps with ethylene glycol, and the results are shown in 
Figure 4(d). This shows the same small drop on the end of 
the tail of the main drop as predicted by Scheme B. One of 
the properties of Scheme B is that when  radial inertial effects 
do not play a major role in drop formation (say,  when the 
driving velocity  is  relatively smooth), the lack of radial 
inertia appears to make the predicted behavior more like 
that of a more viscous  fluid. That is,  Scheme B appears to 
predict better the behavior of ethylene glycol than that of 
water.  Scheme A, on the other hand, predicts the satellites 
found when  water  is  used,  which  is  also understandable, 
since the inclusion of radial inertia makes it possible to 
model the less  viscous and hence more oscillatory  water 
drops. 

Figure 8 shows the computed results  for a pulse  length  of 
15 ps, which  is the most untuned pulse  length studied for the 
transducer chamber in Figure 1. Consequently the two 
numerical schemes  predict the largest  satellites  of  all the 
pulse  lengths studied. This agrees  well  with the experimental 
evidence. The ethylene glycol photographs in Figure  4(b) 

The computations for a pulse  length  of 20 ps are shown in 
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show a very similar behavior of the drop tail, which  actually 
forms a second drop almost the same size as the primary 
drop. 

This is the minimum tuned pulse  length  for our device.  As 
suggested  by the exit  velocity  profile, the drops ejected 
should move  slower than those at the longer  pulse  lengths, 
and this is true for the experimental results as well. In  fact, 
the same driving voltage  used at the other pulse  lengths did 
not  eject a drop  at this pulse  length in the experiment. The 
drops predicted by the numerical schemes  (when  they  were 
stable) had a very quick breakoff  with no tail. This is similar 
to the experimental results, although the ethylene glycol 
showed a more pronounced tail during ejection.  When the 
driving  pressure, and hence the exit  velocity  for the 
simulation, was increased by a factor of two,  Scheme A was 
able to predict a longer tail, as shown in Figure 13. However, 
Scheme B was unable to produce realistic  results  because of 
the large  oscillations produced by the higher-amplitude 
driving  velocity and the lack  of  radial inertia in the scheme. 

The 1 0-ps pulse  length calculations are shown in Figure 7. 

4. Conclusions  and  suggestions  for  future  work 
It  has  been demonstrated for a particular DOD transducer 
design that the numerical simulation developed in our 
previous paper [3] can  predict  most of the behavior observed 
in the drop ejection experiment. It is true, however, that all 
of the parameters are not directly determined, and the 
undetermined ones can be adjusted so as to make the 
numerical predictions more closely  model the experiment. It 
appears that with  reasonable improvements the numerical 
simulator can be brought to the point where  reliable 
predictions can be made. 

in a systematic way. The numerical model  presented by 
Adams and Roy [4] included one term that appears in the 
Cosserat  viscous jet equations derived by Green [SI, but it 
did not include the other two.  Indeed,  since  most of the inks 
are non-Newtonian, the numerical model should include 
viscoelastic  effects  as  well.  Such one-dimensional Cosserat jet 
equations have  recently  been  presented by  Bechtel et al. [9]. 
After that, the next improvement should  probably be the 
development of a higher-order jet theory that can model the 
viscous  flow  profile inside the nozzle  together  with the jump 
conditions that occur at the nozzle  exit. This is required in 
order to account for  many of the effects  observed to be 
associated  with the profile  relaxation just outside the nozzle 
on the free jet. 

The  first improvement should be the inclusion of  viscosity 
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