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A brief introduction to a computer graphics
characterization of cancer DNA sequences, as
well as other biologically interesting sequences,
is presented. The procedure described takes
DNA sequences containing n bases and
computes n two-dimensional real vectors. When
displayed on a planar unit-cellular lattice, these
characteristic patterns appear as a “DNA
vectorgram,” C(n). Several demonstration plots
are provided which indicate that C(n) is
sensitive to certain statistical properties of the
sequence of bases and allows the human
observer to visually detect some important
sequence structural properties and patterns not
easily captured by traditional methods. The
system presented has as its primary focus the
fast characterization of the progression of
sequence data using an interactive graphics
system with several controlling parameters.
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Introduction

DNA contains the basic genetic information of all living
cells. The sequences of bases of DNA (adenine, cytosine,
guanine, and thymine—A, C, G, and T) may hold
information concerning protein synthesis as well as a variety
of regulatory signals. For example, specific A/T-rich regions
are thought to be codes for beginning transcription. In
addition, certain specific viral sequences elicit cancerous
changes in cells in artificial media and in animals. Although
the genes implicated in the development of cancer were first
observed in work with viruses, many of these genes have
now been found to be part of the normal cell’s genome as
well [1].

In addition to containing such regulatory codes and
tumor-promoting codes [1], DNA base sequence and
composition are often correlated with physical properties of
the DNA. For example, the melting temperature is related to
the mole fraction of triple-bonded G/C in the DNA, and the
melting transition of synthetic DNAs with regularly
alternating sequences is quite sharp [2]. An interesting and
common feature of eucaryotic DNA is the presence of
tandem as well as interspersed base-sequence repeats
throughout the genome (for references, see [3]). These
repeating units range in size from dinucleotide repeats to
longer interspersed sequences, for example, large sequences 111
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The mapping of the digit strings onto characteristic two-dimensional
patterns traced out on a cellular lattice of cell length L.

known as “ALU sequences” found in higher organisms [3].
Finally, processes of DNA rearrangement and recombination
and a variety of topological and conformational changes are
all affected by the specific sequence of bases in DNA [4].

Fairly detailed comparisons between DNA sequences are
useful and can be achieved by a variety of brute-force
statistical computations [2, 5], but sometimes at a cost of the
loss of an intuitive feeling for the structures. Differences
between sequences may obscure the similarities. Even
determining whether a particular sequence is random is
curiously difficult. The best that can be done is to specify
certain tests for types of randomness and then to call a
sequence random to the degree that it passes them. For
example, for DNA one can insist that each base occur with
frequency 1/4. Of course, this does not test for the spatial
progression of the bases—and permutations of bases taken
two at a time, three at a time, - - -, n at a time must also be
checked. The importance of “randomness” in studying
sequence data (and in understanding implications for
evolution) is discussed in [6, 7]. The approach described in
this paper provides a method for simply representing and
comparing random and DNA sequences in such a way that
several sequence features may be detected by the analyst’s
eye.

Among the methods available for biomolecule
characterization (for both protein and nucleic-acid
sequences), computer graphics is emerging as an important
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tool [8]. Since the characterization of DNA base content,
periodicity and both long-range and nearest-neighbor
sequence data are currently active areas of research [3, 9]. I
introduce a computer graphics characterization of nucleic-
acid sequences which is sensitive to the patterns in the
progression of the bases. This method involves the
conversion of the DNA sequence to binary data and
subsequent mapping of the data to a two-dimensional
pattern on a cellular lattice. I have previously discussed
mapping of genetic information to a binary waveform—with
analyses analogous to those used in electronic signal
processing [9].

Motivation and method

o Lattice transformution

For the examples in this paper, triple-bonded bases (G/C)
are differentiated from double-bonded bases (A/T) by
assigning nucleotide input values as follows: G=1,C = |,
A =0, T = 0. Since the sequences generated by this means
are strings of Os and 1s, the human observer may find
difficulty in distinguishing different sequences. A technique
which has proved useful in overcoming this drawback
involves the transformation of the digit strings into
characteristic two-dimensional patterns traced out on a unit-
cellular lattice. This approach was invented by D. H. Green,
who applied it to shift registers of digital computers [10], and
the simple conversion pattern I use follows that of Green, as
shown in Figure 1. Three digits at a time are inspected and
assigned a direction of movement over a cellular lattice.
Therefore, each of the three-digit combinations causes a
vector to be drawn from a point on the lattice to one of the
eight points immediately adjacent, in accord with the coding
system shown. This procedure is repeated using serial
overlapping windows of length three, and therefore a pattern
characteristic of the DNA sequence is drawn on the lattice.
Three-digit windows are used because the subsequent eight
directions are easily represented on a tightly packed 2D unit-
cellular lattice (two-digit windows give four directions on a
tightly packed lattice but yield patterns that are visually less
rich), and because the genetic sequence is often organized in
terms of triplets (“codons”). Other mapping schemes,
however, can be imagined and yield useful patterns, as
discussed in the Conclusions section.

e Net movement

When this approach is used, sequences with a predominance
of repeating Gs or Cs, for example, show a net movement
along the right lower diagonal. In general, sequences with
high G/C content show a downward tendency. When the
transformation diagrammed in Figure 1 is used—if for each
combination of three bases found in the sequence there
exists at some other region another combination which is the
logical inverse (e.g., G and A interchanged; 010 vs. 101),
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then the net movement is zero. Therefore, it is possible for
the trace to return to the initial point. Figure 2 is an example
for a repeating sequence. As would be expected, various
common short-sequence control elements in the DNA each
give signature patterns (for examples of such control codes,
such as the Pribnow box and CAT box, see [11]).

e Random DNA strings

In order to fully appreciate and utilize the DNA
vectorgrams, it is necessary to digress and review the
implications of vectorgram application to a random bit
string. For a random walk on a plane we can estimate the
most probable distance (R) traveled by a particle after N
equal steps by

R =LVN, (1

where L is the length of each straight track walked [12). For
our lattice, L is not constant, due to the diagonals, and this
formula therefore cannot be applied. In order to derive the
appropriate equation, one may use either the results of many
random-walk experiments on the lattice or probability
theory. Dr. S. H. Biyani of IBM East Fishkill, in unpublished
work, has produced a derivation based in part on the Central
Limit Theorem [13] and on the fact that when the x and y
components of a distance have a Gaussian distribution, the
distance has a Rayleigh distribution. Both the random-walk
experiments and the theoretical method yield

R = 1.085LVN, ()]

where L is the lattice grid spacing. I will refer to R as the
“expected” distance. When large numbers of random test
DNAs were entered into the system, this approximation was
found to be excellent. I introduce a lattice-persistence
parameter p, useful for comparing DNA vectorgrams:

p = D/R, (3)

where D is the actual measured distance between the DNA
termini on the lattice, and R is the distance expected for a
random sequence, given in Equation (2). For random
sequences, p = 1.

o DNA vectorgram plots

In this graphics system, parameters such as the start and stop
base number and the step size L can be entered by the
user—thereby allowing magnification of various regions of
interest. The starting point for all sequences is placed at the
center of the plot, and circles with radius R are
superimposed [Equation (2)] to facilitate comparison of plots
and to suggest deviation from randomness. Since the
sequences are all of different sizes, different scale factors (i.e.,
step sizes) were necessary to fit the vectorgram on the plot,
and these are given in the figure captions. It should be noted
that these figures represent snapshots of a temporal process
whereby a bright light moves on the vector-graphics screen
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z DNA vectorgram computed for the repeating sequence
ﬁ ...GGGGAAGAATACGAGGGGAA.

-

Color DNA vectorgram showing spatial evolution of pattern.

as it progresses along the sequence. This dynamic aspect
helps to orient the viewer and facilitates the detection of
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(a) Random nucleotide-base input sequence (number of bases for this
plot = 30000; grid size L = 0.22). (b) Magnification of a central
region of Figure 4(a). (c) Magnification containing just the first 1000
random bases of Figure 4(a).
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patterns. The user may also request labeling (numbering) of
the sequences at specified intervals. The system reports such
parameters as D, R, p, N, and «. The parameter « is defined
to be the angle between the positive x-axis (the horizontal
axis through the origin of the vectorgram) and a line drawn
between the terminus and the origin. As can be seen, « is
different for different DNAs, although it appears to be
restricted to regions near 90° and 270° for the DNAs tested.
It is also possible to plot a dot matrix representing a
sequence (see below). Color options facilitate the localization
of features of interest [e.g., distinguishing interons and exons
(which are defined in the following section), and portraying
the spatial evolution of patterns for overlapping regions of
the vectorgram] and are suggested when color capability is
available. Figure 3 is an example random-DNA vectorgram
where the color changes every 1000 bases (red, blue, green,
magenta, yellow, cyan).

Demonstrations

Figure 4(a) shows a DNA vectorgram for a random input
sequence. This is useful for comparison with the DNA
sequences to follow, which are visually far from random. As
expected, its R-vector (shown as a circle with radius R) has
roughly the same length as the actual net linear displacement
D along the lattice. Figure 4(b) shows a magnification of a
central region of the plot, and Figure 4(c) shows a
magnification containing just the first 1000 random bases.
Besides the fact that p = 1, note the characteristic closed
bisected diamond shapes frequent in all these figures
computed from random bit strings. “True” DNA (Figures 5,
7-11) apparently travels too “fast” and does not stay in a
lattice region long enough to form these small bisected
diamonds.

Figures 5 and 7-11 show DNA vectorgrams for several
input sequences. Occasionally, regions of obvious periodicity
and other structural features are pointed out to the reader by
ellipses in the figures. An example of the output of the
graphics system for a large DNA sequence is presented in
Figure 5. The calculation was performed for a human
bladder oncogene [10]. Oncogenes have been detected in
tumors representative of each of the major forms of human
cancer, and some have been shown to be able to induce
malignant transformations in certain cell lines. This bladder
carcinoma oncogene is derived from a sequence having
similar structure present in the normal human genome.
Figure 6 is a representation of the same 4150 oncogene bases
where the binary numbers are represented by dots (thus,
e.g., 101011 = .. .)). The sequence progresses from left to
right and from bottom to top. Predictably, it is much easier
to detect trends and patterns in the vectorgrams than by
viewing this simple bitmap of base content en masse.

Figure 5(a) is notable for its extreme p parameter (p = 23).
The vectorgram, far from being random, travels a mostly
downward course indicating strings containing a
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(a) Human bladder oncogene (cancer gene) (p = 23; L= 0.023). (b)
A magnification of the first oncogene exon (109 bases) shown in
Figure 5(a) (p = 2.4; L = 1.75). (c) Magnification of the first 109
(noncoding) bases of the oncogene shown in Figure 5(a) (p = 7.1;
L = 0.70).
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Bitmap for the human bladder cancer gene (1s indicated by dots).

predominance of 1s (011, 101, 111). The most prominent
feature on the map is the “kink”—the global shift of the
direction in C(n)—at about base 1350, and interestingly this
feature corresponds to a biologically important area of the
DNA sequence. Transcriptional control signals for the
synthesis of RNA species are expected to be present in the 5’
noncoding sequence upstream from the initiator codon.

[5’ and 3’ (see below) indicate the directionality of the DNA
sequence and are derived from numbering of the carbons in
the sugar molecules which make up the backbone. They
indicate the polarity of the DNA strands.] Reddy [11]
searched upstream from the initiator codon for sequences
related to the Pribnow box (TATAAA). Two sets were found
(1336-1341, 1415-1421), and the kink in the curve occurs
precisely at this location separating control signals and
“enhancer regions” [11] from the coding groups to follow.

In plants and animals, the vast majority of DNA is never
translated to protein. These stretches of silent DNA are
called “interons.” The coding regions are “exons.” In Figure
5(a), the 4150-base DNA sequence may be thought of as
starting at the center of the paper and running downward
(5’ to 3’ end). Four exons (1670-1779, 2047-2226, 2381~
2540, 3238-3354) are encompassed by small circles. Figure
5(b) is a magnification of the first exon (109 bases), and for
comparison, Figure 5(c) shows the first 109 bases of the
sequence in a noncoding region. Note the different “look™ of

these two functionally different pieces of DNA. 115
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Human somatostatin I gene (p = 2.8; L = 0.90).

A/T-rich spacer region of X. laevis oocyte 58S DNA (p = 7.7;L =
0.35).

Figure 7 is computed for the human somatostatin I gene
(somatostatin is a small neuropeptide and hormone found in
the brain and intestine) [14] and has a trend opposite to that
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of the cancer gene (a = 90° instead of a = 270°). This is due
in part to a significant number of repeating A/Ts. The ellipse
delimits an obvious repeating motif, and other repeats and
long stretches can also be seen in the plot. Figure 8 is
computed for the A/T-rich spacer region of Xenopus laevis
(African toad) oocyte 5S DNA [15]. The periodic runs of
several Ts or As in a row (000), indicated by arrows, can be
clearly seen. This sequence has the second greatest
persistence length of those sequences tested (p = 7.7). The
Harvey and Kirsten strains of murine sarcoma virus have
been isolated from mouse tumors and shown to be capable
of inducing sarcomas and leukemias in mice. Figure 9
represents viral Harvey murine sarcoma DNA, and the
vectorgram clearly shows a downward trend. Three
structurally different regions are made noticeable by the
vectorgram; the two terminal domains are separated by an
intermediate segment with several base repeats of (111)-rich
regions. The lower domain appears to be more random.
Figure 10 is computed for the Kirsten sarcoma virus; it
shows an upward trend with several visually distinct
(0)-regions. Other obvious periodicities are denoted by the
ellipses. Figure 11 is computed for an SV40 (simian virus)
deletion mutant [16], and it contains an interesting handle
(bases 170-200) with three repeating, almost identical hooks
corresponding to tandem repeats in the sequence.

Conclusions

As a result of the proliferation of cancer and noncancer
sequences in the DNA data base, which has been far greater
than ever anticipated [17], it becomes useful to develop tools
to help characterize both small- and very large-scale genetic
information. In this paper, a procedure is described for
taking DNA sequences containing n bases and computing #
two-dimensional real vectors. When displayed on a planar
unit-cellular lattice, these characteristic patterns appear as a
“DNA vectorgram,” C(n). C(n)’s sensitivity to certain
regularities and irregularities in the DNA sequence allows it
to function as a pattern-recognition “device”; this permits
the human observer to visually detect some important
sequence structural properties and patterns not easily
captured by traditional methods. An alternate method used
to capture sequence periodicities is the power-spectrum
approach [3, 9]. However, though this technique can be very
illuminating, in many applications it does have certain
significant drawbacks. For one, power spectra are phase-
insensitive. One nontrivial consequence of this is that very
orderly and random data can, in theory, give rise to similar
spectra [18]. In contrast, vectorgrams employ a
computationally simple and fast algorithm (no Fourier
transform is required, as with conventional techniques) and
assumptions and complicating factors (window size and
windowing effects such as resolution problems and side-lobe
distortion) are minimized. In addition, C(#) does not have
stringent requirements with regard to the number of input
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Viral Harvey murine sarcoma DNA (p = 1.9; L = 0.70). Kirsten sarcoma virus (p = 4.7; L = 0.45).

points, a constraint which often affects numerical stability,
storage requirements, or execution time in traditional
algorithms.

In conclusion, the different DNAs tested produce
different-looking vectorgrams; some “travel” upward along
the lattice, and others downward. As might be expected for
DNA, C(n) is in general not random. Randomness can be
detected from the “look,” the persistence length, and the
presence of bisected diamonds in the lattice. The lattice-
persistence length p is significantly greater than that
determined for random DNA, and it can be as great as 22
for the oncogene or as small as 1.9 for the viral Harvey
murine sarcoma DNA. As demonstrated by the examples,
certain structural features are made evident by the
vectorgrams. For example, interspersed repeats are
manifested by repeating motifs on the lattice, as shown by
the several “hooks” in the SV40 DNA or the periodic runs
in the X. laevis DNA. Interestingly, « is different for different
DNAs, although it appears to be restricted to regions near
90° and 270° for the DNAs tested. Why no DNAs point at 0°
or 180° and whether this generalization holds when more
DNAEs are tested are questions for further studies. One
possibility is already under investigation: In a private
communication, Dr. Marek Kimmel of the Memorial Sloan-
Kettering Cancer Institute has derived mathematical models
which suggest that stochastic Markov correlations between

SV40 deletion mutant (p = 2.0; L = 1.3).

adjacent bases in the DNA string (or any string) may One limitation of the binary system used here is that it
account for the preferred upward and downward trends in does not distinguish between sequences such as ATATATAT
the vectorgram. --- and AAAAAAAA - - -, which have different folding and 117
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bending properties. Also, while certain important
palindromes give rise to characteristic patterns, the binary
method can obscure others. Both of these factors motivate
the study of additional base assignments (see below).

C(n) is useful in two ways: 1) it provides a qualitative and
comparative measure for certain DNA periodicities and
patterns, even for segments of DNA having significantly
differing base content, and 2) it can be used to search with a
single calculation for many pronounced structural features
within one sequence. Since C(n) presents nucleic-acid
sequence data in a way which can be visually interpreted by
the researcher, nucleotide-sequence characterizations are
facilitated. The interactive nature of the research station
allows for the rapid generation of these functions by using
several parameters and magnifications.

This paper should be viewed as introductory because of
the wide variety of DNA parameters which can potentially
be visualized by this method. The exploration of this large
parameter space provides a provocative area for future
research. It may be possible to discover interesting properties
and periodicities in the DNA sequence by having the
program produce many vectorgrams by automatically
iterating through a large number of input parameters and
mappings. In this way, the program may suggest to the
human analyst important features and parameters which
would not even be considered otherwise. The correlation of
resultant features with biological relevance would be the next
necessary area of study.

Finally, other avenues for future research include the
testing of other lattices (e.g., hexagonal), other window sizes
2,4,5,6, --.), other base assignments (e.g., G=1,C =2,
A = 3, T = 4), other sequences, and three-dimensional
lattices. In addition, the extension of the lattice-movement
representation to other disciplines is actively being
investigated; present research includes applications to
“clipped” (binary) speech waveforms and to the syllable
patterns of Shakespeare. The vectorgrams may also be useful
for distinguishing different classes of noise which have
similar traditional spectra. Future studies would also include
variable base assignment within a triplet window. For
example, I have set G = 0 if G is in the first position of the
triplet window, but 1 in the other two positions—with
resultant interesting and conspicuous vectorgram features. It
is hoped that the lattice application introduced here will
provide a useful tool for future representations of nucleic
acid sequences. Recent proposals to sequence the entire
three-billion-base sequence of the human genome [17],
advances in understanding viral sequences that induce
cancer [1, 11] and in understanding the mechanisms by
which oncogenes are activated in tumors [19], recent
improved gene-mapping techniques (with accompanying
proliferation of sequence data), and increasing commercial
interest [20] motivate further assessment of the DNA
vectorgram.
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