A method for
efficient storage
and rapid
application of
context-sensitive

phonological rules

for automatic
speech
recognition

by Robert L. Mercer
Paul S. Cohen

In an automatic speech-recognition system, the
application of phonological rules to phonemic
strings in order to create phonetic graphs is a
computationally time- and storage-consuming
process. A great many such graphs must be
constructed during the decoding phase; thus it
is important to be able to rapidly construct
phonetic graphs for strings of words from
graphs of individual words. However, because
many phonological rules operate across word
boundaries or require interword context, it is not
possible to determine a unique, context-
independent phonetic graph for a word. We
describe a method for determining the phonetic

©Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 31 NO. | JANUARY 1987

graph for a word in isolation, together with
auxiliary information to allow phonetic graphs for
different words to be rapidly interconnected to
form a phonetic graph for a string of words; the
method also reduces storage requirements
significantly.

Introduction

Phonological rules are used in systems for speech recognition
by computer in order to generate the many and varied
pronunciations (“phonetic realizations™) of underlying,
somewhat idealized pronunciations (“phonemic baseforms”).
In addition to normal inherent variation, the range of
pronunciations of words considered in isolation is caused,
inter alia, by differences in social and geographical dialect,
idiolect, style, and pace. In the context of other words
(“continuous speech”), further pronunciation adjustments
occur. The possible phonetic realizations for a given word
can be represented conveniently and compactly in the form
of directed graphs, which also permit automatically 81

ROBERT L. MERCER AND PAUL S. COHEN

82

determinable probabilities to be associated with different
pronunciations [1].

References [2-4] describe the first use of phonological
rules and graphs in a system for the automatic recognition of
continuous speech. Reference [5] gives a detailed description
of a flexible module (implemented in an experimental
speech-recognition system [6]) for generating phonological
graphs, as well as a comprehensive set of rules for American
English.

Much of the very considerable computational time and
space needed for generating those graphs was devoted to the
production of contextual variants. We have devised methods
to reduce both processing time and storage requirements.
These methods take advantage of a novel, computationally
efficient representation of the possible phonetic realizations
of all the words of a particular lexicon as being sequences of
subgraphs—from a small set of such subgraphs—which are
precomputed and stored. The words are specified in such a
fashion as to make connections with other hypothesized
words during the decoding phase of automatic speech
recognition computationally tractable.

Overview of the method

If we consider a particular word, we find that its phonetic
realizations are influenced to some extent by the phonetic
character of the words immediately preceding and following
it. For example, we may find that a word such as ‘those’
behaves in different phonetic contexts as represented by the
graphs in Figure 1. Usually only the first few phones and the
last few phones will be affected in this way: The phonetic
realizations possible for the central portion of a word longer
than a few phones are normally unaffected (or, at most,
minimally affected) by the phonetic environment in which
the word appears. If a complete set of phonological rules is
specified in advance, then it is possible to determine all of
the variations that can arise in the phonetic realization of a
word as a result of the phonetic character of surrounding
words [7]. We would like to distill from a collection of
graphs, a single graph, as shown in Figure 2. Here, each of
the initial nodes has associated with it a leff connection
which is simply a representation of the phonetic
environment to which it is applicable. Similarly, each
terminal node has associated with it a right connection which
represents the phonetic environment to which it is
applicabie.

We describe a method for obtaining these graphs which
allows for efficient storage of the resulting graph and for the
rapid connection of a number of such graphs to form a
graph for a string of words. We illustrate the method with a
detailed example. Our attention is focused on the issue of
constructing the graphs and not on the phonological rules

‘themselves. We therefore use an abbreviated and simplified

set of rules and ignore such things as stress so that our
example is not unnecessarily complex. In our example, we

ROBERT L. MERCER AND PAUL S. COHEN

use the word ‘those’ for which the baseform is /| §0z/, where
the vertical bar at the beginning of the baseform is a word
boundary. When the word ‘those’ appears in a string of
words, the /z/ at the end of the baseform will be followed
immediately by the word boundary at the beginning of the
next word, and rules are applied accordingly.

We apply to this baseform the following set of five rules:*

.0—-d/s| —
.6-dd/f]

z—>z7/ |8
zoz/o (ST
.z—s/_ [({f8,s,8¢)

Each of these rules has a left-hand side (the part before the
arrow), a right-hand side (the part between the arrow and the
slash), a left-hand context (the part between the slash and the
underscore), and a right-hand context (the part after the
underscore). In rule 5, the left-hand side is z, the right-hand
side is s, the left-hand context is empty, and the right-hand
context is | (f, 8, s, §, ¢). The rule says that s is an alternative
to z if the z is followed by a word boundary which is in turn
followed by any one of f, 8, s, S, or ¢. Because the left
context is empty in this rule, there is no constraint placed on
the phones which precede the z. Rule 4 says that Z is an
alternative to z when the latter follows o and is itself
followed by any one of ¢, J, or j. The parentheses around the
word boundary in rule 4 show that the word boundary is
optional. Thus rule 4 will also apply in a situation where the
z is at the end of a word, provided the next word begins with
any one of ¢, J, or j. For a detailed discussion of the
application of our phonological rules and of the notation we
have used in writing them, see [5].

The steps involved in constructing a graph for ‘those’ are
shown in Figure 3. We begin with a single node, as shown in
Figure 3(a). Since none of our rules applies to the word
boundary, we can simply add the word boundary to this
node to obtain the graph in Figure 3(b). Either of rules 1 and
2 might apply because the § in ‘those’ is immediately
preceded by a word boundary. In some contexts, rule 1 will
apply but not rule 2, in some contexts rule 2 will apply but
not rule 1, and in some contexts neither rule will apply.
Specifically, rule 1 will apply exactly when the phone
preceding the word boundary is /s/, rule 2 will apply exactly
when it is /f/, and neither will apply when the preceding
phone is anything else. These considerations lead to the
graph shown in Figure 3(c). We have split the initial node
into three nodes and labeled each with the left context for
which it is appropriate. Again, none of the rules applies to
/o/, and so we simply add it, thereby producing the graph

* The phonetic symbols used in the rules are these:

S as in then z as in zoo ¢ as in chum
dasin bend 2 as in vision J as in just
sasin sun $as in ship jasin young
fas in fox 0 as in those n as in men

IBM J. RES. DEVELOP. VOL. 31 NO. 1 JANUARY 1987

€8

NIHOD 'S 1Nvd ANV JIDYIN

“012 ‘s yiim SutuwiSag
splom a10)g

"2192 ‘Z Yy SupuuiFaq

N\
splom alojog —— -~
~

“T L4390d

4861 AMVOANVI ['ON If "TOA 'dOTdAIA "SI T WAI

‘sapou [euyy pue [eniul ajdnjnw ySnoiy; s1x2)uod dnauoyd juaidyip utmorre ,asoys, 1oy ydein

——— — o W E—— *019 ‘U 1),
-~ -~ v

p— — 0R ‘s By

©

-3 *d ynam Juuurdaq — \)
SpIOM 210jog — l ~ ‘030 ‘J 10y
‘010 ‘T yum Surum3aq _/ \\ o a9
spiom at0Jog —— - — O S ® ng;v

[]

*$1%23u02 d1euoyd Juarayyip ut asoy), 10§ sydels onsuoyd

. Afters ;@—-~\
\,

\
@ . \
After f o——l—m.——-;
N
I
|
/l
| . . | 5 7/
>~———as After anything else @m——o——e”"
(b) (©)
| d
Afters -
ers o—@- ~
\
\\
| d 5 o
After f o——(-)——o-— -+—o
N I
]
/
I /
After anything else o———o—é-o/
(d)
z
// Before words
// S beginning with §
/
d /
| i z
After s i N I
A |V
\\ i 7 Before words
d \ | // s beginning with ¢
i I/
After f ‘—lm—é—.— —H
S o \. Y4
II ||\\ e Before words
/ 1\ = beginning with j or j
/ vy
: | 5/ \
After anything else o——e——e~" \ \\ z
\\ S Before words
\ S__o beginning with f. 8. ors
\
N\
N Z___ Before words beginning
with anything else
(e)

Stages in the generation of a graph for ‘those.” (a) Initial node. (b) Graph after processing word boundary. (c—e) Phone-by-phone development
of graph.

shown in Figure 3(d). Rules 3, 4, and 5 may each apply to We must therefore make a five-way split in the graph

the /z/ in some contexts: Rules 3 and 5 but not rule 4 will reflecting the possible contexts of the following word. The
apply if the next word begins with /5/; 4 and 5 but not 3 will result is shown in Figure 3(e).

apply if the next word begins with /¢/; only 4 will apply if Each of the initial nodes in Figure 3(e) is labeled with a set

the next word begins with either /j/ or /j/; only 5 will apply of conditions which must be satisfied if it is to be used. Each
if the next word begins with /f/, /§/, or /s/; and none of the of the final nodes is similarly labeled. If we wish to connect
84 rules will apply if the next word begins with anything else. this graph to another to form a graph for a pair of words,

ROBERT L. MERCER AND PAUL S. COHEN IBM J. RES. DEVELOP. VOL. 31 NO. 1 JANUARY 1987

then we need only check, for each possible connection of a
final node on one graph to an initial node from another
graph, whether all of the necessary conditions are satisfied.
For example, suppose we wish to connect a graph for the
word ‘send’ to a graph for the word ‘those’ to obtain a graph
for the word pair ‘send those.’ A graph for ‘send’ is shown in
Figure 4. In obtaining it, we have used the following
additional rule:

6.d—>8/n__1|8

This rule states that a final d can be omitted if it follows an n
and the next word begins with §. Actually, this rule is a part
of a more general rule (consonant-cluster simplification), but
for our purposes this simplified version of it suffices. Now,
the top terminal node for ‘send’ can only be used in front of
words that do not begin with &, and the bottom one can only
be used in front of words that do begin with 8. Since ‘those’
begins with §, we must use the bottom terminal node from
‘send.’ It is also clear that we must use the bottom initial
node from ‘those’ because ‘send’ ends with neither f nor s.
Therefore the resulting graph for ‘send those’ is the one
shown in Figure 5.

When the graphs are stored as indicated in the examples
above, determining which terminal nodes of one graph
connect to which initial nodes of another graph is a time-
consuming process. We must first determine for which of the
terminal nodes of the first graph the baseform for the second
graph provides the correct right context. Then we must
determine for which of the initial nodes of the second graph
this terminal node provides the correct left context. It is this
process of selecting which nodes to interconnect and which
nodes to prune that we would like to make more efficient.
The key to doing so is that there are only a finite number of
rules and hence only a finite number of left and right
contexts that need to be distinguished. Because of this, we
can carry out most of the computation necessary for making
a connection ahead of time. Let us return to our example
and see how this can be done.

We begin by numbering the word boundaries that appear
in each rule as shown below:

. 8—>d/s|9 __
.8—ds/f|% _
Z—>i/___|®§

cz—>2/0 (195D
Lz—s/ |9 8,5, 58

d—»&/n__1%5

=N N NI VERY R

Although each of our rules has exactly one word boundary,
in general a rule may have any number of word boundaries
or none at all. (It is therefore an artifact of our example that
the numbers on the word boundaries correspond to the
numbers of the rules themselves.) For word boundaries
which appear in the left-hand context of a rule, we let the

IBM 1. RES. DEVELOP. VOL. 31 NO. L JANUARY 1987

d__ Before words beginning
Ve with anything but &

A m Before words

\._7 beginning with §

! Graph for ‘send.’
2

Ve Before words
/ S beginning with §
/
!
’ -
/ Ve Before words
1/ 8 beginning with &
d 1/
¥
z

l.s . e ngeNI 3 o
N 7\\\ Before words
t\\ S~ beginning with
\ \ jorj
\ \

Before words

-C: beginning with

\ ~e—Z .o Before words
beginning with
anything else

¢ Graph for ‘send those.’

number of the word boundary represent the statement that
the graph to the left of a position satisfies the portion of the
lefi-hand context to the left of that word boundary;, and we let
the negative of the number represent the statement that this
is not the case. Thus, instead of putting s as a condition on
the first initial node of ‘those,” we label the node with the
pair (—2,1), indicating that this node can only be connected
to a terminal node which provides the context required by
word boundary 1 and does not provide the context required
by word boundary 2. We call this label the leff requirement
of the node. Similarly, for word boundaries which appear in
the right-hand context of a rule, we let the number of the
word boundary represent the statement that the graph to the
right of a position satisfies the portion of the right-hand
context to the right of the word boundary; and we let the
negative of the number represent the statement that this is
not the case. The conditions necessary for attaching a
particular terminal node can then be expressed as a set of
positive and negative numbers which we call the right

ROBERT L. MERCER AND PAUL S. COHEN

8s

86

(—4,3,5)/()
//
// S
/ (—4,3,5)/(1)
d /
| / z
(=2De @ \\ [- (~3.4,5/()
v
\ ! s
P A s Vo (~345/1)
S e
-~ { AN
/ L\
(-2 <o o8 . 7 \\\\ ,
\ (~4,-3.5)/()
S
\ — —
- . (~4,-3,5)/(1)
M N\,
\\ z

~—a (—5,-4,-3)/()

Graph for ‘those’ with left and right requirements and context
descriptions.

d
——e (—6)/()

Graph for ‘send” with left and right requirements and context
descriptions.

requirement of the node. The top terminal node of ‘send,’ for
example, has the right requirement (—6) because it can only
be used when the following word does not provide the
context following word boundary 6.

In addition to providing each node with a left or right
requirement, we must also indicate the set of requirements
which it supplies. Because our rules are constructed so that
the right context is taken from the as-yet-unprocessed
baseform, all of the initial nodes supply the same
requirements, which we call the left context description of the
baseform. Each terminal node, however, has its own right
context description because different terminal nodes may
supply differing requirements depending on the details of the
graph to the left. In Figures 6 and 7, the left requirement of
each initial node is shown in parentheses next to it; the left

ROBERT L. MERCER AND PAUL S. COHEN

context description is shown in a box below the graph; and
the right requirement and right context description of each
terminal node are separated by a slash and placed to the
right of the node. The left context description of ‘those’ is
(5,6). This means that a terminal node from a graph can be
connected to ‘those’ only if its right requirement includes no
positive numbers other than 5 or 6 and includes neither —5
nor —6. The top terminal node of ‘send’ includes —6 and
therefore is not eligible for connection, but the bottom
terminal node includes only 6 and therefore is eligible for
connection. The right context description of the bottom
terminal node of ‘send’ is empty because this node satisfies
none of the word boundaries that appear in left-hand
contexts. Therefore, the only initial node from ‘those’ which
we can connect to it is the bottom one for which the left
requirement is (—2,—1).

The example above suggests a general procedure for
connecting the graphs for two baseforms. We say that a
requirement and a context description are compatible if each
of the positive numbers in the requirement appears in the
context description and if, further, the negative of no
number in the context description appears in the
requirement. Given two words, we say that a terminal node
of the first word is eligible for connection to the second word
if its right requirement is compatible with the left context
description of the second word. We say that an initial node
of the second word is eligible for connection to a particular
terminal node of the first word if the left requirement of the
initial node is compatible with the right context description
of the terminal node. To connect two words, we find all of
the terminal nodes of the first word which are eligible for
connection and then we connect to each of these eligible
terminal nodes the initial node of the second word which is
eligible for connection to it. It is easy to show that there is
exactly one eligible initial node for any eligible terminal
node.

So far, none of the rules that we have dealt with has had a
word boundary on either the left- or right-hand side. Many
important phonological modifications are best accounted for
by rules that change things on both sides of a word
boundary. To show how we handle this kind of rule, we
extend our example by adding one more rule:

7. 0d |26 —|®/ _

This rule says that a single flapped n is an alternative to the
entire sequence on the left-hand side anywhere the latter
appears. It can be applied at the beginning of ‘those’ and also
at the end of ‘send.” We expect, therefore, that its presence
will modify the initial nodes of ‘those’ and the terminal
nodes of ‘send.” The word boundary on the left-hand side
will be number 7, and the word boundary on the right-hand
side number 8. The graphs for ‘those’ and ‘send’ when we
use this additional rule are shown in Figures 8 and 9. We see
that the graph for ‘those’ has all of the initial nodes that it

IBM J. RES. DEVELOP. VOL. 31 NO. 1 JANUARY 1987

had before and that the left requirement for each of them
has been augmented with (—7). In addition, there are two
new initial nodes. The first has as its left requirement
(—8,—2,—1,7). This node corresponds to the case where our
new rule is applicable but the alternative presented by the
right-hand side has not been chosen. The second has as its
left requirement (—2,—1,7,8) and corresponds to the case
where the new rule is applicable and the alternative has been
chosen. The left context description for ‘those’ has also been
augmented with (7).

In the graph for ‘send,” we see that all of the original
terminal nodes are still present and that their right
requirements and right context descriptions are unmodified.
There are, however, two new terminal nodes corresponding
to the two new initial nodes of ‘those.” Notice also that all of
the terminal branches of ‘send’ begin earlier because now the
n is subject to change depending on the following context.

o Efficient storage
We can store graphs such as those in Figures 8 and 9 as a
collection of nodes and transitions. Each of the requirements
and context descriptions can be stored as a list of numbers
with an indication of the node for which it is appropriate.
While such a scheme is straightforward, it is possible to
achieve a much more efficient representation of these graphs.
In order to describe our scheme, we need some terminology.
We refer to nodes through which each path must pass as
confluent nodes. For example, in Figure 8 the nodes
immediately preceding and following o are confluent nodes.
The portion of the graph between consecutive confluent
nodes is called a confluent link, or c-link. The leftmost
confluent node is called the first confluent node and the
rightmost one is called the last confluent node. The part of
the graph to the left of the first confluent node is called the
left hook, and the part to the right of the last confluent node
is called the right hook. The left hook includes the left
context description and also the left requirements of the
initial nodes, while the right hook includes the right context
descriptions and the right requirements of the terminal
nodes. We can then store a graph simply as a left hook, a
sequence of c-links, and a right hook. Even for a large
vocabulary, the number of different left and right hooks is
less than 100, and the number of different c-links is only on
the order of 1000. If we add a new word to the vocabulary,
the chance that we will require a new hook or c-link is small.
Therefore, as the vocabulary grows, the marginal cost of
storing one additional word becomes quite small, being
roughly equal to the cost of storing the spelling for the word.
A quantitative discussion of the storage requirements for a
particular 1000-word vocabulary is given later.

e Rapid application
During decoding, it is necessary to be able to construct the
graph for a sequence of words rapidly. If we store graphs as

IBM J. RES. DEVELOP. VOL. 31 NO. 1 JANUARY 1987

(—4.3.5)/0)
LA 7N\
(=7 =2 —— D~ / (=435

; N /'% (=345)/()
\ |/ s
(—7,4,2)-—'{:}14 '1/ (—34.5)/(])

<)
| Vol :
(=7.-2.-1) 8 y Y G (-5.-3400)
/

Y, \\\\ ,
s N (—4.-35/0)
—8,-2,—17) e—e"er ~&
(=8.-2-1D Y, \ <5:(—4,~—3.5)/m
. \
(=2~ 178) edaiar” R R VT
56,7

f’L (=6)/()

s
_end

~ \ d

4 \\ ©6)/()
| s £ / Nt
O el
N
\ —~——t e d

\

AN

N — e (/78

Graph for ‘send’ including the effect of rule 7.

i

indicated above, we will have no trouble with the portion of
the graph between the first and last confluent nodes of a
word. The challenge comes in constructing the portion of the
graph from the last confluent node of one word to the first
confluent node of the following word. This part of the graph
is uniquely determined if we know the right hook of the first
word and the left hook of the second word. Since any word
can follow any other word, we must be prepared to connect
any right hook to any left hook. We call the graph that
corresponds to a right-hook/left-hook pair the boundary link,
or b-link, for the pair. Because the number of different hooks
is small, we can compute all of the necessary b-links before

ROBERT L. MERCER AND PAUL S. COHEN

87

88

d
|
n

C-links (o]
1 2% o 7
2. e
3 ..._S_.

3 n
4. oL o

9 ol o
B-links Words
1 cs 1. £, ¢, r, (‘those’)
2. Ce 2. 12 Cye5¢,7, (‘send’)
3. ¢
4. Cg C,

Complete information for the vocabulary comprising ‘send” and
. ‘those.’

decoding. Each b-link is a graph with a sequence of
confluent nodes and can be stored as a series of c-links. If
there are #, left hooks and n, right hooks, then there will be a
total of n,n, b-links. If we assign the index (/ — 1)n, + r to the
b-link corresponding to left hook / and right hook r, then the
b-links will have indices ranging from 1 to npn,.

An example will make the process of connection clear.
Suppose that the vocabulary has only the two words ‘send’
and ‘those.” Then when we are decoding, we will need only
the data shown in Figure 10. Notice that we store nothing to
indicate the structure of the hooks, because by storing the
b-links explicitly we eliminate the need for this. We wish to
construct a graph for word 2 followed by word 1 (‘send
those”). We look up words 1 and 2 and find that word 2 has
right hook 2 (7, in the figure) and word 1 has left hook 1.
Therefore, since n, = 2, we need b-link 2 to fill the space
between the last confluent node of ‘send’ and the first
confluent node of ‘those.” The resulting graph has left hook

ROBERT L. MERCER AND PAUL S. COHEN

1, followed by the c-link sequence ¢,¢,c,cqc, followed by right
hook r,.

o A numerical example

In order to illustrate the efficiency of storage possible with
the method described here, we have made a comparison
between our technique and a straightforward method of
storage for a vocabulary of 1200 words. These are the most
frequent words in a large collection of text from the
descriptive portions of U.S. patents in laser technology. As
such they are not entirely representative of what one might
call everyday English (for example, the average word is
almost one letter longer than the average over all of English),
but we believe that they are sufficiently similar to allow a
valid comparison. For each word, we have constructed a
graph using the phonological rules described in [5].

Our 1200 words have an inventory of 1065 c-links, 82
right hooks, 62 left hooks, and 5084 b-links. We assume that
a graph can be stored with 4 bytes for each node and 4 bytes
for each arc. If we store the graph for each word directly,
then, under this assumption, we will require a total of
262244 bytes. If, on the other hand, we store graphs only for
the c-links but keep words and b-links as sequences of
c-links, then these c-link graphs will need only 114780 bytes.
In addition, we will need 17 374 bytes to store the left and
right hooks for each word and the list of c-links that makes
up its central portion, and 26442 bytes to store the c-link
sequences for the b-links. Altogether, then, we will need
158 596 bytes using our method as compared with 262244
bytes using the straightforward method, or a saving of about
40%.

A saving of 40% on 1200 words, however, does not really
indicate the storage efficiency which our method allows.
When we add a word to a large vocabulary, we may already
have many of the c-links that we require. Only rarely will a
new word involve a new left or right hook. Thus we can
expect that eventually the storage required for new c-links
and b-links will grow very slowly and that when we add a
new word we will need only the storage required for it. Thus,
in addition to comparing the total storage, we should look at
the marginal growth rates in storage for the two methods.

In Figure 11, we show, as a function of the vocabulary
size, the average number of new c-links and b-links required
when a new word is added to the vocabulary. We have
estimated these growth rates by choosing a random sample
from our 1200 words; determining the number of c-links
and b-links required to represent it; choosing an additional
random sample of 10 words from those not chosen in the
first sample; and, finally, determining for these 10 words the
number of additional c-links and b-links which they require.
Each of the plotted values is the average of 1000 such trials.
We see that when the vocabulary reaches 1000 words, each
new word requires only about 0.4 new c-links and 2.6 new
b-links.

IBM J. RES. DEVELOP. VOL. 31 NO. 1 JANUARY 1987

NAHOD 'S TNvd ANV d3IDYdW "1 143404

68 ut AJoryd paylom pue ‘IowweISold [BUONONNSU] UR SE 8§96
ur SIYSISY UMOINIOX 1€ JAF] JO UOISIALJ YoIBasdy dy1 pautol usyo)

"IN CANISIDATU) BIqUIN[OD) JB JUBIS UoTBONP JO 3dYO "S'(1 B U0

oIessar onsmsut] pIp §961 01 G961 Wolj pue ‘aSon3un1 ysysug ayi

Jo davuonionqg asnof wiopupy i [U0 101IP3 UB Sem Y ‘G961 01 £961

wol "0L6] Ut AJNSIOATU() BIQUINOY) WOy (YS[[BUT ul uoneziendads e

YNA) SOTSINSUI] Ul "W Y1 PUB ‘p96] UL 104 MIN Jo 383[[0D A1)

3y} Woyy AUNJBIANI dANBIRdWOD PUE SOUSIMIUY UL Vg Y} PIAISIAI

uyYOD) TN FESO] JH0X MIN ‘POOMUIOY] ‘INUIAY SHQUINIO)

00§ ‘Maudojpaa(q puv youwasay jo jpunofr WEI uayood s [ned

‘IX PW3Ig pue ‘T4 eddey

14 ‘eddey] e1og 1y JO JIOQUIW B ST IIIA “I(] "191Ud)) YoIeasay]
uosiBAy “f Sewoy] 2yl 18 uou3oday yosadg swl] -[2ay Jo

Io8euew APUALIND ST pue ‘JuawnlIeda(sAUSS Jandwo)) ‘IquIsy
IS yoIeasay B u2aq sey 9y 7/6] 0UIS ‘A19A10adsar ‘7 61 pue
0,61 uI ‘BuUBqI[) ‘SIOUI[[] JO ANSIdATUN Y] WOL 3dUa1ds Jondwos ur
$32135p ‘(q'Yd PueB 'S’ Yl pue ‘961 ur ‘anbranbnqry ‘001X MmN
JO AYISIoAIUN) Y} WOy sonewaylew pue sosAyd ul 22139p “S'g Yyt
PIATQ0AI JISN "I(T ‘§6SOT HIOX MIN ‘SIYBISE] UMODIOL ‘R]7 Xog
‘O'd 121U YIUDISHY UOSIDM “f SOy [WG 19II9N " HOqoy

9861 ‘0f 12quinidog
uonwongnd 40f paidadon $QE[‘S 12QUIAON Paa1addY

‘painbai oq A[Jeo112100Y} P[NOM [1BID

onauoyd Ijuyur asnedssq ‘Apueniodull srow ‘pue 313(dwodur

J19su st a3pamouy onsm3uly snedsq Apred—anepdwoo Ann st
s3engue| e 1oy sa[nu [eordojouoyd jo 195 ou ‘donoeld ur ‘A[SnoAqQ L

"€L5-6¥S dd ‘7861 ‘weprswy ‘Auedwo) urysiqng

PUB[OH-YMON “spd ‘TeUeY ‘N “T Pug Bruusty] “T°d ‘T 10A

SOUSDIS JO JOOGPUDE Y] . ‘SPOYRIA [Bo1ISTIEIS :U0NIu3003y
yo3adg snonunuo),, ‘[yed Y] pue ‘I0IW 1 g oulpef g ‘9

*9z1s AIR[NQRI0A "SA JRI Y)MoI3 a5rIolg

9715 KIRNQEIoA

0001 006 008 00L 009 OQUS 0O0F 00€ 00T 00l \]
1 TR i i 1 I L. 1 0
® ® [[} ® © ® ®
e @ B,
L R % oot _
2] % 3
(2]
° o OUT 2
2
'5% B
a 00t %
® &z
m [FOOF 2
g
o 3
FO0s &
Feiois Y- ® @ g
=009
ABrios YU-g o
L]

00L

(861 AMVINVI ['ON If TTOA 'dOTdA3IA 'SI¥ T WAl

"07€-SLT 'dd ‘GL61 HOA
MIN “2U] ‘ssald OIWSPEOY P ‘APpay ¥ " ‘UONIuS022Yy yY203ds
SwRIsAS uonugoday-yssads onewoiny ue jo jusuodwio)
[eo130[0UOYJ Y], ‘IS0ISJA T UAQOY pue Usyo) ‘S [ned ¢
"€L61 ‘AN
‘aseq 9010, JTY SSLIN) 191ua)) Judwdopad 1y swoy ‘(NI Aq
paxedaad) z/-Y I-DAVY 1H0da¥ jp:uydd [‘Yo9adg snonunuo)y
Jo uonudoday dyewoIny I0J WIANSAG aFeIS-N[NA € JO UOHEN[BA]
DUBULIONJ Aerpauiu],, ‘Wodde] D *D pue uoxiq Yy ‘N v
("Sunosw Jo wiesdoid ul J|qE[IBAR 10BNSQY) "7L6] JIQUIDAON
‘1 ‘TWEBIA] “BOUAWY JO 12150 [BO1ISNO0Y dY) JO Sunosw
Y1pg ayl 1e pajuasaxd saded | ‘yosadg snonunuo)) Jo uoniudosay
onewIoINY Ul [Ny AQ SIUBLIBA [BOIXa] Sulysijqeisy 10} Supoddq
[enuanbag jo uonednddy,, ‘uoxiq Y ‘N pue wadde] "D ™D ‘¢
("3unsow jo weidoud ut ajqe[ieae
108NSqQV) "7L6T JIQUDAON “T ‘TWERIA ‘BOLIDWY JO A191308
[821SN00Y 3Y} JO SunddwW Yipyg Y1 18 pAauasad saded | ‘ydaadg
snonunuo) jo uoniugoddy dyewoIny ur uoneIussAuday
[BO1X] PUB UOTIEN[BAT JOJ JUAIJIY IN3UOYJ B JO UOEALIS]
Y} Ul SWI[qo1d dwos,, ‘Uadde] D D pue uoxid Y ‘N ‘¢
0961 ‘IN ‘wo1aduLd “ou] ‘Auedwo) puelsoN UeA ‘q
‘SUIDY) AOYADJY 21Ul “[[PUS SUNET ‘[pue AUSWIY 'O uyor |
90U pue S3JUdid)dYy

‘poylaw premIojystens ayy ueyl ss3f %46
1N0qe 10 ‘$3JAQ] yoeordde [[im piom mau e 10j palinbax
a3e10)s [RUIBIBW 91} PUR [[B) 0) dNUNUOD |[Im d3RI0IS yUI[-q
pue Jui[-2 J0J $31el YImo3 oyl Saue[nqeooA 51| A13A 10§
1ey1 310adx2 9\ "%+9 AQ PIonpal st paambax a3e10)s [eurdew
3y} spIom Q01 IoYe ‘sny L "poylow premiopysens syl 1oy
$914q Q7 In0ge yum paredwod se sajhq (8 moqe 10Y1330)e
pasu om °azis Aregngeooa Jo juapuddopul ‘03r10)s JO $21AQ H
INOQE $21INbAI J[as11 PIOM Y] 20UIS "93eI0IS Jull-q JO $ALq
€1 pue a5e101S JUI-O JO $3AQ € INOQE SAIMNDAI PIOM MU
[oea ‘spIom (001 1YY "SNUI-q pue sYUI[-O 10 35eI01S Ul Jjel
ymoI8 o) A1uo smoys yderd ay) os pue ‘a8eIo)s ou 1nbax
s}00Y 1y3u pue 19| ‘210J2q IO pajuiod dABY Im SY "95RIOIS
Ul sa3el Y1moIS J0J SInsal IB[IUIS MOYS om ‘7| 2am3ig U]

*921s AIR[NQBIOA “SA pIom 1od SWaY MaU Jo IoquinN §

azis K1e[nqeOOA

0001 006 008 00L 009 005 007 O0DF 00 00l
B] [] B B
o} o3
LI
3 ®
sl-01
% 2
g
] =
-~y
§ i
il @
[=%
Syurj -,]
- ® | oc
su-g © $

90

computer-assisted instruction and linguistics. From 1970 to 1972, he
did linguistic research and teaching-material development under a
Ford Foundation Grant at Brooklyn College of the City University
of New York. He then rejoined IBM at Yorktown, where, as a
Research Staff Member, he did research in the areas of speech
recognition and speech synthesis until 1983. He worked as a
computational linguist for the E/ME/A National Language Support
Center and was a Program Manager for World Trade International
Technical Support in Poughkeepsie from 1984 to 1985. At present,
he is an Associate Editor of this journal. At IBM, Mr. Cohen has
received a Research Division Award for contributions to speech
recognition, an Invention Achievement Award, and a First Patent
Application Award.

ROBERT L. MERCER AND PAUL S. COHEN

IBM J. RES. DEVELOP. VOL. 31 NO. | JANUARY 1987

