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In  an  automatic  speech-recognition  system,  the 
application of phonological  rules to phonemic 
strings in order to create  phonetic  graphs is a 
computationally  time-  and  storage-consuming 
process. A great  many  such  graphs  must be 
constructed  during  the  decoding phase;  thus it 
is important to be able  to  rapidly  construct 
phonetic  graphs  for  strings of words  from 
graphs of individual words.  However,  because 
many phonological  rules  operate  across  word 
boundaries  or  require  interword  context, it is not 
possible to determine a unique,  context- 
independent  phonetic  graph  for  a  word. We 
describe  a  method  for  determining  the  phonetic 
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graph  for  a  word in isolation,  together  with 
auxiliary  information to allow  phonetic  graphs  for 
different  words to be  rapidly  interconnected to 
form a phonetic  graph  for a string of  words;  the 
method  also  reduces  storage  requirements 
significantly. 

Introduction 
Phonological rules are used in systems for speech recognition 
by computer  in  order  to generate the  many  and varied 
pronunciations (“phonetic realizations”) of underlying, 
somewhat idealized pronunciations  (“phonemic baseforms”). 
In  addition  to  normal  inherent variation, the range of 
pronunciations of words considered in isolation is caused, 
inter alia, by differences in social and geographical dialect, 
idiolect, style, and pace. In the context of other words 
(“continuous speech”), further  pronunciation  adjustments 
occur. The possible phonetic  realizations for a given word 
can be represented  conveniently and compactly  in the form 
of directed  graphs, which also permit automatically 81 
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determinable probabilities to be  associated  with  different 
pronunciations [I] .  

References [2-41 describe the first  use  of  phonological 
rules and graphs in a system  for the automatic recognition of 
continuous speech.  Reference [5] gives a detailed description 
of a flexible module (implemented in an experimental 
speech-recognition system [6]) for generating phonological 
graphs, as well as a comprehensive set of rules  for  American 
English. 

Much of the very considerable computational time  and 
space  needed  for generating those graphs was devoted to the 
production of contextual variants. We have  devised methods 
to reduce both processing time and storage requirements. 
These methods take advantage of a novel, computationally 
efficient representation of the possible phonetic realizations 
of  all the words of a particular lexicon  as  being sequences of 
subgraphs-from a small set  of such subgraphs-which are 
precomputed and stored. The words are specified in such a 
fashion as to make connections with other hypothesized 
words during the decoding phase of automatic speech 
recognition computationally tractable. 

Overview of the  method 
If  we consider a particular word, we  find that its phonetic 
realizations are influenced to some extent by the phonetic 
character of the words immediately preceding and following 
it. For example, we may  find that a word such as ‘those’ 
behaves  in  different phonetic contexts as represented by the 
graphs in Figure 1. Usually only the first  few phones and the 
last few phones will be  affected  in this way: The phonetic 
realizations possible  for the central portion of a word  longer 
than a few phones are normally unaffected (or, at most, 
minimally affected) by the phonetic environment in which 
the word appears. If a complete set  of phonological rules is 
specified in advance, then it is possible to determine all of 
the variations that can arise in the phonetic realization of a 
word as a result of the phonetic character of surrounding 
words [7 ] .  We  would  like to distill from a collection of 
graphs, a single graph, as shown in Figure 2. Here, each of 
the initial nodes has  associated  with it a left connection 
which  is  simply a representation of the phonetic 
environment to which  it  is applicable. Similarly, each 
terminal node has  associated  with  it a right connection which 
represents the phonetic environment to which it is 
applicable. 

We describe a method for obtaining these graphs which 
allows  for  efficient  storage  of the resulting graph and for the 
rapid connection of a number of such graphs to form a 
graph  for a string of words. We illustrate the method with a 
detailed example. Our attention is  focused on  the issue of 
constructing the graphs and not on  the phonological rules 
themselves.  We therefore use an abbreviated and simplified 
set  of  rules and ignore such things as stress so that our 
example is not unnecessarily complex. In our example, we 82 
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use the word  ‘those’  for  which the baseform  is / I  6oz/, where 
the  vertical bar at the beginning of the baseform  is a word 
boundary. When the word  ‘those’ appears in a string of 
words, the /z/ at the end of the baseform will  be  followed 
immediately by the word boundary at the beginning of the 
next  word, and rules are applied accordingly. 

We apply to this baseform the following  set  of  five  rules:* 

Each  of these  rules  has a left-hand side (the part before the 
arrow), a right-hand side (the part between the arrow and the 
slash), a left-hand context (the part between the slash and  the 
underscore), and a right-hand context (the part after the 
underscore). In rule 5 ,  the left-hand side is z, the right-hand 
side  is s, the left-hand context is empty, and the right-hand 
context is I (f, 6, s, S, E).  The rule says that s is an alternative 
to z if the z is followed  by a word boundary which  is  in turn 
followed  by any one off, 6, s, i, or E. Because the left 
context is  empty’ in this rule, there is no constraint placed on 
the phones which  precede the z. Rule 4 says that i is an 
alternative to z when the latter follows o and is  itself 
followed  by any one of E, j, or j. The parentheses around  the 
word boundary in rule 4 show that the word boundary is 
optional. Thus rule 4 will  also apply in a situation where the 
z is at the  end of a word,  provided the next  word  begins  with 
any one of E, j, or j. For a detailed discussion  of the 
application of our phonological  rules and of the notation we 
have  used  in  writing them, see  [5]. 

The steps involved in constructing a graph for  ‘those’ are 
shown in Figure 3. We  begin  with a single node, as shown in 
Figure  3(a). Since none of our rules applies to the word 
boundary, we can simply add  the word boundary to this 
node to obtain the graph in Figure 3(b). Either of  rules 1 and 
2 might apply because the 6 in ‘those’  is immediately 
preceded by a word boundary. In some contexts, rule 1 will 
apply but not rule 2, in some contexts rule 2 will apply but 
not rule 1, and in some contexts neither rule will  apply. 
Specifically, rule 1 will apply exactly  when the phone 
preceding the word boundary is Is/, rule 2 will apply  exactly 
when it is If/, and neither will apply when the preceding 
phone is anything else. These considerations lead to  the 
graph shown in Figure  3(c).  We  have  split the initial node 
into three nodes and labeled  each  with the left context for 
which it is appropriate. Again, none of the rules applies to 
Io/, and so we simply add it, thereby producing the graph 

*The phonetic symbols used in the rules are these: 
ti as in then 
d as in bend 
s as in sun 
f as in fox 

z as in ZOO 
i as in vision 
S as in ship 
o as in those 

f as in chum 
j as in jus1 
j as in young 
n as in men 
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shown  in Figure 3(d). Rules  3, 4, and 5 may each  apply to We must therefore make a five-way split in  the graph 
the /z/ in some contexts:  Rules 3 and 5 but  not rule 4 will reflecting the possible contexts of the following word. The 
apply if the next  word begins with /i/; 4 and 5 but  not 3 will result is shown  in  Figure 3(e). 
apply if the,next word begins with / E / ;  only 4 will apply if Each of the initial  nodes in Figure 3(e) is labeled with a set 
the next word begins with either /j/ or /j/; only 5 will apply of conditions which must be satisfied if it  is to  be used. Each 
if the next word begins with If/, 161, or Is/; and  none of the of the final nodes is similarly labeled. If we wish to  connect 
rules will apply if the next  word begins with anything else. this  graph to  another  to  form a graph  for a pair of words, 84 
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then we need only check, for  each possible connection of a 
final node on  one graph to  an initial node  from  another 
graph, whether  all of the necessary conditions  are satisfied. 
For example,  suppose we wish to  connect a graph  for the 
word ‘send‘ to a graph  for the word ‘those’ to  obtain a graph 
for the word  pair ‘send those.’ A graph  for ‘send‘ is shown in 
Figure 4. In  obtaining it, we have used the following 
additional rule: 

6. d + $ / n - 1 6  

This rule states that a final d can be omitted if it follows an n 
and  the next  word begins with 6. Actually, this rule  is a part 
of a more general rule (consonant-cluster simplification), but 
for our purposes this simplified version of it suffices. Now, 
the  top  terminal  node for ‘send’ can only be used in  front of 
words that do  not begin with 6, and  the  bottom  one  can only 
be used in  front of  words that do begin with 6. Since ‘those’ 
begins with 6, we must use the  bottom  terminal  node  from 
‘send.’ It is  also  clear that we must use the  bottom initial 
node from ‘those’ because ‘send’ ends with neither f nor s. 
Therefore the resulting  graph  for ‘send those’ is the  one 
shown  in Figure 5. 

above, determining which terminal nodes  of one graph 
connect  to which initial  nodes  of another graph is a time- 
consuming process. We must first determine for which of the 
terminal nodes  of the first graph the baseform for the second 
graph  provides the correct right context. Then we must 
determine for which of the initial  nodes  of the second  graph 
this terminal  node provides the correct left context. It is this 
process of selecting which nodes to interconnect and which 
nodes to  prune  that we would like to  make  more efficient. 
The key to  doing so is that  there  are only a finite number of 
rules and hence only a finite number of left and right 
contexts that need to be distinguished. Because of this, we 
can carry out most  of the  computation necessary for  making 
a connection  ahead of  time. Let us return  to our example 
and see how this can be done. 

When the graphs are stored  as  indicated in  the examples 

We begin by numbering  the word boundaries  that  appear 
in each rule  as  shown below: 

Although each  of our rules has exactly one word boundary, 
in general a rule may have any  number of  word  boundaries 
or none  at all. (It is therefore an artifact of our example that 
the  numbers  on  the word boundaries correspond to  the 
numbers of the rules themselves.) For word boundaries 
which appear in the left-hand context of a rule, we let the 
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i Graph for ‘send those.’ 

number of the word boundary represent the  statement  that 
the graph to  the left of a position satisfies the portion of the 
left-hand context to  the left of that word boundary; and we let 
the negative of the  number represent the  statement  that  this 
is not  the case. Thus, instead  of  putting s as a condition  on 
the first initial node of ‘those,’ we label the  node with the 
pair (-2,1), indicating that  this node can only be connected 
to a terminal node which provides the  context required by 
word boundary 1 and  does  not provide the context  required 
by word boundary 2. We call this label the left requirement 
of the node. Similarly, for  word  boundaries which appear in 
the right-hand  context  of a rule, we let the  number of the 
word boundary represent the  statement  that the graph to  the 
right of a position satisfies the portion of the right-hand 
context to  the right of the word boundary; and we let the 
negative of the  number represent the  statement  that this is 
not  the case. The  conditions necessary for attaching a 
particular terminal  node  can  then be expressed as a set of 
positive and negative numbers which we call the right 
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requirement of the node. The top terminal node of  ‘send,’ for 
example, has the right requirement (-6) because  it can only 
be  used  when the following  word does not provide the 
context following  word boundary 6. 

In addition to providing each node with a left or right 
requirement, we must also indicate the set  of requirements 
which  it  supplies.  Because our rules are constructed so that 
the right context is taken from the as-yet-unprocessed 
baseform, all  of the initial nodes supply the same 
requirements, which we call the left context description of the 
baseform. Each terminal node, however, has its own right 
context description because  different terminal nodes may 
supply  differing requirements depending on  the details of the 
graph to the left. In Figures 6 and 7, the left requirement of 
each initial node is shown in parentheses next to it; the left 

context description is  shown  in a box  below the graph; and 
the right requirement and right context description of each 
terminal node are separated by a slash and placed to  the 
right  of the node. The left context description of  ‘those’ is 
(5,6). This means that a terminal node from a graph can be 
connected to ‘those’  only if its right requirement includes no 
positive numbers other than 5 or 6 and includes neither -5 
nor -6. The top terminal node of  ‘send’ includes -6 and 
therefore is not eligible  for connection, but the bottom 
terminal node includes only 6 and therefore is eligible  for 
connection. The right context description of the bottom 
terminal node of  ‘send‘  is empty because this node satisfies 
none of the word boundaries that appear in left-hand 
contexts. Therefore, the only initial node from ‘those’  which 
we can connect to it is the bottom one for  which the left 
requirement is (-2,- I ) .  

The example above suggests a general procedure for 
connecting the graphs for  two  baseforms.  We  say that a 
requirement and a context description are compatible if each 
of the positive numbers in the requirement appears in the 
context description and if, further, the negative of no 
number in the context description appears in the 
requirement. Given two  words, we  say that a terminal node 
of the first  word  is  eligible  for connection to the second word 
if its right requirement is compatible with the left context 
description of the second  word. We  say that an initial node 
of the second word  is  eligible  for connection to a particular 
terminal node of the first  word if the left requirement of the 
initial node is compatible with the right context description 
of the terminal node. To connect two  words, we  find all  of 
the terminal nodes of the first  word  which are eligible  for 
connection and  then we connect to each  of these eligible 
terminal nodes the initial node of the second word  which  is 
eligible  for connection to it. It  is  easy to show that there is 
exactly one eligible initial node for any eligible terminal 
node. 

So far, none of the rules that we have dealt with  has  had a 
word boundary on either the left- or right-hand side. Many 
important phonological modifications are best accounted for 
by rules that change things on both sides  of a word 
boundary. To show how  we handle this kind of rule, we 
extend our example by adding one more rule: 

7. nd 1@’6-+1@? / -  

This rule  says that a single  flapped n is an alternative to the 
entire sequence on  the left-hand side anywhere the latter 
appears. It can be applied at the beginning of  ‘those’ and also 
at the  end of  ‘send.’  We expect, therefore, that its presence 
will modify the initial nodes of  ‘those’ and the terminal 
nodes  of  ‘send.’ The word boundary on  the left-hand  side 
will  be number 7, and  the word boundary on the right-hand 
side number 8. The graphs for  ‘those’ and ‘send‘  when we 
use this additional rule are shown in Figures 8 and 9. We  see 
that  the graph for  ‘those’  has all of the initial nodes that  it 
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had  before and that the  left requirement for  each of them 
has  been augmented with (-7). In addition, there are two 
new initial nodes. The first  has as its left requirement 
(-8,-2,-1,7). This node corresponds to the case  where our 
new rule  is applicable but the alternative presented by the 
right-hand side has not been chosen. The second has  as its 
left requirement (-2,-1,7,8) and corresponds to the case 
where the new rule is applicable and the alternative has  been 
chosen. The left context description for  ‘those’ has also  been 
augmented with (7). 

terminal nodes are still present and that their right 
requirements and right context descriptions are unmodified. 
There are, however,  two new terminal nodes corresponding 
to the two new initial nodes of ‘those.’ Notice also that all of 
the terminal branches of ‘send’  begin earlier because  now the 
n is subject to change depending on the following context. 

In the graph  for  ‘send,’ we  see that all of the original 

Ejicient storage 
We can store graphs such as those in Figures 8 and 9 as a 
collection  of nodes and transitions. Each  of the requirements 
and context descriptions can be stored as a list  of numbers 
with an indication of the node for  which it is appropriate. 
While  such a scheme is straightforward, it  is  possible to 
achieve a much more efficient representation of these graphs. 
In order to describe our scheme, we need some terminology. 

We refer to nodes through which  each path must pass as 
confluent nodes. For example, in Figure 8 the nodes 
immediately preceding and following o are confluent nodes. 
The portion of the graph  between consecutive confluent 
nodes is called a confluent link, or c-link. The leftmost 
confluent node is called the first confluent node and  the 
rightmost one is  called the last confluent node. The part of 
the graph to the left of the first confluent node is called the 
left hook, and the part to  the right  of the last confluent node 
is  called the right hook. The left  hook includes the left 
context description and also the left requirements of the 
initial nodes,  while the right  hook includes the right context 
descriptions and the right requirements of the terminal 
nodes. We can then store a graph simply as a left hook, a 
sequence of  c-links, and a right hook. Even  for a large 
vocabulary, the number of  different  left and right hooks is 
less than 100, and  the number of different c-links is only on 
the order of 1000. If  we add a new word to the vocabulary, 
the chance that we  will require a new hook or c-link  is  small. 
Therefore, as the vocabulary  grows, the marginal cost of 
storing one additional word  becomes quite small, being 
roughly equal to the cost  of storing the spelling  for the word. 
A quantitative discussion of the storage requirements for a 
particular 1 000-word  vocabulary  is  given later. 

Rapid application 
During decoding, it is  necessary to be able to construct the 
graph for a sequence of words  rapidly. If  we store graphs as 

Graph for ‘those’ including the effect o f  rule 7. 

: Graph for ‘send’ including the effect of rule 7. 

indicated above, we  will  have no trouble with the portion of 
the graph  between the first and last confluent nodes of a 
word. The challenge comes in constructing the portion of the 
graph from the last confluent node of one word to  the first 
confluent node of the following  word. This part of the graph 
is uniquely determined if  we know the right  hook of the first 
word and  the left  hook of the second word.  Since any word 
can follow any other word, we must be prepared to connect 
any right  hook to any left hook. We call the graph that 
corresponds to a right-hooklleft-hook pair the boundary  link, 
or b-link, for the pair. Because the number of  different hooks 
is small, we can compute all  of the necessary blinks before 87 
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C-links 

1. _o_ 

3. _s_ 

4. _E 

B-links 

1. c5 

2. C6 

3.  c, 

4. csc9 

8. 

9. 

Words 

1. 

2.  

,n, 

I ,  c ,  rI (‘those’) 

1, c2 c3 c4 r, (‘send’) 

decoding.  Each b-link is a graph  with a sequence of 
confluent  nodes and  can be stored as a series of c-links. If 
there  are n, left hooks and n, right hooks, then  there will be a 
total  of n,n, b-links. If we assign the index (I - l)n, + r to  the 
b-link corresponding to left hook I and right hook r, then  the 
b-links will have  indices  ranging from 1 to n,n,. 

An example will make  the process of connection clear. 
Suppose that  the vocabulary has only the  two words ‘send‘ 
and ‘those.’ Then when we are decoding, we will need  only 
the  data shown in Figure 10. Notice that we store nothing  to 
indicate the  structure of the hooks, because by storing the 
b-links explicitly we eliminate the need  for  this. We wish to 
construct a graph  for word 2 followed by word 1 (‘send 
those’). We look up words 1 and 2 and find that word 2 has 
right hook 2 (r2 in  the figure) and word 1 has left hook 1. 
Therefore,  since n, = 2, we need b-link 2 to fill the space 
between the last confluent node of ‘send‘ and  the first 
confluent  node  of ‘those.’ The resulting graph  has left hook 

l2 followed by the c-link sequence c2c,c4cscI followed by right 
hook r,. 

A numerical example 
In order  to illustrate the efficiency of storage possible with 
the  method described here, we have made a comparison 
between our technique and a straightforward method of 
storage for a vocabulary of 1200 words. These are  the most 
frequent words in a large collection of text  from  the 
descriptive portions of U.S. patents  in laser technology. As 
such  they are  not entirely  representative  of  what one might 
call everyday English (for example, the average word  is 
almost one letter longer than  the average over  all of English), 
but we believe that they are sufficiently similar to allow a 
valid comparison. For each  word, we have  constructed a 
graph  using the phonological  rules described in [ 51. 

Our 1200 words have an inventory of 1065 c-links, 82 
right hooks, 62 left hooks, and 5084 b-links. We assume  that 
a graph can  be stored with 4 bytes for  each node  and 4 bytes 
for each arc. If we store the graph  for each word directly, 
then,  under  this  assumption, we will require a total of 
262244 bytes. If, on  the  other  hand, we store  graphs  only  for 
the c-links but  keep words and b-links as  sequences of 
c-links, then these c-link graphs will need  only 114780 bytes. 
In  addition, we  will need 17 374 bytes to  store  the left and 
right hooks  for  each  word and  the list of c-links that makes 
up its central  portion,  and  26442 bytes to store the c-link 
sequences  for the b-links. Altogether, then, we will need 
158 596 bytes using our  method as compared with 262  244 
bytes using the straightforward method,  or a saving of about 
40%. 

A saving of 40%  on 1200 words, however, does  not really 
indicate the storage efficiency which our  method allows. 
When we add a word to a large vocabulary, we may  already 
have many of the c-links that we require. Only rarely will a 
new word  involve a new left or right hook.  Thus we can 
expect that eventually the storage required for new c-links 
and b-links will grow very slowly and  that when we add a 
new word we  will need only the storage required for it. Thus, 
in addition  to  comparing  the total storage, we should  look at 
the marginal growth rates  in storage for the two  methods. 

In Figure 11, we show, as a function  of the vocabulary 
size, the average number of new c-links and b-links required 
when a new word is added  to  the vocabulary. We have 
estimated  these growth rates by choosing a random sample 
from  our 1200 words; determining  the  number of c-links 
and b-links required to represent  it;  choosing an additional 
random  sample of 10 words  from  those not chosen in  the 
first sample; and, finally, determining for  these 10 words the 
number of additional c-links and b-links which they require. 
Each of the plotted values is the average of 1000  such trials. 
We see that when the vocabulary reaches 1000 words, each 
new word requires  only about 0.4 new c-links and 2.6 new 
b-links. 

ROBERT L. MERCER AND  PAUL S. COHEN IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987 



LX39OX L 861 AXVflNVI I ‘ON I N3HOS ‘S IflVd a N V  X3SX3W ‘1 I 

68 

C 

P 
P 
P 
4 

01 

-. i! 
R 

oz 2 
P 
d a 

OE 



computer-assisted instruction  and linguistics. From 1970 to 1972, he 
did linguistic research and teaching-material development  under  a 
Ford  Foundation  Grant  at Brooklyn College of the City University 
of New York. He then rejoined IBM at  Yorktown, where, as a 
Research Staff Member, he did research in  the  areas of speech 
recognition and speech synthesis until 1983. He worked as  a 
computational linguist for the  E/ME/A  National Language Support 
Center  and was a Program Manager for World Trade  International 
Technical  Support  in Poughkeepsie from 1984 to 1985. At present, 
he is an Associate Editor of this  journal. At IBM, Mr.  Cohen has 
received a Research Division Award for contributions  to speech 
recognition, an  Invention Achievement Award, and  a First Patent 
Application Award. 

90 

ROBERT L. MERCER AND PAUL S. COHEN IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987 


