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Path hierarchies by P. A. Franaszek 

in  interconnection 
networks 

This  paper  treats  the  problem of latency 
minimization  in an interconnection  network  for a 
system  of N high-performance  devices.  The 
networks  considered  here  have  data  transport 
separated from  control,  with  the data 
subnetwork  designed so that  each  network 
function  requires  only a single  control  message, 
and  thus  only  one  contention-resolution  delay. 
For  sufficiently large N it is shown  that  (for  an 
abstract  hardware  model)  minimizing  contention 
delays  requires  that  each  message  subject  to 
such delays  have  more  than  one  way of 
reaching  its  destination  (e.g.,  via  a  path 
hierarchy).  The  overall  approach  is  discussed  in 
the  context of  the  processor-memory 
interconnection  problem  in parallel computing. 

1. Introduction 
Consider a network  whose purpose is to interconnect a large 
number N of high-performance  devices Di, i = 1, 2 ,  . . . , N. 
The design  of such a system entails trade-offs on issues 
which include the overall bandwidth, the performance of the 
network controller(s), and the expected time for  message 
propagation. A need  for  high bandwidth may  rule out 
broadcast  systems  such as buses or rings.  At the other 
extreme, the usual  type of rectangular crosspoint array or 
crossbar  switch  has  often  been thought unsuitable for  large N 
due to a combination of cost  (which  grows quadratically 
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with N ) ,  and performance,  which  is limited by the speed of 
the control mechanism. Such considerations have  led to the 
investigation of a large  variety  of  multistage  networks 
composed of modules or nodes  each of which  is  individually 
controlled [ 1-61. These  networks  potentially  provide high 
throughput, but also  often entail problems of complexity and 
delay. For high-performance applications such as the 
interconnection of processors and memories, the delays, 
which  grow  logarithmically  with N,  are a potentially limiting 
factor  for  overall  system  size. That is,  for  desired  values of N 
their latency  may  be too great  for  purposes  such as 
connecting processors  with main storage (or alternatively 
may require implementation in technologies  whose 
switching  speed  is  greater than that of the processors). 
Recent  experience  [6]  suggests that this may be the case for 
N as low as 500. It  is thus of interest to consider  possible 
alternative organizations. 

The control of a typical  multistage  network  is distributed, 
with each internal node performing  such functions as 
routing and pacing.  An alternative to this is a structure with 
greater separation between data transport and control. 
Control here is of  two  kinds: a) the coordination of actions 
within the network  (e.g., establishment of a link between Di 
and Dj), and b) coordination of action between the Di (e.g., 
those  associated  with  specific  requests  for data items). 
Consider a network  where path setup is separate from 
message transport. Here a device Di might  request a link 
over  which to transmit a message, then proceed  with  such 
transmission. An action initiated by a Di which  required a 
total of u separate transmissions (e.g., a data fetch,  where 
u = 2 )  might entail u such path requests.  Alternatively, the 
network could be  designed so that a single  request  could  be 
made  for  sufficient  network  resources  for the entire action. 
The advantage here  is that only one round of contention 
resolution or controller participation is required for  each 
action. 
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The configuration of such  a  network  W  is  a function of 
the types of services to be performed. If the only actions to 
be taken by Ware, say, the transmission of  fixed-size data 
packets from a requestor 0, to a destination D,, then the 
controller(s)  need only know the identity of the source and 
destination pair, and only  a  single path need  be  established 
in W for a  given  request. On the other hand, if  a  request 
from Dj can  be either for the retrieval of a data item or for 
permission to transmit to 0,. then the controllers need 
additional information (such as the identity and size  of the 
packet to be transmitted). Here W can be  viewed as 
consisting  of both a control transport facility W, and a data 
transport facility W,, where  W, and W, are generally of 
substantially different form. In the general case, however, W, 
would include a  capability  for transmitting the particulars of 
each  request. That is, W, would  be capable of transmitting a 
control message. 

If N is  large, there will generally  be  a  need  for multiple 
network controllers, since  a  single controller becomes  a 
serialization  bottleneck. For the case of multiple controllers, 
the single  request property alluded to above (each action 
requires a  single control message)  imposes strong constraints 
on the transport subnetwork W,: Each controller is  assigned 
responsibility  for one of a set of essentially disjoint 
subnetworks. Such subnetworks, as is  shown below, can be 
obtained via the use  of  what  will  be termed partitioned 
crossbars.  Crossbar  switches, although sometimes considered 
impractical for large N because the number of crosspoints 
grows as N2, are with modem technology  actually 
economical for quite high values of N,  since the crosspoint 
matrix can be implemented with semiconductor arrays in 
whkh the individual switching elements are comparable in 
complexity to memory cells [7]. The number of chips 
required for such a  switch  is  largely  a function of the chip 
pin count (the number of input and  output wires), but may 
be on the order of  fifty to a hundred for N = 500, not 
excessive  for  such applications as large-scale  parallel 
computing. 

network W,. Questions relating to the structure of such 
networks are explored via a simple traffic  model and an 
abstract model of the hardware in which it is  assumed that 
the network components have  no state information (i.e., 
information concerning the number and location of 
messages in W,). The results indicate that under these 
conditions a short path length requires a  multiplicity or 
hierarchy of paths, so that the effective path taken by a 
control message (the path that effects the control) is  a 
function of the instantaneous traffic. The effective-path 
variation may  be obtained either by sending multiple copies 
or by such means as retransmission  given  lack of 
acknowledgment. 

discusses control issues  which  suggest  the use of double-sided 

Much of the following  discussion centers on the control 

The following  is an outline of the paper.  Section 2 
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crossbars  for the transport network W,. Section 3 treats the 
problem of contention resolution and control message 
transport from an abstract viewpoint, as well as the design  of 
a control network  based on the results.  A  configuration for 
the control subnetwork W, is  suggested  based on what  may 
be termed contention crossbars and delta networks. Included 
is  a  discussion of the use of combining,  based on notions 
related to the Fetch-and-Add architecture proposed by the 
NYU ultracomputer project [ 11, to alleviate control network 
congestion.  Finally,  Section 4 considers application of the 
overall structure to the interconnection of processors and 
memories in parallel computing. 

2. Data transport 
As noted above, the network  W  is partitioned into control 
and  data transport subnetworks, denoted respectively  by W, 
and W,. The  data transport subsystems W, considered  here 
act under the control of requests si, transmitted on W, and 
processed  by one or more controllers (E,).  If the rate of 
service  requests  is  high, this translates into a requirement for 
parallel control even for small  values of N, since a  single 
controller becomes  a  serializing  bottleneck. This section 
considers the problem of  how to structure W, so as to 
minimizt the number of control delays.  More  precisely, it 
treats the question of how W, should be structured so that 
each action to be taken via the network (e.g., a data fetch) 
requires the transmission of only  a  single control message. It 
is assumed that there are N controllers E , ,  and that each E, is 
associated  with  a  device D,, so that a control message slj may 
be considered as traveling  between Di and 0,. 

W, can be  viewed as consisting of a  set of resources {R;) ,  
corresponding to items such as device  ports, data links, and 
internal network  nodes. The overall connection system 
( W, and W,) may  be  considered as a means for processing  a 
sequence of action or service  requests  (each initiated by a 
Di). For simplicity, it is assumed that these are of two  kinds, 
corresponding to operations on a  shared  memory: 

a. A  request for a data item such as a  cache line to be 

b. A  request  for  permission to transfer a  specified amount of 
transferred from D, to Dl.  

data from Dj to 0,. 

It is  assumed that the order in which  requests  from 
different Di are processed does not affect  correctness.  Here 
the service  provided in response to a  request  is equivalent to 
what in database parlance is termed a transaction (81. This 
may  be  viewed as a  process in which  a  device  gains  access to 
an increasing  subset of the resources required to satisfy its 
request.  When  all  such  resources  have  been claimed, action 
can  proceed, corresponding to the commit phase in 
transaction processing.  In  general, this can require (as  a 
function of the overall  design)  a substantial amount of 
interaction among the controllers.  Partially  completed 
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The configuration of such  a  network  W  is  a function of 
the types of services to be performed. If the only actions to 
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each  request. That is, W, would  be capable of transmitting a 
control message. 

If N is  large, there will generally  be  a  need  for multiple 
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serialization  bottleneck. For the case of multiple controllers, 
the single  request property alluded to above (each action 
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on the transport subnetwork W,: Each controller is  assigned 
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whkh the individual switching elements are comparable in 
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required for such a  switch  is  largely  a function of the chip 
pin count (the number of input and  output wires), but may 
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network W,. Questions relating to the structure of such 
networks are explored via a simple traffic  model and an 
abstract model of the hardware in which it is  assumed that 
the network components have  no state information (i.e., 
information concerning the number and location of 
messages in W,). The results indicate that under these 
conditions a short path length requires a  multiplicity or 
hierarchy of paths, so that the effective path taken by a 
control message (the path that effects the control) is  a 
function of the instantaneous traffic. The effective-path 
variation may  be obtained either by sending multiple copies 
or by such means as retransmission  given  lack of 
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discusses control issues  which  suggest  the use of double-sided 

Much of the following  discussion centers on the control 

The following  is an outline of the paper.  Section 2 
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crossbars  for the transport network W,. Section 3 treats the 
problem of contention resolution and control message 
transport from an abstract viewpoint, as well as the design  of 
a control network  based on the results.  A  configuration for 
the control subnetwork W, is  suggested  based on what  may 
be termed contention crossbars and delta networks. Included 
is  a  discussion of the use of combining,  based on notions 
related to the Fetch-and-Add architecture proposed by the 
NYU ultracomputer project [ 11, to alleviate control network 
congestion.  Finally,  Section 4 considers application of the 
overall structure to the interconnection of processors and 
memories in parallel computing. 

2. Data transport 
As noted above, the network  W  is partitioned into control 
and  data transport subnetworks, denoted respectively  by W, 
and W,. The  data transport subsystems W, considered  here 
act under the control of requests si, transmitted on W, and 
processed  by one or more controllers (E,).  If the rate of 
service  requests  is  high, this translates into a requirement for 
parallel control even for small  values of N, since a  single 
controller becomes  a  serializing  bottleneck. This section 
considers the problem of  how to structure W, so as to 
minimizt the number of control delays.  More  precisely, it 
treats the question of how W, should be structured so that 
each action to be taken via the network (e.g., a data fetch) 
requires the transmission of only  a  single control message. It 
is assumed that there are N controllers E , ,  and that each E, is 
associated  with  a  device D,, so that a control message slj may 
be considered as traveling  between Di and 0,. 

W, can be  viewed as consisting of a  set of resources {R;) ,  
corresponding to items such as device  ports, data links, and 
internal network  nodes. The overall connection system 
( W, and W,) may  be  considered as a means for processing  a 
sequence of action or service  requests  (each initiated by a 
Di). For simplicity, it is assumed that these are of two  kinds, 
corresponding to operations on a  shared  memory: 

a. A  request for a data item such as a  cache line to be 

b. A  request  for  permission to transfer a  specified amount of 
transferred from D, to Dl.  

data from Dj to 0,. 

It is  assumed that the order in which  requests  from 
different Di are processed does not affect  correctness.  Here 
the service  provided in response to a  request  is equivalent to 
what in database parlance is termed a transaction (81. This 
may  be  viewed as a  process in which  a  device  gains  access to 
an increasing  subset of the resources required to satisfy its 
request.  When  all  such  resources  have  been claimed, action 
can  proceed, corresponding to the commit phase in 
transaction processing.  In  general, this can require (as  a 
function of the overall  design)  a substantial amount of 
interaction among the controllers.  Partially  completed 
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(a) Horizontally and (b) vertically partitioned double-sided crossbars. 

transactions may  have to be stopped or restarted due to 
phenomena such as deadlock.  Reference [8] discusses how 
such interference can limit throughput in a parallel 
processing  system. 

Let (Ai )  be a set of actions to be  performed by the 
network. An action Ai may interfere with another action A, 
either because it requires access to one or more of the 
resources Ri claimed by A, or because its control interferes 
with that of A,. The former kind of interference can occur, 
for  example, in a network that is not nonblocking, that is, in 
a network  where a path from Di to D, may  be blocked by a 
transmission  between  two other devices D, and Dk. The 
latter type of interference, that between the controllers, may 

i be illustrated by the following  example.  Suppose that the 
network W, is single-sided and that any device Di may 
initiate a connection with any other. Let Lil ,  Liz be input 
and  output ports from the W, network  associated  with D,. 
Then a single-sided connection between Di and D, requires 
that Di have simultaneous access to both Liz and Lj2. One 
way for Di to proceed in establishing  such a connection is to 
reserve Liz for its own  use and to request L,,. But L,, may 
itself  be  reserved,  say  by D, in the process of attempting a 
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connection to Di. This is an example of deadlock  resulting 
from the interaction of  two controllers.  More  complex 
cases  may occur, which  in  general  require  extensive 
communication between controllers to resolve. 

responsible  for  allocating a disjoint subset of the network 
resources {Ri, 1. Suppose further that each action involving 
W, (e.g., a data fetch or send) requires  access to some subset 
of one &,). Then each action requires transmission of only 
a single control message si,. A structure with this property 
will.  be termed a single-resource network (SRN). It should be 
noted that the requirements to obtain an SRN are a function 
of the variety of  services  requested by control messages. 
Thus, if a request  for a data item were partitioned into 
subrequests for a) permission to transmit a request  for data, 
b) the data, and c)  permission to transmit on the return 
path, the requirements on the network  would  be  less 
stringent than for the case  where  such subrequests are 
combined, since three separate requests are then permitted 
for the service.  Note,  however, that the total delay  may  be 
considerably  greater,  since  each  subrequest is subject to a 
separate contention-resolution delay. 

D,. Suppose W, is an SRN. Then, if Di has  access to a 
network output port at D,, Di also  has  access to a link to D,, 
and there is no contention on this link.  Suppose that (as  is 
assumed  below) E, is the controller which  allocates ports at 
D,. Then E, was also  responsible  for allocating the path 
between Di and 0,. It  follows that no link on this path can 
be allocated by any other controller. That is,  all  shared links 
(i.e.,  links that carry  messages  from more than one origin) 
lead to the same destination. The network W, then consists 
of a set  of  essentially disjoint (for shared links) subnetworks, 
one for  each destination. This is a stronger condition than 
merely  having the network  be  nonblocking. 

condition is one consisting of a set of trees,  with one tree for 
each destination, which  is  also the root. A way to implement 
a network of this form is as a double-sided  crossbar, that is, a 
crossbar  with N input and N output ports,  where  each 
connection is  between a single input and  output port. Each 
output port may then be  regarded as the root of a 
subnetwork  tree  whose  leaves are the input ports.  Note that 
such a crossbar  (illustrated in Figure 1) might  consist of a 
rectangular array of crossbar  chips,  each of  which forms a 
connection between some subset of network input ports and 
a subset  of buses leading to network output ports.  Here  each 
message traverses  two  shared  paths: a bus  within a chip and 
a bus external to the chips, corresponding to a tree of depth 
two.  But  each  crossbar chip is  itself a double-sided  crossbar, 
which could be implemented via  buses and subchips, so that 
a crossbar  may  represent a tree of depth greater than two. 

Figure 1 shows  two  examples  of  doubled-sided  crossbars, 
configured so that crosspoints in each row (horizontal 

Suppose the design  of W, is  such that each controller E, is 

Consider a link in W, which  lies on a path between D, and 

An example of a network  which  satisfies the above 
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partition) or column (vertical partition) of the array are set 
independently. For example,  in the horizontal partition, each 
transmitting device D, has the capacity to establish a path to 
any destination 0,. For the application considered  here, a 
horizontal partition is  generally  more convenient. 

Note that if two or more data packets are transmitted 
simultaneously to the same destination, they will collide. If 
the means for control does not prevent  such  collisions, the 
switch  is termed a collision or contention crossbar.  Collisions 
may  be avoided by such  means as contention resolution at 
the inputs or via reservations,  i.e., allocations of  specific 
times at which a given  device Di can transmit to another 
device 0,. The configuration of such  crossbars into a W, 
network is discussed  in  Section 4. 

3. Contention  resolution and control  message 
transmission 
This section  considers the structure of the control 
subnetwork W,.  This subnetwork must provide  two  types of 
services: transport and contention resolution. Contention 
resolution  needs to be included  because there may,  for 
example, be more than a single  message  headed  for a given 
destination, and in general there can be other network 
resources subject to such contention. Two  design alternatives 
are 

a. Incorporate contention resolution in the W, transport 

b. Separate contention resolution from control message 
mechanism. 

transmission. 

Alternative (a) is a subnetwork W, in which data transport 
(here transmission of the si,) is not separated from control. 
That is, there is no subnetwork W, used to control W,. 
Alternative (b) requires a separate means for contention 
resolution.  Here transmission of an sj, might be done by (i) 
contention resolution, (ii)  notifying  each Di when si, can be 
transmitted, and finally  (iii) transmitting s , ~ .  If all si, are of 
one type  (e.g.,  requests  for  permission to transmit a packet of 
fixed length), then transmission of control information 
represented by step (iii) is not necessary, and in general a 
system  of type (b) may  often  be  desirable. The discussion 
below  first treats the problem of contention resolution in a 
general  framework.  Signals  originating at a D, whose 
destination is  associated  with D, are for  simplicity termed sij 
without distinguishing option (a) from (b).  Discussions of 
possible implementation, however,  focus on alternative (a), 
partly  because of its compatibility with the consideration of 
Fetch-and-Add as a means  for  switch control. 

Contention resolution  may be viewed in a general  sense as 
a process in which a number of  messages attempt to traverse 
a network to a point where  they can claim the desired 
resource.  Each node in this  network  may  perform  such 
functions as routing and resolution of contention for 

transmission to the next node. The structure of such 
networks  is  here  studied  via the combination of a traffic 
model and an abstract model  for the nodes.  These are 
assumed to be  devices Gi, each of  which can “accept” a 
limited number of inputs and produce a limited number of 
outputs in unit time. The Gi, as well  as the devices D j  served 
by the network, are assumed to have no knowledge  of the 
network state (i.e., the number and location of  messages in 
the system). The latter constraint can  be  expected to hold  for 
large N, where  device limitations make it difficult to 
distribute such information rapidly. 

Proposition 1 
Suppose i) that W, is composed of a set  of  devices G, each of 
which can accept  no  more than VI inputs and produce no 
more than Vz outputs in a given  cycle,  where it is  assumed 
that an input is  lost if not accepted.  Suppose  also  ii) that the 
Gi as well as the D, have no information concerning the 
network state, and finally iii) that all  messages  reach their 
destinations. Then there exists a set of paths in W,, one for 
each (Di ,  0,) pair,  such that the average number of G, 
encountered on a path in this set  is at least  log,, N (for 
simplicity, it is  assumed that log,, N is an integer). 

Proof Each  device D, must transmit its request sij to at 
least one device G, which  is guaranteed to have no more 
than (VI - 1)  other inputs in this cycle.  But Di has by 
assumption no information concerning other messages 
which  may  be transmitted to Gk. Thus, each such G, must 
have a potential input from at most a total of VI devices, so 
that, for  each destination Dj,  there exists a path from  each Dj 
on  which  each intermediate node G, can receive a message 
from at most VI devices.  Suppose  only the shortest such 
paths from  each Di to a given D, are considered.  These paths 
form a tree, rooted at D,, with an average path length  (in 
terms of devices) no smaller than log,, N .  To see that this is 
so, note that logvl N is the path length in a balanced tree 
which contains one path from  each  origin. This balanced 
tree  produces a minimum average depth If the tree  were not 
balanced,  exchange of a leaf at depth less than logvl N with a 
subtree at greater depth reduces the average path length. 0 

The above  result concerns the average path length,  where 
this average  is taken over the paths. If the traffic  is 
nonuniform, device  pairs  whose interactions occur with 
more than average  frequency can be placed  “closer”  within 
the network, so that the path length  averaged  over the 
messages sjj  (as opposed to the paths) need not necessarily 
grow  as  log N. This, however,  requires substantial traffic 
nonuniformity. 

Network performance can also  be improved by reducing 
traffic  congestion.  Such  congestion, and thus the expected 
delay in transmission for a message sij, can be  decreased if 
messages  with the same destination can  be combined within 
the network,  for  example  via the use  of Fetch-and-Adds [ 11. 
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N = 512 
0.8187 
0.1638 
0.0164 
0.0015 

(a) 

N = 512 

N = 1024 
0.8187 
0.1637 
0.0136 
0.004 

(a) P(N,) for N = 512 and N = 1024 with p = 0 .2 ;  (b) P(NJN,) for 
N, = Nl2andN = 512 withp = 0 .2 .  

This possibility  is  discussed in Section 4 and  in the 
Appendix. 

An alternative approach to shortening the average path 
length,  suggested  by Proposition 1 ,  is to provide potentially 
more than one path between  each origin-destination pair. 
Here transmission on an individual path may  be 
unsuccessful due to a violation  of the VI input constraint, so 
that the effective path length  is a function of the 
instantaneous traffic.  Such multipath networks are studied 
below,  first under the assumption that no state information 
is made available to the G, and Dk, then given limited 
information (e.&  acknowledgment  of  successful 
transmission). Let N,(j)  be the number of  messages 
initiated to D, in a given  cycle.  Suppose it is  known that 
N,(j) is bounded by some value  less than N. The above 
discussion  suggests that one may then construct a network 
with shorter path  lengths than would be required without 
this bound. One approach to the overall  design  is to combine 
several subnetworks, each appropriate for a particular value 
of N,(j). The resulting performance will then depend on 
the traffic statistics as well as the available  hardware. 

Request statistics 
Two  models for the request  traffic are considered.  In the 
first,  each  device D, can  present a request in a given  cycle t ,  
with probability p ,  and the request  is to any E, with equal 
probability. The second  model includes a restriction that 
each  device  have no more than one outstanding request. 
This could correspond to a system in which the (Di) are 
processors  requesting  lines or pages from a common 
distributed memory. Here, given a page or line fault, the 
requesting  processor is halted until the underlying operation 
(i.e., a fetch or a send) is completed. 

Suppose the {Oil are a set of processors  which  access the 
network for line fetches due to cache faults and for line 
sends.  Suppose further that there is on average  less than one 
line  send for each fault, as is  generally the case for a machine 
with a write-in  cache. The network  cycle  is  assumed to be no 
longer than half  of a full  processor  cycle, so that p is upper- 
bounded by the cache fault probability. For simplicity, it is 
assumed that p 5 0.2, which  represents a rather large  value 
in this context. Note that p may  be  decreased by decreasing 
the network  cycle time, e.g.,  by increasing the path width  of 

The  probability that there are NJi )  requests for the ith 
resource in the first  model is given  by the following binomial 
distribution: 

WI. 

Note that {P[N,]/P[N, - 1 1 )  is an increasing function ofp: 

Figure 2(a) shows P[Nr] for N = 5 12 and 1024, with 
p = 0.2. Note that P[N, = 01 and P[N, = 1 1  vary  slowly  with 
N. Increasing N from 5 12 to 1024 changes  these quantities 
only  slightly. This, as will be seen, means that the expected 
performance of the networks  discussed  below will vary little 
as N is  increased. 

We  now consider the steady-state  probabilities  for N, given 
that each D, has only one pending  request sij. There are N 
potential requestors, of which N, have  requests  pending. 
Suppose that on the average  it takes u cycles to complete the 
servicing of a request. Then, in the steady  state, 

so that 

Ifp = 0.2 and u = 5 ,  then N, = N/2.  The request  probability 
for Nr, given that N, potential requestors are occupied,  is 
given  by 

Figure 2(b) shows  values  of P[N,  I N,] for N, = N/2,  p = 
0.2, and N = 5 12. 

A hardware model 
As mentioned above, the W, network  is  composed of a set of 
devices G, whose capabilities are intended to model the 
speed and fanout restrictions of the hardware.  Specifically, 
each G, accepts no more than VI inputs and produces no 
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more than V, outputs with  a  delay  of  "a  few"  cycles. A set  of 
such  devices  is  described  below. This device  set  is  by no 
means  exhaustive: Other devices  may  be  formulated  which 
plausibly  have comparable performance. Thus the results 
should not be  regarded as absolute  proofs of optimal 
structures, but rather as indications of directions for  system 
design. 

The device  types are as listed  below and illustrated in 
Figure 3. 

1. Network input node. One such  node  is  associated  with 
each Di. It  is  assumed that it can produce V, 5 log, N 
simultaneous outputs (these are multiple  copies of a 
control message si,) in  a  given  cycle. This avoids the need 
to define  a  special  node  for the purpose of replicating 
messages. 

2. Network output node.  One  such  node  is  associated  with 
each Di. It  accepts messages si, from W,. One such 
message  is accepted  in  each cycle. 

3. Single-output  bus  (SO-bus). This has 2 5 V, I N inputs 
and produces,  with  a  delay  of Z ,  cycles, a  single output 
whose  value  is either 0 (if there is no message or a 
collision) or si, (if si, is the single input). That is, it accepts 
only the case  of VI = 1. Unlike  a standard collision  bus, 
this has no collision  sensing by the input devices, as this 
would  violate the fanout restriction V,. 

4. Contention-resolution node. This accepts up to two 
inputs (if internal storage  is  available).  It puts out one 
output with  delay Z ,  and the next  with  delay 2 2 ,  
(provided that storage  is  available at the destination). The 
storage  restrictions  imply the existence of input and 
output control lines which are not shown  in  Figure 3. 

5. Routing node. This operates  similarly to a contention- 
resolution  node, but can emit two outputs simultaneously 
(one to each  destination). 

A horizontally  partitioned N X N collision  crossbar 
(defined  in  Section 2 )  provides an approximation to an 
idealized  single-output  bus  for  each  of its N output lines. The 
Z ,  delay  here  corresponds to a) transmission of the address 
to the appropriate chip(s), which establishes the desired path, 
b)  setting the crosspoint, and c) transmission of the signal. 
The delay  associated  with a) and c)  is  essentially 
proportional to the inverse of the signal  path  width,  which 
can be  increased as necessary. 

Delays  associated  with contention-resolution nodes may 
also be  decreased  by increasing the path  width.  Here the 
lower  limit to Z,  is due to such  delays  as  those  required  for 
checking control lines and performing contention resolution, 
in addition to housekeeping functions such as the local 
storage and retrieval of  messages and the  setting of control 
lines to preceding  nodes. The result is that the delay Z,  may 
not be  vastly  different from 2,. 

t 
Delay Z2 

Network devices, where (a) is an input  node  to  a  network, (b) is an 
output node, (c) is an SO-bus, (d) is a contention-resolution node, 
and (e) is a  routing node. 

Network optimization 
Let X n ( j )  denote the set  of requestors to a particular D, in 
the cycle t,. The following  discussion  restricts attention to a 
single D,, and X , ( j )  is represented  simply as X,. Consider  a 
message si, E X,,. The lower  bound on the time required  for 
si, to reach D, is that required  for the first  member of X,, to 
reach D,, given that this message encounters no delays due 
to messages  which are not in X,, which  is equivalent to the 
case  where W, is  otherwise  empty.  Let this time be denoted 
by $(X,), or +(X), since it is  assumed that the network  is 
time-invariant. The quantity 

C$(X)P(X) = 4 (6)  

is then a  lower bound for the expected  delay. This section 125 
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1 The  original  network (a), altered  as shown at (b). 

considers the problem of structuring a network so as to 
minimize $ subject to the constraint that it must be capable 
of  resolving (that is, accepting and successfully transmitting) 
any X. 

A message si, is  presented to W, at one or more  entry 
points each  of  which  is an SO-bus, a contention-resolution 
node, or a routing node.  Note that W, must  resolve the case 
of I XI = N, that is, the case  where  all D, transmit to 0, in a 
given  cycle. Thus, each si, must be presented to at least one 
entry point which  is not an SO-bus, so that there are at least 
Nf2 contention-resolution or routing  nodes to provide entry 
points. 

Similar arguments lead to the conclusion that each si, has 
at least one path from D, to D, which does not include an 
SO-bus. That is  (corresponding to Proposition l), there  is a 
path tree  leading to D, composed of contention-resolution 
and routing  nodes. This tree is  of  average depth no smaller 
than log, N. Note that the node immediately  preceding the 
D, network output node is not an  SO-bus. The subnetwork 
being  considered  here  has just one such  node, so without  loss 

126 of generality this may be assumed to be a contention- 
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A configuration  with an SO-bus. 

. . .. . .. . .. . ." """ " "., -." - 

resolution  node. Let Net, and Net,  be the two subnetworks 
whose outputs are inputs to this node,  as  illustrated  in 
Figure 4. 

Proposition 2 
Suppose  neither  Net,  nor Net, contains an SO-bus. Then, if 

1.p 5 0.2 

and 

2. Z, 5 Z,(log,N - 2), 

$ may  be reduced by  modifying the network so that there is 
an additional contention-resolution  node,  immediately 
before the output node,  whose inputs are (a) the output from 
an SO-bus  with VI = N (i.e.,  all si,) and (b) the original 
contention-resolution  node,  as  shown  in  Figure 4. That is, 
under the above  conditions, it pays to have an SO-bus  in the 
system. 

Proof A lower  bound  for the time required to resolve 
I X I = 1 in the original  network  is 2, log, N (corresponding 
to a balanced  contention-resolution  tree). Introducing the 
change  reduces the delay  for I XI = 1 by ( Z ,  log,N - Z, - 
Z,) 2 2,. The delay  for I XI > 1 is increased by  Z,.  But  with 
p50.2,p(lXI = l)>p(IXI > 1). 17 

Proposition 3 
Suppose p ,  Z,, and Z, are as in  Proposition 2. Then 
minimizing the delay  for 1 X I = 1 requires that there be an 
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SO-bus  whose output is an input to the final contention- 
resolution node leading to 0,. 

Proof Proposition 2 indicates that the minimum delay 
configuration  for I X I = 1 includes an SO-bus.  Suppose the 
optimal (for I XI = 1) configuration  is as in Figure 5, 
containing an SO-bus  with V direct inputs. Then the delay 
for the SO-bus is greater than for Net,,, Net,,-,, . . . . 
Otherwise V could be increased to include the I X I = 1 
inputs resolved  by these  networks,  since for I XI = 1 the 
SO-bus performance is independent of V. But V (those 
1 X I = 1 resolved  by the bus) must be greater than the 
number resolved  by Net,,,  Net,,-,, . . . , as otherwise the bus 
could  be  replaced by a subnetwork of that form, which  is 
faster. But this implies that exchanging the location of the 
SO-bus  with a network Net, at lower depth decreases the 
expected  delay for I XI = 1. 0 

Proposition 4 
Suppose  p, Z , ,   Z ,  are as in Proposition 2, and  that 
Z ,  = KZ,, where K is  an  integer. Then the lower bound on 
the expected  delay $ is 

Proof The delay for I XI > 1 is trivially no lower than Z,. 
The lower bound for I XI = 1 is obtained via the 
configuration  of Proposition 3. At most (2k /N)  of the 
1 X I = 1 requests do not use the SO-bus, and the delay  for 
these  is at least 22, .  0 

The above bound is very loose,  especially for K small. 
However, as is  shown  below, it is  sufficient to indicate that a 
particular configuration  is  reasonably  close to optimal. 

Proposition 5 
Let p, Z , ,  Z ,  be as in Proposition 2.  Now consider the 
network  shown in Figure 6, consisting of an SO-bus  with 
V 5 N inputs and a balanced tree of contention-resolution 
nodes,  both  of  whose outputs lead to a final contention- 
resolution  node. For this configuration, V = N is optimal. 

Proof The SO-bus  resolves a member of 1 X I if it receives a 
single input, with a probability  which  is denoted as Pr( V). 
For V s  N,  

But[l +( l /V)] [ l  - ( P / N ) ] >  1 f o r p ~ 0 . 2 a n d  15 V I N .  
Hence, the probability of I VI = 1 (i.e., the probability that 

* 
N t t t t  N 

I A multipath network. 

the SO-bus has exactly one input) is maximized if 
V = N .  0 

Consider the network  shown in Figure 6. It  will  now  be 
shown that for the range  of parameters given  here, this 
network  is  reasonably  close to optimal. The delay $ for this 
configuration  is 

$ = P(lX1 = 1 I X >  O)(Z, + Z,) 

+ P(lXl  > 1 IX>O)(l +log,N)(Z,). (8) 

Suppose N = 5 12 and p = 0.2; then, using the bound for 
of Proposition 4, one can obtain the following: 

a. If Z ,  = Z,, 1.5. 
b.  If Z , ,  = 3Z2, $/$,in C 1.25. 

Moreover,  decreases as p decreases [as a consequence 
of Equation (2 ) ] .  The bound for qmin is rather loose,  which 
suggests that this configuration should provide  good 
performance for p 2 0.2. If p > 0.2,  it  might  be  desirable to 
introduce additional SO-buses so that, for  example, I X I = 2 
could  be  resolved in a substantial fraction of the time. 

Retransmission 
It was assumed above that no state information (i.e.$ 
information relating to the location and number of  messages 
in the network)  is distributed. However, it may  often  be 
feasible to provide limited information by means such as 
additional circuitry, which,  with some delay, informs the 
requestor of a collision on a particular path. Alternatively, 
successful transmissions could be  acknowledged.  Lack of 
such  acknowledgment  would then trigger  retransmission, 
possibly on an alternate path. Potential advantages include 
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Retransmission  node 

Delay Z3 

+-& 
Transmission  at  times r,,, ro + Z3 

x, 
Transmissions  at ro + 2Z3 

contention-resolution 
Additional 

A network W, and its  retransmission  version W! 

a. The elimination of duplicate messages. Such duplicates 
could be removed by various means at the destination, 
but this would  lead to added complexity. 

included in the above analysis. 
b. Reduction of  traffic  delays due to congestion, not 
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Suppose  retransmission  is  included.  How then should one 
design a network? It is shown  below that the lower bound for 
the transmission delay J. obtained in the previous section is 
close to that for  networks  with  retransmission  (if the time 
interval  between  successive transmissions is no less than for 
a contention-resolution node). This suggests a 
straightforward  modification of the structure shown in 
Figure 6 ,  the performance of  which (in relation to 
remains close to optimal. 

Let J. be, as above, the delay  experienced on the average 
by the first si, E X to reach its destination, given that the set 
X of simultaneous requests  comprise the only messages in 
W,. It is convenient to introduce what  is termed a 
retransmission node. This has a single input  and  output,  and 
a delay 2, corresponding to the time between 
retransmissions,  where  it  is  assumed that Z3 is  greater than 
the cycle time of W,. 

A network W, is then composed of SO-buses and of nodes 
which  perform contention resolution, routing, and 
retransmission. Consider a particular device Di and a control 
message sij. This message  will  be transmitted at times 
t , ,   t2, . . ., t,, where t ,  is the first transmission that is 
guaranteed to succeed (either because of acknowledgment or 
because its path consists entirely of,  say, contention- 
resolution  devices,  which accept all inputs). The sequence 
{ti j ,  of  which t , ,  t,, . . . , t ,  is a prefix,  is independent of the 
network state, so that it can be considered  fixed. 

Each member of a set X has its retransmissions occur at 
times which are dependent only on whether transmission is 
successful. That is, X determines only the point at which 
each  retransmission  schedule  stops.  Let X i  be that subset of 
X which  is retransmitted on the qth cycle, that is, at (to + q). 
Note that the cycle  is  assumed for convenience to be  of unit 
length.  Let Net, be the subnetwork of W, on which X i  is 
transmitted. A new network W :  can be obtained from W, by 
linking the outputs of Net, by a contention-resolution tree, as 
shown in Figure 7. Each X i  then travels through at most 
(q + 1) additional contention-resolution nodes  when 
compared to the corresponding path in W,. It also  traverses 
V retransmission  nodes. A path in W :  is  longer than that in 
W, by some number of additional contention-resolution 
nodes.  But  if Z ,  < 1 (the network  cycle time), removing the 
retransmission  nodes  produces a network  with no 
retransmission  with a value of J. within Z, of that for W,. 
We then have the following. 

Proposition 6 
If Z2 is no greater than the cycle time of the network, then 
for  every  retransmission  network W,, there is a network  with 
no  retransmissions W :  whose  delay J.' 5 J. + Z,. 

Consider the network of Figure 6. Suppose  all  requestors 
in a given  cycle attempt transmission  over the SO-bus, and 
(given  lack  of acknowledgment), retransmit over a 
contention-resolution tree. The increment to J. due to 
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retransmission is P( I X I > 1 I X > O)Z,, which for p 5 0.2 
implies an  additional delay of less than  ten percent, so that 
this configuration  should yield reasonably  good  performance. L,  

Note  that  the property  of  retransmission  networks given 
by Proposition 6 is for the special case where  retransmission 
is based solely on  information equivalent to  the lack of L* 

acknowledgment. Here  the retransmission  schedule for each 
input is essentially independent of X, which only  determines 
the schedule termination.  This is quite different from the 
situation in,  for example, a bus with collision detection, 
where knowledge of X can influence the  times  at which 
retransmission is attempted.  This dependency  of the 
transmission  schedules on X precludes a straightforward L, 

equivalent  network with no retransmission. 

L, 

d = O  d =  1 d = 2  

Design  alternatives 
If N is large, say on  the  order of several hundred,  then a 
separate  contention-resolution  tree leading to each D, may 
be impractical. An alternative is to employ an  arbitration 
structure of  complexity less than N2,  for example a delta 
network (2, 3), whose complexity is O(N1ogN). For 
N = 5 12, this yields a reduction  of the  number of nodes by a 
factor  of more  than fifty. An example  of a delta  network 
based on shuffle-exchange interconnections (4, 3) is  shown  in 
Figure 8. An interesting  property  of  such  networks is that  the 
connections between stages d and d + 1 are  the  same for all 
d < D, the  maximum  depth, which is potentially 
advantageous  for a modular  implementation of the 
hardware. 

of a delta  network  for N contention-resolution  trees is, 
however, obtained  at  the expense  of blocking. Here  the 
reduction  in traffic due  to retransmission is especially 
important,  but  may  not fully alleviate the problem if traffic 
is not  uniform. Heavy demand  to  one port can, for  example, 
lead to blocking of the network subtree that has  this  node  as 
the root. This result, due  to Pfister and  Norton [9], was 
motivated by their investigation of  delta  networks as  the 
transport  mechanism between processors and memories, but 
their conclusions also apply here. A further finding  of  theirs 
is that  the Fetch-and-Add  architecture  proposed by the NYU 
Ultracomputer project [ I ]  provides an effective though 
expensive solution to this  problem via the  combining of 
messages. It is shown below that  this is  also  potentially the 
case here. The Appendix describes the use of message 
combining  in  the  control of a crossbar  network. 

It was observed above that if the traffic load  is low, the 
average path  length can be shortened by including  paths 
which successfully transmit a message only in  the case of 
limited contention. Attention was restricted to  the case 
where a short  path is  available  for I X 1 = 1, but additional 
SO-buses could  be included (with limited input)  to resolve, 
say, 1 XI = 2 with high probability.  Given  limited  state 
information, it is necessary to provide  paths which are 

The reduction  in  complexity from O(N2) via substitution 

collision-free, since it is not feasible to incorporate standard 
contention-resolution  methods, which generally include such 
features  as exclusion of new traffic during  contention- 
resolution cycles (and  thus require notification of potential 
requestors). In the above treatment, such paths were 
provided by multistage  networks  (composed of routing and 
contention-resolution nodes), but  other possibilities exist, 
including  networks  (such as crossbars with contention 
resolution), where such  resolution is separate from message 
transmission. Alternatively, it  may be feasible to design 
structures  where  state information is made available (with 
delay) to  the set of  requestors under high-traffic conditions. 

4. Interconnection of processors and memories 
The  notions developed  above are illustrated here by 
considering a processor-memory  interconnection system. Let 
ID,) be a set of N processors, each with an associated 
memory  module. It is assumed that  the network supports 
actions  of  two kinds: 

1. Requests by a device D, for a specific line or page from a 

2. Requests by a D, for  permission to  transmit a specific 
memory module associated with 0, .  

number B of bytes to 0,. 

It is assumed that each D, has  no more than  one 
unacknowledged request pending. 

The  requirements imposed on W, by the single-resource 
constraint are now  considered.  Suppose that D, wishes to 
obtain a line from 0, .  This requires resources which include 
a transmission port  at D, and a reception port  at D,. These 
are also the resources necessary if D, wishes to  transmit  some 
number of bytes to D,. But the  former  operation is under  the 129 
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f Contention crossbar Cr, Return  crossbar Cr2 

1 q-b Delta network 

f Request crossbar C, Return crossbar C, 

w2 i 
I c I 

Crossbar network with hierarchical  control 

control of D, and  the latter is controlled by D,. It follows that 
there  must be two sets of such  ports,  such as may be 
obtained by two double-sided crossbars, as  shown in Figure 
9. 

The  control network W, might be comprised of a 
contention crossbar  (each column of which is an SO-bus), a 
one-way delta  network  for contention resolution, and a 
noncontention crossbar  for  acknowledgments,  as  shown  in 
Figure 9. This may be viewed as providing a two-level path 
hierarchy. Operation for data fetches and stores  could be as 
follows: 

1. Request for data by D, from 0,. 
Here a control message s,, is transmitted  on W,, 
specifying the address  of the desired line. The initial 
transmission is on  the SO-bus whose output leads to 0,. 
To accomplish  this, D, selects and sets the  appropriate 
crosspoint(s) in Cr,, then  transmits  the message. If 
transmission is successful, D, immediately returns  an 
acknowledgment on Cr2. There is no  contention  on C,, 
due  to  the  constraint  that each Di has at most one 
outstanding request s,,. If D, does  not receive an 
acknowledgment, it retransmits on  the delta  network 
(perhaps  after  again attempting  to use the path on Crl). 
Once s,, amves  at D,, this device retrieves the  appropriate 
data  from  memory,  then  returns it on C,. Note  that 

delays associated with setting the  appropriate 
crosspoint(s) in C,, can be overlapped with memory 
latencies. 

2. Request for permission to  transmit data from D, and 0,. 
A control message is transmitted by D, on W, asking for a 
reservation (i.e., one or more  time slots) for transmitting 
data  on Cr3. The reservation is returned  on Cr4, which 
then permits D, to  transmit  on Cr3. 

A variety of alternative designs for W, are possible, as 
discussed in Section 3. That shown  in Figure 9 has the 
advantage that it  can be modified so as to illustrate  two 
approaches to shortening the average transmission delay: 
multiple (i.e., hierarchical) paths  and combining. Combining 
of control messages via Fetch-and-Adds, as described in the 
Appendix,  may be viewed as  a means for alleviating 
blockage in the delta network resulting from heavy demand 
for resources controlled by a  small subset of the controllers 
(note  that this  does not alleviate the load on W,). 

configuration  shown  in Figure 9 by replacing the one-way 
delta  network with a two-directional network that permits 
combining and decombining.  Requests  for  permission to 
transmit  data would result in  the  return, as described in  the 
Appendix,  of reservation for using the desired  path  in W,. 
Fetch requests, however, are  not directly combinable. One 
possibility here  would be to have them be of the form (data 
line  requested;  time). Two or more requests could then  be 
combined  into a data line  request (for the highest-priority 
D,) and a time  at which the  other requests could be 
transmitted  to D, on Cr3. A  request  could then travel on  any 
of a variety of paths: the SO-bus given no collision and  the 
delta  network otherwise for the forward path, with those 
requests that resulted in combining resulting in use of the 
return  paths of the delta  network. 

increases the cost and complexity of the hardware, so that it 
is unlikely to be an attractive option unless it is in any event 
required to prevent serialization delays for access to 
systemwide shared variables, the original motivation for such 
combining. Here  the reservation times for switch output 
ports can be viewed as  simply another set of shared 
variables. The hierarchical or multipath  approach  to 
construction of the  control network is then a means for 
speeding access to all such variables, not merely those 
associated with transmission. 

Fetch-and-Add control may be incorporated  in the 

The  incorporation of Fetch-and-Adds  substantially 

5. Discussion and conclusion 
This paper  has  considered  a class of networks  characterized 
by a) separation  of data  transport from control so as to 
permit control messages to flow over  a lightly loaded W, 
subnetwork and b)  a data subnetwork W, configured so that 
its resources could be allocated by a set of independently 
acting  controllers. The question of minimal expected path 
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length in W, was studied for the case in which no state 
information is available to  the network components. Two 
ways of reducing  transmission delays given uniform traffic 
were considered: the use of combining (such  as by 
Fetch-and-Add  instructions), and  the  notion of  multiple 
paths. It was shown, for a  simple  model of the traffic, that 
the use of multiple  paths  has the effect that  the overall 
network speed is close to  that of its fastest component.  The 
notion of multiple  paths and  combining  instructions was 
illustrated via an example of a  processor-memory 
interconnection  network. 

Appendix:  Fetch-and-Add  switch  control 
Consider  a  double-sided  crossbar with output ports L, at 
each D,, k = I ,  2, . . ., N .  Suppose D, requests permission to 
transmit  to D, for  a period of time of length T,. Let Y, be a 
delay parameter associated with L,, where Y, denotes  the 
time after which L, becomes free to accept new 
transmissions. Granting D, its  request  increases Y, to 
cy, + T,). 

This corresponds to  the definition of Fetch-and-Add. 
Specifically, a  Fetch-and-Add to a variable a with parameter 
p, which is denoted  as FA(a, p ) ,  has the effect that 

1. The value of a is incremented by 0. 
2. The original value of a is returned. 

Thus FA( Y,, T,) would return Y,, the  time  at which L, is 
free, and  increment Y, by T,, the  time required  for 
transmission. That is, the requestor would be granted  a 
reservation for use of L,. Unlike  the usual application of FA, 
however, a  reservation is useless unless it reaches the 
requestor before expiration. Thus it is necessary to 
incorporate some estimate  of the return delay. Note  that this 
estimate need only be of sufficient accuracy so as  not  to 
waste an appreciable percentage of the available reserved 
bandwidth. 

The  control of  a crossbar via use of  a combining network 
is illustrated via an example.  Consider the network  shown  in 
Figure 8. Suppose that D, and D,, respectively, issue 
instructions FA( Y , ,  1) and FA( Y , ,  2). These  could be 
represented in  the network, respectively, as tuples 
(D,, n,, t,, Y , ,  1) and (D,, n,, t,, Y , ,  I ) ,  where the 
components are, respectively, the identity of the originating 
node,  a parameter  to be used in the  combining process, the 
time  at which the request is made, Y,, and a,. The two 
requests would intersect at  node a7, where they  might be 
combined  into  the tuple [a,, n7, min(t,, t,), Y , ,  31, and  the 
original tuples  stored  for use in  the  decombining process. 
Suppose Y,  = 6. The  combined tuple  could then be 
processed to  produce a  tuple [a,, n,, (6 + b)] ,  which would 
be returned to a,. Y ,  would then  be changed to (9 + b). Here 
b is an  increment which could  be used to  account for the 
expected delay on  the return path, obtained,  for  example, by 

comparing  min(t,, 1,) with the  time of amval. Node a, could 
then use the  parameter n7 to obtain correspondence with the 
original requests, which would then be processed to  obtain, 
say, [D,, n,, (6 + b)] and [D,, n,, (7 + b)] ,  indicating that D, 
can transmit its message of duration 1 at  time (6 + b)  and 
D, its message of duration 2 at  time (7 + b). 
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