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The  early  error  detection  capabilities of  syntax- 
driven  parsers are studied.  The  classes  of  weak 
precedence  and simple  mixed-strategy 
precedence  parsers are chosen as the  object of 
study.  Very  similar  techniques  could be used to 
obtain related  results for  other classes of 
syntax-driven  parsers.  We  investigate  whether 
the  correct-prefix  and  the  viable-prefix 
properties  can be enforced  within  these  classes: 
A negative  result  is  obtained  for  the  first  class 
and a  positive  one  for  the  second.  Moreover,  for 
the  simple  mixed-strategy  class  the  relationship 
between  early error  detection  and  parser  size  is 
studied.  Some  lower  bounds  on  the  parser  size 
are proven  for  simple  mixed-strategy 
precedence  parsers that have  the  viable-prefix 
property. 

1. Introduction 
In the process  of translating from a programming language 
source code into machine code, the ability to detect errors in 
the source code as soon as possible  is particularly attractive. 
Such an ability can considerably improve the adequacy of 
error messages that are issued to the user.  It can also be  of 
great  value to any process that  attempts some form  of error 
correction. Here, we investigate the error detection 
capabilities of some syntax-driven translation mechanisms. 
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Early error detection in connection with a parsing 
algorithm that scans the input string from  left to right can be 
expressed naturally by requiring that  the parser shall not 
read  past the point of an error. More  precisely, let L be the 
language  being analyzed and assume that the parser has  read 
in a prefix,  say x, of the  input string. Then there must exist a 
continuation, z ,  such that xz (which  might be different from 
the string originally  given as input) is  in L. If that is the case, 
we  say that  the parser satisfies the correct-prefix property. 

Most bottom-up parsing algorithms operate in a shift- 
reduce fashion. That is, at any moment, either the next 
symbol  is  shifted from the  input  into the stack, or a few  of 
the topmost symbols on the stack are reduced to  a new 
symbol. The LR  parsers [ 11 and the precedence parsers [2-51 
are particular examples of shift-reduce parsers. It is known 
that the LR parsers and, more strongly, those parsers 
obtained by the characteristic parsing technique [6 ,7 ] ,  all 
enjoy the correct-prefix property. Precedence parsers do not, 
in general,  obey the correct-prefix property. For the class  of 
shift-reduce parsers,  however, the correct-prefix property 
does not properly express the fact that  the parser will stop at 
the earliest possible moment upon encountering an error. It 
says that the parser will not shift new symbols, but does not 
prevent it from further reducing the stack. The LALR [8] 
and SLR [9] variants of the LR-style  parsing technique all 
display this behavior: If the next input symbol causes an 
error it will not be shifted, but the parser can perform an 
arbitrarily large number of reductions before coming to a 
halt and announcing the error. This is not the case  with 
“pure” LR  parsers: Upon encountering the first error, they 
will stop without making any additional shift or reduce 
moves. On the other hand, in most cases,  LR parsers 
incorporate much larger parsing tables in comparison with 
precedence parsers or any of their SLR or LALR variants. 
One interesting fact that will be established later is that, in 617 
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general, we must resort to much larger parsing tables if  very 
early error detection is to be enforced. 

In the rest  of this paper we concentrate on precedence 
parsers.  It should be noted, however, that the intuition 
developed for precedence parsers can easily  be transported to 
a study of the SLR and LALR  classes  as  well. In fact, very 
similar results could be obtained for these classes  using 
techniques that are close to the ones we develop in the 
sequel. Precedence parsers are chosen as our specific object 
of study based, in part, on  the fact that  it is possible to 
obtain, in practice, very simple, efficient, and compact 
parsing algorithms within this class. 

The stack contents of a precedence parser is always a 
string of variables from the underlying grammar. In such 
cases, we can strengthen the correct-prefix property and 
capture the notion of “stopping at the earliest  possible 
moment”: We require the stack to always  be a prefix  of some 
right sentential form of the underlying grammar. When the 
stack has this property, we say that  the parser has the viable- 
prefix property [ IO]. To be specific, let xy  be the  input and 
assume that the parser has  read x up  to this moment. Let the 
stack be a, a prefix  of a right-sentential form like am. This 
means that from a we can derive x.  But, if the grammar is 
reduced, from w we can also derive some string of terminals, 
say z, in such a way that x z  is in the language. Hence, at any 
moment  during  the parse there is  always a “correct suffix,” 
namely z, that could replace the yet-to-be-read part of the 
input y and drive the parse to a successful termination from 
this point on. It  is clear that we could not have stopped 
earlier. If  we had, the parser would not be operating properly 
since a correct input, namely xz, would  lead to an error. It is 
interesting to note that  “pure” LR parsers behave in a 
similar way: From any point during the parse, there is 
always a way to drive it to a successful conclusion, provided 
one can replace the yet-to-be-read part of the  input string. 
The LR items and the LR table ensure that what has been 
shifted and reduced so far behaves  like a “viable prefix”  of 
the underlying grammar. 

In the sequel we investigate and expose the nature of 
grammatical transformations that can‘be used to convert a 
grammar into  an equivalent grammar whose precedence 
parser can be guaranteed to obey the viable-prefix property. 
We  pay  special attention  to  the structura1,transformations 
the original grammar will undergo [ I   I ,  121 as well as to  the 
impact such transformations will have on  the size [ 131 of the 
newly produced grammars and corresponding parsers. The 
transformations of interest, most certainly, will have to be  of 
such a nature as to preserve not only the original source 
language syntax, but also the original semantic processes 
involved in the translation mechanism. In other words, we 
must be able to apply the transformations in a way that is 
totally transparent to the other components of the 
translation algorithm and, hence, in a way that will not 

618 disturb their operation. 

The paper is  organized  as  follows. This section continues 
by introducing these concepts rigorously. The next section 
investigates the class of  weak precedence grammars. The 
third section considers the class  of simple mixed-strategy 
precedence grammars. In the fourth section the space cost of 
the suggested transformation is studied. The last  section 
contains some concluding remarks. Although we state our 
results  rigorously, proofs are omitted. This makes the 
material more readable. All important intermediate results, 
however, are stated. We  refer the reader to [ 141, where the 
details of  proofs can be found. 

notation used in the theory of formal languages.  Any 
undefined terms may be found in [ 13,15,16]. For any 
relation a, a* represents its reflexive and transitive closure, 
whereas a+ represents the transitive closure of a. The null 
string is denoted by X. For all a E V+, the first and last 
symbols of a are denoted by I:a and a: 1, respectively. For 
any ianguage L we write L* for the Kleene star operator on 
L and L+ for the set L*\(X). A context-free grammar 
(grammar for short) is a system G = (V,  T, P, S), where Vis 
the set  of  all  variables, T i s  the set  of terminal symbols, S is 
the start symbol, and P is the set  of productions of G. The 
set  of nonterminals of G is denoted by N = V\T. 
Derivations and rightmost derivations in G are represented 
by + and by ar, respectively. The language generated by G 
is the set L(G) = { x  E T* I S a* x ) .  G is  said to be reduced 
if for all A E N there is an x € T and there are u, z E V* 
such that S +* uAz ** x .  Next, the concept of a viable 
prefix is made precise. 

We assume that  the reader is conversant with the standard 

Definition 1 Let G = (V,  T, P, S) be a grammar. A string 
E V* is a viable prefix of G if and only if 

1. a = S o r  
2. For some x,  y E V*; z E T* we have 

S +! xAz a xyz and 
a is a prefix  of xy. 

All the viable  prefixes  of G are collected in the set VP(G). 

Notation For any grammar G = (V ,  T, P, S)  we put V‘ = 

VU (I) and T‘ = T U  (I), where I is a new symbol. 
The following definition deals with  precedence relations. 

Definition 2 Let G = (V ,  T, P, S) be a grammar. Define 
< C V’ X Vand > c V x  T’ as follows,  where A, B, Z E V 
and x, y ,  w, z E V*: 

1. For all X ,  Y E  V, 
X < Y if and only if A + xXZw E P and Z =+* Yy, 
I < X if and only if S ** Xx. 

X>aifandonly i fZ+xABzEP,Aa+yX,and 

X>I i fandon ly i fS=++xX.  

2. Fora l lXE  Vanda l l a€  T, 

B a* aw, 
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Remarks extra condition, we maintain the usual definition and 
comment on this point as appropriate. 

I .  We preferred to define the relation > over V X T as in 
[ IS] and not over V X V, as was  originally done in [SI. 

2. It is customary to adopt  “end markers” for the  input 
string and the stack. We adopted I as our standard end 
marker. Moreover, the precedence relations were  defined 
directly over the “extended” alphabets V’ and T‘ .  

Intuitively, < represents a “stackability” condition: 
Whenever X < a, and X is the top symbol on  the stack and a 
is the next input symbol, the parser will shift a onto the top 
of the stack. The “reducibility” condition is represented by 
>; Le.,  whenever X > a, X and a as  before, then we must 
select a production and perform the corresponding 
reduction. 

Definition 3 Let G = (V ,  T, P, S )  be a grammar. We say 
that G is a precedence grammar if and only if the relations 
< and > are disjoint and we do not have S J+ S i n  G. 

Usually, three precedence relations are introduced 
[2,3,  IS,  161. Since we do not consider the class  of simple 
precedence grammars, the three precedence relations can be 
combined as indicated in Definition 2. We refrain now from 
defining the classes  of precedence grammars in which we are 
interested. This is done in later sections as needed.  We  now 
introduce the parsers formally. 

Definition 4 Let G = (V ,  T, P, S) be a grammar. A shift- 
reduce parser associated  with G is a system Q = ( I ,  ks, kJ. 
The symbol I, not in V, is a marker for Q. ks, t, are 
respectively the shift and reduce relations of Q. ks and kr are 
defined as binary relations over I V* X T * I  X P*, the set  of 
all configurations of Q, and must satisfy the following 
conditions: 

I .  ( t ,  x, p )  ks (u ,  y ,  W )  if and only if 
t : 1  < 1:xand 
u = tu, x = ay, and w = p ,  where a E T. 

t:1 > 1:xand 
T h e r e i s a p = A + u E P s u c h t h a t t = z u , u = z A ,  

2. ( t ,  x, p )  k, (u, y ,  W )  must imply 

x = y,  and w = pp. 

We further define the move relation of Q as k = ks U kr. 
Note that, whereas Part 1 above completely specifies the 

shift relation kS, that is not the case  for Part 2 and the 
reduce relation kr. Note also that an improved mechanism 
for error detection could be obtained by requiring further 
that z < A in Part 2 [ 17,181. This amounts to preventing 
A from being shifted onto  the stack if the “stackability” 
condition does not hold  between the symbol that was 
uncovered in the stack and the left-hand side  of the 
production used in the reduction. Instead of requiring this 

Definition 5 Let G = (V ,  T, P, S )  be a grammar and let 
Q = ( I ,  ks, k,) be a parser associated  with G. We  say that Q 
is deterministic if and only if k is a partial function. We  say 
that Q is valid for G if and only if ( I ,  XI, X) I-* ( IS ,  I ,  p )  

implies that  the transpose of p is a right  parse  for x and vice 
versa,  for  all x E T* and all p E P*. 

It is clear that ks is  always a partial function. In the light 
of Definition 2 it is also clear that the domains of ks and kr 
are disjoint when G is a precedence grammar. Thus, in order 
f o r k  to be a partial function, it remains to complete the 
definition of k,, ensuring that  it is  also a partial function. 
That is, we have to guarantee that there are no 
reduce-reduce conflicts. This is accomplished by turning Part 
2 of Definition 4 into an if-and-only-if condition. That is,  we 
have to  adopt  one of the parsing strategies  used in 
connection with  precedence grammars. The last definition in 
this section introduces the viable-prefix and correct-prefix 
properties. 

Definition 6 Let G = (V ,  T, P, S )  be a grammar and let 
Q = ( I ,  ks, k,) be a parser  for G. Let x, y E T*; a E V*, and 
p E P. We  say that Q has 

1. The correct-prefix property if and only if (I, x y l ,  X) k* 
(ICY, y l ,  p )  implies that there is some z E T* such that 
xz is in the language generated by G. 

2. The viable-prefix property if and only if (I, xyl ,  X) I-* 
( l a ,   y l ,  p )  implies that a is a viable  prefix of G. 

2. Weak  precedence 
In this section we aim at establishing a negative result for the 
class  of  weak  precedence grammars. It  is  shown that very 
early error detection cannot, in general, be attained by 
precedence  parsers that use the weak  precedence technique 
[4] to break reduce-reduce conflicts. 

Definition 7 Let G = (V ,  T, P, S )  be a grammar. G is a 
weak precedence (WP, for short) grammar if and only  if 

1. G is a precedence grammar. 
2. For all A + x and B + x in P, we must have A = B. 
3. For all A --f xXy and all B + y in P, X c B does not 

hold. 
4. G has no null rules. 

Observe that Conditions 2 and 3 above are “static” in the 
sense that they depend only on P and not on the dynamic 
behavior of the stack. As will  be  seen later, this point seems 
to be crucial in looking for  parsers that preserve the viable- 
prefix property. In some texts G is  also  called an uniquely 
invertible precedence grammar. 619 
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Definition 8 Let G = (V ,  T, P, S) be a grammar and let 
Q = (I, FS, I-J be a parser associated  with G. We can call Q 
a WP parser associated  with G if and only if I-, satisfies 

(zv, x,  p )  (zA, x,  pp) if and only if 

1. (zv): 1 > 1 :x and 
2. p = A + v E P i s s u c h t h a t  I v I  = m a x { I u l : B + u E P  

and u is a suffix  of zv). 

Observe that we are simply completing Definition 4 for the 
reduce relation ET. When G is a WP grammar, its WP parser 
is valid. 

Theorem 9 Let G be a WP grammar and let Q be a WP 
parser associated  with G. Then G is unambiguous and Q is 
deterministic and valid  for G. 

Now  we investigate the correct-prefix and viable-prefix 
properties in conjunction with WP grammars and WP 
parsers.  It is easy to see that WP parsers do not, in general, 
preserve these properties. 

Example 10 Consider the  grammar G = ((S, A, a, b, c], 
{a ,  b, c), P, S), where P is  given  by the productions below: 

S+ a, S+ bA, 

A + d c ,  A + ac. 

Clearly, L(G) = {a)  U (ba"c":n 2 1). It is easily  seen that G 
is a WP grammar and that I < a and a < c. Hence, the WP 
parser for G would  yield 

(I, a c l ,  X) I-$ (la, CI, X) I-$ ( l a c ,  I, X), 

violating the correct-prefix property. 0 

does not have the correct-prefix property is not accidental: 
Any WP parser that correctly analyzes L(G) will violate the 
correct-prefix property. 

Theorem 11 Let G = (V,  T, P, S) be a WP grammar such 
that L(G) = {a ]  U (ba"c":n 2 1) .  Let Q = (1, FS, I-,) be a 
WP parser for G. Then Q violates the correct-prefix property. 

The viable-prefix property, of course, is also  violated by 
any WP parser whose  language includes { a )  U 
{ba"c":n 2 1) .  It is interesting to note  that only Parts 2 and 
4 of Definition 7, namely, the  unique invertibility of G and 
the absence of null rules, are important to prove Theorem 
1 1. In fact, if  we removed Part 3 from Definition 7 we  would 
still  get  valid parsers, although they might not be 
deterministic. In this case, the result  would  still be valid in 
the sense that some computation of the new (possibly 
nondeterministic) parser would  still  violate the correct-prefix 
property. From this discussion we may also conclude that 
improving Part 2 in Definition 8 by requiring further that 
z :  1 < A  would not help as far as the correct-prefix property 
is concerned. 

The fact that  the WP parser for G in the previous example 

Note  also that  the class  of  languages generated by WP 
grammars is a proper subset  of the family  of all deterministic 
context-free languages [ 15,  161. In the next section we relax 
the unique invertibility condition, thereby obtaining a class 
of precedence grammars whose members are able to generate 
any deterministic context-free language. As will  be seen, the 
situation changes abruptly: It will  always  be  possible to 
enforce the viable-prefix property within this class. 

3. Simple  mixed-strategy  precedence 
The simple mixed-strategy precedence grammars were 
introduced in [2]  as a restriction to the mixed-strategy  class 
considered in [ 191. As can be seen in the definition below, 
unique invertibility is  relaxed. The reduce-reduce conflicts 
caused by noninvertible productions are now broken by 
imposing a "dynamic" restriction on the stack, as dictated by 
Part 2 in that definition. 

It is already known that grammatical transformations (to 
generate equivalent grammars whose parsers obey the 
correct-prefix property) do exist  for this class  of grammars 
[20]. In this section we describe, and prove the correctness 
of, a new transformation that has  two added values: It is 
much simpler and it permits a very simple cover morphism 
to be defined from the new grammar into  the original one. 
This last property guarantees that  the transformed grammar 
can be  used to replace the original one in the translation 
process without having to modify any of its other existing 
functions. 

Definition 12 Let G = (V,  T, P, S) be a grammar. G is a 
simple mixed-strategy precedence (SMSP,  for short) 
grammar if and only if 

G is a precedence grammar. 
Foral lA+xandB+xinPwithA#B,wedonot  
simultaneously have Z < A  and Z < B, for any Z E V. 
Fora l lXE VandallA+xXy,B+yinP,X<Bdoes 
not hold. 
G has no null rules. 

The corresponding parsers are now  defined. 

Dejnition 13 Let G = ( V ,  T, P, S) be a grammar and let 
Q = (I, Fs, I-") be a parser associated  with G. We  call Q a 
SMSP parser for G if and only if I-, satisfies 

(ZV, x, p )  I-, (zA, x, pp) if and only if 

1. ( zv ) :  1 > 1 : x  and 
2. p = A + v E P i s s u c h t h a t  

a. [ V I  =max(IuI :B+uEPanduisasuf f ixofzv] .  
b. z: l  < A .  



Observe that the “stackability” condition alluded to earlier is 
now present as ’item  2(b) of the definition above. As  was the 
case  before, a SMSP parser is always  valid. 

Theorem 14 Let G be a SMSP grammar and let Q be a 
SMSP parser associated  with G. Then G is unambiguous and 
Q is deterministic and valid for G. 

We  now turn  to the correct-prefix and viable-prefix 
properties in SMSP parsers. From Example 10 it is already 
clear that not all  SMSP parsers obey these properties. A 
more interesting case is given  by the next example. 

Example 15 Consider the grammar G = ((S, A, 2, a,   b ,   c) ,  
{a ,   b ,   c ) ,  P, S), where P is  given  by the productions below: 

S +  a, S+ bA, 

A + ZAc, A + ZC, 

Z +  a. 

It is easily  seen that G is a SMSP grammar. Moreover, it can 
be checked that the SMSP parser associated  with G does 
have the viable-prefix property. Note that L(G) = 

{ a )  U {ba“c”:n 2 1 )  and compare to Theorem 1 1 . 0  
We  now attack the problem of transforming any SMSP 

grammar into  an equivalent SMSP grammar whose  SMSP 
parser has the viable-prefix property. We want the stack 
contents, at any moment, to represent a viable  prefix  of the 
underlying grammar. The basic idea will be to introduce new 
nonterminal symbols in the form of pairs (x, A ) ,  where x 
represents all the stack contents that lay  before A on the 
stack. Equivalently, we must have S =.+: xAy in the 
grammar for some y and so, clearly, x is a viable  prefix  of 
the grammar. The problem with such an approach, of 
course, is that there might be infinitely many such strings x, 
which  would render the idea  useless. Therefore, instead of 
using x as the first component in these pairs, we shall  define 
an equivalence relation on  the set  of  all  viable  prefixes, and 
use the equivalence classes as first components in the new 
nonterminals to be created. Hence, the new nonterminals 
will have the form (C, Z), where Z is a variable and C is a 
subset of V*. The intuition here is that for any x in C there 
is a parse  where x is the string appearing before Z on  the 
stack; that is, for all x in C we have S =s, XZU, for some 
u E T*. Further, assume that Z + 2, . . . 2, is a 
production. Then we  get S *: xZ, . . . Z,U and so the 
extended string xZ, . . . Zj - ,  will appear before 2, in the 
stack during some parse. Note that, if y is another string in 
C, then  the extension yZl . . . Zj-I will also represent the 
stack contents before 2, in some parse.  We  would like to say 
that two arbitrary viable  prefixes x and y are “equivalent” 
exactly  when they have the same such extensions. The class 
C, in the nonterminal (C, Z ) ,  will be a group of such 
“equivalent” prefixes. 

It turns out that having information about  the class, C, of 
elements that may  precede Z in the stack, rather than 
knowing  precisely  which element of C one has at any 
moment before Z, is  sufficient to guarantee the viable-prefix 
property. Another observation is that the parser will never 
stack more than m symbols in a row,  where m is the 
maximum length  of the right-hand side  of a production in 
the grammar. Therefore, we need  only consider extensions 
up  to m symbols when determining which  prefixes are 
“equivalent.” In fact,  since a new nonterminal (C, 2) will 
indicate that XZ is a viable  prefix, x in C, we can restrict the 
extensions to m - 1 symbols,  for Z will always be part of the 
extension. These are the ideas behind the sets R(x)  and the 
relation +(G) that we  now make precise. 

Notation Let M(G) = max { I x I : A  + x is in P) and for all 
x E VP(G), let R(x)  = { z  E V * : x z  E VP(G) and 1 5 I z I 5 
M(G) - 1). 

Definition 16 Let G = ( V ,  T, P, S) be a grammar. Define 
the relation &(G) C VP(G) X VP(G) such that x 4(G) y if 
and only if R(x)  = R( y ) .  

Assuming  always that P is nonempty and G is reduced, it 
follows that if M(G) = 0, then S + X is the only production 
in P. Under  the same circumstances, if M(G) = 1, then the 
productions must be in the form A + Z ,  where Z E V, or 
A + X. In any case, it is immediate that  the SMSP parser for 
G has the viable-prefix property. Therefore, from now on we 
assume M(G) 2 2. 

equivalence relation. Also, d(G) must have a finite index. 
Otherwise, we would end up with an infinite number of 
nonterminals in the “new grammar.” Moreover, we also 
need a property of right invariance from d(G). To see this, 
note that from a new nonterminal (C, Z )  and a production 
Z + Z ,  . . . 2, we  would like to derive a new production in 
the form (C, Z)  + (C,,  Z,) . . . (C,, Z,) where  each C, is an 
equivalence class.  More  precisely, C, should be the class 
which contains the extension x Z ,  . . . Z,-,, where x is in C. 
Clearly, the definition of C, must not depend on any 
particular choice  for x. Therefore, we must ensure that 
xZ, . . . 2, -, and y Z ,  . . . Z, -, are equivalent, for any x and 
y in C. The next result guarantees that 4(G) has the desired 
properties. 

The next  task  is to verify that, indeed, d(G) is an 

Theorem I 7  Let G = ( V, T, P, S) be a reduced grammar. 
Then @(G) is a right-invariant equivalence relation of finite 
index. 

Notation The equivalence class  of x under 4( G) is denoted 
by [XI. 

We are now in a position to present the grammatical 
transformation. Recall that X is always a viable prefix, for we 
are assuming that P is not empty. 62 
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Algorithm 18 
INPUT: a grammar G = (V ,  T, P, S)  
OUTPUT: a grammar G' = (V' ,  T, P', S')  

1. Let  NEW := (([X], S)); V' := NEW; P' := 0. 
2. While  NEW # 0 do 

a. Let (C, Z )  E NEW, 
b. Remove (C, Z) from NEW and add it to V' ,  
c.  If Z E T, 

Then  add (C, Z) 4 Z to P'; 
Else  for  all Z -, Z, . . . Z ,  E P, n z 0, do 
1) Add (C, Z) 4 (C,, Z , )  . . . (C,, Z,) to P' 

where C, = [xZ, . . . Z,J, 
for some x E Cand  allj, 1 ~j I n. 

if (C,, Z,) is not in NEW U V' ,  
then add (C,, Z,) to NEW. 

2) For all j ,  1 I j I n, 

3. Define S' = ([X], S). 

A careful reading of Algorithm I8 shows that all  it does is to 
construct the new grammar according to  the ideas presented 
before. The following properties are  important to note. 

Fact 19 Let G = ( V, T, P, S)  be a reduced grammar. Then 

I .  Algorithm 18 stops. 
2. Step 2.c. 1 of Algorithm 18 is well defined. 
3. For all new variables (C, Z) introduced by Algorithm 18 

we must have xZ E VP(G), for  all x E C. 

Next we turn  to  an example. 

Example 20 Consider the  grammar G = (IS, A ,  B,  a, b, c), 
(a,  b, c), P, S), where P is given  by the productions below: 

S+aA, S - t a B ,  

A -, a d ,  A -, ac, 

B -, aaB, B + b. 

Clearly, L(G) = (a"c:n z 1 and n even) U (a"b:n z 1 and 
n odd). The SMSP parser for G does not obey the correct- 
prefix property, as can be  seen by its behavior on  the  input 
string aab. Intuitively, the reason why the correct-prefix 
property fails is that  the parser must proceed by  first stacking 
all the a's and then deciding whether to stack the incoming b 
or c on top of them. Clearly, we would like to stack a symbol 
b if and only if the number of a's on  the stack is odd. But 
this cannot be decided by looking at the topmost symbol on 
the stack, which  is just  an a. Similar reasoning applies for 
the symbol c. 

The viable  prefixes  of G we partitioned into  the classes 

c1 = (X), 
C2 = {a":n z 1 and n even), 
C3 = (a":n z 1 and n odd), 
C4 = (a"A, a"B, a"b, a"ac, S :n  z I and n odd) 

Algorithm 18 will produce the grammar G' = ( V' ,  T, P', S ' )  
with productions 

(C2, a )  -, a. 

It  is  easy to check that G' is a SMSP grammar whose SMSP 
parser has the viable-prefix property. The parser for G' 
stacks a symbol c if and only if the topmost symbol on  the 
stack  is (C3, a). In fact, C3 indicates that we have so far 
stacked an even and nonzero number of a's. Similarly, there 
are two situations in  which the parser stacks a symbol 6: 
First, when  it  sees (C2, a )  on top of the stack, indicating that 
the number of a's the parser has already stacked is odd and 
greater than one; second, when  it  sees (C1, a)  on  top of the 
stack, in which  case it has  seen  exactly one a so far. Note 
that G' is no longer uniquely invertible and, hence, is not a 
WP grammar. 0 

It should be intuitively clear that  the grammars produced 
by Algorithm 18 resemble the original ones very closely. 
This is made precise by the following definition [ 121. 

Definition  21 Let G = (V, T, P, S )  and G' = 
(V' ,  T, P', S')  be grammars. We say that G' right-covers G if 
and only if there is a morphism h from V' into V such that, 
for  all x E T*, 

1. If p is a right  parse  for x in G', then h(p)  is a right  parse 

2.  If w is a right  parse  for x in G, then there is a right  parse p 
for x in G. 

for x in G' such that h(p) = w. 

We also  say that h is a right-cover morphism from G' into G. 
From the definition it is clear that i) L(G) = L(G') and ii) 

we can, using the cover morphism, replace G by G' in any 
translation mechanism that uses G as a basis  for a syntax- 
driven parse without having to change any of the semantic 
functions already in operation. To see  how this may  be 
accomplished, note  that all we need to  do is to search the 
table that describes the cover morphism each time we 
perform a reduction when parsing according to G'. This will 
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give us a string p in P* hnd  we just perform all the semantic 
routines associated  with the elements in p, taking one at a 
time from left to right. ; 

Notation Let G = (V,  T, P, S) be a reduced grammar and 
let G‘ = (V‘, T, P’, S’) be the grammar produced by 
Algorithm 18 when G was taken as input.  Then define the 
morphism g from V’ into V such that (C, Z )  is mapped into 
Z for all (C, Z )  E V ’ .  Define the morphism h from P‘ into P 
such that 

1. Each production in the form (C, Z )  + Z is mapped into 

2. Each production in the form (C, Z )  + x, where x # Z,  is 
X. 

mapped into Z + &x). 

Theorem 22 Let G = ( V, T, P, S) be a grammar and let 
G’ = ( V’, T, P’, S’) be the grammar produced by Algorithm 
18 when G is taken as input. Then G’ right-covers G. 

Having the structural equivalence between G and G’, it 
remains to be shown that G’ is a SMSP grammar whose 
SMSP parser obeys the viable-prefix property. The first step 
is to examine the relationship between the precedence 
re1atior.s  in G and G’. 

Lemma 23 Let G = ( V, T, P, S) be a reduced grammar 
with no null  rules.  Let G’ = (V’, T, P’, S’) be the grammar 
produced by Algorithm 18 when G was taken as input. Then 

I .  G‘ is  reduced and has no null  rules. 
2.  The precedence relation < in G‘ satisfies the following: 

a. ( C , X ) < ( D ,  Y)inG’impliesX<  YinGandzXED, 

b. (C, X )  < a in G’ implies X < a in G. 
c. I < (C, X )  in G’ implies I < X in G and C = [X]. 
d. We cannot have a < Z in G’, for any Z in V’ and any 

3. The precedence relation > in G‘ satisfies the following: 

for  all z E C. 

a E T. 

(C, X )  > a in G’ implies X > a in G. 

Theorem 24 Let G = (V ,  T, P,  S) be a reduced grammar 
with no null  rules.  Let G‘ = (V’ ,  T, P’, S’) be the grammar 
produced by Algorithm 18 when G was taken as input.  Then 
G‘ is a SMSP grammar. 

To check the correctness of  Algorithm 18 with  respect to 
the viable-prefix property of G’, we  need the next crucial 
lemma. It imposes a restriction on  the right-sentential forms 
of G’ as follows.  Let x be a viable  prefix  of G, and assume 
that x is in the class C [under 4(G)]. Then, in any right- 
sentential form in G’ variables in the form (C, Z )  can only 
be preceded by strings y in such a way that g( y ) E C, where 
g is the morphism defined above. That is, the equivalence 
class C “remembers” all the viable  prefixes  of G that can 
precede x. In order to decide whether or not to stack the 
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next incoming symbol, all the parser has to  do is look at the 
first component of the topmost symbol in the stack. 

Lemma 25 Let G = (V,  T, P, S) be a reduced grammar 
with no null rules.  Let G‘ = (V’ ,  T, P’ ,  S’) be the grammar 
produced by Algorithm 18 when G was taken as input. Take 
some (C, X )  E V’ and let x = X ,  . . . X ,  E C, where n 2 0 
and X,  E V, for  all i, 1 I i I n. Then there are equivalence 
classes C,, 1 5 i 5 n, such that 

We can now state the last  result of this section. 

Theorem 26 Let G = (V,  T, P,  S )  be a reduced grammar 
with no null rules.  Let G‘ = (V’,  T, P‘, S’) be the grammar 
produced by Algorithm 18 when G was taken as input. 
Assume that Q’ is a SMSP parser associated  with G‘. Then 
Q‘ has the viable-prefix property. 

One interesting fact about  the proof of the last theorem is 
that  it needs only the assumptions that G and G‘ are 
reduced and have no null rules. It does not require G or G‘ 
to be a SMSP grammar. This indicates that Algorithm 18 
might also work  for other classes  of grammars as well,  where 
null  rules are avoided and unique invertibility is not a 
problem. 

4. The cost of the transformation 
This section  investigates the space  efficiency  of the 
transformation presented in the last section. This is done by 
comparing the sizes  of the original and transformed 
grammars. It turns  out  that there is an infinite family  of 
SMSP grammars, say G,, for  which  Algorithm  18  yields 
another family, say H,, in such a way that  the size of H,  is 
exponentially related to the size  of G,. This shows that 
grammars and parsers produced by Algorithm 18 can be 
quite large. Interestingly enough, we also show that this is 
the best that  one can hope for.  More  precisely,  let L, = 
L(G,). We  show an exponential lower bound on the size  of 
any family of SMSP grammars, F,, for which we must have 
L(FJ = L, and whose corresponding SMSP parsers must 
obey the correct-prefix property. In other words, the 
(possible) exponential growth in the size  of the transformed 
grammars is due  to  the requirement imposed on the 
corresponding SMSP  parsers, namely that they must obey 
the correct-prefix property, and is not a drawback inherent 
in the transformation itself. Further, with  respect to space 
efficiency, the transformation is optimal. Note that  the 
presence  of the family G,, in itself, does not render the 
transformation useless from a practical point of  view. It does 
say,  however, that, in general, one  cannot construct a better 
one (that is,  with  respect to space  efficiency). 
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We  use the following  measure for the size  of a grammar. 

Definition 27 Let G = (V,  T, P, S) be a grammar. Define 
IGIasthesumofIAxI , foral lA4xEP.  

Before introducing our family  of  languages, we discuss 
them informally. We  need to construct a family  of 
languages, L,, in such a way that any grammar for L, (and 
whose corresponding SMSP  parser has the correct-prefix 
property) is  very  large:  of the order of 2”. This suggests that 
we, somehow, encode into L, a description of all 2” subsets 
of { 1, . . . , n ) .  In order to  do that, we use the symbols ai and 
b,, 1 5 i 5 n, and force the sentences of L, to be  of the form 
xb, y where in x only the a;s occur. The encoding is  given by 
reading the indices of the a;s. To make the language 
nonregular and to avoid  trivial  cases, we require y to have 
the same length as x;  i.e.,  we  let y = c‘, where c is a new 
terminal symbol and r = I x I. Finally, the idea behind the 
central symbol, b,, is as follows:  We require k to be an index 
not occurring in x.  Now, if the parser is to have the correct- 
prefix property, it has to “remember,” up to the moment 
when  it encounters the bk symbol,  which  subset  of  indices  it 
has found so far among the a,’s. This will force the parser to 
have a lot of “states” and, in consequence, will ensure that 
the grammar from which  it  was built is also  very  large. 
Observe that, in case the correct-prefix property is not 
needed, the parser could proceed as follows: i) Stack  all the 
a,’s; ii) read  in b, and “remember” it; iii) reduce  back  all the 
stack, one symbol at a time, making sure that each ai taken 
from the stack has an index  different  from k (of course, it is 
also  necessary to read  all the c’s from the input  and check 
whether their number matches the number of a’s on the 
stack). 

The next step is to verify that these  ideas do, indeed, 
produce the necessary  results.  We  define the following 
infinite families of sets,  indexed by n: 

A,, = {a,, . . ., a,] and r, = {b , ,  . ., b,] are new terminal 

T,, = {d, c] U A, U r,. These are the set  of terminal 

I,, = {I,  . . ., n ) ,  a set of indices. 

symbols. 

symbols of our family of grammars, to be  defined  below. 

Next, we need a function to form  sets of indices.  Let #, be a 
function that maps A: into subsets of I,, such that 

#,(x) = { i : x  = ya,z, for some y,  z E A:); 

i.e., #,(x) collects  all the indices of symbols in x.  We can 
now  present the family of languages. 

Definition 28 Let n 2 1. For all k, 1 5 k I n, define L,,, = 
{xb,c‘:x E A:, r = 1x1 and k is not in #,(x)) U Ida,). Also 
let L, be the union of  all L,,, for  all k, 1 I k 5 n. 

As defined, L, is exactly as we introduced before,  except 
for the components in the form da,, added for  technical 
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reasons. It is not hard to devise a family of grammars to 
generate L,. 

Definition 29 Let n 2 1 and define G, = (V,, T,,, P,, S,,), 
where T, is as defined  above, V,, = T, U {S,) U 
{A, ,  . . . , A,, 1, and P,, is  given  by the productions below,  with 
l ~ i , j ~ n :  

1. S,, + da,, S,, + A , .  
2 .  Ai + bi, A, 4 a,Aic, where i # j .  

The family G, has some  resemblance to another one used in 
[71. 

Theorem  30 Let n 2 1 and let G, be the grammar of 
Definition 29. Then, for all n 2 3, G, is a SMSP grammar 
such that L(G,,) = L, and I G, I I k . n2, for some constant 
k. Moreover, the SMSP  parser  for G,, does not obey the 
correct-prefix property. 

definitions. To verify that the SMSP  parser for G, does not 
have the correct-prefix property, it suffices to observe its 
behavior on any string in the form duiaj, where i # j .  In  fact, 
the reason to add the elements da, to the language was, 
precisely, to force the SMSP  parser  for G, to violate the 
correct-prefix  property. Further, since the parser  for G, does 
not have the correct-prefix property, we can use Algorithm 
18 and transform each G, into an equivalent SMSP 
grammar, say H,, such that the SMSP  parser  associated  with 
the latter always  obeys the viable-prefix property. 

Theorem 31 For all n 2 1, let H,  be the grammar 
produced by Algorithm 18  when G,, is taken as input. Then 
I H,,I 2 2” . ( 2 n  + l)n, for  all n 2 1. 

The  result is obtained by analyzing the transformation 
carried out by Algorithm 18 on G,. A careful counting 
argument suffices. The grammars G,, therefore,  exhibit the 
property of being much more (exponentially) space-efficient 
than the equivalent grammars H,  obtained by Algorithm  18. 
Our last  task  will  be to show that this is true of any family  of 
equivalent grammars, say F,, whose  parsers are required to 
obey the correct-prefix property. This will  be accomplished 
by proving a lower bound of the form n2” on the size  of F,. 

Definition 32 For all n 2 1, let F, = (V,, T,,, P,, S,) be a 
family  of  reduced  SMSP grammars such that L, = L(F,). 
Assume that Q,, the SMSP  parser  associated  with F,, obeys 
the correct-prefix property. 

The lower bound on I F, I is obtained with the aid of the 
following notion. 

Definition 33 Let n 2 1 and let F, and Q, be as specified 
in Definition 32.  Also, let x E V: and ai E A,,, for some i ,  
1 I i 5 n. We  say that x is invariant with  respect to ai in F, 
if and only if 

The statements about G, follow  easily  from the 
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1. (Ix): 1 -= ai in F,,. 
2 .  For all r E 0, if 
(h, (ai) ‘ai l ,  X) I-* ( k  a&, P) ,  

then we must have z = xy, for some y E V:. 

The important point in the previous definition is that the 
string x is  left untouched in the bottom of the stack  when 
the parser  analyzes inputs in the form a, . . . a,. Now, in 
order to prove the required properties of I F,, I, we associate 
with  each pair ( J ,  j ) ,  where J C Z,, and 1 I j 5 n, a 
production PJ,, of P,,. Next we  show that PJ,j # PK,k 
whenever (K,  k )  # ( J ,  j ) .  This should be enough to guarantee 
that I F,, I E n2“. The particular productions are chosen 
based on two properties of F,,: 

For all  right-sentential forms x of F,,, there is a 
(sufficiently  large) constant k such that, starting in the 
configuration (Ix, (a,)’L, X), the SMSP  parser  for F,, is 
forced into a configuration (I y,  a i l ,  p), where y is 
invariant with  respect to a,. That is, invariants do exist. 
If x and y are invariants with  respect to some a, and 
x *: u, y *: u, where u, u E A,,, * then we must have 
#,( ua,) = #,,(vu,). In other words, sentential forms 
invariant with  respect to the same symbol ai can only 
generate terminal strings  with the same set of indices. 
Invariance, thus, can be taken as a “memory” of the set 
of indices we have  already  laid  down. 

In  possession  of  these properties we can state the following 
crucial lemma. 

Lemma 34 Let n 2 1 and let F,, be  as  specified in 
Definition 32. Fix some i, 1 5 i 5 n. Then to each  pair ( J ,  j ) ,  
whereJcI,, ,  l ~ j ~ n , J U ( i , j ) # I , , , a n d j i s n o t i n J , w e  
can  associate a production PJ,, of P,, in such a way that PJ,j # 
PK.k whenever (K ,  k )  # ( J ,  j )  and i is not in K U J U (k,  j I. 

pathological situations, there are about as many productions 
in H,, as there are pairs  in the form ( J ,  j ) .  Finally, our lower 
bound is at hand: The number of such  pathological  cases can 
be  neglected  when compared to n . 2“, which  is a lower 
bound on the number of productions in H,,. 

The lemma says that, with the exception of some 

Theorem 35 Let n E 1 and let F,, be as specified  in 
Definition 32. Then we must  have I F,, I 2 n . 2“ and 
I V,,I 2 2”. 

5. Conclusions 
We have studied the correct-prefix and the viable-prefix 
properties in connection with the weak and simple mixed- 
strategy  precedence  classes  of grammars. Grammars in these 
classes  usually do not give  rise to parsers that have either of 
these  properties. We  showed and proved correct a simple 
transformation that takes any SMSP grammar G and 

produces an equivalent SMSP grammar G’ in such a way 
that the SMSP  parser  associated  with G’ always  obeys the 
viable-prefix property. The transformation is of  such a 
nature that a very simple  cover morphism can  be  defined 
from the productions of G‘ into the production of G. This 
enables one to use G‘ instead of G to parse L(G) while  still 
preserving the semantic routines designed for the original 
grammar G. For the weak precedence  class it was established 
that no such transformation exists. 

Using the sizes  of G and G’ as a measure, the cost of the 
transformation was also  analyzed.  In  general, one must 
contemplate an exponential growth in the size  of the 
transformed grammar if the correct-prefix property is to be 
enforced. Hence, there can  be an exponential economy in 
describing  SMSP  languages  when the correct-prefix property 
is not crucial to the parsing mechanism. The necessity  of the 
exponential growth in the size  of the transformed grammar 
was established by exhibiting a particular family  of  SMSP 
languages and proving a lower bound on the size  of any 
SMSP grammars for these  languages  whose  associated  SMSP 
parsers are required to obey the correct-prefix property. 
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