Feature analysis
for symbol
recognition by
elastic matching

by Jerome M. Kurtzberg

A technique has been developed for the
recognition of unconstrained handwritten
discrete symbols based on elastic matching
against a set of prototypes generated by
individual writers. The incorporation of feature
analysis with elastic matching to eliminate
unlikely prototypes is presented in this paper
and is shown to greatly reduce the required
processing time without any deterioration in
recognition performance.

Introduction
In References [1-3] a dynamic-programming technique for
recognition of discrete handwritten symbols is described.
The method is based on modeling symbols in terms of
functions of input data points (termed model parameters)
and performing elastic matching of these time-sequenced
parameters of unknown symbols against those of a set of
prototypes established by individual writers. A composite
of the results of the pattern matchings is used for
discrimination during recognition. This technique is useful
for other applications. It was applied to speech recognition at
least as early as 1968 [4-6] and to signature verification in
1978 [7].

In this paper the use of symbol features is studied to prune
unlikely matches from the set of prototypes prior to the
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elastic matching of the unknown symbol, thereby greatly
reducing the required computation time. This incorporation
of feature analysis with correlation matching enables
recognition processing in real time, even with the use of a
highly refined computational model having several
parameters to improve the resolution of symbols.

Recognition system

The data-gathering recognition system consists of a digitizing
tablet, a computer with interfacing electronics, and graphic
displays. The writer uses a ball-point pen (stylus) and writes
on paper affixed to an electronic digitizing tablet. The
trajectory of the moving pen, given in terms of a sequence of
x and y coordinates, is detected at discrete points where the
stylus physically touches the paper.

The writer is free to define the particular form (prototype)
for each symbol, as well as the individual manner of
generating it. Guidelines—a pair of parallel horizontal line
segments—are established; these determine the space for the
body, ascenders, and descenders of the symbols. Any token
for a symbol, however, may exceed or fall short of the
guidelines. As the term suggests, they are merely guides for
the writer.

The tablet has a resolution of 0.005 inches (0.0127 cm),
and the data are sampled at approximately 80 samples per
second. Suitable filtering and smoothing are employed to
reduce the effect of inaccuracies in the data-gathering
hardware. For example, extra, spurious data can be recorded
due to pen up-down detection problems, and there can be
“jitter” due to hesitation and pausing of the writer. These are
eliminated. Also, segmentation of the input symbols is
performed. For the purpose of this study, it is assumed that
there is no overlapping of symbols. 91
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Elastic matching

Elastic matching is a dynamic-programming correlation
technique for the comparison of data vectors having different
lengths and nonlinear distortions.

Normal time-to-time differences in individual writing rate
with repeated writing cause variation in the length and
nonlinear time variation in the shape of a symbol. A simple
correlation technique based upon dividing each symbol in
time into the same number of time points addresses the
length variation but does not handle the time nonlinearity.
The elastic-matching procedure, however, does solve both
problems by providing a mechanism to optimally match the
unknown symbol token that is to be recognized against all
possible elastic stretchings and compressions of each
prototype (within a given range).

Symbol modeling

The modeling of the symbols (the symbol parameters) is
derived from the time-sequenced point data produced by the
dynamic trace of the stylus. Specifically, elastic matching
takes place on a symbol model having four parameters [3]:

1. The magnitude of the angle of the tangent at each point
of the curve produced by the trace (to enable
discrimination of identically produced uppercase and
lowercase symbols differing only in their relative vertical
position).

2. The magnitude of the height of each point normalized to
the given writing-space guidelines.

3. The x-offsets from the center of gravity of each symbol
(to incorporate information about the relative horizontal
positions of the strokes comprising the symbols).

4. The y-offsets from the center of gravity of each symbol
(to enable discrimination independent of symbol position
relative to the baseline; this affords the writer flexibility in
positioning the symbol when the exact vertical position is
not important).

Elastic matching is performed separately on each parameter.
All taken together form the measure for recognition in the
symbol-discrimination procedure. All parameters in this
model are scaled to contribute the same weight in the
composite measure [1, 2].

Pruning features

If the number of prototypes is large, computation time is a
problem. The use of symbol features that are simple to
compute yet efficient in eliminating unlikely prototypes from
consideration as candidates for an unknown symbol can
handle this difficulty. Accordingly, the following seven
features are used for the pruning of the prototype set:

1. The number of strokes comprising a symbol (where a
stroke is defined to be the sequence of points generated
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from the time the stylus is down on the tablet to the time
it is removed).

2. The number of points in the symbol (after appropriate
filtering of the point sequence to remove inaccuracies due
to hardware peculiarities and to writer hesitation).

3. The number of points per stroke (as a sharper measure

than the previous feature).

. The height of the lowest point.

. The height of the highest point.

. The height of the lowest point per stroke.

. The height of the highest point per stroke.
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Additional, more complicated features, such as curvature
and number of abrupt segment changes, may also be used,
but the above set appears to be sufficient.

The pruning features need be computed only once for
each prototype and can then be stored with the associated
parametric model for each symbol. Prior to elastic matching,
the features of the unknown symbol are compared to those
of the prototype to ensure that all of the respective pairings
are within acceptable tolerances. Since the elastic matching
comprises the vast majority of the recognition time, and the
pruning-feature computation is insignificant, the
computation time for recognition is greatly reduced.

Experimental results, presented in the next section, show
that there can be significant pruning with no decrease in the
symbol-recognition rate, or extreme pruning with only a
slight drop in the recognition rate.

Experimental results

To evaluate the effects of pruning, experiments were
conducted on the same data used to evaluate the elastic-
matching approach operating on a refined multiparameter
model [3]. The symbol set consisted of the English uppercase
and lowercase letters, the digits, and ten punctuation
symbols (a total of 72 symbols), namely

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789
Oty 07

The particular data used in the evaluation consisted of
eight tokens of each symbol from a left-handed writer (not
the author) who sequentially generated eight copies of the
symbol set over a few sessions. In the first experiment, the
prototypes consisted of the first complete set of tokens,
thereby forming 72 prototypes. The last four sets of data,
consisting of 288 unknowns, are matched against the
prototypes. This experiment is designated by the notation
A(1,5678), where “1” indicates data from the first data set
and “5678” from sets 5, 6, 7, and 8.

The set of prototypes is then updated by training on the
second set of tokens and incorporating the incorrectly
recognized tokens in the prototype set. The resulting
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Table 1 Recognition with pruned prototypes.

Experiment No. of No. of Percentage Percentage Candidate
prototypes errors recognized pruned prototype
A(1:5678) 72 16 94.4 60.6 28
A(12;5678) 94 5 98.3 61.4 36
A(123:5678) 110 4 98.6 60.4 44
A(1234;5678) 121 3 99.0 61.5 47
Table 2 Baseline comparison—no features.
Experiment No. of No. of Percentage Percentage Candidate
prototypes errors recognized pruned prototype
A(1;5678) 72 17 94.1 26.1 53
A(12,5678) 95 5 98.3 26.3 70
A(123;5678) 111 4 98.6 25.0 83
A(1234,5678) 122 3 99.0 24.4 92
Table 3 Baseline comparison—constrained warping path.
Experiment No. of No. of Percentage Percentage Candidate
prototypes errors recognized pruned prototype
A(1:5678) 72 23 92.0 47.3 38
A(12;5678) 93 11 96.2 47.3 49
A(123;5678) 110 8 97.2 45.6 60
A(1234;5678) 123 7 97.6 44.9 68

augmented set of prototypes is matched against the same last
four sets of tokens as before. This is designated by
A(12;5678). The process of updating the prototype set by
training and subsequent matching is continued for the third
and fourth sets of tokens, namely A4(123,5678) and
A(1234,5678), respectively.

Table 1 presents the results for recognition with pruning
features in which there is no degradation of recognition
accuracy. The number of prototypes in the augmented
prototype set is listed for each updating along with the
percentage of prototypes pruned and the resulting number of
candidate prototypes for the elastic-matching procedure.
Note that the percentage of prototypes pruned was relatively
constant for each updated prototype set.

The specific tolerances for the pruning features in this
experiment are that

o The number of strokes for the prototype and for the
unknown may differ by one.

o The difference between the overall highest and lowest
points, respectively, must be within approximately one
third of the unit distance established by the guidelines.

o The corresponding numbers of total points (the lengths)
must be within a difference of 75% of each other, i.e., lie
within a range of 3/4 to 4/3 of each other.
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Per-stroke tolerances are set high so as to be ignored by the
algorithm.

Table 2 shows the baseline comparison in which no
pruning features are used. The elastic-matching procedure
used can stretch or compress the symbol to be matched by
no more than double or half itself; hence, matching can take
place only if the prototype and the unknown differ in length
within this range. There is, thus, a necessary elimination of
all prototypes that lie outside this range. The percentage of
prototypes thereby eliminated (or pruned) is shown along
with the resulting reduced number of candidate prototypes.
Note that for the same recognition accuracy of 99.0% as
obtained with the use of pruning features, almost double the
number of prototypes must be evaluated via elastic matching
without features.

An attempt to improve the computation time of elastic
matching by limiting the expansion and compression to
within 50% has been made in the past [8]. In effect, this
reduces the permissible “warping path.” Table 3 presents the
baseline comparison in which no pruning features are
employed, but the warping path is constrained to a
comparatively narrow range associated with the 50%
constraint. Note that with this technique the recognition
accuracy for the updated prototypes decreases to 97.6%, and
the number of candidate prototypes to be evaluated 93

JEROME M. KURTZBERG




94

Table 4 Sharply pruned prototypes.

Experiment No. of No. of Percentage Percentage Candidate
prototypes errors recognized pruned prototype
A(1;5678) 72 31 89.2 87.9 9
A(12,5678) 87 22 92.4 87.8 11
A(123,5678) 103 18 93.8 88.1 12
A(1234,5678) 112 13 95.5 88.6 13
Table 5 Recognition vs. pruning for 4(1,2345678).
Experimental No. of Recognition Percentage Candidate
matching errors accuracy pruned prototype
Case | 28 94.4 61.6 28
Case 2 31 93.9 64.8 25
Case 3 36 92.9 67.4 23
Case 4 51 89.9 79.9 14
Case 5 54 89.3 88.0 9
Case 6 58 88.5 89.0 8
Baseline runs
No features 29 94.3 26.0 53
Constrained
warping path 37 92.7 47.2 38

increases considerably over the case of light pruning in
which features are used (Table 1).

Table 4 gives an illustration of recognition with sharply
pruned prototypes. The final recognition accuracy drops to
95.5%, but with pruning of 88.6%, only 13 prototypes need
be evaluated.

The tolerances for this specific experiment are that

o The numbers of strokes must be the same for the
prototype and the unknown.

o The difference between the overall highest and lowest
points, respectively, on both a total and per-stroke basis,
must be within approximately one third of the unit
distance established by the guidelines.

o The corresponding numbers of total points (the lengths)
must be within a difference of 60% of each other and 70%
on a per-stroke basis.

Table 5 shows the trade-off between recognition accuracy
and prototype pruning for A(1,2345678). In these
experiments, no updating was performed, and the first set of
72 prototypes was matched against seven sets of data; each
set was composed of 72 tokens for a total of 504 unknown
symbols, which implies 36 288 prototype examinations.
Tighter tolerances for the pruning features were set for each
successive experiment.

Specifically, the first, second, and third matchings (i.e.,
Cases 1-3) varied in the tolerances for the corresponding
total lengths of the prototype and the unknown, allowing
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them to be, respectively, within 70%, 60%, and 50% of each
other. The other tolerances were held constant, namely

o The numbers of strokes were permitted to differ by one.

o The per-stroke tolerances were set high so as to be ignored
by the algorithm.

o The differences between the highest and lowest points,
respectively, were within approximately one third of the
guideline distance.

Case 4 continued to allow the numbers of strokes to differ
by one, the corresponding total and per-stroke lengths by
70%, and the corresponding total and per-stroke differences
of the highest and lowest points, respectively, to be within
approximately one third of the guideline distance.

In Cases 5 and 6, the number of strokes was constrained
to be the same; the total-length tolerance was held to 60%
and 50%, respectively. All of the per-stroke and highest- and
lowest-point tolerances were the same as in the previous
experiment.

The two baseline runs, described previously, are shown at
the bottom of the table. Interestingly, “light” pruning (Case
1) removed a prototype that the elastic-matching procedure
had incorrectly selected as its first choice, thereby in this
instance slightly improving the recognition accuracy.

Conclusions
This study demonstrates that significant savings in
computation time can be achieved in correlation-type
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recognition techniques, such as elastic matching, by the
introduction of simple feature analysis. Actual results show
that pruning of the candidate prototypes yields a doubling of
recognition speed with no loss in accuracy. (A much sharper
pruning with looser tolerances resulted in an increase by a
factor of seven in processing speed but a loss of 3.5% in
recognition accuracy.)

This combination of feature and correlation analysis
provides a powerful approach for a real-time handwriting-
recognition system. Other recognition problems may also
benefit from the use of these techniques.
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