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A technique  has  been  developed  for  the 
recognition  of  unconstrained  handwritten 
discrete  symbols  based  on  elastic  matching 
against  a  set of  prototypes generated by 
individual  writers.  The  incorporation  of  feature 
analysis  with  elastic  matching  to  eliminate 
unlikely  prototypes  is  presented  in  this  paper 
and is shown to  greatly  reduce  the  required 
processing  time  without  any  deterioration  in 
recognition  performance. 

Introduction 
In  References [ 1-31 a dynamic-programming technique for 
recognition of discrete handwritten symbols is  described. 
The method is based on modeling symbols in terms of 
functions of input  data points (termed model parameters) 
and performing elastic matching of  these time-sequenced 
parameters of unknown symbols against those of a set of 
prototypes established by individual writers. A composite 
of the results  of the pattern matchings is used  for 
discrimination during recognition. This technique is useful 
for other applications. It  was applied to speech recognition at 
least as early as 1968  [4-61 and  to signature verification  in 
1978 [7]. 

unlikely matches from the set  of prototypes prior to the 
In this paper the use of symbol features is studied to prune 
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elastic matching of the unknown symbol, thereby greatly 
reducing the required computation time. This incorporation 
of feature analysis  with correlation matching enables 
recognition  processing in real time, even  with the use of a 
highly  refined computational model  having  several 
parameters to improve the resolution of  symbols. 

Recognition  system 
The data-gathering recognition system  consists  of a digitizing 
tablet, a computer with interfacing electronics, and graphic 
displays. The writer  uses a ball-point pen  (stylus) and writes 
on paper affixed to an electronic digitizing tablet. The 
trajectory of the moving pen, given in terms of a sequence of 
x and y coordinates, is detected at discrete points where the 
stylus  physically touches the paper. 

for  each symbol, as well as the individual manner of 
generating it. Guidelines-a pair of parallel horizontal line 
segments-are  established;  these determine the space  for the 
body,  ascenders, and descenders of the symbols. Any token 
for a symbol, however,  may  exceed or fall short of the 
guidelines. As the term suggests, they are merely  guides  for 
the writer. 

The tablet has a resolution of 0.005 inches (0.0127 cm), 
and the data  are sampled at approximately 80 samples per 
second. Suitable filtering and smoothing are employed to 
reduce the effect  of inaccuracies in the data-gathering 
hardware. For example, extra, spurious data can be recorded 
due  to pen  up-down detection problems, and there can be 
“jitter” due to hesitation and pausing  of the writer. These are 
eliminated. Also, segmentation of the input symbols is 
performed. For the purpose of this study, it is assumed that 
there is no overlapping of  symbols. 

The writer is free to define the particular form (prototype) 
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Elastic  matching 
Elastic matching is a dynamic-programming  correlation 
technique for the  comparison of data vectors having different 
lengths and  nonlinear distortions. 

Normal time-to-time differences in individual  writing rate 
with repeated  writing  cause  variation in  the length and 
nonlinear  time variation in  the  shape of a  symbol.  A  simple 
correlation technique based upon dividing  each  symbol in 
time  into  the  same  number of time  points addresses the 
length  variation but  does  not  handle  the  time nonlinearity. 
The elastic-matching  procedure, however, does solve both 
problems by providing  a mechanism  to optimally match  the 
unknown symbol  token that is to be recognized against all 
possible elastic stretchings and compressions of each 
prototype  (within  a given range). 

Symbol  modeling 
The modeling  of the symbols (the symbol  parameters)  is 
derived  from the time-sequenced point  data produced by the 
dynamic  trace of the stylus. Specifically, elastic matching 
takes place on a  symbol  model  having four  parameters [3]: 

1. The  magnitude of the angle  of the  tangent  at each point 
of the curve  produced by the trace (to enable 
discrimination  of identically produced  uppercase and 
lowercase symbols differing only in their relative vertical 
position). 

2. The  magnitude of the height of  each point normalized to 

3. The x-offsets from  the  center of gravity of each  symbol 
the given writing-space guidelines. 

(to incorporate information  about  the relative horizontal 
positions  of the strokes  comprising the symbols). 

(to enable  discrimination independent of  symbol  position 
relative to  the baseline; this affords the writer flexibility in 
positioning the symbol  when the exact vertical position is 
not  important). 

4. The y-offsets from the  center of gravity of each  symbol 

Elastic matching is performed separately on each parameter. 
All taken  together form  the measure  for  recognition in  the 
symbol-discrimination  procedure. All parameters  in  this 
model are scaled to  contribute  the  same weight in the 
composite  measure [ 1, 21. 

Pruning features 
If the  number of  prototypes is large, computation  time is a 
problem. The use of  symbol  features that  are simple to 
compute yet efficient in  eliminating unlikely prototypes  from 
consideration  as  candidates  for an  unknown symbol can 
handle this difficulty. Accordingly, the following seven 
features are used for the  pruning of the prototype set: 

I .  The  number of strokes  comprising a symbol  (where a 
stroke is defined to be the sequence of points generated 

from  the  time  the stylus  is  down on  the tablet to  the  time 
it is removed). 

2. The  number of points  in  the symbol  (after appropriate 
filtering of the  point sequence to remove  inaccuracies due 
to hardware peculiarities and  to writer hesitation). 

3. The  number of points per  stroke  (as  a  sharper  measure 
than  the previous feature). 

4. The height of the lowest point. 
5 .  The height of the highest point. 
6. The height of the lowest point per stroke. 
7. The height of the highest point per  stroke. 

Additional, more complicated features, such as curvature 
and  number of abrupt segment changes, may also be used, 
but  the  above set appears  to be sufficient. 

The  pruning features need be computed only once  for 
each prototype  and  can  then be stored with the associated 
parametric model for each symbol. Prior to elastic matching, 
the features  of the  unknown symbol are  compared  to those 
of the  prototype  to  ensure  that all of the respective pairings 
are within  acceptable  tolerances. Since the elastic matching 
comprises the vast majority  of the recognition  time, and  the 
pruning-feature computation is insignificant, the 
computation  time for  recognition is greatly reduced. 

Experimental results, presented in  the next  section,  show 
that  there  can  be significant pruning with no decrease in  the 
symbol-recognition rate, or extreme pruning with only a 
slight drop  in  the recognition rate. 

Experimental  results 
To evaluate the effects of  pruning, experiments were 
conducted  on  the  same  data used to evaluate the elastic- 
matching  approach  operating on a refined multiparameter 
model [3]. The symbol set consisted of the English uppercase 
and lowercase letters, the digits, and ten punctuation 
symbols  (a  total  of 72 symbols), namely 

A B C D E F G H  I J K L M N O P Q R S T U V W X Y Z  
a b c d e f g h i j k l m n o p q r s t u v w x y z  
0 1 2 3 4 5 6 7 8 9  
( ) ! :  ; “ ’ , . ?  

The particular data used in  the evaluation consisted of 
eight tokens of each  symbol from a  left-handed writer (not 
the  author)  who sequentially  generated eight copies  of the 
symbol set over  a few sessions. In  the first experiment, the 
prototypes consisted of the first complete set of tokens, 
thereby  forming 72 prototypes. The last four sets of data, 
consisting of  288  unknowns, are matched against the 
prototypes. This experiment is designated by the  notation 
A(1;5678), where “ I ”  indicates data  from  the first data set 
and “5678”  from sets 5 ,  6, 7, and 8. 

The set of  prototypes is then updated by training on  the 
second set of tokens and  incorporating  the incorrectly 
recognized tokens  in  the prototype set. The resulting 
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Table 1 Recognition with pruned  prototypes. 

Experiment No. of No. of Percentage Percentage Candidate 
prototypes errors recognized pruned prototype 

~~~ 

A(1;5678) 72 16 94.4  60.6 28 
A(12;56  78) 94 5 98.3  61.4 36 
A(1233678) 110 4 98.6 60.4 44 
A(1234;5678) 121 3 99.0  61.5 47 

Table 2 Baseline  comparison-no  features. 

Experiment No. of No. of Percentage Percentage Candidate 
prototypes errors recognized pruned prototype 

A(1;5678) 72 17 94.1 26.1 53 
A(12;56  78) 95 5 98.3  26.3 70 
A(123;56  78) 1 1 1  4 98.6 25.0  83 
A(1234;56  78) 122 3 99.0  24.4 92 

Table 3 Baseline  comparison-constrained  warping path. 

Experiment No. of No. of Percentage Percentage Candidate 
prototypes errors recognized pruned prototype 

A(1;56 78) 72  23 92.0  47.3 38 
A(12;5678) 93 11 96.2  47.3  49 
A(123;5678) 110 8 97.2 45.6 60 
A(1234;56  78) 123 7 97.6 44.9 68 

augmented set of  prototypes is matched against the  same last 
four sets of tokens as before. This is designated by 
A(12;5678). The process of updating  the prototype set by 
training and subsequent  matching is continued for the  third 
and fourth  sets  of  tokens,  namely A(123;5678) and 
A(1234;5678), respectively. 

features in which there is no degradation  of  recognition 
accuracy. The  number of prototypes  in the  augmented 
prototype set is listed for  each updating  along with the 
percentage of prototypes pruned  and  the resulting number of 
candidate prototypes for the elastic-matching  procedure. 
Note that  the percentage of  prototypes pruned was relatively 
constant for each  updated prototype set. 

experiment are  that 

Table 1 presents the results for  recognition with pruning 

The specific tolerances  for the  pruning features in this 

The  number of strokes for the prototype and for the 

The difference between the overall highest and lowest 
unknown  may differ by one. 

points, respectively, must be within  approximately one 
third of the  unit distance established by the guidelines. 
The corresponding numbers of  total points  (the lengths) 
must be within  a difference of 75% of  each other, i.e., lie 
within  a range of 314 to 413 of each other. 
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Per-stroke  tolerances are set high so as to be ignored by the 
algorithm. 

Table 2 shows the baseline comparison in which no 
pruning features are used. The elastic-matching  procedure 
used can stretch or compress the symbol to be matched by 
no  more  than  double or half itself; hence, matching can  take 
place only if the prototype and  the  unknown differ in  length 
within this range. There is, thus, a necessary elimination of 
all prototypes that lie outside  this range. The percentage of 
prototypes  thereby  eliminated (or  pruned) is shown  along 
with the resulting reduced number of candidate prototypes. 
Note that for the  same recognition accuracy of 99.0% as 
obtained with the use of pruning features, almost  double the 
number of prototypes must be evaluated via elastic matching 
without  features. 

An attempt  to improve the  computation  time of elastic 
matching by limiting the expansion and compression to 
within 50% has been made in the past [8]. In effect, this 
reduces the permissible “warping path.”  Table 3 presents the 
baseline comparison  in which no  pruning features are 
employed, but  the warping path is constrained to a 
comparatively  narrow range associated with the 50% 
constraint. Note  that with this  technique the recognition 
accuracy for the updated  prototypes decreases to 97.6%, and 
the  number of  candidate  prototypes to be evaluated 
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Table 4 Sharply pruned prototypes. 

94 

Experiment No. of No. of Percentage Percentage Candidate 
prototypes errors recognized pruned prototype 

A(13678) 12 31 89.2 87.9 
A(12;5@78) 87 22 

9 
92.4 

A(I 2356 78) 103 18 
87.8 11  

A(1234;56  78) 
93.8 88.1 

112 13 95.5 88.6 13 
12 

Table 5 Recognition vs. pruning for A(1;2345678) 

Experimental 
matching 

Case 1 
Case 2 
Case 3 
Case 4 
Case 5 
Case 6 

Baseline runs 

No features 
Constrained 

warping path 

No. of 
errors 

28 
31 
36 
51 
54 
58 

29 

37 

Recognition 
accuracy 

94.4 
93.9 
92.9 
89.9 
89.3 
88.5 

94.3 

92.1 

Percentage 
pruned 

61.6 
64.8 
61.4 
19.9 
88.0 
89.0 

26.0 

41.2 

Candidate 
prototype 

28 
25 
23 
14 
9 
8 

53 

38 

increases considerably over the case of light pruning in 
which features are used (Table 1). 

Table 4 gives an illustration of recognition with sharply 
pruned prototypes. The final recognition accuracy drops to 
95.5%, but with pruning of 88.6%, only 13 prototypes need 
be evaluated. 

The tolerances for this specific experiment are  that 

The numbers of strokes must be the same for the 
prototype and the unknown. 
The difference  between the overall  highest and lowest 
points, respectively, on both a total and per-stroke  basis, 
must be within approximately one third of the unit 
distance established by the guidelines. 

must be within a difference  of 60% of each other and 70% 
on a per-stroke  basis. 

Table 5 shows the trade-off  between recognition accuracy 
and prototype pruning for A(1;2345678). In these 
experiments, no updating was performed, and  the first  set  of 
72 prototypes was matched against seven  sets  of data; each 
set was composed of 72 tokens for a total of 504 unknown 
symbols,  which implies 36 288 prototype examinations. 
Tighter tolerances for the pruning features were  set for each 
successive experiment. 

Specifically, the first, second, and third matching (i.e., 
Cases 1-3) varied in the tolerances for the corresponding 
total lengths of the prototype and the unknown, allowing 

The corresponding numbers of total points (the lengths) 

them to be,  respectively,  within 70%, 60%, and 50% of each 
other. The other tolerances were  held constant, namely 

The numbers of strokes were permitted to differ  by one. 
The per-stroke tolerances were  set  high so as to be  ignored 

The differences  between the highest and lowest points, 
by the algorithm. 

respectively,  were  within approximately one third of the 
guideline distance. 

Case 4 continued to allow the numbers of strokes to differ 
by one, the corresponding total and per-stroke lengths by 
70%, and the corresponding total and per-stroke  differences 
of the highest and lowest points, respectively, to be within 
approximately one third of the guideline distance. 

In  Cases 5 and 6, the number of strokes was constrained 
to be the same; the total-length tolerance was held to 60% 
and 50%, respectively. All  of the per-stroke and highest- and 
lowest-point tolerances were the same as in the previous 
experiment. 

The two baseline runs, described  previously, are shown at 
the bottom of the table. Interestingly, “light” pruning (Case 
1) removed a prototype that the elastic-matching procedure 
had incorrectly selected  as  its  first  choice,  thereby in this 
instance slightly improving the recognition accuracy. 

Conclusions 
This study demonstrates that significant  savings  in 
computation time can be achieved in correlation-type 
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recognition  techniques,  such as elastic matching, by the 
introduction of  simple  feature analysis. Actual results show 
that  pruning of the  candidate prototypes yields a  doubling of 
recognition  speed with no loss in accuracy. (A much sharper 
pruning with looser tolerances resulted in  an increase by a 
factor of seven in processing speed but a loss of 3.5% in 
recognition accuracy.) 

This  combination of  feature and correlation analysis 
provides  a powerful approach for  a  real-time  handwriting- 
recognition system. Other recognition  problems may also 
benefit from the use of these techniques. 
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