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YODA (the YOrktown  Display  Adapter)  is  an 
experimental  display  designed  to  improve  the 
quality  and  speed of users’  interactions  with 
personal  computers.  This  paper  describes  the 
YODA hardware  architecture  and  software 
design.  Special  attention  is  given  to  techniques 
used for antialiasing.  The  various  trade-offs  and 
decisions  that  were  made are  discussed. 

Introduction 
Personal computing has  revolutionized the  computer 
industry during  the past five years. A key reason for this 
revolution is the high degree of interactivity which results 
when a processor is dedicated to a single user. The proximity 
of the  input/output system to  the processor further 
contributes  to this  interactivity. Among  the most important 
elements of the workstation input/output system are  the 
display medium  and  the architecture of the display 
controller. The display-controller  architecture determines  the 
kinds of images (computer-generated or scanned) that can be 
displayed, and  the speed with which these images can be 
changed.  YODA (the YOrktown Display Adapter) [ I ]  is an 
experimental display designed to  improve  the quality and 
performance of this  interaction. 
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The  computer graphics  industry  has  developed 
workstations and applications that use high-quality color 
images [ 2 , 3 ] .  Examples  of  such  applications are presentation 
graphics, VLSI design, computer-aided design, computer  art, 
and satellite-image mapping. Researchers have developed 
both  hardware  architectures and software techniques to 
improve  the feasibility of these  applications.  Franklin  Crow, 
then of the University of Texas, first described a technique 
known  as  antialiasing [4], which is a  rendering method 
resulting in higher visual quality through  the  elimination of 
sampling  artifacts. Antialiasing smooths  the “staircases” or 
‘‘jaggies” commonly  found in  raster displays. John  Warnock 
first applied  this technique  to  the problem of displaying high- 
quality  text [ 5 ] .  

At  IBM Research, we have  been  working  both on 
architectural  techniques to  improve  the performance of 
workstation displays and  on better  algorithms for antialiasing 
of text and graphical objects [6]. Our initial  tool for this 
work was a  host-connected,  color  raster display of very 
limited  interactivity. We felt a need for a  personal display 
which would permit each of us to work individually, and we 
needed highly interactive displays to  support  our 
productivity  as well as applications  requiring dynamic 
images. 

YODA is the result of our effort to build  a display 
subsystem for  personal computers capable of  the  dynamic 
display of images of moderate  complexity, and of the static 
display of images of the type formerly regarded as  the 
exclusive domain of very expensive systems. We developed 
considerable respect for the capabilities  of the IBM Personal 
Computer for this  kind of work, when it is properly 
complemented by a display subsystem. Another pleasant 
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surprise was the exceedingly diverse nature of the 
applications we and  others were able to build on this base. 

plug into a standard IBM PC), microcode to  run  in  the 
controller’s microprocessor, an analog RGB color CRT 
monitor,  and IBM PC  programs to create high-quality color 
images rapidly. The display controller contains a frame 
buffer and a microprocessor with its control storage. The 
microprocessor is coupled to  the  frame buffer through 
special hardware that allows efficient implementations of 
display-update  algorithms. 

YODA differs from  other display controllers  for the IBM 
PC  primarily  in  its  hardware and software support for 
antialiasing. Some products can display antialiased pictures, 
but do little to  support their synthesis. 

YODA has  more bits per pixel in its frame buffer than 
most display controllers, but,  more  importantly,  more bits  in 
its color specification. This provides the precise color control 
needed for antialiasing. The choice  of  a fast, simple display 
processor provides a combination of programmability and 
good  performance.  Programmability is essential to allow 
experimentation with the pixel combination function, which 
also demands high performance because it  is  executed once 
for each pixel to be modified. YODA’s programmability was 
also necessary to  support  the  experimentation  that 
determined how function  should be divided between the PC 
and  the display processor. 

For cost reasons, commercially  available display 
controllers for the IBM PC generally omit  the display 
processor and  limit  the range of displayable colors. 
Typically, these systems allow eight to sixteen 
simultaneously displayable colors  chosen  from  a range of 64. 
The PC processor must  do all image synthesis. The IBM 
Professional Graphics Adaptor is an exception, but its 
display controller is not fast enough  to perform arithmetic 
operations on each pixel with adequate speed to  support 
interaction. Rather, a  primary  function  of  its display 
controller is the interpretation  of  a high-level picture- 
description language. 

image  quality and  update performance  in  relation to 
hardware cost. Higher image quality  requires  greater 
resolution (more displayed pixels), more choices for the 
color of each pixel, and more precise specification of colors. 
Update speed depends on the total number of pixels 
updated,  the complexity of the update, and  the speed of the 
display processor. We had to strike  a  complex  balance to 
achieve the required speed, quality, and cost. The two  most 
important choices were the use of a television-rate CRT with 
interlaced scan to get moderately high resolution at low cost, 
and  the use of  a  simple  but very fast microprocessor to 
update  the display. The choice  of television-rate refresh had 
other benefits too. We have been able to  take advantage of 
inexpensive CRT monitors,  projection displays, slide- 

YODA consists of  a two-card display controller (the  cards 

The YODA  hardware design had  to address the issue of 
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makers, and  the like, and we have the potential to integrate 
our system with television imagery. 

In this  paper, we present the concepts  behind the YODA 
hardware and software, explaining the various  decisions that 
we faced and  the trade-offs that we have made. 

The  remainder of  this paper is divided into  three  major 
sections, followed by a discussion and conclusion. The first 
of these sections discusses the hardware design, with 
examples of microcode  loops  illustrating the use of the 
display processor. These inner loops were the most 
important factor in  determining  the hardware  architecture. 
The architecture  went through several design iterations 
before we were convinced that  the hardware  supported  these 
loops  adequately. 

Since antialiasing is such an  important aspect of our 
software design, we have dedicated all of the second major 
section to it. After a brief tutorial  on  that topic,  this  section 
discusses the two issues that we focused on in our software: 
Our software consistently depicts the display as  a device with 
higher addressability than  the  number of pixels on  the 
screen, resulting in higher picture  quality. We use 
antialiasing to achieve this effect. Antialiasing in  color is also 
a significant problem, and we describe our solution. 

The  third  major section describes the  YODA software. 
There were two primary issues in the design of the YODA 
software: the  functions  the software should  provide and their 
implementation. In deciding  what  functions to provide, we 
chose primarily to program functions  that would perform 
efficiently on  the hardware.  Dividing the work between the 
PC processor and display microprocessor was difficult 
because different models of the PC use different processors 
with significant differences in  their  performance. In a num- 
ber of cases, we implemented  the  inner  loop of  a  function 
in display-processor microcode, and  the  outer loop  in the PC. 

The paper  concludes with a discussion of our experience 
with YODA. We point out its  merits and its deficiencies, and 
discuss how we would improve  it in a future design. 

YODA hardware 
Image quality for a CRT display is determined by three 
factors. The resolution determines  the total quantity of 
information  as well as the  amount of detail that can be seen 
on  the display. The  number of bits used to represent  each 
pixel determines how many colors or intensity levels can be 
seen on  the display. Intensity levels can be used to  enhance 
the picture at a given resolution by the use of antialiasing. 
The refvesh rate (i.e., the  number of times per second that 
the screen is refreshed) together with CRT  phosphor 
characteristics determines  the degree to which the picture is 
free from flicker. 

Low-cost CRT  monitors  and television compatibility led 
us to use television line  rates  in refreshing the  CRT.  Just as 
in television, we chose to refresh the  CRT  in  an interlaced 
scan, resulting in twice the vertical resolution. An annoying 
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side effect of this decision is that objects that  are only one 
scan-line high are refreshed too slowly, producing a 
distracting flicker. We chose a monitor with a long- 
persistence phosphor  in  order  to  minimize  this flicker. To 
maintain  the  conventional 4:3 CRT aspect  ratio, a display 
resolution of 640 by 480 pixels was selected. 

Choosing the  number of bits  per pixel is a difficult 
problem. That  number  determines  not only the image 
quality but also the cost of the  frame buffer. Since we 
wanted to present a large number of  colors on  the screen as 
well as retain a few bits  for use by antialiasing, using 
anything less than eight bits per pixel seemed  uninteresting. 
Using more  than eight bits  per pixel was too expensive- 
especially since that would  have taken  more  than  two 
PC-sized cards  to  implement.  The  compromise was to use 
eight bits  per pixel with a video lookup table. 

Video lookup table 
The video lookup table (VLT) is a table in  the video path 
from  the frame-buffer memory  to  the  CRT.  This table 
translates  each pixel value into  the red, green, and blue 
values used by the  CRT  to  determine  the color of that pixel. 
A loadable table allows dynamic choice  of  color for each 
pixel value. A larger VLT  output (i.e., more bits  for the red, 
green, and blue  intensities) allows a finer selection of  colors 
to  be assigned to a pixel. We chose 24 bits in  the  output of 46 
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the VLT-eight bits for each of the red, green, and blue 
intensity values. Such a VLT allows YODA  to present 
images which require fine color choices but which do not 
require more  than 256 unique colors, the limit  imposed 
because each pixel is represented by only eight bits. An 
example that illustrates this  is a picture  of a sunset where 
there are fine gradations of red and yellow but  almost  no 
blue. The  VLT allows all 256 displayable colors to be 
assigned in  the red-yellow region. Given this ability to assign 
colors to the parts of the  spectrum where they are needed, 
256 different colors is usually adequate.  Experiments based 
on  the theoretical  models of the  human visual system have 
shown that eight bits  per pixel is sufficient for  most  color 
images [7]. 

The video lookup table is a very powerful mechanism 
which is useful for a wide variety of applications,  including 
animation  and antialiasing. 

A commonly used animation  method is to provide 
multiple  image buffers which are shown  sequentially with 
successive images. The VLT can  be used to divide the  frame 
buffer into several buffers with fewer planes (e.g., four buffers 
with two  bits  per pixel). If the  VLT is loaded in such a way 
that  the color  of  each pixel depends  only  on  the bits in one 
of the buffers, then  that buffer is  rendered visible and  the 
other buffers become invisible. To furnish the  animation,  the 
VLT is  reloaded with new values which cause a new buffer 
to become visible. The invisible planes  of the  frame buffer 
can be updated while the visible planes are displayed. The 
reloading of the  VLT is accomplished during a single vertical 
retrace interval,  preventing any visible disturbance  during 
the changeover. 

Antialiasing eliminates the staircase sampling  artifacts by 
using intermediate intensities  along the edges of objects. The 
VLT must provide sufficient intensity  resolution to  permit 
specification of  these intermediate color values. We have 
found 24 bits in  the VLT output  to  be  adequate for 
this  purpose. We describe the exact use of the VLT  for 
antialiasing in  the next major section. 

Frame-buffer organization 
We chose to use eight 64K-bit dynamic  RAMs  to  implement 
each  plane of the  frame buffer. The  frame buffer of YODA is 
time-multiplexed between CRT refresh and update.  Since 
the  RAMs  can cycle every 280 nanoseconds, and video 
refresh requires eight pixels every 560 nanoseconds 
(70 nanoseconds per pixel), every other  memory cycle is 
available to  the display processor. The choice  of television- 
rate interlaced refresh was important  to allow adequate 
bandwidth  for  update. 

Eight chips per  plane gives us a total of 5 12K pixels for 
the frame buffer, although  only 300K pixels are visible on 
the screen (640 by 480). The  extra invisible frame-buffer 
memory helps in two ways. It increases the  memory 
bandwidth available, allowing faster update access, and also 
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provides  buffer  storage  for temporary images, fonts, and 
other tables. Figure 1 shows the mapping of the (x, y )  
location to the memory address of the 5 12K pixels  of the 
frame  buffer.  Because  eight  pixels are accessed in parallel, 
eight  pixels map onto the same memory  address. A single 
ROM chip maps the (x, y )  coordinates to the memory 
address  using the equation 

Memory  address = 80y + (x/8). 

The data-input wires of all  eight memory chips forming 
one plane are tied  together. This means that the display 
processor  normally  updates one pixel at a time, but a special 
mode,  called slice mode, allows  eight  pixels to be 
simultaneously updated with the same value. This is  useful 

1 
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for  writing or clearing  large  areas. A mask  register  allows 
selective  suppression  of  writes to the chips. This is valuable 
for  writing characters onto a fixed background,  for  example 
where one wishes to write the I bits of the character but to 
leave the background intact where the character has 0 bits. 
In this case, the character data are used as the mask, and the 
pixel  value  representing the foreground color is used  as the 
value to be stored. 

Display processor 
The display  processor  consists of an eight-bit  single-chip 
microprocessor, its data and instruction storage, and its 
interfaces to the PC and to the frame buffer, as shown in 
Figure 2. The microprocessor  is a Signetics 8x305 bipolar 47 
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processor having an execution time of  2 10 nanoseconds  per 
instruction. The design objective of the display processor was 
to enable efficient implementation of the  inner loops  of the 
frequently used raster-graphics algorithms-that is, to 
minimize  the  number of  frame-buffer-memory update cycles 
required for these  algorithms. This objective was achieved by 
using a  simple and fast microprocessor and  augmenting it 
with an  appropriate frame-buffer update interface. 

The  8x305 is primarily intended for  controller 
applications. It has an eight-bit internal  data path and can be 
attached  to peripheral devices by means of an eight-bit bus. 
It is designed to  operate  at a  speed  of 200 nanoseconds  per 
16-bit instruction, with instructions fetched on a  dedicated 
bus for higher throughput. It has  a powerful but simple 
instruction set with only eight instruction classes. Most 
important  to us was its ability to perform  a variety of 
bit-manipulation  tasks  in  a single instruction. 

The choice of an eight-bit microprocessor made  the 
manipulation of ten-bit frame-buffer addresses rather 
cumbersome.  This motivated the use of external  address 
counters  to increase the efficiency of the graphics inner 
loops. The frame-buffer address  interface contains  two pairs 
of (x, y )  address counters  (increment/decrement only). They 
are called XS, YS and XD, YD and  are used to address the 
pixels of the  frame buffer that  are being  read or written 
(source or destination). When  the processor initiates a read 
or a write cycle, the address registers can be independently 
incremented or decremented, or left alone,  after the 
operation.  Thus  extra processor cycles are not  spent in 
changing the address registers in the middle of incremental 
loops. Graphical  primitives  such  as lines, circles, and  area 
fills increment or decrement  the address  in the  inner loop. 
The BitBlt loop (Figure 3), which copies one part  of the 
frame buffer to  another, illustrates this. BitBlt is an 
abbreviation  for bit-block transfer,  also  sometimes called 
RasterOp. 

The frame-buffer operation is asynchronous with the 
processor operation because of the  continuous video refresh. 48 
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The processor can initiate  a  memory cycle, which can  take 
anywhere from  one  to  three processor cycles to complete. If 
another cycle must be initiated or the  data  must be read 
immediately, then a  WAIT  instruction can be used for 
synchronization. It should also be noted that  the use of an 
eight-bit microprocessor  makes  such operations  as loop 
counting awkward, because the screen resolution is greater 
than 256. 

The PC  interface allows the  PC  to  communicate 
commands  and associated data  to  the display processor. It 
also permits the display processor to  return  data  and  status 
to  the PC. It is desirable for the  PC  and  the display processor 
to be able to  run asynchronously and synchronize when 
desired. A 64-byte FIFO (first-in-first-out buffer) is used to 
route the  commands  and  data  from  the PC to  the display 
processor. This allows the PC to issue commands  to  the 
display processor and  continue asynchronously. The PC can 
test the  status of the FIFO to  determine whether it is empty. 
A single register is sufficient for the PC to receive data, 
because this  path is less frequently used. 

The display processor can load the video lookup table by 
setting up  the  VLT address and  the red,  green, and blue 
values, and issuing a VLT write command.  The  CRT video 
signal must be disabled before this  command is issued. To 
avoid visible disturbances on  the screen, it  is desirable to 
load the  VLT  during horizontal or vertical retrace times. If 
the loading  of the VLT is allowed to extend  over several 
frame  intervals, then video will be generated  partly  from  old 
VLT data  and partly  from new data  during  the transition. 
Depending on  the particular data being used, this 
inconsistent  state  may  produce  distracting intermediate 
images. The PC, however, is unable to deliver all 768 bytes 
(256 each for  red, green, and blue) of the VLT data  during a 
single vertical retrace  interval. The problem was solved by 
storing the  VLT  data temporarily in  the invisible part of the 
frame buffer and  then activating  a  microcode routine  to 
reload the  VLT  in  one retrace  period. The display processor 
just makes it! 
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1 Antialiasing. The use of intermediate intensities can smooth the "jaggies." The bottom of the image shows the results of magnifying the edges 
Q from  the images above. 

Antialiasing 
Bitmap images show annoying visual effects in the form  of 
jaggies or staircases when edges or lines  cross rows or 
columns of pixels. On a display device that  can present gray- 
scale images, the effect can be avoided by smoothing  the 
jump through the use of values of intermediate intensity 
(Figure 4). Crow [4] and  Catmull [8] were among  the first to 
recognize that  this problem is a  manifestation  of the 
phenomenon of aliasing. 

In brief, a computer stores  a signal by sampling  it and 
later  reproducing the samples. The jagged effect is due  to  the 
sampling of a sharp edge over  a fixed grid. The original edge 
contains frequencies higher than those that  can be faithfully 
reproduced by the samples  (Nyquist's theorem).  This results 
in higher frequencies  appearing as lower ones; the  error is 
called aliasing. Figure 5 shows high- and low-frequency 
signals which, when  sampled, result in the  same sample 
values. Low-pass filtering of the signal prior to sampling 
prevents the aliasing by removing the offending high- 
frequency components. As a result, this preprocessing step 
has become  known  as anMiasing. Figure 6 illustrates  this 
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The aliasing phenomenon. The high-frequency signal (a) is sampled f at arate which is too slow. The samples are  the same as those from the 
low-frequency signal (b), resulting in aliasing. 

situation  in one  dimension. Part  (a) shows the sampling  of 
the unfiltered signal, and  Part (b) shows the sampling  of the 
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Signal  filtering: (a) Binary  intensity  values which produce the unfil- 
tered  signal at right. (b) Varied  intensity values which produce the 

filtered signal. As illustrated by the figure, the filtered 
samples  require the ability to display intermediate intensity 
values. For the proper appearance of the resulting image, the 
filter must be appropriately  chosen. 

Antialiasing removes the visual artifacts  of  raster display, 
presenting a more desirable image to  the viewer. As a result, 
small,  detailed  objects that were previously overshadowed by 
aliasing artifacts are now  presented realistically. Figure 7 
shows magnified small  characters (the character "a" is only 6 
pixels high!), where one  can even tell something  about  the 
style of the typeface. To simulate the  actual  appearance of 
these characters, the reader  should view the page from a 
distance. The ability to show  smaller  objects gives us an 
effective increase in screen content. We can  thus show more 
characters on a lower-resolution display. 

50 
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8 Addressability > resolution 
In addition  to improving the visual quality  of images, 
antialiasing  also increases the effective addressability of the 
display. Figure 8 shows how gray scale allows the  end  point 
of a line to be positioned at subpixel positions. Other 
examples that use the improved addressing are lines with 
noninteger  thickness,  noninteger  intercharacter spacing, and 
subpixel movements resulting in smoother  animation. 

Antialiased images in this higher addressability can be 
created  in  two different ways. One method  is to filter the 
actual geometric  description, computing  the intensity value 
of each pixel. But there  are also many  situations in which we 
desire to transform pre-antialiased objects in  the higher- 
resolution coordinate system. Examples of such 
transformations  are translation, scaling, and rotation. In this 
paper, we illustrate the benefits and  the techniques of 
subpixel translation. 

8 Subpixel translation 
Antialiasing, as we have seen, allows us to show high-quality 
characters on low-resolution displays. The antialiased 
characters can be generated by filtering high-resolution 
rasterized characters  from devices such as phototypesetters. 
The filtering process assigns an intensity value to each 
low-resolution pixel which is a weighted average of the 
high-resolution bilevel pixels underlying the low-resolution 
pixel. These filtered characters can  then be displayed on a 
low-resolution display. 

Such a scheme gives rise to a problem. High-resolution 
printers use fonts designed for  their  resolution, and also use 
width and spacing information  in  the high-resolution units. 
These high-resolution quantities do not translate to integer 
values at  the lower resolution.  Hence  character-writing 
commands  to  the display result in attempts  to position 
characters at subpixel positions. A simplistic approach which 
merely rounds  the subpixel position to  an integer value is 
not sufficient. The  error caused by rounding  one character's 
position up  and  the next character's position down  can result 
in a total error of nearly one pixel in  the  character spacing. 
This is readily noticeable (Figure 9). 

is to  precompute several different filtered-character 
definitions and use the  one  appropriate for the positioning 
desired. A total of 64 different character  definitions would be 
required to  emulate a printer with eight times  the resolution 
in  each dimension. A tremendous space  saving  could be 
achieved if we could store  only one definition  for each 
character and  then move  it by subpixel distances to  obtain 
the  other  character definitions. 

One possible solution to  the subpixel positioning  problem 

Translation by subpixel distances is equivalent to shifting 
the sampled signal by a distance which is not a multiple  of 
the sampling rate. This problem can  be solved by 
reconstructing the original signal and sampling  it  again at the 
shifted intervals. If the reconstruction filter, ideally the 

I .... .. _. . ".. . ."  ."" _ _  ", .. . . . . . 

.i Subpixel positioning of the end of a line. The three horizontal lines 
i have different end points. The use of gray intensity values can show 
f subpixel end points. 

* Improved character spacing by the use of subpixel positioning of ' characters. The top line rounds the character positions to the nearest 
p pixel location.  The  second  line  positions  each  character  to  sub- 
! pixel positions. The third and fourth lines are magnifications of the 

f 
$ ; .  

function sin(x)/x, is approximated by the triangular 
function, then  the resampling at  points between the two 
pixels can be done by linearly interpolating between the 5 
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8 An  image  from  “Conform:  A  Context  for  Electronic Layout” [9]. 

neighboring pixels. In  the two-dimensional case, the shifting 
in  both dimensions involves a linear  interpolation among 
four adjacent neighbors. Linear  interpolation  causes a loss of 
information, because the triangular filter does  not have an 
ideal low-pass frequency response. Successive interpolations 
will blur  the image because of further loss of high-frequency 
information. However, the first  few successive interpolations 
give satisfactory results, and  in  this case we need only one. 

Antialiasing in color 
Antialiasing in color  requires the display to show all the 
colors  in the image, as well as  the colors which are 
intermediate between the background and foreground  colors 

along all edges. A display which uses eight bits to represent 
each pixel, such as YODA, can show a maximum of 256 
colors  simultaneously. We experimentally found  that 14 
intermediate colors  in addition  to  the two edge colors 
resulted in satisfactorily antialiased edges. No significant 
improvement was achieved by using more  than 16 colors; 
the use of fewer than 16 resulted in jaggedness. This 
constrains  YODA to display at most 16 antialiased-edge 
color pairs. Figure 10 shows a number of color  pairs used in 
antialiasing. 

For each color  pair, 16 entries of the video lookup table 
are used. These contain  the colors of the two edges at  the 
ends  and  the 14 interpolated  colors between. Table 1 gives 
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the VLT  entries that  make  up  one such color range (yellow 
over dark blue). Notice that we have  chosen to  interpolate 
colors by independently  interpolating the red, green, and 
blue  intensities. 

The design described here permits antialiased  objects to be 
drawn in any  combination of 16 different colors; these could 
be used as eight object  colors on eight different backgrounds, 
or 15 different object  colors on a single background. In  any 
case, the  programmer must  know  what  color  pair is being 
used. The  more general case in which antialiased  objects are 
drawn over a mixed-color background  of arbitrary 
complexity cannot be handled by an eight-bit display, 
because of the potentially large number of intermediate 
colors  required. 

The color  range between foreground and background 
colors just described  assumes that  there is a linear 
relationship between the color  intensity  value  stored  in the 
VLT  and  the  luminance of the display screen. In most 
television systems, this  relationship is intentionally designed 
to  be nonlinear. In the  NTSC system used in the  United 
States and  Japan,  the relationship is exponential. The 
YODA  software  corrects this nonlinearity by means of 
compensation tables for each  of the red,  green, and blue 
signals. This  compensation is applied to each entry  in  the 
VLT  at  the  time  the  VLT is  loaded. Standard tables 
embodying the  NTSC  convention  are supplied with the 
YODA software, but a user may  substitute alternative 
compensation tables if these are desired. 

YODA software 
The application programming interface (API) [ 101 for 
YODA allows applications programmers  to create and 
manipulate high-quality images. This software is motivated 
by high performance, the highest image quality, and  an 
appropriate functional split between the  PC  and  the display 
processor. Our API operates  entirely in  the  YODA 
coordinate system; we believe that normalized  device 
coordinates  should be provided by a higher-level software 
structure if they are needed. We anticipated that applications 
programmers would  want functions  other  than  the  ones we 
have supplied, and we have  provided a mechanism for 
extensibility. 

performance-sensitive  routines are microcoded in the display 
processor. A language-independent resident extension of the 
PC/DOS  operating system calls the microcode routines  and 
provides all the  functions available to  the applications 
programmer. An application  program calls the API functions 
by linking to  one of a set of language bindings (C, Pascal, 
Fortran). The language bindings call the resident  DOS 
extension through software interrupts. This design makes  it 
possible to call the API functions from a variety of different 
programming languages; when adding a new language, only 
the language bindings need to be changed. 

The API consists of three parts. Almost all the 
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Table 1 Video lookup table for antialiasing yellow over dark 
blue. 

Pixel  value VLT output 

Red Green  Blue 

48 0 0 I05 
49 11 11 98 
50 34 34 91 

61 22 1 14 
62 238  238 I 
63 255 255 0 

... ... ... 
22 1 

... 

Pixel map 
A frame-buffered display is sometimes thought of as  an  array 
of pixels, each of which has a fixed number of bits to 
represent its value. Alternatively, such a display may be 
viewed as a set of planes, each an array of pixels with single- 
bit values. We sought a general framework  for  allocating the 
YODA frame buffer, so that  the  programmer could handle 
these different (potentially  overlapping) views of the  frame 
buffer in a consistent way. The pixel map concept  provides 
that framework. 

All hagelupdate  operations  are confined to a pixel map, 
which is a rectangular volume  in image space. It is 
completely defined by the x, y ,  and z coordinates of  its 
origin, and its  dimensions:  width, height, and depth. The z 
coordinate is  interpreted to  mean  the bit-plane number, 
which in  YODA has a range of 0 to 7. It follows from  this 
concept that from one  to eight distinct pixel maps  may be 
defined in  any given x-y area. The z coordinate gives the 
plane number of the first plane, and  the  depth is the  number 
of  planes in  the pixel map. For example, a pixel map  may  be 
defined as  four planes  beginning at plane 2; this pixel map 
may contain pixel values from 0 to 15. 

language. It is created,  it  is passed as a parameter  to 
functions, and it can have  new values assigned to it by 
functions. A line-drawing function,  for  example,  creates new 
pixels in  the pixel map by drawing the line. A pixel map 
does  not have to be visible on  the screen and does not even 
have to be in the visible part  of the  YODA frame buffer. It 
could be  in  the invisible part of the  frame buffer or in  the PC 
memory. Pixel maps  can  be freely copied into  other pixel 
maps regardless of where they reside. Not all image-update 
operations are currently implemented for PC-resident pixel 
maps. 

the  entire visible portion  and  another for the  entire invisible 
portion of the  frame buffer. PC-memory pixel maps  are 
created by the CreateHostPixelMap function. Lower-level 
pixel maps  can be defined as subsets  (in the x, y,  and z axes) 
of existing pixel maps. 

A pixel map is  analogous to a variable in a programming 

The OpenDisplay function returns two pixel maps: one for 
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A further implication of the pixel-map  concept is that all 
x, .v coordinate pairs given as  arguments  to various update 
functions  are interpreted relative to  the pixel-map origin. 
This allows the user to create an image  in a pixel map as if 
the image had  an origin of 0,O. The pixel map also 
intrinsically  provides a direct method for  handling clipping, 
since pixel maps have explicit extents in all three 
dimensions. All operations which use pixel maps clip to  the 
destination pixel map. 

A good  example  of operations  on pixel maps is the BitBlt 
function.  The  term BitBlt was originally used in connection 
with single-plane displays in which each pixel was 
represented by a single bit. In YODA  the  term is used to 
describe the block transfer  of pixels, without regard for the 
number of bits used for each pixel. The BitBlt functions  are 
the most basic operations in frame-buffer displays and  are 
used to  manipulate  the image  in a variety of ways. In its 
most general form,  the BitBlt operation combines (in 
accordance with some combination function) the pixels of a 
rectangular  source area with the corresponding pixels of a 
destination  area, and stores the result in  the destination 
pixels. This  can be simply called by BitBlt(SourcePixelMap, 
DestinationPixelMap, CombinationFunction). 

Antialiased text 
Antialiased text was a primary  focus of attention in the 
YODA software effort. YODA can display almost  any text 
that  can be printed by printers at IBM Research. Printer 
fonts  are filtered to create the low-resolution YODA  fonts. 
Characters are displayed using 16 intensity levels and 
positioned to  the nearest eighth of a pixel, in an  attempt  to 
achieve  quality comparable  to  that of printer  output. 

All coordinates used in  function calls for  antialiased 
primitives use a 32-bit coordinate type called “dblcoord.” 
This  coordinate is a 32-bit fixed-point number having a 
16-bit fraction.  Its units are pixels. The 16-bit integer  part 
defines the pixel offset from the origin of the pixel map. The 
16-bit fraction defines a fraction  of a pixel. Only eight bits  of 
the fraction are used by the API internally, thus allowing a 
position to be specified to a precision of  1/256th  of a pixel. 
Coordinates  are carried to this precision to prevent the 
accumulation of  roundoff error in  character positioning. 
Using the precision of  1/256th of a pixel yields a maximum 
error of less than  one pixel across a 128-character line. The 
character-display  microcode rounds  the 1/256th subpixel 
position to  the nearest  1/8th  of a pixel in  the linear 
interpolation  algorithm.  Interpolation to a higher precision 
did  not affect the visual quality. 

Character definitions are stored  in the invisible portion of 
the frame buffer. The user allocates a single rectangular  area 
for font management. Character definitions are brought into 
this area from the disk-resident fonts  as they are needed. 
When the free space  in  this area is  exhausted,  character 
definitions are  eliminated  and space is freed on a least- 
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recently-used basis. This is an extremely important aspect of 
the antialiased text software because we wish to  support a 
very large number of  fonts  (a user might wish to use a dozen 
or more fonts simultaneously), and  the space  required for 
font storage varies drastically depending on  the  point size 
and  the  number of characters  in the font. Each individual 
character  definition is run-length-compressed to save storage 
space; this  feature is especially valuable for large characters. 

Following are  some of the procedures which are used to 
manage  fonts and display text. 

Textlnit-Initializes the  font storage area. The user 
supplies a pixel map which becomes the  font storage area. 
The size is quite arbitrary, allowing the user considerable 
control  over the  amount of  character paging which will 
occur. 
OpenFont-Establishes a control block for the font and 
opens the  font file. The  control block contains information 
about which characters are in the font, the locations  of the 
individual  character  definitions in  the  font file and in the 
internal font storage area, and  the character-spacing 
parameters. 
CloseFont-Releases the internal storage space  occupied 
by the characters  of a font  and closes the  font file. 
LoadFont-Loads all the characters  in an open  font into 
the  font storage area. If this  procedure is not called, 
characters are loaded when needed by one of the text 
display functions. 
SetSpacePrm-Specifies character- and word-spacing 
values which are used while writing strings. 
SetCurFont-Establishes a given font as the  current font. 
SetCurPoint-Sets the  current  point  at which text will be 

Writestring,  Erasestring-Writes (erases) a text  string  in 
displayed. The parameters are  double coordinates. 

the  current font at  the  current point.  Both Writestring  and 
Erasestring  return  the updated value of the  current point. 

In  our  implementation,  the  font  management is done by 
the PC, while the rendering of characters  is implemented in 
the display-processor microcode. The  PC processes a string 
to be written by determining whether  each  character  is 
present  in the font, looking up  the location of the character 
definition  in the  font storage area, and passing that location 
to  the display processor. The microcode fetches and 
decompresses the antialiased character’s definition,  calculates 
the pixel values to  be displayed (subpixel positioning), and 
updates the pixels using the correct color. 

Other API functions 
While antialiased  text is clearly superior to bilevel text in 
appearance,  it  is  sometimes desirable to display fixed-pitch, 
bilevel text. For this  purpose, we have  included a text facility 
which can display up  to 32 rows of 80 characters.  Each 
character  occupies a matrix  of 8 by 15 pixels. Bilevel text is 
displayed significantly faster than antialiased text. 
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Bilevel graphics functions  are provided which draw arcs, 
circles, polygons, lines, polylines (a connected series of lines 
which is not necessarily closed), and thick lines. Two types 
of fill operations  are provided: boundary fill and flood fill. 
Boundary fill starts its search from a specified point, filling in 
all directions  until a boundary of a specified color is found. 
Rood fill changes all connected pixels of a given old  color 
into a new color. The closed objects (circles, polygons) may 
be hollow or solid. In addition,  the solid-object drawing 
functions have counterparts which can fill with an arbitrary 
texture pattern supplied by the user as a pixel map. 

The only  antialiased  graphics functions which are 
provided draw  and erase  antialiased lines. The algorithm 
[ 1 I] was partitioned  such that  the  inner  loop executes in the 
display-processor microcode, while initialization is done in 
the PC. The  parameters for antialiased  lines are  double 
coordinates,  permitting end  points  to be specified at 
noninteger  positions. 

of BitBlt rotates the image by multiples of 90 degrees; this 
function makes  it possible to use  antialiased  text  along the 
vertical axis of a graph, for example. The ZoomBitBlt 
function enlarges pixel maps by replication  of pixels and 
reduces them by sampling. The MaskBitBlt stores into  the 
destination area  only where selected by mask; this facilitates 
manipulation of irregularly shaped areas. 

Although we have tried to provide a comprehensive set of 
functions, some users may be interested  in  developing 
applications which will benefit from specialized microcode. 
In order  to  permit a user to develop his own  microcode 
without giving up  the benefits of the  standard  support 
software, there is a microcode-overlay facility. This set of 
functions  permits loading  of a microcode overlay into a 
reserved transient area of the  control store, and execution 
and  data interchange with this transient code. A microcode 
assembler and debugger are also provided. 

A wide variety of BitBlt functions  are available. One  form 

Discussion 
YODA was successful in  achieving  its objectives, but  there 
are several areas in which it  could be improved.  These 
improvements were not all possible within the realm of 
technology  available at  the  time YODA was designed, but 
are feasible now. They would allow for better update 
performance and a more cost-effective design. We discuss 
three areas: the frame-buffer design, the display-processor 
architecture, and  the  implementation of antialiased text. 

restrictive in the design of display frame buffers. The refresh 
of the  CRT requires a large memory  bandwidth  and  does 
not leave much of the available bandwidth for the  update of 
the image. In  the case of  YODA, use of a noninterlaced 
CRT would  have left only the retrace times available  for 
updates by the display processor. Researchers at IBM [ 121 
have been working to solve this problem by adding a second 

The use of standard  dynamic  RAMS is extremely 

port to  the  dynamic  RAM. Such  parts are now commonly 
available. An example is the Texas Instruments  TI4  I6 I .  The 
second port is serial and is  dedicated to  the video refresh of 
the  CRT.  The modified RAM (called a video RAM) 
contains  an internal shift register that  can be loaded  in one 
memory cycle and  then used to refresh several scan lines. 
This reduces the  memory bandwidth  for video refresh to less 
than 2% of the total  memory  bandwidth and allows the 
display processor to achieve  better update performance. 

(256 kilobits, 1 megabit) in the design of frame buffers. 
Standard RAMS  of  these  densities do  not have enough 
bandwidth  for CRT refresh. Use  of  these higher-density 
video RAMS also results in a lower-cost display controller. 

Video RAMS also allow the use of higher-density RAMS 

Display processor 
The display processor is well suited  for a large number of 
inner loops and  it performs well for them. It also contains 
several weaknesses that result in less than desirable 
performance  for some  other tasks. YODA forces all display- 
update tasks to  be  routed through the display 
microprocessor. We discovered after the design was 
completed that  it would  have  been  more efficient for some 
tasks to access the frame-buffer update controls directly-for 
example,  those which read and write pixels from  the PC. 

One of our principal  conclusions is that  the display 
processor is best used in  the fast execution of tight inner 
loops. YODA implements BitBlt by using the display 
processor for the two nested loops; the fill functions  are 
implemented by processing the  outer  loop  in  the PC and  the 
inner  loop  in  the display processor; and  the circle draw is 
implemented  entirely  in the PC, using the display processor 
only to write single pixels. Optimal performance of a given 
task is achieved by tuning  the display-processor design such 
that a task’s inner loop  performs  adequately. 

The strongest point of the display processor is  its speed. 
The microprocessor we chose  has a simple  architecture that 
can  execute instructions rapidly. The separate access path  to 
the microprocessor’s instruction storage also improves  its 
performance.  Its  internal  bit-manipulation  capabilities allow 
for the  concurrent use of  two shifters, a masking unit,  and 
the  ALU  in a single instruction,  making pixel manipulation 
extremely convenient.  Augmenting the  frame buffer with the 
address registers was a valuable investment; it pays off in the 
increased update performance  of  almost all inner loops. 

manipulating coordinates. This is further aggravated by the 
fact that antialiasing  requires multiple-precision coordinates. 
All the  inner loops with counts greater than 256 execute 
more slowly because of the  extra  instructions required for 
higher-precision numbers. Coordinates for the antialiased 
text  primitives are three-byte numbers, which are even 
slower to  manipulate. We omitted certain functions because 
the resulting performance  would have been  unacceptable. 

The eight-bit microprocessor is a handicap for 
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One such  task is the  transformation of a  world-coordinate 
system to screen coordinates. Such tasks  require  a processor 
with a fast multiply  instruction or an  outboard multiplier. 

The address-counter augmentation  to  the  frame buffer has 
been extremely valuable, and  augmenting  the  frame buffer 
with pixel-data manipulation logic would  have  been  equally 
useful. For example, if the  inner  loop of BitBlt(Source, 
Destination, CombinationFunction) could  perform the 
combination  functions using a pixel ALU  near  the frame 
buffer, pixel values would not need to be brought into  the 
display microprocessor.  Examples  of  such combination 
functions  are  the logical functions  AND,  OR,  XOR, etc., 
and  arithmetic  functions such as  ADD, SUB, MAX,  and 
MIN used in the antialiasing  functions. 

Antialiased  text 
A deficiency in the antialiased text mechanism is the 
inability to show  characters  in  arbitrary sizes at arbitrary 
orientations.  YODA can only  show the characters with 
particular sizes and  orientations  that have been precomputed 
and stored on disk. An example is the Press font, where we 
supply the IO-, 12-, 14-, I%, 24-, and 36-point sizes 
horizontally  oriented.  These can  be displayed vertically by 
using the BitBlt9O function, but  rotations  and sizes other 
than those  supplied cannot  be displayed at all. 

If the characters are represented as  outline splines [ 131, 
then they can be dynamically  converted into raster form 
with any size and  orientation.  The raster  definitions  could 
then be cached  for use by the display processor. As Carol 
Thompson of  Yorktown Research has  pointed out,  the  same 
representation can also be used for printers so that  the 
printed  copy and  the display have the  same appearance. 

Another  shortcoming of the antialiased  text functions is 
the lack of clipping of characters at pixel-map  boundaries. In 
our  implementation,  the text-rendering function simply 
stops, returning  the  current location whenever a  character is 
encountered which would extend  beyond the pixel map. 
This feature was omitted  primarily because of its effect on 
performance. 

Conclusion 
YODA  has  a large and diverse group of users. Seventy 
YODA displays have been distributed  within IBM and  to 
several universities. The applications have varied widely and 
include  image processing, ray-traced rendering, animation, 
computer-generated art,  document processing, and viewing 
of scientific and engineering data. 

YODA  has  proven to be a viable architecture,  enabling  a 
low-cost personal computer  to  produce high-quality images 
interactively. 
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