Early error
detection

in syntax-driven
parsers

by A. V. Moura

The early error detection capabilities of syntax-
driven parsers are studied. The classes of weak
precedence and simple mixed-strategy
precedence parsers are chosen as the object of
study. Very similar techniques could be used to
obtain related results for other classes of
syntax-driven parsers. We investigate whether
the correct-prefix and the viable-prefix

properties can be enforced within these classes:

A negative result is obtained for the first class
and a positive one for the second. Moreover, for
the simple mixed-strategy class the relationship
between early error detection and parser size is
studied. Some lower bounds on the parser size
are proven for simple mixed-strategy
precedence parsers that have the viable-prefix
property.

1. Introduction

In the process of translating from a programming language
source code into machine code, the ability to detect errors in
the source code as soon as possible is particularly attractive.
Such an ability can considerably improve the adequacy of
error messages that are issued to the user. It can also be of
great value to any process that attempts some form of error
correction. Here, we investigate the error detection
capabilities of some syntax-driven translation mechanisms.

©Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER (986

Early error detection in connection with a parsing
algorithm that scans the input string from left to right can be
expressed naturally by requiring that the parser shall not
read past the point of an error. More precisely, let L be the
language being analyzed and assume that the parser has read
in a prefix, say x, of the input string. Then there must exist a
continuation, z, such that xz (which might be different from
the string originally given as input) is in L. If that is the case,
we say that the parser satisfies the correct-prefix property.

Most bottom-up parsing algorithms operate in a shift-
reduce fashion. That is, at any moment, either the next
symbol is shifted from the input into the stack, or a few of
the topmost symbols on the stack are reduced to a new
symbol. The LR parsers [1] and the precedence parsers [2-5]
are particular examples of shift-reduce parsers. It is known
that the LR parsers and, more strongly, those parsers
obtained by the characteristic parsing technique [6,7], all
enjoy the correct-prefix property. Precedence parsers do not,
in general, obey the correct-prefix property. For the class of
shift-reduce parsers, however, the correct-prefix property
does not properly express the fact that the parser will stop at
the earliest possible moment upon encountering an error. It
says that the parser will not shift new symbols, but does not
prevent it from further reducing the stack. The LALR [8]
and SLR [9] variants of the LR-style parsing technique all
display this behavior: If the next input symbol causes an
error it will not be shifted, but the parser can perform an
arbitrarily large number of reductions before coming to a
halt and announcing the error. This is not the case with
“pure” LR parsers: Upon encountering the first error, they
will stop without making any additional shift or reduce
moves, On the other hand, in most cases, LR parsers
incorporate much larger parsing tables in comparison with
precedence parsers or any of their SLR or LALR variants.
One interesting fact that will be established later is that, in 617

A, V. MOURA

618

general, we must resort to much larger parsing tables if very
carly error detection is to be enforced.

In the rest of this paper we concentrate on precedence
parsers. It should be noted, however, that the intuition
developed for precedence parsers can easily be transported to
a study of the SLR and LALR classes as well. In fact, very
similar results could be obtained for these classes using
techniques that are close to the ones we develop in the
sequel. Precedence parsers are chosen as our specific object
of study based, in part, on the fact that it is possible to
obtain, in practice, very simple, efficient, and compact
parsing algorithms within this class.

The stack contents of a precedence parser is always a
string of variables from the underlying grammar. In such
cases, we can strengthen the correct-prefix property and
capture the notion of “stopping at the earliest possible
moment”: We require the stack to always be a prefix of some
right sentential form of the underlying grammar. When the
stack has this property, we say that the parser has the viable-
prefix property [10]. To be specific, let xy be the input and
assume that the parser has read x up to this moment. Let the
stack be «, a prefix of a right-sentential form like aw. This
means that from « we can derive x. But, if the grammar is
reduced, from « we can also derive some string of terminals,
say z, in such a way that xz is in the language. Hence, at any
moment during the parse there is always a “correct suffix,”
namely z, that could replace the yet-to-be-read part of the
input y and drive the parse to a successful termination from
this point on. It is clear that we could not have stopped
earlier. If we had, the parser would not be operating properly
since a correct input, namely xz, would lead to an error. It is
interesting to note that “pure” LR parsers behave in a
similar way: From any point during the parse, there is
always a way to drive it to a successful conclusion, provided
one can replace the yet-to-be-read part of the input string.
The LR items and the LR table ensure that what has been
shifted and reduced so far behaves like a “viable prefix” of
the underlying grammar.

In the sequel we investigate and expose the nature of
grammatical transformations that can be used to convert a
grammar into an equivalent grammar whose precedence
parser can be guaranteed to obey the viable-prefix property.
We pay special attention to the structural transformations
the original grammar will undergo [11,12] as well as to the
impact such transformations will have on the size [13] of the
newly produced grammats and corresponding parsers. The
transformations of interest, most certainly, will have to be of
such a nature as to presérve not only the original source
language syntax, but also the original semantic processes
involved in the translation mechanism. In other words, we
must be able to apply the transformations in a way that is
totally transparent to the other components of the
translation algorithm and, hence, in a way that will not
disturb their operation.

A. V. MOURA

The paper is organized as follows. This section continues
by introducing these concepts rigorously. The next section
investigates the class of weak precedence grammars. The
third section considers the class of simple mixed-strategy
precedence grammars. In the fourth section the space cost of
the suggested transformation is studied. The last section
contains some concluding remarks. Although we state our
results rigorously, proofs are omitted. This makes the
material more readable. All important intermediate results,
however, are stated. We refer the reader to [14], where the
details of proofs can be found.

We assume that the reader is conversant with the standard
notation used in the theory of formal languages. Any
undefined terms may be found in [13, 15, 16]. For any
relation «, o* represents its reflexive and transitive closure,
whereas o represents the transitive closure of «. The null
string is denoted by A. For all « € V", the first and last
symbols of « are denoted by l:« and «:1, respectively. For
any language L we write L* for the Kleene star operator on
L and L for the set L*\{)A}. A context-free grammar
(grammar for short) is a system G = (V, T, P, S), where V is
the set of all variables, T is the set of terminal symbols, S is
the start symbol, and P is the set of productions of G. The
set of nonterminals of G is denoted by N = V\T.
Derivations and rightmost derivations in G are represented
by = and by =, respectively. The language generated by G
is the set L(G) = {x € T*| S =* x}. G is said to be reduced
if for all 4 € N there isan x € T and there are 4, z € V'*
such that S =* udz =* x. Next, the concept of a viable
prefix is made precise.

Definition1 Let G=(V, T, P, S) be a grammar. A string
« € V*is a viable prefix of G if and only if

. a=Sor

2. Forsome x, y € V*; z € T* we have
* S =* x4z = xyz and
% a 1s a prefix of xy.

All the viable prefixes of G are collected in the set VP(G).

Notation For any grammar G =(V, T, P, S) we put V'’ =
VU {lland T = T U {1}, where L is a new symbol.
The following definition deals with precedence relations.

Definition 2 Let G = (V, T, P, S) be a grammar. Define
<CV'xVand>CVx T as follows, where 4, B, Z€ V
and x, y, w, z € V'*:

1. Forall X, YeV,
o X < Yif and only if 4 — xXZw € P and Z =* Yy,
% 1 < X if and only if S =* Xx.
2. Forall X€Vandallae T,
% X > a if and only if Z — xABz € P, A =" yX, and
B =* aw,
%X > L ifand only if S =" xX.

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

Remarks

1. We preferred to define the relation > over V' X T as in
[15] and not over V' X V, as was originally done in [5].

2. It is customary to adopt “end markers” for the input
string and the stack. We adopted L as our standard end
marker. Moreover, the precedence relations were defined
directly over the “extended” alphabets V'’ and T”.

Intuitively, < represents a “stackability” condition:
Whenever X < g, and X is the top symbol on the stack and g
is the next input symbol, the parser will shift a onto the top
of the stack. The “reducibility” condition is represented by
>: i.e., whenever X > g, X and q as before, then we must
select a production and perform the corresponding
reduction.

Definition3 Let G=(V, T, P, S) be a grammar. We say
that G is a precedence grammar if and only if the relations
< and > are disjoint and we do not have S=" Sin G.
Usually, three precedence relations are introduced
[2, 3, 15, 16]. Since we do not consider the class of simple
precedence grammars, the three precedence relations can be
combined as indicated in Definition 2. We refrain now from
defining the classes of precedence grammars in which we are
interested. This is done in later sections as needed. We now
introduce the parsers formally.

Definition4 Let G = (V,T,P,S)bea grammar. A shifi-
reduce parser associated with G is a system @ = (L, —_,).
The symbol L, not in V, is a marker for Q. =, -, are
respectively the shifi and reduce relations of Q. - and -, are
defined as binary relations over LV* X T*1 X P* the set of
all configurations of Q, and must satisfy the following
conditions:

1. (¢, x, p) b, (4, y, w) if and only if
e /:1 < l:xand
e y=ta,x=aqayand w =p, whereg € T.
2. (t, x, p) -, (4, y, @) must imply
e ¢:1>1:xand
e Thereisap=A—v € Psuchthatt = zv, u = zA,
X =y, and w = pp.

We further define the move relation of Qas—=F U .
Note that, whereas Part | above completely specifies the
shift relation k-, that is not the case for Part 2 and the
reduce refation +—,. Note also that an improved mechanism
for error detection could be obtained by requiring further
that z < 4 in Part 2 [17,18]. This amounts to preventing
A from being shifted onto the stack if the “stackability”
condition does not hold between the symbol that was
uncovered in the stack and the left-hand side of the
production used in the reduction. Instead of requiring this

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

extra condition, we maintain the usual definition and
comment on this point as appropriate.

Definition 5 Let G = (V, T, P, S) be a grammar and let
Q= (L, ,, I,) be a parser associated with G. We say that Q
is deterministic if and only if - is a partial function. We say
that Q is valid for G if and only if (L, xL, N) H* (LS, L, p)
implies that the transpose of p is a right parse for x and vice
versa, for all x € T* and all p € P*.

It is clear that \—_ is always a partial function. In the light
of Definition 2 it is also clear that the domains of +_and I,
are disjoint when G is a precedence grammar. Thus, in order
for I to be a partial function, it remains to complete the
definition of +,, ensuring that it is also a partial function.
That is, we have to guarantee that there are no
reduce-reduce conflicts. This is accomplished by turning Part
2 of Definition 4 into an if-and-only-if condition. That is, we
have to adopt one of the parsing strategies used in
connection with precedence grammars. The last definition in
this section introduces the viable-prefix and correct-prefix
properties.

Definition6 Let G =(V, T, P, S) be a grammar and let
Qg=(Lt,,F,) beaparser for G. Let x, yE T* a € I'* and
p € P*. We say that Q has

1. The correct-prefix property if and only if (L, xyLl, \) —*
(La, yl, p) implies that there is some z € T* such that
xz is in the language generated by G.

2. The viable-prefix property if and only if (L, xyL, \) H*
(Le, y1, p) implies that « is a viable prefix of G.

2. Weak precedence

In this section we aim at establishing a negative result for the
class of weak precedence grammars. It is shown that very
early error detection cannot, in general, be attained by
precedence parsers that use the weak precedence technique
[4] to break reduce-reduce conflicts.

Definition 7 Let G=(V, T, P, S)be a grammar. G is a
weak precedence (WP, for short) grammar if and only if

1. G is a precedence grammar.

2. Forall 4 > x and B — xin P, we must have 4 = B.

3. Forall A - xXyand all B— yin P, X < B does not
hold.

4. G has no null rules.

Observe that Conditions 2 and 3 above are “static” in the
sense that they depend only on P and not on the dynamic
behavior of the stack. As will be seen later, this point seems
to be crucial in looking for parsers that preserve the viable-
prefix property. In some texts G is also called an uniquely
invertible precedence grammar.

A. V. MOURA

619

620

Definition8 Let G=(V, T, P, S) be a grammar and let
Q = (L, ,, I-,) be a parser associated with G. We can call Q@
a WP parser associated with G if and only if I satisfies

(zv, x, p) F, (zA, x, pp) if and only if

1. (zv):1 > l:xand
2. p=A-—vEPissuch that |v| =max {|u|[:B—-u€P
and u is a suffix of zv{.

Observe that we are simply completing Definition 4 for the
reduce relation . When G is a WP grammar, its WP parser
is valid.

Theorem 9 Let G be a WP grammar and let Q be a WP
parser associated with G. Then G is unambiguous and Q is
deterministic and valid for G.

Now we investigate the correct-prefix and viable-prefix
properties in conjunction with WP grammars and WP
parsers. It is easy to see that WP parsers do not, in general,
preserve these properties.

Example 10 Consider the grammar G = ({S, 4, a, b, ¢},
{a, b, ¢}, P, S), where P is given by the productions below:

S—a, S — bA,

A — aAc, A — ac.

Clearly, L(G) = {a} U {ba"c":n = 1}. It is easily seen that G
is a WP grammar and that L < g and 4 < c¢. Hence, the WP
parser for G would yield

(L, acl, M), (La, cL, N) = (Lac, L, N),

violating the correct-prefix property. (]

The fact that the WP parser for G in the previous example
does not have the correct-prefix property is not accidental:
Any WP parser that correctly analyzes L(G) will violate the
correct-prefix property.

Theorem 11 Let G =(V, T, P, S) be a WP grammar such
that L(G) = {a} U {ba"c":n = 1}. Let Q = (L,) be a
WP parser for G. Then Q violates the correct-prefix property.
The viable-prefix property, of course, is also violated by
any WP parser whose language includes {a} U
{ba"c":n = 1}. It is interesting to note that only Parts 2 and
4 of Definition 7, namely, the unique invertibility of G and
the absence of null rules, are important to prove Theorem
11. In fact, if we removed Part 3 from Definition 7 we would
still get valid parsers, although they might not be
deterministic. In this case, the result would still be valid in
the sense that some computation of the new (possibly
nondeterministic) parser would still violate the correct-prefix
property. From this discussion we may also conclude that
improving Part 2 in Definition 8 by requiring further that
z:1 < A would not help as far as the correct-prefix property
is concerned.

A. V. MOURA

Note also that the class of languages generated by WP
grammars is a proper subset of the family of all deterministic
context-free languages [15, 16]. In the next section we relax
the unique invertibility condition, thereby obtaining a class
of precedence grammars whose members are able to generate
any deterministic context-free language. As will be seen, the
situation changes abruptly: It will always be possible to
enforce the viable-prefix property within this class.

3. Simple mixed-strategy precedence

The simple mixed-strategy precedence grammars were
introduced in [2] as a restriction to the mixed-strategy class
considered in [19]. As can be seen in the definition below,
unique invertibility is relaxed. The reduce-reduce conflicts
caused by noninvertible productions are now broken by
imposing a “dynamic” restriction on the stack, as dictated by
Part 2 in that definition.

It is already known that grammatical transformations (to
generate equivalent grammars whose parsers obey the
correct-prefix property) do exist for this class of grammars
{20]. In this section we describe, and prove the correctness
of, a new transformation that has two added vatues: It is
much simpler and it permits a very simple cover morphism
to be defined from the new grammar into the original one.
This last property guarantees that the transformed grammar
can be used to replace the original one in the translation
process without having to modify any of its other existing
functions.

Definition 12 Let G=(V, T, P, S) be a grammar. G is a
simple mixed-strategy precedence (SMSP, for short)
grammar if and only if

1. G is a precedence grammar.

2. Forall 4 — x and B — x in P with 4 # B, we do not
simultaneously have Z< A and Z< B, forany Z € V.

3. Forall X€ Vandall 4 — xXy, B— yin P, X < B does
not hold.

4. G has no null rules.

The corresponding parsers are now defined.

Definition 13 Let G = (V, T, P, S) be a grammar and let
Q= (L, F,, I,) be a parser associated with G. We call Q a
SMSP parser for G if and only if F, satisfies

(zv, x, p) =, (24, x, pp) if and only if

1. (zv):1 > l:xand

2. p=A—v € Pissuch that
a. |v| =max {|u|:B— u € Pand uis a suffix of zv}.
b. z:1 < A.

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

Observe that the “stackability” condition alluded to earlier is
now present as item 2(b) of the definition above. As was the
case before, a SMSP parser is always valid.

Theorem 14 Let G be a SMSP grammar and let Q be a
SMSP parser associated with G. Then G is unambiguous and
Q is deterministic and valid for G.

We now turn to the correct-prefix and viable-prefix
properties in SMSP parsers. From Example 10 it is aiready
clear that not all SMSP parsers obey these properties. A
more interesting case is given by the next example.

Example 15 Consider the grammar G = ({S, 4, Z, a, b, ¢},
{a, b, ¢}, P, S), where P is given by the productions below:

S—>a, S — bA,
A — ZAc, A - Zc,
Z—a.

It is easily seen that G is a SMSP grammar. Moreover, it can
be checked that the SMSP parser associated with G does
have the viable-prefix property. Note that L(G) =

{a} U {ba"c":n = 1} and compare to Theorem 11. [

We now attack the problem of transforming any SMSP
grammar into an equivalent SMSP grammar whose SMSP
parser has the viable-prefix property. We want the stack
contents, at any moment, to represent a viable prefix of the
underlying grammar. The basic idea will be to introduce new
nonterminal symbols in the form of pairs (x, 4), where x
represents all the stack contents that lay before A on the
stack. Equivalently, we must have § =»* x4y in the
grammar for some y and so, clearly, x is a viable prefix of
the grammar. The problem with such an approach, of
course, is that there might be infinitely many such strings x,
which would render the idea useless. Therefore, instead of
using x as the first component in these pairs, we shall define
an equivalence relation on the set of all viable prefixes, and
use the equivalence classes as first components in the new
nonterminals to be created. Hence, the new nonterminals
will have the form (C, Z), where Z is a variable and C'is a
subset of ¥'*. The intuition here is that for any x in C there
is a parse where x is the string appearing before Z on the
stack; that is, for all x in C we have S =5, xZu, for some
u € T* Further, assumethat Z—» Z -.- Z isa
production. Then we get S =* xZ, --- Z u and so the
extended string xZ, --- Z,_, will appear before Z; in the
stack during some parse. Note that, if y is another string in
C, then the extension yZ, - .. Z,_, will also represent the
stack contents before Z; in some parse. We would like to say
that two arbitrary viable prefixes x and y are “equivalent”
exactly when they have the same such extensions. The class
C, in the nonterminal (C, Z), will be a group of such
“equivalent” prefixes.

IBM J. RES, DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

It turns out that having information about the class, C, of
elements that may precede Z in the stack, rather than
knowing precisely which element of C one has at any
moment before Z, is sufficient to guarantee the viable-prefix
property. Another observation is that the parser will never
stack more than m symbols in a row, where m is the
maximum length of the right-hand side of a production in
the grammar. Therefore, we need only consider extensions
up to m symbols when determining which prefixes are
“equivalent.” In fact, since a new nonterminal (C, Z) will
indicate that xZ is a viable prefix, x in C, we can restrict the
extensions to m — 1 symbols, for Z will always be part of the
extension. These are the ideas behind the sets R(x) and the
relation ¢(G) that we now make precise.

Notation Let M(G) = max {| x|:4 — x is in P} and for all
xEVPG), letR(x)={zeV*:xz€VP(G)and | < |z| =
M(G) — t}.

Definition 16 Let G = (V, T, P, S) be a grammar. Define
the relation ¢(G) C VP(G) X VP(G) such that x ¢(G) y if
and only if R(x) = R(y).

Assuming always that P is nonempty and G is reduced, it
follows that if M(G) = 0, then S — X is the only production
in P. Under the same circumstances, if M(G) = 1, then the
productions must be in the form A — Z, where Z € V, or
A — X In any case, it is immediate that the SMSP parser for
G has the viable-prefix property. Therefore, from now on we
assume M(G) = 2.

The next task is to verify that, indeed, ¢(G) is an
equivalence relation. Also, ¢(G) must have a finite index.
Otherwise, we would end up with an infinite number of
nonterminals in the “new grammar.” Moreover, we also
need a property of right invariance from ¢(G). To see this,
note that from a new nonterminal (C, Z) and a production
Z—Z, --- Z,we would like to derive a new production in
the form (C, Z) —= (C), Z,) - - - (C,, Z,) where each C; is an
equivalence class. More precisely, C, shouid be the class
which contains the extension xZ, --- Z,_, where x is in C.
Clearly, the definition of C, must not depend on any
particular choice for x. Therefore, we must ensure that
xZ, -+ Z,_and yZ, --- Z,_, are equivalent, for any x and
y in C. The next result guarantees that ¢(G) has the desired
properties.

Theorem 17 Let G =(V, T, P, S) be a reduced grammar.
Then ¢(G) is a right-invariant equivalence relation of finite
index.

Notation The equivalence class of x under ¢(G) is denoted
by [x].

We are now in a position to present the grammatical
transformation. Recall that X is always a viable prefix, for we
are assuming that P is not empty.

A. V. MOURA

621

622

Algorithm 18
INPUT: a grammar G = (V, T, P, S)
OUTPUT: a grammar G’ = (V', T, P', S’)

1. Let NEW := {([A], S)}; V' == NEW; P’ :=@.
2. While NEW # & do
a. Let (C, Z) € NEW,
b. Remove (C, Z) from NEW and add it to V",
c If ZeT,
Then add (C, Z) - Z to P’;
Elseforall Z—Z ... Z € P,r=0,do
1) Add(C, 2)—(C,Z) --- (C,, Z,) to P’
where C; = [xZ, --- Z_|],
forsome x€ Candallj, l =j<n.
2) Forallj, 1 sj=<n,
if (C;, Z;) is not in NEW U V7,
then add (C}, Z;) to NEW.
3. Define S’ = ([A), S).

A careful reading of Algorithm 18 shows that all it does is to
construct the new grammar according to the ideas presented
before. The following properties are important to note.

Fact19 LetG=(V, T, P, S)be areduced grammar. Then

1. Algorithm 18 stops.

2. Step 2.c.1 of Algorithm 18 is well defined.

3. For all new variables (C, Z) introduced by Algorithm 18
we must have xZ € VP(G), for all x € C.

Next we turn to an example.

Example 20 Consider the grammar G = ({S, 4, B, a, b, ¢},
{a, b, ¢}, P, S), where P is given by the productions below:

S—>ad4, S— aB,
A — aad, A — ac,
B -—>aaB, B—b.

Clearly, L(G) = {a"c:n =1 and neven} U {a"b:n = 1 and
n odd}. The SMSP parser for G does not obey the correct-
prefix property, as can be seen by its behavior on the input
string aab. Intuitively, the reason why the correct-prefix
property fails is that the parser must proceed by first stacking
all the &’s and then deciding whether to stack the incoming b
or ¢ on top of them. Clearly, we would like to stack a symbol
b if and only if the number of &’s on the stack is odd. But
this cannot be decided by looking at the topmost symbol on
the stack, which is just an 4. Similar reasoning applies for
the symbol c.

The viable prefixes of G are partitioned into the classes

Cl = {)],

C2 = {a":n =1 and n even},
C3={a":n=1and n odd},

C4 = 1{a"A4, a"B, a"b, a"ac, S:n = 1 and n odd}

A. V. MOURA

Algorithm 18 will produce the grammar G’ = (V’, T, P’, §')
with productions

(C1, 8) - (Cl, a{C3, 4),

(C1, 8§) - (Cl, a(C3, B),

(C3, 4) —> (C3, a)C2, a)XC3, A),
(C3, 4) > (C3, a)C2, ¢),

(C3, B) — (C3, a)(C2, a)(C3, B),
(C3, B) - (C3, b),

(Cl,a) > a,

(C3,a) > a,

(C2, ¢) = ¢,

(C3,b) - b,

(C2, a) - a.

It is easy to check that G’ is a SMSP grammar whose SMSP
parser has the viable-prefix property. The parser for G’
stacks a symbol c if and only if the topmost symbol on the
stack is (C3, a). In fact, C3 indicates that we have so far
stacked an even and nonzero number of &’s. Similarly, there
are two situations in which the parser stacks a symbol b:
First, when it sees (C2, a) on top of the stack, indicating that
the number of a’s the parser has already stacked is odd and
greater than one; second, when it sees (C1, @) on top of the
stack, in which case it has seen exactly one « so far. Note
that G’ is no longer uniquely invertible and, hence, is not a
WP grammar. O

It should be intuitively clear that the grammars produced
by Algorithm 18 resemble the original ones very closely.
This is made precise by the following definition [12].

Definition 21 LetG=(V,T,P,S)and G’ =

V', T, P’, §’) be grammars. We say that G’ right-covers G if
and only if there is a morphism 4 from V"’ into V such that,
forall x € T*,

1. If p is a right parse for x in G’, then /(p) is a right parse
for xin G.

2. If w is a right parse for x in G, then there is a right parse p
for x in G’ such that h(p) = w.

We also say that / is a right-cover morphism from G’ into G.
From the definition it is clear that i) L(G) = L(G’) and ii)
we can, using the cover morphism, replace G by G’ in any
translation mechanism that uses G as a basis for a syntax-
driven parse without having to change any of the semantic
functions already in operation. To see how this may be
accomplished, note that all we need to do is to search the
table that describes the cover morphism each time we
perform a reduction when parsing according to G’. This will

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

A}

give us a string p in P* and we just perform all the semantic
routines associated with the elements in p, taking one at a
time from left to right. -

Notation Let G =(V, T, P, S)be a reduced grammar and
let G' = (V’, T, P’, §’) be the grammar produced by
Algorithm 18 when G was taken as input. Then define the
morphism g from V’ into ¥ such that (C, Z) is mapped into
Z for all (C, Z) € V’. Define the morphism / from P’ into P
such that

1. Each production in the form (C, Z) — Z is mapped into
A.

2. Each production in the form (C, Z) — x, where x # Z, is
mapped into Z — g(x).

Theorem 22 Let G =(V, T, P, S) be a grammar and let
G =(V', T, P, S’) be the grammar produced by Algorithm
18 when G is taken as input. Then G’ right-covers G.
Having the structural equivalence between G and G', it
remains to be shown that G’ is a SMSP grammar whose
SMSP parser obeys the viable-prefix property. The first step
is to examine the relationship between the precedence
relations in G and G’.

Lemma 23 Let G = (V, T, P, S)be areduced grammar
with no null rules. Let G’ = (V’, T, P’, S’) be the grammar
produced by Algorithm 18 when G was taken as input. Then

1. G’ is reduced and has no null rules.
2. The precedence relation < in G’ satisfies the following:
a. (C,X)<(D,Y)in G’ implies X< Yin G and zX € D,
forallze C.
b. (C,X)<ain G’ implies X < ain G.
c. L<(C, X)in G’ implies L < Xin G and C = [A].
d. We cannot have ¢ < Zin G’, for any Z in V"’ and any
aeT.
3. The precedence relation > in G’ satisfies the following:
(C, X)>ain G’ implies X > a in G.

Theorem 24 Let G = (V, T, P, S) be a reduced grammar
with no null rules. Let G’ = (V’, T, P’, §’) be the grammar
produced by Algorithm 18 when G was taken as input. Then
G’ is a SMSP grammar.

To check the correctness of Algorithm 18 with respect to
the viable-prefix property of G’, we need the next crucial
lemma. It imposes a restriction on the right-sentential forms
of G’ as follows. Let x be a viable prefix of G, and assume
that x is in the class C [under ¢(G)]. Then, in any right-
sentential form in G’ variables in the form (C, Z) can only
be preceded by strings y in such a way that g(y) € C, where
g is the morphism defined above. That is, the equivalence
class C “remembers” all the viable prefixes of G that can
precede x. In order to decide whether or not to stack the

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

next incoming symbol, all the parser has to do is look at the
first component of the topmost symbol in the stack.

Lemma 25 LetG=(V, T, P, S)be areduced grammar
with no null rules. Let G’ = (V’, T, P’, S’) be the grammar
produced by Algorithm 18 when G was taken as input. Take
some (C,X)E V' andletx=X, --- X, € C, where n = 0
and X; € V, forall i, | =i =< n. Then there are equivalence
classes C;, 1 =i < n, such that

1. z= (Cl, Xl) Ce (Cn’ Xn)(Cn-H’ Xn+l) € VP(G’), where
(Cn+1’ Xn.H) = (C, X) and
2.X, - X_EC,forallj1=j=sn+1

We can now state the last result of this section.

Theorem 26 Let G = (V, T, P, S) be a reduced grammar
with no null rules. Let G’ = (V’, T, P’, S’) be the grammar
produced by Algorithm 18 when G was taken as input.
Assume that Q’ is a SMSP parser associated with G’. Then
Q’ has the viable-prefix property.

One interesting fact about the proof of the last theorem is
that it needs only the assumptions that G and G’ are
reduced and have no null rules. It does not require G or G’
to be a SMSP grammar. This indicates that Algorithm 18
might also work for other classes of grammars as well, where
null rules are avoided and unique invertibility is not a
problem.

4, The cost of the transformation

This section investigates the space efficiency of the
transformation presented in the last section. This is done by
comparing the sizes of the original and transformed
grammars. It turns out that there is an infinite family of
SMSP grammars, say G,, for which Algorithm 18 yields
another family, say H,, in such a way that the size of H, is
exponentially related to the size of G,. This shows that
grammars and parsers produced by Algorithm 18 can be
quite large. Interestingly enough, we also show that this is
the best that one can hope for. More precisely, let L, =
L(G,). We show an exponential lower bound on the size of
any family of SMSP grammars, F,, for which we must have
L(F,) = L, and whose corresponding SMSP parsers must
obey the correct-prefix property. In other words, the
(possible) exponential growth in the size of the transformed
grammars is due to the requirement imposed on the
corresponding SMSP parsers, namely that they must obey
the correct-prefix property, and is not a drawback inherent
in the transformation itself. Further, with respect to space
efficiency, the transformation is optimal. Note that the
presence of the family G, in itself, does not render the
transformation useless from a practical point of view. It does
say, however, that, in general, one cannot construct a better
one (that is, with respect to space efficiency).

A. V. MOURA

623

624

We use the following measure for the size of a grammar.

Definition 27 Let G = (V, T, P, S) be a grammar. Define
| G} as the sum of | Ax|, forall4 — x € P.

Before introducing our family of languages, we discuss
them informally. We need to construct a family of
languages, L, in such a way that any grammar for L, (and
whose corresponding SMSP parser has the correct-prefix
property) is very large: of the order of 2", This suggests that
we, somehow, encode into L, a description of all 2" subsets
of {1, ---, n}. In order to do that, we use the symbols @, and
b,, 1 = i< n, and force the sentences of L, to be of the form
xb, y where in x only the a;’s occur. The encoding is given by
reading the indices of the a/s. To make the language
nonregular and to avoid trivial cases, we require y to have
the same length as x; i.e., we let y = ¢’, where c is a new
terminal symbol and r = | x|. Finally, the idea behind the
central symbol, b,, is as follows: We require k to be an index
not occurring in x. Now, if the parser is to have the correct-
prefix property, it has to “remember,” up to the moment
when it encounters the b, symbol, which subset of indices it
has found so far among the g,’s. This will force the parser to
have a lot of “states” and, in consequence, will ensure that
the grammar from which it was built is also very large.
Observe that, in case the correct-prefix property is not
needed, the parser could proceed as follows: i) Stack all the
a’s; ii) read in b, and “remember” it; iii) reduce back all the
stack, one symbol at a time, making sure that each a;, taken
from the stack has an index different from k (of course, it is
also necessary to read all the ¢’s from the input and check
whether their number matches the number of a’s on the
stack).

The next step is to verify that these ideas do, indeed,
produce the necessary results. We define the following
infinite families of sets, indexed by n:

oA =|a,--
symbols.

o T,=1{d,c} U A, UT,. These are the set of terminal
symbols of our family of grammars, to be defined below.

e [, ={l, ---, n}, aset of indices.

,aandT,=1{b, ---, b,} are new terminal

Next, we need a function to form sets of indices. Let #, be a
function that maps A} into subsets of I, such that

#,(x) = {i:x = ya,z, for some y, z € A¥};

i.e., #,(x) collects all the indices of symbols in x. We can
now present the family of languages.

Definition 28 Letn=1.Forallk, | =k =<n,define L, =
{xb,c":x € A* r=|x| and k is not in #,(x)} U {da,}. Also
let L, be the unionof all L, forallk, l =k = n.

As defined, L, is exactly as we introduced before, except
for the components in the form da,, added for technical

A. V. MOURA

reasons. It is not hard to devise a family of grammars to
generate L.

Definition 29 Letn = 1 and define G, = (V,, T,, P,, S,),
where 7, is as defined above, V, =T, U (S} U

{A4,, ---, 4,}, and P, is given by the productions below, with
l=ij=<nm

1. §,—>da, S, — A,
2. 4,— b, A, > a,A,c, where i 5 j.

The family G, has some resemblance to another one used in

(7).

Theorem 30 Let n = 1 and let G, be the grammar of
Definition 29. Then, for all # = 3, G, is a SMSP grammar
such that L(G,)=L,and |G,| <k - nz, for some constant
k. Moreover, the SMSP parser for G, does not obey the
correct-prefix property.

The statements about G, follow easily from the
definitions. To verify that the SMSP parser for G, does not
have the correct-prefix property, it suffices to observe its
behavior on any string in the form da,a,, where i # j. In fact,
the reason to add the elements da, to the language was,
precisely, to force the SMSP parser for G, to violate the
correct-prefix property. Further, since the parser for G, does
not have the correct-prefix property, we can use Algorithm
18 and transform each G, into an equivalent SMSP
grammar, say H,, such that the SMSP parser associated with
the latter always obeys the viable-prefix property.

Theorem 31 For all n = 1, let H, be the grammar
produced by Algorithm 18 when G, is taken as input. Then
|H |=2"-(2n+ n, foralln= 1.

The result is obtained by analyzing the transformation
carried out by Algorithm 18 on G,. A careful counting
argument suffices. The grammars G,, therefore, exhibit the
property of being much more (exponentially) space-efficient
than the equivalent grammars H, obtained by Algorithm 18.
Our last task will be to show that this is true of any family of
equivalent grammars, say F,, whose parsers are required to
obey the correct-prefix property. This will be accomplished
by proving a lower bound of the form n2" on the size of F,.

Definition 32 Foralln=1,letF,=(V,, T, P,S,)bea
family of reduced SMSP grammars such that L, = I(F,).
Assume that Q,, the SMSP parser associated with F,, obeys
the correct-prefix property.

The lower bound on | F,| is obtained with the aid of the
following notion.

Definition 33 Let n = 1 and let F, and Q, be as specified
in Definition 32. Also, let x € V}and g, € A,, for some i,

1 < i < n. We say that x is invariant with respect to g, in F,
if and only if

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

1. (Ix):1<g;inF,.
2. Forallr =0, if
(Lx, (@)Ya, L, N H*(Lz, a.l, p),
then we must have z = xy, for some y € V*.

The important point in the previous definition is that the
string x is left untouched in the bottom of the stack when
the parser analyzes inputs in the form g, - - - g,. Now, in
order to prove the required properties of | F, |, we associate
with each pair (J, j), where JC I,and | = j<n,a
production P, ; of F,. Next we show that P, ; # Py,
whenever (K, k) # (J, j). This should be enough to guarantee
that | F,| = n2". The particular productions are chosen
based on two properties of F,:

1. For alt right-sentential forms x of F,, there is a
(sufficiently large) constant k such that, starting in the
configuration (Lx, (a,.)kJ., A), the SMSP parser for F, is
forced into a configuration (1L y, a, L, p), where y is
invariant with respect to a,. That is, invariants do exist.

2. If x and y are invariants with respect to some a; and
X =7 u, y=, v, where u, v € A¥, then we must have
#,(ua;) = #,(va;). In other words, sentential forms
invariant with respect to the same symbol g, can only
generate terminal strings with the same set of indices.
Invariance, thus, can be taken as a “memory” of the set
of indices we have already laid down.

In possession of these properties we can state the following
crucial lemma.

Lemma 34 Letn = 1 and let F, be as specified in
Definition 32. Fix some j, 1 < i < n. Then to each pair (J, j),
whereJCI,,1<j=n,JU(ij)# 1, andjis notinJ, we
can associate a production P, ; of P, in such a way that P, #
P, whenever (X, k) # (J, /) and {is not in K U J U {k, j}.

The lemma says that, with the exception of some
pathological situations, there are about as many productions
in H, as there are pairs in the form (J, j). Finally, our lower
bound is at hand: The number of such pathological cases can
be neglected when compared to # - 2", which is a lower
bound on the number of productions in H,,.

Theorem 35 Let n= | and let F, be as specified in
Definition 32. Then we must have | F,| = n . 2" and
|V1=2"

5. Conclusions

We have studied the correct-prefix and the viable-prefix
properties in connection with the weak and simple mixed-
strategy precedence classes of grammars. Grammars in these
classes usually do not give rise to parsers that have either of
these properties. We showed and proved correct a simple
transformation that takes any SMSP grammar G and

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

produces an equivalent SMSP grammar G’ in such a way
that the SMSP parser associated with G’ always obeys the
viable-prefix property. The transformation is of such a
nature that a very simple cover morphism can be defined
from the productions of G’ into the production of G. This
enables one to use G’ instead of G to parse L(G) while still
preserving the semantic routines designed for the original
grammar G. For the weak precedence class it was established
that no such transformation exists.

Using the sizes of G and G’ as a measure, the cost of the
transformation was also analyzed. In general, one must
contemplate an exponential growth in the size of the
transformed grammar if the correct-prefix property is to be
enforced. Hence, there can be an exponential economy in
describing SMSP languages when the correct-prefix property
is not crucial to the parsing mechanism. The necessity of the
exponential growth in the size of the transformed grammar
was established by exhibiting a particular family of SMSP
languages and proving a lower bound on the size of any
SMSP grammars for these languages whose associated SMSP
parsers are required to obey the correct-prefix property.

References

1. D. E. Knuth, “On the Translation of Languages from Left to
Right,” Info. & Control 8, No. 6, 607-639 (1965).

2. A. V. Aho, P. J. Denning, and J. D. Ullman, “Weak and Mixed
Strategy Precedence Parsing,” J. ACM 19, No. 2, 225-243
(1972).

3. R. W. Floyd, “Syntactic Analysis and Operator Precedence,”
J. ACM 10, No. 3, 316-333 (1963).

4. J. D. Ichbiah and S. P. Morse, “A Technique for Generating
Almost Optimal Floyd-Evans Productions for Precedence
Parsers,” Commun. ACM 13, No. 8, 501-508 (1970).

5. N. Wirth and H. Weber, “A Generalization of ALGOL and Its
Formal Definition: Part 1,” Commun. ACM 9, No. 1, 13-25
(1966).

6. M. M. Geller and M. A. Harrison, “Characteristic Parsing:

A Framework for Producing Compact Deterministic Parsers, I.,”
Comput. & Syst. Sci. 14, No. 3, 256-317 (1977).

7. M. M. Geller and M. A. Harrison, “Characteristic Parsing: A
Framework for Producing Compact Deterministic Parsers, II.,”
Comput. & Syst. Sci. 14, No. 3, 318-343 (1977).

8. F. L. DeRemer, “Simple LR(k) Grammars,” Commun. ACM
14, No. 7, 453-460 (1971).

9. F. L. DeRemer, “Practical Translators for LR(k) Languages,”
Ph.D. Dissertation, Massachusetts Institute of Technology,
Cambridge, MA, 1969.

10. K. R. Moll, “Left Context Precedence Grammars,” Acta
Informat. 14, No. 4, 317-335 (1980).

11. J. N. Gray and M. A. Harrison, “On the Covering and
Reduction Problem for Context-Free Grammars,” J. ACM 19,
No. 1, 675-698 (1972).

12. A. Nijholt, “On the Covering of Parsable Grammars,”

J. Comput. & Syst. Sci. 15, No. 4, 99-110 (1977).

13. M. A. Harrison, Introduction to Formal Language Theory,
Addison-Wesley Publishing Co., Reading, MA, 1978.

14. A. V. Moura, “On the Cost of the Viable-Prefix Property in
Precedence Parsers,” Technical Report CCB 029, IBM Scientific
Center, Brasilia, Brazil, 1985.

15. A. V. Aho and J. D. Ullman, The Theory of Parsing,
Translation and Compiling, Vol. 1, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1972.

16. A. V. Aho and J. D. Ullman, The Theory of Parsing,
Translation and Compiling, Vol. 2, Prentice-Hall, Inc.,

Englewood Cliffs, NJ, 1973. 625

A. V. MOURA

626

17. 8. L. Graham and S. P. Rhodes, “Practical Syntactic Error
Recovery,” Commun. ACM 18, No. 11, 639-650 (1975).

18. R. P. Leinius, “Error Detection and Recovery for Syntax-
Directed Compiler Systems,” Ph.D. Dissertation, University of
Wisconsin, Madison, W1, 1970.

19. W. M. McKeeman, J. J. Horning, and D. B. Wortman,

A Compiler Generator, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1970.

20. P. Wirostek, “On the ‘Correct Prefix Property” in Precedence

Parsers,” Info. Proc. Lett. 17, No. 10, 161-165 (1983).

Received July 15, 1985, accepted for publication May 28, 1986

A. V. MOURA

Arnaldo V. Moura IBM Sofiware Technology Center, Rua Tutoia
1157-8% Andar, 04007 Sao Paulo, Brazil. Dr. Moura is a member of
the Research staff at the Software Center in Sdao Paulo. He received a
B.S. degree in electrical engineering from the Aeronautics Institute of
Technology, Sdo Jose dos Campos, Brazil, an M.S. from the same
institution, and a Ph.D. in computer science from the University of
California, Berkeley. From 1980 to 1984 he was a Research staff
member at the IBM Scientific Center in Brasilia, where he conducted
research in formal languages and algorithms. Dr. Moura’s current
activities and interests include algorithms, formal languages, and
rigorous methods for software specification, design, and verification.

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

