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YODA:

An advanced
display

for personal
computers

by Satish Gupta
David F. Bantz
Paul N. Sholtz
Carlo J. Evangelisti
William R. DeOrazio

YODA (the YOrktown Display Adapter) is an
experimental display designed to improve the
quality and speed of users’ interactions with
personal computers. This paper describes the
YODA hardware architecture and software
design. Special attention is given to techniques
used for antialiasing. The various trade-offs and
decisions that were made are discussed.

introduction

Personal computing has revolutionized the computer
industry during the past five years. A key reason for this
revolution is the high degree of interactivity which results
when a processor is dedicated to a single user. The proximity
of the input/output system to the processor further
contributes to this interactivity. Among the most important
elements of the workstation input/output system are the
display medium and the architecture of the display
controller. The display-controller architecture determines the
kinds of images (computer-generated or scanned) that can be
displayed, and the speed with which these images can be
changed. YODA (the YOrktown Display Adapter) [1] is an
experimental display designed to improve the quality and
performance of this interaction.
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The computer graphics industry has developed
workstations and applications that use high-quality color
images [2, 3]. Examples of such applications are presentation
graphics, VLSI design, computer-aided design, computer art,
and satellite-image mapping. Researchers have developed
both hardware architectures and software techniques to
improve the feasibility of these applications. Franklin Crow,
then of the University of Texas, first described a technique
known as antialiasing [4], which is a rendering method
resulting in higher visual quality through the elimination of
sampling artifacts. Antialiasing smooths the “staircases” or
“jaggies” commonly found in raster displays. John Warnock
first applied this technique to the problem of displaying high-
quality text [5].

At IBM Research, we have been working both on
architectural techniques to improve the performance of
workstation displays and on better algorithms for antialiasing
of text and graphical objects [6]. Our initial tool for this
work was a host-connected, color raster display of very
limited interactivity. We felt a need for a personal display
which would permit each of us to work individually, and we
needed highly interactive displays to support our
productivity as well as applications requiring dynamic
images.

YODA is the result of our effort to build a display
subsystem for personal computers capable of the dynamic
display of images of moderate complexity, and of the static
display of images of the type formerly regarded as the
exclusive domain of very expensive systems. We developed
considerable respect for the capabilities of the IBM Personal
Computer for this kind of work, when it is properly
complemented by a display subsystem. Another pleasant
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surprise was the exceedingly diverse nature of the
applications we and others were able to build on this base.

YODA consists of a two-card display controller (the cards
plug into a standard IBM PC), microcode to run in the
controller’s microprocessor, an analog RGB color CRT
monitor, and IBM PC programs to create high-quality color
images rapidly. The display controller contains a frame
buffer and a microprocessor with its control storage. The
microprocessor is coupled to the frame buffer through
special hardware that allows efficient implementations of
display-update algorithms.

YODA differs from other display controllers for the IBM
PC primarily in its hardware and software support for
antialiasing. Some products can display antialiased pictures,
but do little to support their synthesis.

YODA has more bits per pixel in its frame buffer than
most display controllers, but, more importantly, more bits in
its color specification. This provides the precise color control
needed for antialiasing. The choice of a fast, simple display
processor provides a combination of programmability and
good performance. Programmability is essential to allow
experimentation with the pixel combination function, which
also demands high performance because it is executed once
for each pixel to be modified. YODA’s programmability was
also necessary to support the experimentation that
determined how function should be divided between the PC
and the display processor.

For cost reasons, commercially available display
controllers for the IBM PC generally omit the display
processor and limit the range of displayable colors.
Typically, these systems allow eight to sixteen
simultaneously displayable colors chosen from a range of 64.
The PC processor must do all image synthesis. The IBM
Professional Graphics Adaptor is an exception, but its
display controller is not fast enough to perform arithmetic
operations on each pixel with adequate speed to support
interaction. Rather, a primary function of its display
controller is the interpretation of a high-level picture-
description language.

The YODA hardware design had to address the issue of
image quality and update performance in relation to
hardware cost. Higher image quality requires greater
resolution (more displayed pixels), more choices for the
color of each pixel, and more precise specification of colors.
Update speed depends on the total number of pixels
updated, the complexity of the update, and the speed of the
display processor. We had to strike a complex balance to
achieve the required speed, quality, and cost. The two most
important choices were the use of a television-rate CRT with
interlaced scan to get moderately high resolution at low cost,
and the use of a simple but very fast microprocessor to
update the display. The choice of television-rate refresh had
other benefits too. We have been able to take advantage of
inexpensive CRT monitors, projection displays, slide-

IBM J. RES. DEVELOP. VOL. 3I

NO. | JANUARY 1987

makers, and the like, and we have the potential to integrate
our system with television imagery.

In this paper, we present the concepts behind the YODA
hardware and software, explaining the various decisions that
we faced and the trade-offs that we have made.

The remainder of this paper is divided into three major
sections, followed by a discussion and conclusion. The first
of these sections discusses the hardware design, with
examples of microcode loops illustrating the use of the
display processor. These inner loops were the most
important factor in determining the hardware architecture.
The architecture went through several design iterations
before we were convinced that the hardware supported these
loops adequately.

Since antialiasing is such an important aspect of our
software design, we have dedicated all of the second major
section to it. After a brief tutorial on that topic, this section
discusses the two issues that we focused on in our software:
Our software consistently depicts the display as a device with
higher addressability than the number of pixels on the
screen, resulting in higher picture quality. We use
antialiasing to achieve this effect. Antialiasing in color is also
a significant problem, and we describe our solution.

The third major section describes the YODA software.
There were two primary issues in the design of the YODA
software: the functions the software should provide and their
implementation. In deciding what functions to provide, we
chose primarily to program functions that would perform
efficiently on the hardware. Dividing the work between the
PC processor and display microprocessor was difficult
because different models of the PC use different processors
with significant differences in their performance. In a num-
ber of cases, we implemented the inner loop of a function
in display-processor microcode, and the outer loop in the PC.

The paper concludes with a discussion of our experience
with YODA. We point out its merits and its deficiencies, and
discuss how we would improve it in a future design.

YODA hardware

Image quality for a CRT display is determined by three
factors. The resolution determines the total quantity of
information as well as the amount of detail that can be seen
on the display. The number of bits used to represent each
pixel determines how many colors or intensity levels can be
seen on the display. Intensity levels can be used to enhance
the picture at a given resolution by the use of antialiasing.
The refresh rate (i.e., the number of times per second that
the screen is refreshed) together with CRT phosphor
characteristics determines the degree to which the picture is
free from flicker.

Low-cost CRT monitors and television compatibility led
us to use television line rates in refreshing the CRT. Just as
in television, we chose to refresh the CRT in an interlaced
scan, resulting in twice the vertical resolution. An annoying 45
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The YODA frame-buffer address map. Eight horizontal pixels map
onto one memory address, as indicated.

side effect of this decision is that objects that are only one
scan-line high are refreshed too slowly, producing a
distracting flicker. We chose a monitor with a long-
persistence phosphor in order to minimize this flicker. To
maintain the conventional 4:3 CRT aspect ratio, a display
resolution of 640 by 480 pixels was selected.

Choosing the number of bits per pixel is a difficult
problem. That number determines not only the image
quality but also the cost of the frame buffer. Since we
wanted to present a large number of colors on the screen as
well as retain a few bits for use by antialiasing, using
anything less than eight bits per pixel seemed uninteresting.
Using more than eight bits per pixel was too expensive—
especially since that would have taken more than two
PC-sized cards to implement. The compromise was to use
eight bits per pixel with a video lookup table.

e Video lookup table

The video lookup table (VLT) is a table in the video path
from the frame-buffer memory to the CRT. This table
translates each pixel value into the red, green, and blue
values used by the CRT to determine the color of that pixel.
A loadable table allows dynamic choice of color for each
pixel value. A larger VLT output (i.e., more bits for the red,
green, and blue intensities) allows a finer selection of colors
to be assigned to a pixel. We chose 24 bits in the output of
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the VLT—eight bits for each of the red, green, and blue
intensity values. Such a VLT allows YODA to present
images which require fine color choices but which do not
require more than 256 unique colors, the limit imposed
because each pixel is represented by only eight bits. An
example that illustrates this is a picture of a sunset where
there are fine gradations of red and yellow but almost no
blue. The VLT allows all 256 displayable colors to be
assigned in the red-yellow region. Given this ability to assign
colors to the parts of the spectrum where they are needed,
256 different colors is usually adequate. Experiments based
on the theoretical models of the human visual system have
shown that eight bits per pixel is sufficient for most color
images [7].

The video lookup table is a very powerful mechanism
which is useful for a wide variety of applications, including
animation and antialiasing.

A commonly used animation method is to provide
multiple image buffers which are shown sequentially with
successive images. The VLT can be used to divide the frame
buffer into several buffers with fewer planes (e.g., four buffers
with two bits per pixel). If the VLT is loaded in such a way
that the color of each pixel depends only on the bits in one
of the buffers, then that buffer is rendered visible and the
other buffers become invisible. To furnish the animation, the
VLT is reloaded with new values which cause a new buffer
to become visible. The invisible planes of the frame buffer
can be updated while the visible planes are displayed. The
reloading of the VLT is accomplished during a single vertical
retrace interval, preventing any visible disturbance during
the changeover.

Antialiasing eliminates the staircase sampling artifacts by
using intermediate intensities along the edges of objects. The
VLT must provide sufficient intensity resolution to permit
specification of these intermediate color values. We have
found 24 bits in the VLT output to be adequate for
this purpose. We describe the exact use of the VLT for
antialiasing in the next major section.

o Frame-buffer organization

We chose to use eight 64K-bit dynamic RAMs to implement
each plane of the frame buffer. The frame buffer of YODA is
time-multiplexed between CRT refresh and update. Since
the RAMs can cycle every 280 nanoseconds, and video
refresh requires eight pixels every 560 nanoseconds

(70 nanoseconds per pixel), every other memory cycle is
available to the display processor. The choice of television-
rate interlaced refresh was important to allow adequate
bandwidth for update.

Eight chips per plane gives us a total of 512K pixels for
the frame buffer, although only 300K pixels are visible on
the screen (640 by 480). The extra invisible frame-buffer
memory helps in two ways. It increases the memory
bandwidth available, allowing faster update access, and also
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provides buffer storage for temporary images, fonts, and
other tables. Figure 1 shows the mapping of the (x, y)
location to the memory address of the 512K pixels of the
frame buffer. Because eight pixels are accessed in parallel,
eight pixels map onto the same memory address. A single
ROM chip maps the (x, y) coordinates to the memory
address using the equation

Memory address = 80y + (x/8).

The data-input wires of all eight memory chips forming
one plane are tied together. This means that the display
processor normally updates one pixel at a time, but a special
mode, called slice mode, allows eight pixels to be
simultancously updated with the same value. This is useful
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for writing or clearing large areas. A mask register allows
selective suppression of writes to the chips. This is valuable
for writing characters onto a fixed background, for example
where one wishes to write the / bits of the character but to
leave the background intact where the character has 0 bits.
In this case, the character data are used as the mask, and the
pixel value representing the foreground color is used as the
value to be stored.

o Display processor

The display processor consists of an eight-bit single-chip

microprocessor, its data and instruction storage, and its

interfaces to the PC and to the frame buffer, as shown in

Figure 2. The microprocessor is a Signetics 8X305 bipolar 47
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LOOP DEC COUNTLOW
BNC LOOP1
DEC COUNTHIGH
BNC LOOP1
IMP OUTER
LOOP1 READ  FBXSINC

Decrement the lower byte of the width
If positive, move a pixel

Decrement the higher byte of the width
If positive, move a pixel

We are done with a horizontal line
Read the pixel; post increment XS

WAIT Wait for the read cycle to finish
LOAD FBDATAOUT,ACC Load the pixel into accumulator

STORE ACC,FBDATAIN
WRITE FBXDINC
JMP LOOP

OUTER __ _—

processor having an execution time of 210 nanoseconds per
instruction. The design objective of the display processor was
to enable efficient implementation of the inner loops of the
frequently used raster-graphics algorithms—that is, to
minimize the number of frame-buffer-memory update cycles
required for these algorithms. This objective was achieved by
using a simple and fast microprocessor and augmenting it
with an appropriate frame-buffer update interface.

The 8X305 is primarily intended for controller
applications. It has an eight-bit internal data path and can be
attached to peripheral devices by means of an eight-bit bus.
It is designed to operate at a speed of 200 nanoseconds per
16-bit instruction, with instructions fetched on a dedicated
bus for higher throughput. It has a powerful but simple
instruction set with only eight instruction classes. Most
important to us was its ability to perform a variety of
bit-manipulation tasks in a single instruction.

The choice of an eight-bit microprocessor made the
manipulation of ten-bit frame-buffer addresses rather
cumbersome. This motivated the use of external address
counters to increase the efficiency of the graphics inner
loops. The frame-buffer address interface contains two pairs
of (x, y) address counters (increment/decrement only). They
are called XS, YS and XD, YD and are used to address the
pixels of the frame buffer that are being read or written
(source or destination). When the processor initiates a read
or a write cycle, the address registers can be independently
incremented or decremented, or left alone, after the
operation. Thus extra processor cycles are not spent in
changing the address registers in the middle of incremental
loops. Graphical primitives such as lines, circles, and area
fills increment or decrement the address in the inner loop.
The BitBIt loop (Figure 3), which copies one part of the
frame buffer to another, illustrates this. BitBlt is an
abbreviation for bit-block transfer, also sometimes calied
RasterOp.

The frame-buffer operation is asynchronous with the
processor operation because of the continuous video refresh.
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Store the pixel into FB data register
Write the pixel; post increment XD

The processor can initiate a memory cycle, which can take
anywhere from one to three processor cycles to complete. If
another cycle must be initiated or the data must be read
immediately, then a WAIT instruction can be used for
synchronization. It should also be noted that the use of an
eight-bit microprocessor makes such operations as loop
counting awkward, because the screen resolution is greater
than 256.

The PC interface allows the PC to communicate
commands and associated data to the display processor. It
also permits the display processor to return data and status
to the PC. It is desirable for the PC and the display processor
to be able to run asynchronously and synchronize when
desired. A 64-byte FIFO (first-in-first-out buffer) is used to
route the commands and data from the PC to the display
processor. This allows the PC to issue commands to the
display processor and continue asynchronously. The PC can
test the status of the FIFO to determine whether it is empty.
A single register is sufficient for the PC to receive data,
because this path is less frequently used.

The display processor can load the video lookup table by
setting up the VLT address and the red, green, and blue
values, and issuing a VLT write command. The CRT video
signal must be disabled before this command is issued. To
avoid visible disturbances on the screen, it is desirable to
load the VLT during horizontal or vertical retrace times. If
the loading of the VLT is allowed to extend over several
frame intervals, then video will be generated partly from old
VLT data and partly from new data during the transition.
Depending on the particular data being used, this
inconsistent state may produce distracting intermediate
images. The PC, however, is unable to deliver all 768 bytes
(256 each for red, green, and blue) of the VLT data during a
single vertical retrace interval. The problem was solved by
storing the VLT data temporarily in the invisible part of the
frame buffer and then activating a microcode routine to
reload the VLT in one retrace period. The display processor
just makes it!
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Not antiahased

Antialiased

from the images above.

Antialiasing. The use of intermediate intensities can smooth the *‘jaggies.”” The bottom of the image shows the results of magnifying the edges

Antialiasing

Bitmap images show annoying visual effects in the form of
jaggies or staircases when edges or lines cross rows or
columns of pixels. On a display device that can present gray-
scale images, the effect can be avoided by smoothing the
jump through the use of values of intermediate intensity
(Figure 4). Crow [4] and Catmull [8] were among the first to
recognize that this problem is a manifestation of the
phenomenon of aliasing.

In brief, a computer stores a signal by sampling it and
later reproducing the samples. The jagged effect is due to the
sampling of a sharp edge over a fixed grid. The original edge
contains frequencies higher than those that can be faithfully
reproduced by the samples (Nyquist’s theorem). This results
in higher frequencies appearing as lower ones; the error is
called aliasing. Figure 5 shows high- and low-frequency
signals which, when sampled, result in the same sample
values. Low-pass filtering of the signal prior to sampling
prevents the aliasing by removing the offending high-
frequency components. As a result, this preprocessing step
has become known as antialiasing. Figure 6 illustrates this
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The aliasing phenomenon. The high-frequency signal (a) is sampled
atarate which is too slow. The samples are the same as those from the
low-frequency signal (b), resulting in aliasing.

R

i

situation in one dimension. Part (a) shows the sampling of
the unfiltered signal, and Part (b) shows the sampling of the
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filtered signal. As illustrated by the figure, the filtered
samples require the ability to display intermediate intensity
values. For the proper appearance of the resulting image, the
filter must be appropriately chosen.

Antialiasing removes the visual artifacts of raster display,
presenting a more desirable image to the viewer. As a result,
small, detailed objects that were previously overshadowed by
aliasing artifacts are now presented realistically. Figure 7
shows magnified small characters (the character “a” is only 6
pixels high!), where one can even tell something about the
style of the typeface. To simulate the actual appearance of
these characters, the reader should view the page from a
distance. The ability to show smaller objects gives us an
% Signal filtering: (a) Binary intensity values which produce the unfil-  effective increase in screen content. We can thus show more
§

t«;red mgnfil at right. (b) Varied intensity values which produce the characters on a lower-resolution display.
signal at right.

Magnified small antialiased characters. Viewing this image from a distance will show the characters’ appearance on the display.
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o Addressability > resolution
In addition to improving the visual quality of images,
antialiasing also increases the effective addressability of the
display. Figure 8 shows how gray scale allows the end point
of a line to be positioned at subpixel positions. Other
examples that use the improved addressing are lines with
noninteger thickness, noninteger intercharacter spacing, and
subpixel movements resulting in smoother animation.
Antialiased images in this higher addressability can be
created in two different ways. One method is to filter the
actual geometric description, computing the intensity value
of each pixel. But there are also many situations in which we
desire to transform pre-antialiased objects in the higher-
resolution coordinate system. Examples of such
transformations are translation, scaling, and rotation. In this
paper, we illustrate the benefits and the techniques of
subpixel translation.

o Subpixel translation

Antialiasing, as we have seen, allows us to show high-quality
characters on low-resolution displays. The antialiased
characters can be generated by filtering high-resolution
rasterized characters from devices such as phototypesetters.
The filtering process assigns an intensity value to each
low-resolution pixel which is a weighted average of the
high-resolution bilevel pixels underlying the low-resolution
pixel. These filtered characters can then be displayed on a
low-resolution display.

Such a scheme gives rise to a problem. High-resolution
printers use fonts designed for their resolution, and also use
width and spacing information in the high-resolution units.
These high-resolution quantities do not translate to integer
values at the lower resolution. Hence character-writing
commands to the display result in attempts to position
characters at subpixel positions. A simplistic approach which
merely rounds the subpixel position to an integer value is
not sufficient. The error caused by rounding one character’s
position up and the next character’s position down can result
in a total error of nearly one pixel in the character spacing.
This is readily noticeable (Figure 9).

One possible solution to the subpixel positioning problem
is to precompute several different filtered-character
definitions and use the one appropriate for the positioning
desired. A total of 64 different character definitions would be
required to emulate a printer with eight times the resolution
in each dimension. A tremendous space saving could be
achieved if we could store only one definition for each
character and then move it by subpixel distances to obtain
the other character definitions.

Translation by subpixel distances is equivalent to shifting
the sampled signal by a distance which is not a multiple of
the sampling rate. This problem can be solved by
reconstructing the original signal and sampling it again at the
shifted intervals. If the reconstruction filter, ideally the
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Subpixel positioning of the end of a line. The three horizontal lines
have different end points. The use of gray intensity values can show
subpixel end points.

SRR

o gprederel

N

The quick brown squirrel

The quick brown squirrel

Improved character spacing by the use of subpixel positioning of
characters. The top line rounds the character positions to the nearest
pixel location. The second line positions each character to sub-
pixel positions. The third and fourth lines are magnifications of the
first two.

function sin(x)/x, is approximated by the triangular
function, then the resampling at points between the two
pixels can be done by linearly interpolating between the

SATISH GUPTA ET AL.

51




52

Animage from ‘‘Conform: A Context for Electronic Layout”” [9].

neighboring pixels. In the two-dimensional case, the shifting
in both dimensions involves a linear interpolation among
four adjacent neighbors. Linear interpolation causes a loss of
information, because the triangular filter does not have an
ideal low-pass frequency response. Successive interpolations
will blur the image because of further loss of high-frequency
information. However, the first few successive interpolations
give satisfactory results, and in this case we need only one.

o Antialiasing in color

Antialiasing in color requires the display to show all the
colors in the image, as well as the colors which are
intermediate between the background and foreground colors
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along all edges. A display which uses eight bits to represent
each pixel, such as YODA, can show a maximum of 256
colors simultaneously. We experimentally found that 14
intermediate colors in addition to the two edge colors
resulted in satisfactorily antialiased edges. No significant
improvement was achieved by using more than 16 colors;
the use of fewer than 16 resulted in jaggedness. This
constrains YODA to display at most 16 antialiased-edge
color pairs. Figure 10 shows a number of color pairs used in
antialiasing.

For each color pair, 16 entries of the video lookup table
are used. These contain the colors of the two edges at the

‘ends and the 14 interpolated colors between. Table 1 gives
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the VLT entries that make up one such color range (yellow
over dark blue). Notice that we have chosen to interpolate
colors by independently interpolating the red, green, and
blue intensities.

The design described here permits antialiased objects to be
drawn in any combination of 16 different colors; these could
be used as eight object colors on eight different backgrounds,
or 15 different object colors on a single background. In any
case, the programmer must know what color pair is being
used. The more general case in which antialiased objects are
drawn over a mixed-color background of arbitrary
complexity cannot be handled by an eight-bit display,
because of the potentially large number of intermediate
colors required.

The color range between foreground and background
colors just described assumes that there is a linear
relationship between the color intensity value stored in the
VLT and the luminance of the display screen. In most
television systems, this relationship is intentionally designed
1o be nonlinear. In the NTSC system used in the United
States and Japan, the relationship is exponential. The
YODA software corrects this nonlinearity by means of
compensation tables for each of the red, green, and blue
signals. This compensation is applied to each entry in the
VLT at the time the VLT is loaded. Standard tables
embodying the NTSC convention are supplied with the
YODA software, but a user may substitute alternative
compensation tables if these are desired.

YODA software

The application programming interface (API) [10] for
YODA allows applications programmers to create and
manipulate high-quality images. This software is motivated
by high performance, the highest image quality, and an
appropriate functional split between the PC and the display
processor. Our API operates entirely in the YODA
coordinate system; we believe that normalized device
coordinates should be provided by a higher-level software
structure if they are needed. We anticipated that applications
programmers would want functions other than the ones we
have supplied, and we have provided a mechanism for
extensibility.

The API consists of three parts. Almost all the
performance-sensitive routines are microcoded in the display
processor. A language-independent resident extension of the
PC/DOS operating system calls the microcode routines and
provides all the functions available to the applications
programmer. An application program calls the API functions
by linking to one of a set of language bindings (C, Pascal,
Fortran). The language bindings call the resident DOS
extension through software interrupts. This design makes it
possible to call the API functions from a variety of different
programming languages; when adding a new language, only
the language bindings need to be changed.
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Table 1 Video lookup table for antialiasing yellow over dark

blue.
Pixel value VLT output

Red Green Blue
48 0 0 105
49 17 17 98
50 34 34 91
61 221 221 14
62 238 238 7
63 255 255 0

e Pixel map

A frame-buffered display is sometimes thought of as an array
of pixels, each of which has a fixed number of bits to
represent its value. Alternatively, such a display may be
viewed as a set of planes, each an array of pixels with single-
bit values. We sought a general framework for allocating the
YODA frame buffer, so that the programmer could handle
these different (potentially overlapping) views of the frame
buffer in a consistent way. The pixel map concept provides
that framework.

All image-update operations are confined to a pixel map,
which is a rectangular volume in image space. It is
completely defined by the x, y, and z coordinates of its
origin, and its dimensions: width, height, and depth. The z
coordinate is interpreted to mean the bit-plane number,
which in YODA has a range of 0 to 7. It follows from this
concept that from one to eight distinct pixel maps may be
defined in any given x-y area. The z coordinate gives the
plane number of the first plane, and the depth is the number
of planes in the pixel map. For example, a pixel map may be
defined as four planes beginning at plane 2; this pixel map
may contain pixel values from 0 to 15.

A pixel map is analogous to a variable in a programming
language. It is created, it is passed as a parameter to
functions, and it can have new values assigned to it by
functions. A line-drawing function, for example, creates new
pixels in the pixel map by drawing the line. A pixel map
does not have to be visibie on the screen and does not even
have to be in the visible part of the YODA frame buffer. It
could be in the invisible part of the frame buffer or in the PC
memory. Pixel maps can be freely copied into other pixel
maps regardless of where they reside. Not all image-update
operations are currently implemented for PC-resident pixel
maps.

The OpenDisplay function returns two pixel maps: one for
the entire visible portion and another for the entire invisible
portion of the frame buffer. PC-memory pixel maps are
created by the CreateHostPixelMap function. Lower-level
pixel maps can be defined as subsets (in the x, y, and z axes)
of existing pixel maps. 53
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A further implication of the pixel-map concept is that all
X, ¥ coordinate pairs given as arguments to various update
functions are interpreted relative to the pixel-map origin.
This allows the user to create an image in a pixel map as if
the image had an origin of 0, 0. The pixel map also
intrinsically provides a direct method for handling clipping,
since pixel maps have explicit extents in all three
dimensions. All operations which use pixel maps clip to the
destination pixel map.

A good example of operations on pixel maps is the BitBIt
function. The term BitBIt was originally used in connection
with single-plane displays in which each pixel was
represented by a single bit. In YODA the term is used to
describe the block transfer of pixels, without regard for the
number of bits used for each pixel. The BitBIt functions are
the most basic operations in frame-buffer displays and are
used to manipulate the image in a variety of ways. In its
most general form, the BitBIt operation combines (in
accordance with some combination function) the pixels of a
rectangular source area with the corresponding pixels of a
destination area, and stores the result in the destination
pixels. This can be simply called by BitBlt(SourcePixelMap,
DestinationPixelMap, CombinationFunction).

o Antialiased text

Antialiased text was a primary focus of attention in the
YODA software effort. YODA can display almost any text
that can be printed by printers at IBM Research. Printer
fonts are filtered to create the low-resolution YODA fonts.
Characters are displayed using 16 intensity levels and
positioned to the nearest eighth of a pixel, in an attempt to
achieve quality comparable to that of printer output.

All coordinates used in function calls for antialiased
primitives use a 32-bit coordinate type called “dblcoord.”
This coordinate is a 32-bit fixed-point number having a
16-bit fraction. Its units are pixels. The 16-bit integer part
defines the pixel offset from the origin of the pixel map. The
16-bit fraction defines a fraction of a pixel. Only eight bits of
the fraction are used by the API internally, thus allowing a
position to be specified to a precision of 1/256th of a pixel.
Coordinates are carried to this precision to prevent the
accumulation of roundoff error in character positioning,.
Using the precision of 1/256th of a pixel yields a maximum
error of less than one pixel across a 128-character line. The
character-display microcode rounds the 1/256th subpixel
position to the nearest 1/8th of a pixel in the linear
interpolation algorithm. Interpolation to a higher precision
did not affect the visual quality.

Character definitions are stored in the invisible portion of
the frame buffer. The user allocates a single rectangular area
for font management. Character definitions are brought into
this area from the disk-resident fonts as they are needed.
When the free space in this area is exhausted, character
definitions are eliminated and space is freed on a least-
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recently-used basis. This is an extremely important aspect of
the antialiased text software because we wish to support a
very large number of fonts (a user might wish to use a dozen
or more fonts simultaneously), and the space required for
font storage varies drastically depending on the point size
and the number of characters in the font. Each individual
character definition is run-length-compressed to save storage
space; this feature is especially valuable for large characters.

Following are some of the procedures which are used to
manage fonts and display text.

o TextInit—Initializes the font storage area. The user
supplies a pixel map which becomes the font storage area.
The size is quite arbitrary, allowing the user considerable
control over the amount of character paging which will
occur.

o OpenFont—Establishes a control block for the font and
opens the font file. The control block contains information
about which characters are in the font, the locations of the
individual character definitions in the font file and in the
internal font storage area, and the character-spacing
parameters.

o CloseFont—Releases the internal storage space occupied
by the characters of a font and closes the font file.

o LoadFont—Loads all the characters in an open font into
the font storage area. If this procedure is not called,
characters are loaded when needed by one of the text
display functions.

o SetSpacePrm—Specifies character- and word-spacing

values which are used while writing strings.

SerCurFont—Establishes a given font as the current font.

SetCurPoint—Sets the current point at which text will be

displayed. The parameters are double coordinates.

WriteString, EraseString—Writes (erases) a text string in

the current font at the current point. Both WriteString and

EraseString return the updated value of the current point.

In our implementation, the font management is done by
the PC, while the rendering of characters is implemented in
the display-processor microcode. The PC processes a string
to be written by determining whether each character is
present in the font, looking up the location of the character
definition in the font storage area, and passing that location
to the display processor. The microcode fetches and
decompresses the antialiased character’s definition, calculates
the pixel values to be displayed (subpixel positioning), and
updates the pixels using the correct color.

e Other API functions

While antialiased text is clearly superior to bilevel text in
appearance, it is sometimes desirable to display fixed-pitch,
bilevel text. For this purpose, we have included a text facility
which can display up to 32 rows of 80 characters. Each
character occupies a matrix of 8 by 15 pixels. Bilevel text is
displayed significantly faster than antialiased text.
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Bilevel graphics functions are provided which draw arcs,
circles, polygons, lines, polylines (a connected series of lines
which is not necessarily closed), and thick lines. Two types
of fill operations are provided: boundary fill and flood fill.
Boundary fill starts its search from a specified point, filling in
all directions until a boundary of a specified color is found.
Flood fill changes all connected pixels of a given old color
into a new color. The closed objects (circles, polygons) may
be hollow or solid. In addition, the solid-object drawing
functions have counterparts which can fill with an arbitrary
texture pattern supplied by the user as a pixel map.

The only antialiased graphics functions which are
provided draw and erase antialiased lines. The algorithm
[11] was partitioned such that the inner loop executes in the
display-processor microcode, while initialization is done in
the PC. The parameters for antialiased lines are double
coordinates, permitting end points to be specified at
noninteger positions.

A wide variety of BitBlt functions are available. One form
of BitBlt rotates the image by multiples of 90 degrees; this
function makes it possible to use antialiased text along the
vertical axis of a graph, for example. The ZoomBitBit
function enlarges pixel maps by replication of pixels and
reduces them by sampling. The MaskBitBIt stores into the
destination area only where selected by mask; this facilitates
manipulation of irregularly shaped areas.

Although we have tried to provide a comprehensive set of
functions, some users may be interested in developing
applications which will benefit from specialized microcode.
In order to permit a user to develop his own microcode
without giving up the benefits of the standard support
software, there is a microcode-overlay facility. This set of
functions permits loading of a microcode overlay into a
reserved transient area of the control store, and execution
and data interchange with this transient code. A microcode
assembler and debugger are also provided.

Discussion
YODA was successful in achieving its objectives, but there
are several areas in which it could be improved. These
improvements were not all possible within the realm of
technology available at the time YODA was designed, but
are feasible now. They would allow for better update
performance and a more cost-effective design. We discuss
three areas: the frame-buffer design, the display-processor
architecture, and the implementation of antialiased text.
The use of standard dynamic RAMs is extremely
restrictive in the design of display frame buffers. The refresh
of the CRT requires a large memory bandwidth and does
not leave much of the available bandwidth for the update of
the image. In the case of YODA, use of a noninterlaced
CRT would have left only the retrace times available for
updates by the display processor. Researchers at IBM [12]
have been working to solve this problem by adding a second
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port to the dynamic RAM. Such parts are now commonly
available. An exampile is the Texas Instruments TI4161. The
second port is serial and is dedicated to the video refresh of
the CRT. The modified RAM (called a video RAM)
contains an internal shift register that can be loaded in one
memory cycle and then used to refresh several scan lines.
This reduces the memory bandwidth for video refresh to less
than 2% of the total memory bandwidth and allows the
display processor to achieve better update performance.
Video RAMs also allow the use of higher-density RAMs
(256 kilobits, 1 megabit) in the design of frame buffers.
Standard RAMs of these densities do not have enough
bandwidth for CRT refresh. Use of these higher-density
video RAMs also results in a lower-cost display controller.

o Display processor

The display processor is well suited for a large number of
inner loops and it performs well for them. It also contains
several weaknesses that result in less than desirable
performance for some other tasks. YODA forces all display-
update tasks to be routed through the display
microprocessor. We discovered after the design was
completed that it would have been more efficient for some
tasks to access the frame-buffer update controls directly—for
example, those which read and write pixels from the PC.

One of our principal conclusions is that the display
processor is best used in the fast execution of tight inner
loops. YODA implements BitBIt by using the display
processor for the two nested loops; the fill functions are
implemented by processing the outer loop in the PC and the
inner loop in the display processor; and the circle draw is
implemented entirely in the PC, using the display processor
only to write single pixels. Optimal performance of a given
task is achieved by tuning the display-processor design such
that a task’s inner loop performs adequately.

The strongest point of the display processor is its speed.
The microprocessor we chose has a simple architecture that
can execute instructions rapidly. The separate access path to
the microprocessor’s instruction storage also improves its
performance. Its internal bit-manipulation capabilities allow
for the concurrent use of two shifters, a masking unit, and
the ALU in a single instruction, making pixel manipulation
extremely convenient. Augmenting the frame buffer with the
address registers was a valuable investment; it pays off in the
increased update performance of almost all inner loops.

The eight-bit microprocessor is a handicap for
manipulating coordinates. This is further aggravated by the
fact that antialiasing requires multiple-precision coordinates.
All the inner loops with counts greater than 256 execute
more slowly because of the extra instructions required for
higher-precision numbers. Coordinates for the antialiased
text primitives are three-byte numbers, which are even
slower to manipulate. We omitted certain functions because
the resulting performance would have been unacceptable. 55

SATISH GUPTA ET AL.




One such task is the transformation of a world-coordinate
system to screen coordinates. Such tasks require a processor
with a fast multiply instruction or an outboard multiplier.

Sarah tested and distributed the seventy YODA systems;
Marc helped us in upgrading the figures in this presentation;
Leon solved a crucial hardware problem; Scott contributed
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The address-counter augmentation to the frame buffer has
been extremely valuable, and augmenting the frame buffer
with pixel-data manipulation logic would have been equally
useful. For example, if the inner loop of BitBlt(Source,
Destination, CombinationFunction) could perform the
combination functions using a pixel ALU near the frame
buffer, pixel values would not need to be brought into the
display microprocessor. Examples of such combination
functions are the logical functions AND, OR, XOR, etc.,
and arithmetic functions such as ADD, SUB, MAX, and
MIN used in the antialiasing functions.

& Antialiased text

A deficiency in the antialiased text mechanism is the
inability to show characters in arbitrary sizes at arbitrary
orientations. YODA can only show the characters with
particular sizes and orientations that have been precomputed
and stored on disk. An example is the Press font, where we
supply the 10-, 12-, 14-, 18-, 24-, and 36-point sizes
horizontally oriented. These can be displayed vertically by
using the BitBIt90 function, but rotations and sizes other
than those supplied cannot be displayed at all.

If the characters are represented as outline splines [13],
then they can be dynamically converted into raster form
with any size and orientation. The raster definitions could
then be cached for use by the display processor. As Carol
Thompson of Yorktown Research has pointed out, the same
representation can also be used for printers so that the
printed copy and the display have the same appearance.

Another shortcoming of the antialiased text functions is
the lack of clipping of characters at pixel-map boundaries. In
our implementation, the text-rendering function simply
stops, returning the current location whenever a character is
encountered which would extend beyond the pixel map.
This feature was omitted primarily because of its effect on
performance.

Conclusion
YODA has a large and diverse group of users. Seventy
YODA displays have been distributed within IBM and to
several universities. The applications have varied widely and
include image processing, ray-traced rendering, animation,
computer-generated art, document processing, and viewing
of scientific and engineering data.

YODA has proven to be a viable architecture, enabling a
low-cost personal computer to produce high-quality images
interactively.
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