
120

Path hierarchies by P. A. Franaszek

in interconnection
networks

This paper treats the problem of latency
minimization in an interconnection network for a
system of N high-performance devices. The
networks considered here have data transport
separated from control, with the data
subnetwork designed so that each network
function requires only a single control message,
and thus only one contention-resolution delay.
For sufficiently large N it is shown that (for an
abstract hardware model) minimizing contention
delays requires that each message subject to
such delays have more than one way of
reaching its destination (e.g., via a path
hierarchy). The overall approach is discussed in
the context of the processor-memory
interconnection problem in parallel computing.

1. Introduction
Consider a network whose purpose is to interconnect a large
number N of high-performance devices Di, i = 1, 2 , . . . , N.
The design of such a system entails trade-offs on issues
which include the overall bandwidth, the performance of the
network controller(s), and the expected time for message
propagation. A need for high bandwidth may rule out
broadcast systems such as buses or rings. At the other
extreme, the usual type of rectangular crosspoint array or
crossbar switch has often been thought unsuitable for large N
due to a combination of cost (which grows quadratically

"Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

with N) , and performance, which is limited by the speed of
the control mechanism. Such considerations have led to the
investigation of a large variety of multistage networks
composed of modules or nodes each of which is individually
controlled [1-61. These networks potentially provide high
throughput, but also often entail problems of complexity and
delay. For high-performance applications such as the
interconnection of processors and memories, the delays,
which grow logarithmically with N, are a potentially limiting
factor for overall system size. That is, for desired values of N
their latency may be too great for purposes such as
connecting processors with main storage (or alternatively
may require implementation in technologies whose
switching speed is greater than that of the processors).
Recent experience [6] suggests that this may be the case for
N as low as 500. It is thus of interest to consider possible
alternative organizations.

The control of a typical multistage network is distributed,
with each internal node performing such functions as
routing and pacing. An alternative to this is a structure with
greater separation between data transport and control.
Control here is of two kinds: a) the coordination of actions
within the network (e.g., establishment of a link between Di
and Dj), and b) coordination of action between the Di (e.g.,
those associated with specific requests for data items).
Consider a network where path setup is separate from
message transport. Here a device Di might request a link
over which to transmit a message, then proceed with such
transmission. An action initiated by a Di which required a
total of u separate transmissions (e.g., a data fetch, where
u = 2) might entail u such path requests. Alternatively, the
network could be designed so that a single request could be
made for sufficient network resources for the entire action.
The advantage here is that only one round of contention
resolution or controller participation is required for each
action.

P. A. FRANASZEK IBM I. RES. DEVELOP, VOL. 31 NO. I JANUARY 1987

The configuration of such a network W is a function of
the types of services to be performed. If the only actions to
be taken by Ware, say, the transmission of fixed-size data
packets from a requestor 0, to a destination D,, then the
controller(s) need only know the identity of the source and
destination pair, and only a single path need be established
in W for a given request. On the other hand, if a request
from Dj can be either for the retrieval of a data item or for
permission to transmit to 0,. then the controllers need
additional information (such as the identity and size of the
packet to be transmitted). Here W can be viewed as
consisting of both a control transport facility W, and a data
transport facility W,, where W, and W, are generally of
substantially different form. In the general case, however, W,
would include a capability for transmitting the particulars of
each request. That is, W, would be capable of transmitting a
control message.

If N is large, there will generally be a need for multiple
network controllers, since a single controller becomes a
serialization bottleneck. For the case of multiple controllers,
the single request property alluded to above (each action
requires a single control message) imposes strong constraints
on the transport subnetwork W,: Each controller is assigned
responsibility for one of a set of essentially disjoint
subnetworks. Such subnetworks, as is shown below, can be
obtained via the use of what will be termed partitioned
crossbars. Crossbar switches, although sometimes considered
impractical for large N because the number of crosspoints
grows as N2, are with modem technology actually
economical for quite high values of N, since the crosspoint
matrix can be implemented with semiconductor arrays in
whkh the individual switching elements are comparable in
complexity to memory cells [7]. The number of chips
required for such a switch is largely a function of the chip
pin count (the number of input and output wires), but may
be on the order of fifty to a hundred for N = 500, not
excessive for such applications as large-scale parallel
computing.

network W,. Questions relating to the structure of such
networks are explored via a simple traffic model and an
abstract model of the hardware in which it is assumed that
the network components have no state information (i.e.,
information concerning the number and location of
messages in W,). The results indicate that under these
conditions a short path length requires a multiplicity or
hierarchy of paths, so that the effective path taken by a
control message (the path that effects the control) is a
function of the instantaneous traffic. The effective-path
variation may be obtained either by sending multiple copies
or by such means as retransmission given lack of
acknowledgment.

discusses control issues which suggest the use of double-sided

Much of the following discussion centers on the control

The following is an outline of the paper. Section 2

IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

crossbars for the transport network W,. Section 3 treats the
problem of contention resolution and control message
transport from an abstract viewpoint, as well as the design of
a control network based on the results. A configuration for
the control subnetwork W, is suggested based on what may
be termed contention crossbars and delta networks. Included
is a discussion of the use of combining, based on notions
related to the Fetch-and-Add architecture proposed by the
NYU ultracomputer project [11, to alleviate control network
congestion. Finally, Section 4 considers application of the
overall structure to the interconnection of processors and
memories in parallel computing.

2. Data transport
As noted above, the network W is partitioned into control
and data transport subnetworks, denoted respectively by W,
and W,. The data transport subsystems W, considered here
act under the control of requests si, transmitted on W, and
processed by one or more controllers (E,). If the rate of
service requests is high, this translates into a requirement for
parallel control even for small values of N, since a single
controller becomes a serializing bottleneck. This section
considers the problem of how to structure W, so as to
minimizt the number of control delays. More precisely, it
treats the question of how W, should be structured so that
each action to be taken via the network (e.g., a data fetch)
requires the transmission of only a single control message. It
is assumed that there are N controllers E , , and that each E, is
associated with a device D,, so that a control message slj may
be considered as traveling between Di and 0,.

W, can be viewed as consisting of a set of resources {R;) ,
corresponding to items such as device ports, data links, and
internal network nodes. The overall connection system
(W, and W,) may be considered as a means for processing a
sequence of action or service requests (each initiated by a
Di). For simplicity, it is assumed that these are of two kinds,
corresponding to operations on a shared memory:

a. A request for a data item such as a cache line to be

b. A request for permission to transfer a specified amount of
transferred from D, to Dl.

data from Dj to 0,.

It is assumed that the order in which requests from
different Di are processed does not affect correctness. Here
the service provided in response to a request is equivalent to
what in database parlance is termed a transaction (81. This
may be viewed as a process in which a device gains access to
an increasing subset of the resources required to satisfy its
request. When all such resources have been claimed, action
can proceed, corresponding to the commit phase in
transaction processing. In general, this can require (as a
function of the overall design) a substantial amount of
interaction among the controllers. Partially completed

P. A. FRANASZEK

The configuration of such a network W is a function of
the types of services to be performed. If the only actions to
be taken by Ware, say, the transmission of fixed-size data
packets from a requestor 0, to a destination D,, then the
controller(s) need only know the identity of the source and
destination pair, and only a single path need be established
in W for a given request. On the other hand, if a request
from Dj can be either for the retrieval of a data item or for
permission to transmit to 0,. then the controllers need
additional information (such as the identity and size of the
packet to be transmitted). Here W can be viewed as
consisting of both a control transport facility W, and a data
transport facility W,, where W, and W, are generally of
substantially different form. In the general case, however, W,
would include a capability for transmitting the particulars of
each request. That is, W, would be capable of transmitting a
control message.

If N is large, there will generally be a need for multiple
network controllers, since a single controller becomes a
serialization bottleneck. For the case of multiple controllers,
the single request property alluded to above (each action
requires a single control message) imposes strong constraints
on the transport subnetwork W,: Each controller is assigned
responsibility for one of a set of essentially disjoint
subnetworks. Such subnetworks, as is shown below, can be
obtained via the use of what will be termed partitioned
crossbars. Crossbar switches, although sometimes considered
impractical for large N because the number of crosspoints
grows as N2, are with modem technology actually
economical for quite high values of N, since the crosspoint
matrix can be implemented with semiconductor arrays in
whkh the individual switching elements are comparable in
complexity to memory cells [7]. The number of chips
required for such a switch is largely a function of the chip
pin count (the number of input and output wires), but may
be on the order of fifty to a hundred for N = 500, not
excessive for such applications as large-scale parallel
computing.

network W,. Questions relating to the structure of such
networks are explored via a simple traffic model and an
abstract model of the hardware in which it is assumed that
the network components have no state information (i.e.,
information concerning the number and location of
messages in W,). The results indicate that under these
conditions a short path length requires a multiplicity or
hierarchy of paths, so that the effective path taken by a
control message (the path that effects the control) is a
function of the instantaneous traffic. The effective-path
variation may be obtained either by sending multiple copies
or by such means as retransmission given lack of
acknowledgment.

discusses control issues which suggest the use of double-sided

Much of the following discussion centers on the control

The following is an outline of the paper. Section 2

IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

crossbars for the transport network W,. Section 3 treats the
problem of contention resolution and control message
transport from an abstract viewpoint, as well as the design of
a control network based on the results. A configuration for
the control subnetwork W, is suggested based on what may
be termed contention crossbars and delta networks. Included
is a discussion of the use of combining, based on notions
related to the Fetch-and-Add architecture proposed by the
NYU ultracomputer project [11, to alleviate control network
congestion. Finally, Section 4 considers application of the
overall structure to the interconnection of processors and
memories in parallel computing.

2. Data transport
As noted above, the network W is partitioned into control
and data transport subnetworks, denoted respectively by W,
and W,. The data transport subsystems W, considered here
act under the control of requests si, transmitted on W, and
processed by one or more controllers (E,). If the rate of
service requests is high, this translates into a requirement for
parallel control even for small values of N, since a single
controller becomes a serializing bottleneck. This section
considers the problem of how to structure W, so as to
minimizt the number of control delays. More precisely, it
treats the question of how W, should be structured so that
each action to be taken via the network (e.g., a data fetch)
requires the transmission of only a single control message. It
is assumed that there are N controllers E , , and that each E, is
associated with a device D,, so that a control message slj may
be considered as traveling between Di and 0,.

W, can be viewed as consisting of a set of resources {R;) ,
corresponding to items such as device ports, data links, and
internal network nodes. The overall connection system
(W, and W,) may be considered as a means for processing a
sequence of action or service requests (each initiated by a
Di). For simplicity, it is assumed that these are of two kinds,
corresponding to operations on a shared memory:

a. A request for a data item such as a cache line to be

b. A request for permission to transfer a specified amount of
transferred from D, to Dl.

data from Dj to 0,.

It is assumed that the order in which requests from
different Di are processed does not affect correctness. Here
the service provided in response to a request is equivalent to
what in database parlance is termed a transaction (81. This
may be viewed as a process in which a device gains access to
an increasing subset of the resources required to satisfy its
request. When all such resources have been claimed, action
can proceed, corresponding to the commit phase in
transaction processing. In general, this can require (as a
function of the overall design) a substantial amount of
interaction among the controllers. Partially completed

P. A. FRANASZEK

122

Dn44'

(a) Horizontally and (b) vertically partitioned double-sided crossbars.

transactions may have to be stopped or restarted due to
phenomena such as deadlock. Reference [8] discusses how
such interference can limit throughput in a parallel
processing system.

Let (Ai) be a set of actions to be performed by the
network. An action Ai may interfere with another action A,
either because it requires access to one or more of the
resources Ri claimed by A, or because its control interferes
with that of A,. The former kind of interference can occur,
for example, in a network that is not nonblocking, that is, in
a network where a path from Di to D, may be blocked by a
transmission between two other devices D, and Dk. The
latter type of interference, that between the controllers, may

i be illustrated by the following example. Suppose that the
network W, is single-sided and that any device Di may
initiate a connection with any other. Let Lil , Liz be input
and output ports from the W, network associated with D,.
Then a single-sided connection between Di and D, requires
that Di have simultaneous access to both Liz and Lj2. One
way for Di to proceed in establishing such a connection is to
reserve Liz for its own use and to request L,,. But L,, may
itself be reserved, say by D, in the process of attempting a

P. A. FRANASZEK

connection to Di. This is an example of deadlock resulting
from the interaction of two controllers. More complex
cases may occur, which in general require extensive
communication between controllers to resolve.

responsible for allocating a disjoint subset of the network
resources {Ri, 1. Suppose further that each action involving
W, (e.g., a data fetch or send) requires access to some subset
of one &,). Then each action requires transmission of only
a single control message si,. A structure with this property
will. be termed a single-resource network (SRN). It should be
noted that the requirements to obtain an SRN are a function
of the variety of services requested by control messages.
Thus, if a request for a data item were partitioned into
subrequests for a) permission to transmit a request for data,
b) the data, and c) permission to transmit on the return
path, the requirements on the network would be less
stringent than for the case where such subrequests are
combined, since three separate requests are then permitted
for the service. Note, however, that the total delay may be
considerably greater, since each subrequest is subject to a
separate contention-resolution delay.

D,. Suppose W, is an SRN. Then, if Di has access to a
network output port at D,, Di also has access to a link to D,,
and there is no contention on this link. Suppose that (as is
assumed below) E, is the controller which allocates ports at
D,. Then E, was also responsible for allocating the path
between Di and 0,. It follows that no link on this path can
be allocated by any other controller. That is, all shared links
(i.e., links that carry messages from more than one origin)
lead to the same destination. The network W, then consists
of a set of essentially disjoint (for shared links) subnetworks,
one for each destination. This is a stronger condition than
merely having the network be nonblocking.

condition is one consisting of a set of trees, with one tree for
each destination, which is also the root. A way to implement
a network of this form is as a double-sided crossbar, that is, a
crossbar with N input and N output ports, where each
connection is between a single input and output port. Each
output port may then be regarded as the root of a
subnetwork tree whose leaves are the input ports. Note that
such a crossbar (illustrated in Figure 1) might consist of a
rectangular array of crossbar chips, each of which forms a
connection between some subset of network input ports and
a subset of buses leading to network output ports. Here each
message traverses two shared paths: a bus within a chip and
a bus external to the chips, corresponding to a tree of depth
two. But each crossbar chip is itself a double-sided crossbar,
which could be implemented via buses and subchips, so that
a crossbar may represent a tree of depth greater than two.

Figure 1 shows two examples of doubled-sided crossbars,
configured so that crosspoints in each row (horizontal

Suppose the design of W, is such that each controller E, is

Consider a link in W, which lies on a path between D, and

An example of a network which satisfies the above

IBM I. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

partition) or column (vertical partition) of the array are set
independently. For example, in the horizontal partition, each
transmitting device D, has the capacity to establish a path to
any destination 0,. For the application considered here, a
horizontal partition is generally more convenient.

Note that if two or more data packets are transmitted
simultaneously to the same destination, they will collide. If
the means for control does not prevent such collisions, the
switch is termed a collision or contention crossbar. Collisions
may be avoided by such means as contention resolution at
the inputs or via reservations, i.e., allocations of specific
times at which a given device Di can transmit to another
device 0,. The configuration of such crossbars into a W,
network is discussed in Section 4.

3. Contention resolution and control message
transmission
This section considers the structure of the control
subnetwork W,. This subnetwork must provide two types of
services: transport and contention resolution. Contention
resolution needs to be included because there may, for
example, be more than a single message headed for a given
destination, and in general there can be other network
resources subject to such contention. Two design alternatives
are

a. Incorporate contention resolution in the W, transport

b. Separate contention resolution from control message
mechanism.

transmission.

Alternative (a) is a subnetwork W, in which data transport
(here transmission of the si,) is not separated from control.
That is, there is no subnetwork W, used to control W,.
Alternative (b) requires a separate means for contention
resolution. Here transmission of an sj, might be done by (i)
contention resolution, (ii) notifying each Di when si, can be
transmitted, and finally (iii) transmitting s , ~ . If all si, are of
one type (e.g., requests for permission to transmit a packet of
fixed length), then transmission of control information
represented by step (iii) is not necessary, and in general a
system of type (b) may often be desirable. The discussion
below first treats the problem of contention resolution in a
general framework. Signals originating at a D, whose
destination is associated with D, are for simplicity termed sij
without distinguishing option (a) from (b). Discussions of
possible implementation, however, focus on alternative (a),
partly because of its compatibility with the consideration of
Fetch-and-Add as a means for switch control.

Contention resolution may be viewed in a general sense as
a process in which a number of messages attempt to traverse
a network to a point where they can claim the desired
resource. Each node in this network may perform such
functions as routing and resolution of contention for

transmission to the next node. The structure of such
networks is here studied via the combination of a traffic
model and an abstract model for the nodes. These are
assumed to be devices Gi, each of which can “accept” a
limited number of inputs and produce a limited number of
outputs in unit time. The Gi, as well as the devices D j served
by the network, are assumed to have no knowledge of the
network state (i.e., the number and location of messages in
the system). The latter constraint can be expected to hold for
large N, where device limitations make it difficult to
distribute such information rapidly.

Proposition 1
Suppose i) that W, is composed of a set of devices G, each of
which can accept no more than VI inputs and produce no
more than Vz outputs in a given cycle, where it is assumed
that an input is lost if not accepted. Suppose also ii) that the
Gi as well as the D, have no information concerning the
network state, and finally iii) that all messages reach their
destinations. Then there exists a set of paths in W,, one for
each (Di , 0,) pair, such that the average number of G,
encountered on a path in this set is at least log,, N (for
simplicity, it is assumed that log,, N is an integer).

Proof Each device D, must transmit its request sij to at
least one device G, which is guaranteed to have no more
than (VI - 1) other inputs in this cycle. But Di has by
assumption no information concerning other messages
which may be transmitted to Gk. Thus, each such G, must
have a potential input from at most a total of VI devices, so
that, for each destination Dj, there exists a path from each Dj
on which each intermediate node G, can receive a message
from at most VI devices. Suppose only the shortest such
paths from each Di to a given D, are considered. These paths
form a tree, rooted at D,, with an average path length (in
terms of devices) no smaller than log,, N . To see that this is
so, note that logvl N is the path length in a balanced tree
which contains one path from each origin. This balanced
tree produces a minimum average depth If the tree were not
balanced, exchange of a leaf at depth less than logvl N with a
subtree at greater depth reduces the average path length. 0

The above result concerns the average path length, where
this average is taken over the paths. If the traffic is
nonuniform, device pairs whose interactions occur with
more than average frequency can be placed “closer” within
the network, so that the path length averaged over the
messages sjj (as opposed to the paths) need not necessarily
grow as log N. This, however, requires substantial traffic
nonuniformity.

Network performance can also be improved by reducing
traffic congestion. Such congestion, and thus the expected
delay in transmission for a message sij, can be decreased if
messages with the same destination can be combined within
the network, for example via the use of Fetch-and-Adds [11.

IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987 P. A. FRANASZEK

124

N = 512
0.8187
0.1638
0.0164
0.0015

(a)

N = 512

N = 1024
0.8187
0.1637
0.0136
0.004

(a) P(N,) for N = 512 and N = 1024 with p = 0 .2 ; (b) P(NJN,) for
N, = Nl2andN = 512 withp = 0 .2 .

This possibility is discussed in Section 4 and in the
Appendix.

An alternative approach to shortening the average path
length, suggested by Proposition 1 , is to provide potentially
more than one path between each origin-destination pair.
Here transmission on an individual path may be
unsuccessful due to a violation of the VI input constraint, so
that the effective path length is a function of the
instantaneous traffic. Such multipath networks are studied
below, first under the assumption that no state information
is made available to the G, and Dk, then given limited
information (e.& acknowledgment of successful
transmission). Let N,(j) be the number of messages
initiated to D, in a given cycle. Suppose it is known that
N,(j) is bounded by some value less than N. The above
discussion suggests that one may then construct a network
with shorter path lengths than would be required without
this bound. One approach to the overall design is to combine
several subnetworks, each appropriate for a particular value
of N,(j). The resulting performance will then depend on
the traffic statistics as well as the available hardware.

Request statistics
Two models for the request traffic are considered. In the
first, each device D, can present a request in a given cycle t ,
with probability p , and the request is to any E, with equal
probability. The second model includes a restriction that
each device have no more than one outstanding request.
This could correspond to a system in which the (Di) are
processors requesting lines or pages from a common
distributed memory. Here, given a page or line fault, the
requesting processor is halted until the underlying operation
(i.e., a fetch or a send) is completed.

Suppose the {Oil are a set of processors which access the
network for line fetches due to cache faults and for line
sends. Suppose further that there is on average less than one
line send for each fault, as is generally the case for a machine
with a write-in cache. The network cycle is assumed to be no
longer than half of a full processor cycle, so that p is upper-
bounded by the cache fault probability. For simplicity, it is
assumed that p 5 0.2, which represents a rather large value
in this context. Note that p may be decreased by decreasing
the network cycle time, e.g., by increasing the path width of

The probability that there are NJi) requests for the ith
resource in the first model is given by the following binomial
distribution:

WI.

Note that {P[N,]/P[N, - 1 1) is an increasing function ofp:

Figure 2(a) shows P[Nr] for N = 5 12 and 1024, with
p = 0.2. Note that P[N, = 01 and P[N, = 1 1 vary slowly with
N. Increasing N from 5 12 to 1024 changes these quantities
only slightly. This, as will be seen, means that the expected
performance of the networks discussed below will vary little
as N is increased.

We now consider the steady-state probabilities for N, given
that each D, has only one pending request sij. There are N
potential requestors, of which N, have requests pending.
Suppose that on the average it takes u cycles to complete the
servicing of a request. Then, in the steady state,

so that

Ifp = 0.2 and u = 5 , then N, = N/2. The request probability
for Nr, given that N, potential requestors are occupied, is
given by

Figure 2(b) shows values of P[N, I N,] for N, = N/2, p =
0.2, and N = 5 12.

A hardware model
As mentioned above, the W, network is composed of a set of
devices G, whose capabilities are intended to model the
speed and fanout restrictions of the hardware. Specifically,
each G, accepts no more than VI inputs and produces no

P. A. FRANASZEK IBM 1. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

more than V, outputs with a delay of "a few" cycles. A set of
such devices is described below. This device set is by no
means exhaustive: Other devices may be formulated which
plausibly have comparable performance. Thus the results
should not be regarded as absolute proofs of optimal
structures, but rather as indications of directions for system
design.

The device types are as listed below and illustrated in
Figure 3.

1. Network input node. One such node is associated with
each Di. It is assumed that it can produce V, 5 log, N
simultaneous outputs (these are multiple copies of a
control message si,) in a given cycle. This avoids the need
to define a special node for the purpose of replicating
messages.

2. Network output node. One such node is associated with
each Di. It accepts messages si, from W,. One such
message is accepted in each cycle.

3. Single-output bus (SO-bus). This has 2 5 V, I N inputs
and produces, with a delay of Z , cycles, a single output
whose value is either 0 (if there is no message or a
collision) or si, (if si, is the single input). That is, it accepts
only the case of VI = 1. Unlike a standard collision bus,
this has no collision sensing by the input devices, as this
would violate the fanout restriction V,.

4. Contention-resolution node. This accepts up to two
inputs (if internal storage is available). It puts out one
output with delay Z , and the next with delay 2 2 ,
(provided that storage is available at the destination). The
storage restrictions imply the existence of input and
output control lines which are not shown in Figure 3.

5. Routing node. This operates similarly to a contention-
resolution node, but can emit two outputs simultaneously
(one to each destination).

A horizontally partitioned N X N collision crossbar
(defined in Section 2) provides an approximation to an
idealized single-output bus for each of its N output lines. The
Z , delay here corresponds to a) transmission of the address
to the appropriate chip(s), which establishes the desired path,
b) setting the crosspoint, and c) transmission of the signal.
The delay associated with a) and c) is essentially
proportional to the inverse of the signal path width, which
can be increased as necessary.

Delays associated with contention-resolution nodes may
also be decreased by increasing the path width. Here the
lower limit to Z, is due to such delays as those required for
checking control lines and performing contention resolution,
in addition to housekeeping functions such as the local
storage and retrieval of messages and the setting of control
lines to preceding nodes. The result is that the delay Z, may
not be vastly different from 2,.

t
Delay Z2

Network devices, where (a) is an input node to a network, (b) is an
output node, (c) is an SO-bus, (d) is a contention-resolution node,
and (e) is a routing node.

Network optimization
Let X n (j) denote the set of requestors to a particular D, in
the cycle t,. The following discussion restricts attention to a
single D,, and X , (j) is represented simply as X,. Consider a
message si, E X,,. The lower bound on the time required for
si, to reach D, is that required for the first member of X,, to
reach D,, given that this message encounters no delays due
to messages which are not in X,, which is equivalent to the
case where W, is otherwise empty. Let this time be denoted
by $(X,), or +(X), since it is assumed that the network is
time-invariant. The quantity

C$(X)P(X) = 4 (6)

is then a lower bound for the expected delay. This section 125

IBM J. RES, DEVELOP. VOL. 31 NO. I JANUARY 1987 P. A. FRANASZEK

1 The original network (a), altered as shown at (b).

considers the problem of structuring a network so as to
minimize $ subject to the constraint that it must be capable
of resolving (that is, accepting and successfully transmitting)
any X.

A message si, is presented to W, at one or more entry
points each of which is an SO-bus, a contention-resolution
node, or a routing node. Note that W, must resolve the case
of I XI = N, that is, the case where all D, transmit to 0, in a
given cycle. Thus, each si, must be presented to at least one
entry point which is not an SO-bus, so that there are at least
Nf2 contention-resolution or routing nodes to provide entry
points.

Similar arguments lead to the conclusion that each si, has
at least one path from D, to D, which does not include an
SO-bus. That is (corresponding to Proposition l), there is a
path tree leading to D, composed of contention-resolution
and routing nodes. This tree is of average depth no smaller
than log, N. Note that the node immediately preceding the
D, network output node is not an SO-bus. The subnetwork
being considered here has just one such node, so without loss

126 of generality this may be assumed to be a contention-

P. A. FRANASZEK

f

A configuration with an SO-bus.

." """ " "., -." -

resolution node. Let Net, and Net, be the two subnetworks
whose outputs are inputs to this node, as illustrated in
Figure 4.

Proposition 2
Suppose neither Net, nor Net, contains an SO-bus. Then, if

1.p 5 0.2

and

2. Z, 5 Z,(log,N - 2),

$ may be reduced by modifying the network so that there is
an additional contention-resolution node, immediately
before the output node, whose inputs are (a) the output from
an SO-bus with VI = N (i.e., all si,) and (b) the original
contention-resolution node, as shown in Figure 4. That is,
under the above conditions, it pays to have an SO-bus in the
system.

Proof A lower bound for the time required to resolve
I X I = 1 in the original network is 2, log, N (corresponding
to a balanced contention-resolution tree). Introducing the
change reduces the delay for I XI = 1 by (Z , log,N - Z, -
Z,) 2 2,. The delay for I XI > 1 is increased by Z,. But with
p50.2,p(lXI = l)>p(IXI > 1). 17

Proposition 3
Suppose p , Z,, and Z, are as in Proposition 2. Then
minimizing the delay for 1 X I = 1 requires that there be an

IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

SO-bus whose output is an input to the final contention-
resolution node leading to 0,.

Proof Proposition 2 indicates that the minimum delay
configuration for I X I = 1 includes an SO-bus. Suppose the
optimal (for I XI = 1) configuration is as in Figure 5,
containing an SO-bus with V direct inputs. Then the delay
for the SO-bus is greater than for Net,,, Net,,-,,
Otherwise V could be increased to include the I X I = 1
inputs resolved by these networks, since for I XI = 1 the
SO-bus performance is independent of V. But V (those
1 X I = 1 resolved by the bus) must be greater than the
number resolved by Net,,, Net,,-,, . . . , as otherwise the bus
could be replaced by a subnetwork of that form, which is
faster. But this implies that exchanging the location of the
SO-bus with a network Net, at lower depth decreases the
expected delay for I XI = 1. 0

Proposition 4
Suppose p, Z , , Z , are as in Proposition 2, and that
Z , = KZ,, where K is an integer. Then the lower bound on
the expected delay $ is

Proof The delay for I XI > 1 is trivially no lower than Z,.
The lower bound for I XI = 1 is obtained via the
configuration of Proposition 3. At most (2k /N) of the
1 X I = 1 requests do not use the SO-bus, and the delay for
these is at least 22, . 0

The above bound is very loose, especially for K small.
However, as is shown below, it is sufficient to indicate that a
particular configuration is reasonably close to optimal.

Proposition 5
Let p, Z , , Z , be as in Proposition 2. Now consider the
network shown in Figure 6, consisting of an SO-bus with
V 5 N inputs and a balanced tree of contention-resolution
nodes, both of whose outputs lead to a final contention-
resolution node. For this configuration, V = N is optimal.

Proof The SO-bus resolves a member of 1 X I if it receives a
single input, with a probability which is denoted as Pr(V).
For V s N,

But[l +(l /V)] [l - (P / N)] > 1 f o r p ~ 0 . 2 a n d 15 V I N .
Hence, the probability of I VI = 1 (i.e., the probability that

*
N t t t t N

I A multipath network.

the SO-bus has exactly one input) is maximized if
V = N . 0

Consider the network shown in Figure 6. It will now be
shown that for the range of parameters given here, this
network is reasonably close to optimal. The delay $ for this
configuration is

$ = P(lX1 = 1 I X > O)(Z, + Z,)

+ P(lXl > 1 IX>O)(l +log,N)(Z,). (8)

Suppose N = 5 12 and p = 0.2; then, using the bound for
of Proposition 4, one can obtain the following:

a. If Z , = Z,, 1.5.
b. If Z , , = 3Z2, $/$,in C 1.25.

Moreover, decreases as p decreases [as a consequence
of Equation (2)] . The bound for qmin is rather loose, which
suggests that this configuration should provide good
performance for p 2 0.2. If p > 0.2, it might be desirable to
introduce additional SO-buses so that, for example, I X I = 2
could be resolved in a substantial fraction of the time.

Retransmission
It was assumed above that no state information (i.e.$
information relating to the location and number of messages
in the network) is distributed. However, it may often be
feasible to provide limited information by means such as
additional circuitry, which, with some delay, informs the
requestor of a collision on a particular path. Alternatively,
successful transmissions could be acknowledged. Lack of
such acknowledgment would then trigger retransmission,
possibly on an alternate path. Potential advantages include

IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987 P. A. FRANASZEK

Retransmission node

Delay Z3

+-&
Transmission at times r,,, ro + Z3

x,
Transmissions at ro + 2Z3

contention-resolution
Additional

A network W, and its retransmission version W!

a. The elimination of duplicate messages. Such duplicates
could be removed by various means at the destination,
but this would lead to added complexity.

included in the above analysis.
b. Reduction of traffic delays due to congestion, not

128

P. A. FRANASZEK

Suppose retransmission is included. How then should one
design a network? It is shown below that the lower bound for
the transmission delay J. obtained in the previous section is
close to that for networks with retransmission (if the time
interval between successive transmissions is no less than for
a contention-resolution node). This suggests a
straightforward modification of the structure shown in
Figure 6 , the performance of which (in relation to
remains close to optimal.

Let J. be, as above, the delay experienced on the average
by the first si, E X to reach its destination, given that the set
X of simultaneous requests comprise the only messages in
W,. It is convenient to introduce what is termed a
retransmission node. This has a single input and output, and
a delay 2, corresponding to the time between
retransmissions, where it is assumed that Z3 is greater than
the cycle time of W,.

A network W, is then composed of SO-buses and of nodes
which perform contention resolution, routing, and
retransmission. Consider a particular device Di and a control
message sij. This message will be transmitted at times
t , , t2, . . ., t,, where t , is the first transmission that is
guaranteed to succeed (either because of acknowledgment or
because its path consists entirely of, say, contention-
resolution devices, which accept all inputs). The sequence
{ti j , of which t , , t,, . . . , t , is a prefix, is independent of the
network state, so that it can be considered fixed.

Each member of a set X has its retransmissions occur at
times which are dependent only on whether transmission is
successful. That is, X determines only the point at which
each retransmission schedule stops. Let X i be that subset of
X which is retransmitted on the qth cycle, that is, at (to + q).
Note that the cycle is assumed for convenience to be of unit
length. Let Net, be the subnetwork of W, on which X i is
transmitted. A new network W : can be obtained from W, by
linking the outputs of Net, by a contention-resolution tree, as
shown in Figure 7. Each X i then travels through at most
(q + 1) additional contention-resolution nodes when
compared to the corresponding path in W,. It also traverses
V retransmission nodes. A path in W : is longer than that in
W, by some number of additional contention-resolution
nodes. But if Z , < 1 (the network cycle time), removing the
retransmission nodes produces a network with no
retransmission with a value of J. within Z, of that for W,.
We then have the following.

Proposition 6
If Z2 is no greater than the cycle time of the network, then
for every retransmission network W,, there is a network with
no retransmissions W : whose delay J.' 5 J. + Z,.

Consider the network of Figure 6. Suppose all requestors
in a given cycle attempt transmission over the SO-bus, and
(given lack of acknowledgment), retransmit over a
contention-resolution tree. The increment to J. due to

IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY I 987

retransmission is P(I X I > 1 I X > O)Z,, which for p 5 0.2
implies an additional delay of less than ten percent, so that
this configuration should yield reasonably good performance. L,

Note that the property of retransmission networks given
by Proposition 6 is for the special case where retransmission
is based solely on information equivalent to the lack of L*

acknowledgment. Here the retransmission schedule for each
input is essentially independent of X, which only determines
the schedule termination. This is quite different from the
situation in, for example, a bus with collision detection,
where knowledge of X can influence the times at which
retransmission is attempted. This dependency of the
transmission schedules on X precludes a straightforward L,

equivalent network with no retransmission.

L,

d = O d = 1 d = 2

Design alternatives
If N is large, say on the order of several hundred, then a
separate contention-resolution tree leading to each D, may
be impractical. An alternative is to employ an arbitration
structure of complexity less than N2, for example a delta
network (2, 3), whose complexity is O(N1ogN). For
N = 5 12, this yields a reduction of the number of nodes by a
factor of more than fifty. An example of a delta network
based on shuffle-exchange interconnections (4, 3) is shown in
Figure 8. An interesting property of such networks is that the
connections between stages d and d + 1 are the same for all
d < D, the maximum depth, which is potentially
advantageous for a modular implementation of the
hardware.

of a delta network for N contention-resolution trees is,
however, obtained at the expense of blocking. Here the
reduction in traffic due to retransmission is especially
important, but may not fully alleviate the problem if traffic
is not uniform. Heavy demand to one port can, for example,
lead to blocking of the network subtree that has this node as
the root. This result, due to Pfister and Norton [9], was
motivated by their investigation of delta networks as the
transport mechanism between processors and memories, but
their conclusions also apply here. A further finding of theirs
is that the Fetch-and-Add architecture proposed by the NYU
Ultracomputer project [I] provides an effective though
expensive solution to this problem via the combining of
messages. It is shown below that this is also potentially the
case here. The Appendix describes the use of message
combining in the control of a crossbar network.

It was observed above that if the traffic load is low, the
average path length can be shortened by including paths
which successfully transmit a message only in the case of
limited contention. Attention was restricted to the case
where a short path is available for I X 1 = 1, but additional
SO-buses could be included (with limited input) to resolve,
say, 1 XI = 2 with high probability. Given limited state
information, it is necessary to provide paths which are

The reduction in complexity from O(N2) via substitution

collision-free, since it is not feasible to incorporate standard
contention-resolution methods, which generally include such
features as exclusion of new traffic during contention-
resolution cycles (and thus require notification of potential
requestors). In the above treatment, such paths were
provided by multistage networks (composed of routing and
contention-resolution nodes), but other possibilities exist,
including networks (such as crossbars with contention
resolution), where such resolution is separate from message
transmission. Alternatively, it may be feasible to design
structures where state information is made available (with
delay) to the set of requestors under high-traffic conditions.

4. Interconnection of processors and memories
The notions developed above are illustrated here by
considering a processor-memory interconnection system. Let
ID,) be a set of N processors, each with an associated
memory module. It is assumed that the network supports
actions of two kinds:

1. Requests by a device D, for a specific line or page from a

2. Requests by a D, for permission to transmit a specific
memory module associated with 0, .

number B of bytes to 0,.

It is assumed that each D, has no more than one
unacknowledged request pending.

The requirements imposed on W, by the single-resource
constraint are now considered. Suppose that D, wishes to
obtain a line from 0, . This requires resources which include
a transmission port at D, and a reception port at D,. These
are also the resources necessary if D, wishes to transmit some
number of bytes to D,. But the former operation is under the 129

IBM J . RES. DEVELOP. VOL. 31 NO. I JANUARY 1987 P. A. FRANASZEK

f Contention crossbar Cr, Return crossbar Cr2

1 q-b Delta network

f Request crossbar C, Return crossbar C,

w2 i
I c I

Crossbar network with hierarchical control

control of D, and the latter is controlled by D,. It follows that
there must be two sets of such ports, such as may be
obtained by two double-sided crossbars, as shown in Figure
9.

The control network W, might be comprised of a
contention crossbar (each column of which is an SO-bus), a
one-way delta network for contention resolution, and a
noncontention crossbar for acknowledgments, as shown in
Figure 9. This may be viewed as providing a two-level path
hierarchy. Operation for data fetches and stores could be as
follows:

1. Request for data by D, from 0,.
Here a control message s,, is transmitted on W,,
specifying the address of the desired line. The initial
transmission is on the SO-bus whose output leads to 0,.
To accomplish this, D, selects and sets the appropriate
crosspoint(s) in Cr,, then transmits the message. If
transmission is successful, D, immediately returns an
acknowledgment on Cr2. There is no contention on C,,
due to the constraint that each Di has at most one
outstanding request s,,. If D, does not receive an
acknowledgment, it retransmits on the delta network
(perhaps after again attempting to use the path on Crl).
Once s,, amves at D,, this device retrieves the appropriate
data from memory, then returns it on C,. Note that

delays associated with setting the appropriate
crosspoint(s) in C,, can be overlapped with memory
latencies.

2. Request for permission to transmit data from D, and 0,.
A control message is transmitted by D, on W, asking for a
reservation (i.e., one or more time slots) for transmitting
data on Cr3. The reservation is returned on Cr4, which
then permits D, to transmit on Cr3.

A variety of alternative designs for W, are possible, as
discussed in Section 3. That shown in Figure 9 has the
advantage that it can be modified so as to illustrate two
approaches to shortening the average transmission delay:
multiple (i.e., hierarchical) paths and combining. Combining
of control messages via Fetch-and-Adds, as described in the
Appendix, may be viewed as a means for alleviating
blockage in the delta network resulting from heavy demand
for resources controlled by a small subset of the controllers
(note that this does not alleviate the load on W,).

configuration shown in Figure 9 by replacing the one-way
delta network with a two-directional network that permits
combining and decombining. Requests for permission to
transmit data would result in the return, as described in the
Appendix, of reservation for using the desired path in W,.
Fetch requests, however, are not directly combinable. One
possibility here would be to have them be of the form (data
line requested; time). Two or more requests could then be
combined into a data line request (for the highest-priority
D,) and a time at which the other requests could be
transmitted to D, on Cr3. A request could then travel on any
of a variety of paths: the SO-bus given no collision and the
delta network otherwise for the forward path, with those
requests that resulted in combining resulting in use of the
return paths of the delta network.

increases the cost and complexity of the hardware, so that it
is unlikely to be an attractive option unless it is in any event
required to prevent serialization delays for access to
systemwide shared variables, the original motivation for such
combining. Here the reservation times for switch output
ports can be viewed as simply another set of shared
variables. The hierarchical or multipath approach to
construction of the control network is then a means for
speeding access to all such variables, not merely those
associated with transmission.

Fetch-and-Add control may be incorporated in the

The incorporation of Fetch-and-Adds substantially

5. Discussion and conclusion
This paper has considered a class of networks characterized
by a) separation of data transport from control so as to
permit control messages to flow over a lightly loaded W,
subnetwork and b) a data subnetwork W, configured so that
its resources could be allocated by a set of independently
acting controllers. The question of minimal expected path

P. A. FRANASZEK IBM J . RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

length in W, was studied for the case in which no state
information is available to the network components. Two
ways of reducing transmission delays given uniform traffic
were considered: the use of combining (such as by
Fetch-and-Add instructions), and the notion of multiple
paths. It was shown, for a simple model of the traffic, that
the use of multiple paths has the effect that the overall
network speed is close to that of its fastest component. The
notion of multiple paths and combining instructions was
illustrated via an example of a processor-memory
interconnection network.

Appendix: Fetch-and-Add switch control
Consider a double-sided crossbar with output ports L, at
each D,, k = I , 2, . . ., N . Suppose D, requests permission to
transmit to D, for a period of time of length T,. Let Y, be a
delay parameter associated with L,, where Y, denotes the
time after which L, becomes free to accept new
transmissions. Granting D, its request increases Y, to
cy, + T,).

This corresponds to the definition of Fetch-and-Add.
Specifically, a Fetch-and-Add to a variable a with parameter
p, which is denoted as FA(a, p) , has the effect that

1. The value of a is incremented by 0.
2. The original value of a is returned.

Thus FA(Y,, T,) would return Y,, the time at which L, is
free, and increment Y, by T,, the time required for
transmission. That is, the requestor would be granted a
reservation for use of L,. Unlike the usual application of FA,
however, a reservation is useless unless it reaches the
requestor before expiration. Thus it is necessary to
incorporate some estimate of the return delay. Note that this
estimate need only be of sufficient accuracy so as not to
waste an appreciable percentage of the available reserved
bandwidth.

The control of a crossbar via use of a combining network
is illustrated via an example. Consider the network shown in
Figure 8. Suppose that D, and D,, respectively, issue
instructions FA(Y , , 1) and FA(Y , , 2). These could be
represented in the network, respectively, as tuples
(D,, n,, t,, Y , , 1) and (D,, n,, t,, Y , , I) , where the
components are, respectively, the identity of the originating
node, a parameter to be used in the combining process, the
time at which the request is made, Y,, and a,. The two
requests would intersect at node a7, where they might be
combined into the tuple [a,, n7, min(t,, t,), Y , , 31, and the
original tuples stored for use in the decombining process.
Suppose Y, = 6. The combined tuple could then be
processed to produce a tuple [a,, n,, (6 + b)] , which would
be returned to a,. Y , would then be changed to (9 + b). Here
b is an increment which could be used to account for the
expected delay on the return path, obtained, for example, by

comparing min(t,, 1,) with the time of amval. Node a, could
then use the parameter n7 to obtain correspondence with the
original requests, which would then be processed to obtain,
say, [D,, n,, (6 + b)] and [D,, n,, (7 + b)] , indicating that D,
can transmit its message of duration 1 at time (6 + b) and
D, its message of duration 2 at time (7 + b).

References
I .

2.

3.

4.

5.

6.

7.

8.

9.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L.
Rudolph, and M. Snir, “The NYU Ultracomputer. . . Designing
a MIMD, Shared Memory Parallel Machine,” IEEE Trans.
Computers C-32, 175-189 (February 1983).
J. H. Patel, “Performance of Processor-Memory Interconnections
for Multiprocessors,” IEEE Trans. Computers C-30, No. 10,
771-780 (October 1981).
D. M. Dias and J. R. Jump, “Analysis and Simulation of Buffered
Data Networks.” IEEE Trans. Computers C-30, No. 4, 273-282
(April 198 I).
H. S. Stone. “Parallel Processing with the Perfect Shuffle.” IEEE
Trans. ComputersC-30, No. 2,-153-161 (February 1981).
R. H. Kuhn and D. A. Padua, Eds., Tutorial on Parallel
Processing, IEEE Computer Society presentation, 1981, pp.

G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J.
Kleinfelder, K. P. McAuliffe, E. A. Melton, V. A. Norton, and J.
Weiss, “The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture,” Proceedings of I985
International Conference on Parallel Processing, pp. 764-769.
C. J. Georgiou, “Fault-Tolerant Crosspoint Switching Networks,”
Research Report RC-10446, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, 1984; Proc. Int. Conf Fault-Tol.
Computers FTS-14,245-249 (June 1984).
P. A. Franaszek and J. T. Robinson, “Limitations of Concurrency
in Transaction Processing,” Research Report RC-10151, IBM
Thomas J. Watson Research Center, Yorktown Heights, N Y ,
1983; to appear in ACM Trans. on Data Base Syst.
G. P. Pfister anbd V. A. Norton, “ ‘Hot Spot’ Contention and
Combining in Multistage Interconnection Networks,”
Proceedings of 1985 Conference on Parallel Processing, pp. 190-
795.

168-177.

Received January 22, 1985; accepted for publication August
26, 1986

Peter A. Franaszek IBM Thomas J. Watson Research Center,
P.O. Box 704, Yorktown Heights, New York 10598. Dr. Franaszek is
manager of the Advanced System Structures and Analysis group in
the Computer Sciences Department at the Thomas J. Watson
Research Center. His interests include analytical problems associated
with storage hierarchies, computer organization, magnetic recording,
and digital communications. He received his B.Sc. degree from
Brown University, Providence, Rhode Island, in 1962, and the M.A.
and Ph.D. degrees from Princeton University in 1964 and 1965.
During the academic year 1973- 1974, he was on sabbatical leave at
Stanford University as a Consulting Associate Professor of Electrical
Engineering and Computer Science. Prior to joining IBM in 1968,
he was a member of the technical staff at Bell Telephone
Laboratories. Dr. Franaszek is a member of the Institute of Electrical
and Electronics Engineers, Sigma Xi, and Tau Beta Pi.

131

‘RANASZEK IBM J . RES. I IEVELOP. VOL. 31 NO I J ANUARY 1987 P. A. I

