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A brief  introduction  to  a  computer  graphics 
characterization  of  cancer DNA sequences,  as 
well as other  biologically  interesting  sequences, 
is presented.  The  procedure  described  takes 
DNA sequences  containing n bases  and 
computes n two-dimensional  real  vectors. When 
displayed  on  a  planar  unit-cellular  lattice,  these 
characteristic  patterns  appear as a “DNA 
vectorgram,” C(n). Several  demonstration plots 
are  provided  which  indicate  that C(n) is 
sensitive to certain statistical properties of the 
sequence  of bases  and  allows  the  human 
observer to visually  detect  some  important 
sequence  structural  properties  and  patterns  not 
easily  captured  by  traditional methods.  The 
system  presented  has  as its primary  focus  the 
fast characterization  of  the  progression  of 
sequence  data  using  an  interactive  graphics 
system  with  several  controlling  parameters. 
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Introduction 
DNA contains the basic  genetic information of  all  living 
cells. The sequences of  bases  of  DNA (adenine, cytosine, 
guanine, and thymine-A, C, G, and T) may  hold 
information concerning protein synthesis as well as a variety 
of regulatory  signals. For example, specific  A/T-rich  regions 
are thought to be codes  for  beginning transcription. In 
addition, certain specific viral  sequences  elicit cancerous 
changes in cells in artificial  media and in animals. Although 
the genes  implicated in the development of cancer were  first 
observed in work  with  viruses,  many  of  these  genes  have 
now  been found to be part of the normal cell’s genome as 
well [ 11. 

In addition to containing such regulatory  codes and 
tumor-promoting codes [ 11, DNA  base  sequence and 
composition are often correlated with  physical properties of 
the DNA. For example, the melting temperature is  related to 
the mole fraction of triple-bonded G/C in the DNA, and the 
melting transition of synthetic DNAs  with  regularly 
alternating sequences  is quite sharp [2].  An interesting and 
common feature of eucaryotic  DNA  is the presence of 
tandem as well as interspersed  base-sequence  repeats 
throughout the genome  (for  references, see [ 31). These 
repeating units range in size from dinucleotide repeats to 
longer  interspersed  sequences, for example,  large  sequences 
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The mapping of the digit strings onto characteristic two-dimensional 
patterns traced out on a cellular lattice of cell length L.  

known as “ALU  sequences” found in higher  organisms [3]. 
Finally,  processes of  DNA rearrangement and recombination 
and a variety of topological and conformational changes are 
all  affected  by the specific  sequence  of  bases in DNA [4]. 

Fairly  detailed comparisons between  DNA  sequences are 
useful and can be achieved by a variety of brute-force 
statistical computations [2, 51, but sometimes at a cost of the 
loss of an intuitive feeling  for the structures. Differences 
between  sequences  may  obscure the similarities.  Even 
determining whether a particular sequence  is random is 
curiously  difficult. The best that can be done is to specify 
certain tests for types of randomness and then to call a 
sequence random to the degree that it  passes them. For 
example,  for  DNA one can  insist that each  base occur with 
frequency 1/4. Of course, this does not test for the spatial 
progression  of the bases-and permutations of  bases taken 
two at a time, three at a time, . . . , n at a time must also  be 
checked. The importance of “randomness” in studying 
sequence data (and in understanding implications for 
evolution) is discussed  in [6 ,  71. The approach described in 
this paper  provides a method for  simply  representing and 
comparing random and DNA  sequences in such a way that 
several  sequence  features  may be detected by the analyst’s 
eye. 

Among the methods available  for  biomolecule 
characterization (for both protein and nucleic-acid 
sequences), computer graphics  is  emerging as an important 112 
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tool [8]. Since the characterization of DNA  base content, 
periodicity and both long-range and nearest-neighbor 
sequence data are currently active areas of research [3,9]. I 
introduce a computer graphics characterization of nucleic- 
acid  sequences  which  is  sensitive to the patterns in the 
progression  of the bases. This method involves the 
conversion  of the DNA  sequence to binary data and 
subsequent mapping of the data to a two-dimensional 
pattern on a cellular lattice. I have  previously  discussed 
mapping of genetic information to a binary waveform-with 
analyses analogous to those used in electronic signal 
processing [9]. 

Motivation  and  method 

Lattice transformution 
For the examples in this paper,  triple-bonded  bases (G/C) 
are differentiated  from double-bonded bases (A/T) by 
assigning nucleotide input values as follows: G = I ,  C = 1, 
A = 0, T = 0. Since the sequences  generated by this means 
are strings  of Os and 1 s, the human observer  may  find 
difficulty in distinguishing  different  sequences. A technique 
which has proved  useful in overcoming this drawback 
involves the transformation of the digit strings into 
characteristic  two-dimensional patterns traced out on a unit- 
cellular lattice. This approach was invented by D. H. Green, 
who applied it to shift  registers  of  digital computers [lo], and 
the simple conversion pattern I use follows that of Green, as 
shown in Figure 1. Three digits at a time are inspected and 
assigned a direction of movement over a cellular  lattice. 
Therefore,  each of the three-digit combinations causes a 
vector to be drawn  from a point on the lattice to one of the 
eight points immediately adjacent, in accord  with the coding 
system  shown. This procedure is  repeated  using  serial 
overlapping  windows  of  length three, and therefore a pattern 
characteristic of the DNA  sequence  is drawn on the lattice. 
Three-digit  windows are used  because the subsequent eight 
directions are easily  represented on a tightly  packed 2D unit- 
cellular lattice (two-digit  windows give four directions on a 
tightly  packed  lattice but yield patterns that are visually  less 
rich), and because the genetic  sequence is often  organized in 
terms of triplets (“codons”). Other mapping schemes, 
however, can be imagined and yield  useful patterns, as 
discussed in the Conclusions section. 

Net  movement 
When this approach is  used,  sequences  with a predominance 
of repeating Gs or Cs, for example, show a net movement 
along the right  lower  diagonal.  In  general,  sequences  with 
high G/C content show a downward tendency. When the 
transformation diagrammed in Figure 1 is used-if for  each 
combination of three bases found in the sequence there 
exists at some other region another combination which  is the 
logical  inverse (e&, G and A interchanged 010 vs. IO]) ,  
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then the net movement is  zero.  Therefore, it is  possible for 
the trace to return to the initial point. Figure 2 is an example 
for a repeating  sequence. As would  be  expected,  various 
common short-sequence control elements in the DNA  each 
give signature patterns (for examples of such control codes, 
such as the Pribnow box and CAT  box, see [ 1 11). 

Random DNA strings 
In order to fully appreciate and utilize the DNA 
vectorgrams, it is  necessary to digress and review the 
implications of vectorgram application to a random bit 
string. For a random walk on a plane we can estimate the 
most  probable distance ( R )  traveled by a particle after N 
equal steps by 

R = L d z ,  (1) 

where L is the length of  each straight track walked [ 121. For 
our lattice, L is not constant, due to the diagonals, and this 
formula therefore cannot be applied. In order to derive the 
appropriate equation, one may use either the results of many 
random-walk experiments on the lattice or probability 
theory.  Dr. S. H. Biyani  of IBM East  Fishkill, in unpublished 
work,  has produced a derivation based in part on the Central 
Limit Theorem [ 131 and on the fact that when the x and y 
components of a distance  have a Gaussian distribution, the 
distance has a Rayleigh distribution. Both the random-walk 
experiments and  the theoretical method yield 

R = ~ . o u L J ~ ,  (2) 

where L is the lattice grid  spacing. I will refer to R as the 
"expected" distance. When  large numbers of random test 
DNAs were entered into th.e. system, this approximation was 
found to be excellent. I introduce a lattice-persistence 
parameter p, useful  for comparing DNA  vectorgrams: 

P = DIR, (3) 

where D is the actual measured distance between the DNA 
termini on the lattice, and R is the distance expected  for a 
random sequence,  given in Equation (2). For random 
sequences, p = 1. 

DNA vectorgram plots 
In this graphics  system, parameters such as the start and stop 
base number and the step size L can be entered by the 
user-thereby allowing  magnification of various regions  of 
interest. The starting point for all  sequences is placed at the 
center of the plot, and circles  with radius R are 
superimposed [Equation (2)] to facilitate comparison of plots 
and to suggest deviation from randomness. Since the 
sequences are all of different  sizes,  different  scale  factors  (i.e., 
step sizes)  were  necessary to fit the vectorgram on the plot, 
and these are given in the figure captions. It should be noted 
that these  figures  represent snapshots of a temporal process 
whereby a bright  light  moves on the vector-graphics  screen 

I DNA vectorgram  computed  for  the  repeating  sequence 
: . . , GGGGAAGAATACGAGGGGAA.. . . 

as  it  progresses along the sequence. This dynamic aspect 
helps to orient the viewer and facilitates the detection of 

IBM J. RES. DEVELOP. VOL. 3 i l  NO. 1 JANUARY 1987 CLIFFORD A. PICKOVER 

113 



a (a) Random nucleotide-base input sequence (number of bases for this 
1 plot = 30000; grid size L = 0.22). (b) Magnification of a central 
ik region of Figure 4(a). (c) Magnification containing just the first 1000 
[ random bases of Figure 4(a). 
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patterns. The user  may  also  request  labeling (numbering) of 
the sequences at specified  intervals. The system reports such 
parameters as D, R,  p, N,  and a. The parameter (Y is defined 
to be the angle  between the positive  x-axis (the horizontal 
axis  through the origin of the vectorgram) and a line drawn 
between the terminus and the origin. As can  be  seen, (Y is 
different  for  different  DNAs, although it appears to be 
restricted to regions near 90” and 270” for the DNAs  tested. 
It  is also  possible to plot a dot matrix representing a 
sequence  (see  below). Color options facilitate the localization 
of features of interest [e.g., distinguishing interons and exons 
(which are defined in the following  section), and portraying 
the spatial evolution of patterns for  overlapping  regions of 
the vectorgram] and are suggested  when color capability  is 
available. Figure 3 is an example random-DNA vectorgram 
where the color changes  every 1000 bases (red, blue,  green, 
magenta,  yellow, cyan). 

Demonstrations 
Figure 4(a) shows a DNA vectorgram  for a random input 
sequence. This is  useful  for comparison with the DNA 
sequences to follow,  which are visually  far from random. As 
expected, its R-vector  (shown  as a circle  with radius R )  has 
roughly the saMe length  as the actual net linear displacement 
D along the lattice. Figure 4(b) shows a magnification of a 
central region  of the plot, and Figure 4(c) shows a 
magnification containing just the first 1000 random bases. 
Besides the fact that p = I ,  note the characteristic  closed 
bisected diamond shapes frequent in all  these  figures 
computed from random bit strings. “True” DNA  (Figures 5, 
7-1 1)  apparently travels too “fast” and does not stay in a 
lattice  region  long enough to form  these small bisected 
diamonds. 

Figures 5 and 7- 1 1 show  DNA  vectorgrams  for  several 
input sequences.  Occasionally,  regions  of  obvious  periodicity 
and other structural features are pointed out to the reader by 
ellipses in the figures.  An example of the output of the 
graphics  system for a large  DNA  sequence  is  presented in 
Figure 5. The calculation was performed  for a human 
bladder  oncogene [ 101. Oncogenes  have  been  detected in 
tumors representative of each  of the major forms of human 
cancer, and some have  been  shown to be  able to induce 
malignant transformations in certain cell  lines. This bladder 
carcinoma oncogene  is  derived  from a sequence  having 
similar structure present in the normal human genome. 
Figure 6 is a representation of the same 4 150 oncogene  bases 
where the binary numbers are represented by dots (thus, 
e.g., 10101 1 = . . ..). The sequence  progresses from left to 
right and from bottom to top. Predictably, it is much easier 
to detect trends and patterns in the vectorgrams than by 
viewing this simple bitmap of  base content en masse. 

The vectorgram,  far  from  being random, travels a mostly 
downward  course indicating strings containing a 

Figure 5(a) is notable for its extreme p parameter ( p  = 23). 
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2 (a) Human bladder oncogene (cancer gene) ( p  = 23; L = 0.023). (b) 
A magnification of the first oncogene exon (109 bases) shown in 
Figure 5(a) (p  = 2.4; L = 1.75). (c) Magnification of the first 109 e (noncoding) bases of the oncogene shown in Figure 5(a) ( p  = 7.1; 

8 -  
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I Bitmap for the human bladder cancer gene (1s indicated by dots). 

predominance of Is (01 I ,  101, 1 1 1). The most prominent 
feature on the map is the “kink”-the  global  shift  of the 
direction  in @)-at about base  1350, and interestingly this 
feature  corresponds to a  biologically important area of the 
DNA sequence. Transcriptional control signals  for the 
synthesis  of  RNA  species are expected to be present in the 5’ 
noncoding  sequence  upstream  from the initiator codon. 
[5’ and 3‘  (see  below) indicate the directionality of the DNA 
sequence and are derived  from  numbering  of the carbons in 
the  sugar  molecules  which  make up the backbone.  They 
indicate the polarity of the DNA strands.]  Reddy [ 1 I ]  
searched  upstream  from the initiator codon  for  sequences 
related to the Pribnow box  (TATAAA).  Two  sets  were  found 
(1336-1341,  1415-1421), and the kink in the curve  occurs 
precisely at this location  separating control signals and 
“enhancer regions” [ 1 I] from the coding  groups to follow. 

In plants and animals, the vast  majority  of  DNA  is  never 
translated to protein. These  stretches  of  silent  DNA are 
called  “interons.” The coding  regions are “exons.”  In  Figure 
5(a), the 4150-base  DNA  sequence  may be thought of as 
starting at the center of the paper and running downward 
(5’ to 3‘  end). Four exons (1670-1779,2047-2226,2381- 
2540,  3238-3354)  are  encompassed by small  circles.  Figure 
5(b)  is  a  magnification  of the first  exon (109 bases), and for 
comparison,  Figure  5(c)  shows the first 109 bases  of the 
sequence  in  a  noncoding  region.  Note the different  “look” of 
these  two  functionally  different  pieces  of  DNA. 
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G“ of the cancer gene (a  = 90” instead of a = 270”). This is due 
in part to a significant number of repeating  A/Ts. The ellipse 
delimits an obvious repeating  motif, and other repeats and 
long stretches can also be seen in the plot. Figure 8 is 
computed for the A/T-rich  spacer  region  of Xenopus luevis 
(African toad) oocyte 5s DNA [ 151. The periodic runs of 
several Ts or As in a row (OW), indicated by arrows, can be 
clearly  seen. This sequence has the second  greatest 
persistence  length of those sequences  tested ( p  = 7.7). The 
Harvey and Kirsten strains of murine sarcoma virus  have 
been  isolated from mouse tumors  and shown to be capable 
of inducing sarcomas and leukemias in mice. Figure 9 
represents  viral  Harvey murine sarcoma DNA, and the 
vectorgram  clearly  shows a downward trend. Three 
structurally different  regions are made noticeable by the 
vectorgram; the two terminal domains are separated by an 
intermediate segment  with  several  base  repeats of (1 1 1)-rich 
regions. The lower domain appears to be more random. 
Figure 10 is computed for the Kirsten sarcoma virus; it 
shows an upward trend with  several  visually distinct 
(0)-regions. Other obvious  periodicities are denoted by the 

Human somatostatin I gene ( p  = 2.8; L = 0.90). ellipses. Figure 11 is computed for an SV40 (simian virus) 
deletion mutant [ 161, and it contains an interesting handle 
(bases 170-200) with three repeating, almost identical hooks 
corresponding to tandem repeats in  the sequence. 

Conclusions 
As a result  of the proliferation of cancer and noncancer 
sequences in the DNA data base,  which has been far greater 
than ever anticipated [ 171, it becomes  useful to develop tools 
to help characterize both small- and very  large-scale  genetic 
information. In this paper, a procedure is  described for 
taking DNA  sequences containing n bases and computing n 
two-dimensional  real  vectors.  When  displayed on a planar 
unit-cellular lattice, these characteristic patterns appear as a 
“DNA  vectorgram,” C(n). C(n)’s sensitivity to certain 
regularities and irregularities in the DNA  sequence  allows  it 
to function as a pattern-recognition “device”; this permits 
the human observer to visually detect some important 
sequence structural properties and patterns not easily 
captured by traditional methods. An alternate method used 
to capture sequence  periodicities  is the power-spectrum 
approach [3,9]. However, though this technique can be  very 
illuminating, in many applications it does  have certain 
significant  drawbacks. For one, power spectra are phase- 
insensitive. One nontrivial consequence of this is that very 
orderly and random data can, in theory, give  rise to similar 
spectra [ 181. In contrast, vectorgrams  employ a 
computationally simple and fast algorithm (no Fourier 
transform is required, as with conventional techniques) and 
assumptions and complicating factors  (window  size and 

Figure 7 is computed for the human somatostatin I gene  windowing  effects  such as resolution problems and side-lobe 
(somatostatin is a small neuropeptide and hormone found in distortion) are minimized.  In addition, C(n) does not have 
the brain and intestine) [ 141 and has a trend opposite to that stringent requirements with  regard to the number of input 116 
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points, a constraint which often affects numerical stability, 
storage requirements, or execution time in traditional 
algorithms. 

In conclusion, the different DNAs tested produce 
different-looking  vectorgrams; some “travel” upward along 
the lattice, and others downward. As might be expected  for 
DNA, C(n) is in general not random. Randomness can be 
detected from the “look,” the persistence  length, and the 
presence of bisected diamonds in the lattice. The lattice- 
persistence  length p is  significantly  greater than that 
determined for random DNA, and it can  be as great as 22 
for the oncogene or as small as 1.9 for the viral  Harvey 
murine sarcoma DNA. As demonstrated by the examples, 
certain structural features are made evident by the 
vectorgrams. For example,  interspersed  repeats are 
manifested by repeating motifs on the lattice, as shown by 
the several “hooks” in the SV40 DNA or the periodic runs 
in the X .  luevis DNA. Interestingly, (Y is different for different 
DNAs, although it appears to be restricted to regions near 
90” and 270” for the DNAs tested.  Why no DNAs point at 0” 

f-\. 

or 180” and whether this generalization  holds  when  more 
DNAs are tested are questions for further studies. One 
possibility is already under investigation:  In a private 
communication, Dr. Marek Kimmel of the Memorial  Sloan- 
Kettering Cancer Institute has  derived mathematical models 
which  suggest that stochastic Markov correlations between 
adjacent bases in the DNA string (or any string)  may  One limitation of the binary  system  used  here  is that it 
account for the preferred  upward and downward trends in does not distinguish  between  sequences such as ATATATAT 
the vectorgram. . . . and AAAAAAAA . . . , which  have  different  folding and 117 

IBM J.  RES. DEVELOP. VOL. 31 NO. I JANUARY 1987 CLIFFORD A. PICKOVER 



bending  properties.  Also,  while certain important 
palindromes give  rise to characteristic patterns, the binary 
method can  obscure others. Both  of  these factors motivate 
the study of additional base  assignments  (see  below). 

comparative measure  for certain DNA  periodicities and 
patterns, even for segments of  DNA having  significantly 
differing  base content, and 2 )  it can be  used to search  with a 
single calculation for many pronounced structural features 
within one sequence.  Since C(n) presents  nucleic-acid 
sequence data in a way  which can  be  visually interpreted by 
the researcher,  nucleotide-sequence characterizations are 
facilitated. The interactive nature of the research station 
allows  for the rapid generation of these functions by  using 
several parameters and magnifications. 

This paper should be  viewed  as introductory because of 
the wide  variety  of  DNA parameters which can potentially 
be  visualized  by this method. The exploration of this large 
parameter space  provides a provocative area for future 
research. It may  be  possible to discover interesting properties 
and periodicities in the DNA  sequence  by  having the 
program produce many vectorgrams by automatically 
iterating through a large number of input parameters and 
mappings.  In this way, the program  may suggest to the 
human analyst important features and parameters which 
would not even be considered  otherwise. The correlation of 
resultant features  with  biological  relevance  would  be the next 
necessary area of study. 

Finally, other avenues for future research include the 
testing of other lattices (e.g., hexagonal), other window  sizes 
(2, 4, 5, 6, . . .), other base  assignments  (e.g., G = 1, C = 2, 
A = 3, T = 4), other sequences, and three-dimensional 
lattices. In addition, the extension of the lattice-movement 
representation to other disciplines  is  actively  being 
investigated present  research includes applications to 
“clipped” (binary) speech  waveforms and to the syllable 
patterns of Shakespeare. The vectorgrams  may  also  be  useful 
for  distinguishing  different  classes of noise  which  have 
similar traditional spectra. Future studies  would  also include 
variable base  assignment  within a triplet window. For 
example, I have  set G = 0 if G is in the first  position  of the 
triplet window, but 1 in the other two  positions-with 
resultant interesting and conspicuous vectorgram  features. It 
is  hoped that the lattice application introduced here will 
provide a useful tool for future representations of nucleic 
acid  sequences. Recent proposals to sequence the entire 
three-billion-base  sequence of the human genome [ 171, 
advances in understanding viral  sequences that induce 
cancer [ 1, 1 11 and in understanding the mechanisms by 
which  oncogenes are activated in tumors [ 191, recent 
improved gene-mapping techniques (with accompanying 
proliferation of sequence data), and increasing commercial 
interest [20] motivate further assessment of the DNA 
vectorgram. 

C(n) is  useful in two ways: 1) it  provides a qualitative and 
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