An execution
architecture
for FP

by Tien Huynh
Brent Hailpern
Lee W. Hoevel

FP is a functional programming language
proposed by John Backus to liberate
programming from the “von Neumann style.” We
define here an architecture (FP machine model)
that is intended to allow easy and efficient
implementation of FP on a conventional von
Neumann machine. We present a new execution
architecture for FP based on Johnston’s contour
model and on Hoevel and Flynn’s notion of
DEL/DCA architectures. We call our architecture
DELfp, a Directly Executed Language for FP.

1. Introduction
FP, the functional programming language proposed by
John Backus, comprises a set of objects, a set of primitive
functions, a set of functional forms, and an “application”
operator. In FP, all programs are functions built from
existing functions using the functional forms. There are no
variables in an FP program. All functions map objects into
objects and always take a single argument. Details of the FP
syntax can be found in Backus’s Turing Award lecture [1].
Following Backus’s proposal, a number of architectures
have been designed to execute functional languages [2]. Our
goal was to define an architecture that would permit us to
implement FP easily and efficiently on a conventional
von Neumann machine. Our execution architecture is based
on Johnston’s contour model [3] and on Hoevel and Flynn’s
notion of DEL/DCA architectures [4,5].

©Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

Our architecture is called DELfp for Directly Executed
Language for FP. DELfp is both a language-sensitive and a
host-sensitive execution architecture. DELfp is language-
sensitive in that it embodies a// of the semantic content of
the source language. Indeed, the structure of DELfp parallels
the structure of FP. The operator codes (opcodes) in DELfp
instructions are functional forms' rather than functions. The
arguments are functions rather than data objects. FP
functions map sequences of objects (atoms and sequences)
into sequences of objects. FP has no variables or global data
storage. Similarly, there are no locations, data address offsets,
or variables mentioned explicitly in a DELfp program.

However, DELfD is also designed with the host machine in
mind. In our experiment the IBM PC AT is the host
machine. Information as to the intent, restrictions, and
structure of the original source program is encoded in a
manner that minimizes the data transfers needed to execute
a DELfp program. This objective follows from our
presumption of a memory-limited host with multiple levels
of storage hierarchy, each of which must be used in an
optimal manner.

We divide DELfp programs into two categories: external
and Jocal. User-defined functions are translated into external
programs. Local programs correspond to the predicate or
consequence parts of a conditional functional form, the
applied part of an apply-to-all functional form, or the
inserted part of an insert functional form in the FP source
program. The only difference between an external program
and a local program is that external programs have symbolic
names, and therefore can be referenced by other external
programs. Local programs can only be referenced within the
program in which they are defined.

! A functional form (or functional or combining form) takes functions or values as
arguments and produces a function as a result. For example, the composition f-g
takes fand g as arguments and results in a new function f{ g(x)).

TIEN HUYNH, BRENT HAILPERN, AND LEE W. HOEVEL

609

610

Table 1 Comparison of DELfp with conventional architecture.

Operator Operand Execution Control
Conv. ALU Storage Sequence of Explicit
ISA functions: cells states operators

ie.,

+, —, X, +

DELfp Functionals: Functions: Sequence of Implicit in

ie., primitive functional formats
if, apply, or user- computation
insert defined

DELfp is in close correspondence with the source high-
level language. Hence, DELfp programs can be converted
back to the FP source syntax simply by one pass of
translation. This is in contrast to the traditional /ack of
correspondence between von Neumann instruction set
architectures and conventional high-level languages. We find
untranslation to be an elegant technique and one that avoids
the fix-but-don’t-recompile syndrome. We have only one
version of a function at a time.

DELfp and a conventional architecture are similar in the
following ways:

¢ Both consist of a sequence of syllables (bytes or words).

e Both have formats binding operands to an operator.

e Both use the general sequencing rule of increasing the
instruction pointer.

DELfp differs from a conventional architecture in the
following ways:

e DELfp operators are functional forms rather than ALU
functions.

¢ DELfp operands are primitive or user-defined functions
rather than storage cells.

« DELfp execution computes the value of a functional
rather than changing a global state.

e DELfp control is encoded implicitly in the formats rather
than employing explicit operators. There are no explicit
jump operators in DELfp.

These comparisons are broadly summarized in Table 1.
DELfp is defined by

An instruction set,

A set of residual control variables, describing the
interpretive environment at any execution point (for
example, one residual control variable is the instruction
pointer),

¢ A contour model [3] for retention of activation records,
and

A set of format rules to determine the location of data
manipulation during each computation step.

TIEN HUYNH, BRENT HAILPERN, AND LEE W. HOEVEL

We now examine the details of this definition, as well as a
prototype DELfp implementation consisting of a compiler,
interpreter, and decompiler.

2. DELfp instructions
Each DELfp instruction corresponds to an FP functional.
DELfp instructions are encoded byte strings in the DELfp
program space. All instructions are partitioned into distinct
syllables [6], each of which is one byte long. The leading byte
is always the format syllable. Therefore, the length of each
instruction is at least one byte, but may vary up to four
bytes.

The remaining bytes, if any, are operand syllables, each of
which may be one of five different types:

& A pointer to a primitive function.

& An indirect pointer to the address of an external program.
e An integer in the range from 0 to 255.

& A pointer to the constant object table.

& An indirect pointer to the address of a local program.

The interpretive mechanism recognizes the type of the
operand syllable (if any) once the format syllable has been
decoded.

3. Residual control variables
DELfp semantics can be modeled using four residual control
variables to contain the current state of a computation.

The environment pointer (ep) identifies the active
contour; it points to the logical base of the architecture
contour, and all entities in the active contour are identified
as offsets from ep. In our implementation, contours are kept
in a LIFO stack; this is a direct result of the function
call/return semantics of FP. Data are not stored in the
contour, but rather in an object space to which the contour
can point.

The instruction pointer (ip) is used to locate an execution
point in the instruction stream. When a contour is entered,
the current value of ip is saved, and ip is set to point to the
first instruction of the program. On leaving a contour, ip is
set to the saved value of the instruction pointer.

The source pointer (sp) specifies the input location for the
next function evaluation. It may be a pointer to a parameter
passed from the calling function, or to the address within
this contour of a temporary variable pointing to an
intermediate result. The destination pointer (dp) specifies the
output location for the result of an evaluation. Together, sp
and dp are the residual control for identifying the DELfp
data stream.

Together, these four control variables identify a particular
point of execution and all the functions and objects
accessible at that point of execution.

2 We do not express numeric and character constants in line. That would result in large
instruction formats. Instead we place constants in a table. Instructions, then, index
into the table for constant operands. This generalizes easily to constant sequences and
trees, which would be impractical in the instruction stream.

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

4. DELfp contour

We use a contour model,’ similar to that developed by
Johnston [3], to describe the storage mapping transforms
required by the allocation, release, and retention rules of
DELfp. We chose this model because of its generality and
simplicity. DELfp passes parameters “by reference” simply
by copying the appropriate descriptors from the caller’s
argument slots into the callee’s argument slots. We differ
from Johnston in that we do not trace through layers of
contours to resolve a reference [7]. Each cell in our contour
points to the data or to the location for a return parameter.

The layout of an active contour is shown in Figure 1.

In DELfp, a skeleton contour is associated with each
program definition. The skeleton contour describes the
starting address of the program and the number of
temporary variables needed to execute the program. When a
program is called, a new contour is created. The first entity
of the contour indicates the minimum number of temporary
variables needed to execute the program. Hence, the value of
the first entity specifies the number of stack cells that are
reserved for the contour. The first six entities of the contour
are fixed for all programs, but the number of temporary
variables may vary. The final destination pointer holds the
address within the calling function where the result of the
program will be stored.

If the current program calls another program, the
interpretive mechanism creates a new contour. Therefore, it
is necessary to save the next instruction’s address and the
source and destination pointers (intermediate values) in the
continuation cells. Note that the cell that is used for storing
the saved value of the source pointer initially holds the
address of the input argument, so it is also an argument slot.
Also note that tail-recursive calls can be detected at compile
time, permitting us to chain together the returns from nested
user-defined functions.

Note that the value of ¢p from the calling function is not
saved in the contour. Our LIFO implementation permits us
to compute the value upon contour exit.

The residual control flag is used only when a conditional
functional form is encountered. It is used to determine
whether the predicate or consequence part should be
executed.

5. Formats

In DELfp, the format syllable specifies the meanings of the
subsequent syllables, determines the size of the instruction,
and indicates which operator is to be applied. It also
provides the context so that the interpreter can deduce the
appropriate temporary locations of the input and output
data streams. Since DEL({p is built on a von Neumann-style

3 A contour isan architectural abstraction that shares many of the aspects of an activation
record, frame, or stack window. We do not use the full power of contours in DELfp,
but this work is derived from other architectural work that does. Hence, we have made
a conscious decision to cite the historical roots of our memory model in [3].

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

number of
temporary variables

final destination pointer
(holds the address where the
final result will be stored)

saved value of ip
(holds intermediate value of ip
for continuation)

saved value of sp
(holds intermediate value of sp
for continuation)

saved value of dp
(holds intermediate value of dp
for continuation)

residual control flag
(used to determine whether the
predicate or consequence part

of a conditional functional

form should be executed)

temporary variables
(zero or more consecutive cells
reserved for temporary variables)

workstation (IBM PC AT), we cannot avoid allocating
temporary memory locations to store the intermediate
results of each computation. However, the allocation of
these temporary variables can be done by decoding the
instruction formats, hence freeing the DELfp instructions
from explicitly introducing variables.

The format syllable is divided into two half-byte fields.
The leading field is called the context mode, and it specifies
the context of an instruction. We use seven designations to
describe the context modes.

I: instruction is inside a construction unit,

B: instruction is at the beginning of a composition unit,

M: instruction is at the middle of a composition unit,

E: instruction is at the end of a composition unit,

R: instruction is at the end of the program,

L: instruction is at the end of the program and the end of a
composition unit,

N: instruction has no effect on the context,

where a construction unit is of the form [f, g, 4, ---]and a
composition unit is of the form [f-g-h- ---].

TIEN HUYNH, BRENT HAILPERN, AND LEE W. HOEVEL

611

612

Table 2 Rules for determining temporary locations for the
input and output data streams.

APF, AUF, ALS, ARS,
ACF, COND, ALPHA, INSERT ENDCONS
Before After Make sequence from
execution execution D..Dstk[10p]
1 |D=D+1 D = Dsik[top]
pop Dstk
push S on Sstk §S=D D = Dstk[top]
B |{D=D+1 pop Dsitk
push S on Sstk
S=D
M D = Dstk[10p] -1
pop Dstk
E S = Sstk[10p] D = Dstk[10p] —1
pop Sstk pop Dstk
R I|ID=0 D=0
pop Dstk
D=0 D=0
L | pop Sstk pop Dstk
pop Sstk

The second field of the format syllable is the operator. It
specifies the functional form and the meaning of the
subsequent syllables. There are ten such operators in DELfp.
Their mnemonic codes are described as follows:

APF Apply Primitive Function: This applies a
primitive function to the input data object.
Its operand is a pointer to the primitive
function being applied.

AUF Apply User-defined Function: This applies a
user-defined function to the input data
object. Its operand is a pointer to the user-
defined function symbol table, which in turn
points to the starting address of that function
in the program space.

ALS Apply Left Selection: This selects the nth
element from the left of the input data
object, where # i1s encoded in the subsequent
syllable as the operand.

ARS Apply Right Selection: This operator has the
same function as ALS except that the
selection is from the right.

ACF Apply Constant Function: This returns a

constant object. Its operand is a pointer to

the constant object table containing the value
to be returned.

Condition: COND takes three operands,

which point to the starting address of the

predicate (IF part), the positive consequence

(THEN part), and the negative consequence

(ELSE part). Each part is represented by a

local program.

COND

TIEN HUYNH, BRENT HAILPERN, AND LEE W. HOEVEL

ALPHA Apply to all: This applies the operand
function to each element of the input stream.
The operand function is a local program.
Insert: This inserts the operand function
between each element of the input stream.
The operand function is a local program.
Begin Construction: This indicates that a
construction is encountered. Its operand is an
integer indicating the depth of consecutive
nested “]” in the FP source text.

End Construction: This operator concludes a
construction. It links all the results produced
by each component inside that construction
into one sequence. This operator does not
have an operand.

INSERT

BEGCONS

ENDCONS

Note that the BEGCONS and ENDCONS operators are
not symmetric because the context mode of the BEGCONS
operator is irrelevant to the interpretive mechanism;
therefore, we can encode nested BEGCONS (“]”) into one
instruction. We treat ALS and ARS as functionals instead of
as primitive functions because they both need one more byte
than primitive functions to encode the position of the
desired element in the input sequence object.

As mentioned before, each DEL{p instruction has a
format syllable, and hence each instruction has a context
mode. The rules for assigning the context mode to an
instruction are

1. An instruction with the BEGCONS operator always has
an N context mode.

2. The last instruction of an external or a local program has
an R context mode if it is not bound to a composition
unit.

3. The last instruction of an external or a local program has
an L context mode if it is bound to a composition unit.

4. Any instruction that is bound to a composition unit has
one of the B, M, or E context modes, depending on
whether it is the beginning, middle, or ending component
of that composition unit.

5. Any instruction that is inside a construction but not
bound to any composition unit has an “I” context mode.

In Table 2 the rules are presented for deducing the
appropriate temporary locations for the input and output
data streams from the formats. S (source), D (destination),
and O (final destination) are all indexes of object storage
locations in the contour. The variables Sstk and Dstk
represent two global stacks used to save the S and D values
during intermediate computations.

The semantics of the ENDCONS instruction is to form a
sequence from the objects pointed to by stack locations
D,D -1, - .-, Dstkltop] (the value of D is obtained from the
prior instruction). The resulting sequence is then stored in

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

the location pointed to by the D derived from the table.
When we say “form a sequence,” we assume that the
architecture can create a new compound object (sequence)
out of a collection of objects (atoms or sequences).

The semantics of the BEGCONS instruction is to push
D + K on Dstk, where K is the argument to the instruction.
BEGCONS always takes context mode N,

6. An example

Having the context modes, operators, and rules for assigning
context modes, we can now show how DELfp instructions
are generated from FP programs. Suppose we are given user-
defined functions f|, f,, f;, f, and primitive functions

Dy» Py Py Let F1, F2, F3, F4 be pointers to the symbol table
for f,, £, f, 1, and P1, P2, P3 be pointers to primitive func-
tions p,, py, py. The FP program f, - [p, f,, p, - [f, L)1 - by
is compiled into sequences of DELfp instructions:

B APF PE
N BEGCONS 2

I AUF F4
I AUF F3
B ENDCONS

E APF P2
I AUF F2
I APF Pl

M ENDCONS

L AUF F1

To illustrate how storage cells can be deduced from the
formats, we use the same example. Let S =0 and O = 1;
that is, the input data object for the program is stored in
location L[0] and the output, when finished, should be
stored in L[1]. Our goal is to derive the proper indices for
the source and destination in each instruction to match the
following sequences of functional computation:

. Apply p, to object in L[0] and store the result in L[2].
. Apply £, to object in L[2] and store the result in L[3].
. Apply f; to object in L[2] and store the result in L[4].
Make a sequence from objects in L[4], L[3] and store it
in L[3].

. Apply p, to object in L[3] and store the result in L[3].
. Apply £, to object in L[2] and store the result in L[4].
. Apply p, to object in L{2] and store the result in L[5].
. Make a sequence from objects in L[5], L[4], L[3] and

store it in L[2].
9. Apply f, to object in L[2] and store the result in L[1].

WD -

o0 -1 O\ L

We now go through each instruction of the program and
record the changes to S and D. Initially, D is set equal to O,
and both Sstk and Dstk are empty.

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

Instruction:

Actions:

Instruction:

Actions:

Instruction:

Actions:

Instruction:

Actions:

Instruction:

Actions:

Instruction:

Actions:

Instruction:

Actions:

Instruction:

Actions:

Instruction:

Actions:

B APF P3
push S on Sstk — Sstk[top] = 0
D=D+1 —-D=2
apply p, to object in L[S] = L[0]

and store result into L[D] = L[2]
S=D - 85=2

N BEGCONS 2
push D + 1 on Dstk twice — Dstk[top] = 3

1 AUF F4

D=D+1 —-D=3

apply f, to object in L[S] = L[2]
and store result into L[D] = L[3]

1 AUF F3

D=D+1 —- D=4

apply f, to object in L[S] = L[2]
and store result into L[D] = L[4]

B ENDCONS
form a sequence from objects
in L[D..Dstk{top]] = L4..3]
D = Dstk{top] —-D=3
pop Dstk — Dstk{top] = 3
store the resulting sequence into L[D] = L[3]

push S on Sstk — Sstkltop] = 2
S=D —-85=3
E APF P2

apply p, to object in L[S] = L[3]
and store result into L[D] = L[3]
S = Sstk{top] —S5=2

pop Sstk — Sstk{top] = 0
I AUF F2
D=D+1 —D=4

apply £, to object in L[S] = L[2]
and store result into L[D] = L[4]

I APF Pl

D=D+1 —D=5

apply p, to object in L[S] = L[2]
and store result into L[D] = L[5]

M ENDCONS
from a sequence from objects
in L[D..Dstk[top]] = L[5..3]
D = Dstk{top] — 1 —-D=2
pop Dstk — Dstk is empty

store the resulting sequence into L[D] = L[2] 613

TIEN HUYNH, BRENT HAILPERN, AND LEE W. HOEVEL

614

Abstract syntax tree.

Instruction. L AUF Fi

D=0 —-D=1
apply f, to object in L{S] = L[2]
and store result into L[D] = L[1]
pop Sstk — Sstk is empty

Actions:

7. Compilation

Our compiler translates the FP source text into DELfp
programs using a two-phase process. In the first phase, we
employ an LR parser to parse the FP source text and
generate its abstract syntax tree. For instance, the last
example compiles into the abstract syntax tree shown in
Figure 2.

Here “-” and “[]” are canonical forms of a composition
unit and a construction unit, respectively. Both composition
and construction are n-ary operators in the parse tree. We
implement this by conventional parent/first-sibling and
sibling/next-sibling links.

In the second phase, the abstract syntax tree is traversed to
generate the DELfp instructions using the following
algorithm:

Generator:
begin
GenDEIL(abstract_syntax__tree)/* generate main body
of external
program*/

While queue is not empty do
GenDEL(tree__on_top_of_queue)/* generate local
program*/
end
end

where GenDEL is defined as

TIEN HUYNH, BRENT HAILPERN, AND LEE W. HOEVEL

GenDEL(root):

begin
If root < > nil then
begin
If root is a CONDITION, ALPHA, or INSERT
Then put root’s subtree(s) on queue to be a local
program
Else GenDEL(root’s_leftmost__subtree)
Convert root to corresponding DELfp instruction
GenDEL(root’s._right__subtree(s))
end
end

8. Interpreter

Our interpreter is implemented on a partially mapped host
(universal host). During interpretation, each syllable of the
execution instruction stream is first decoded and then
executed sequentially. The interpretive mechanism can be
viewed as cycles of the following operations:

1. Decode Format—extract the leading syllable, and deduce
the source and destination addresses.

2. Decode Operands—extract the operand syllable(s), if any.
Bind operand(s) with the operator and transfer control to
the appropriate semantic routine.

3. Execute—perform the designated semantic action, and
store the result.

4. Housekeep—rearrange source or destination address if
needed, and begin another cycle of interpretation.

In DELfp, the instructions can be easily fetched and
decoded. There are no complicated residual controls during
execution time, and there are no branch instructions. As a
result, the interpretive mechanism is simple and suitable for
implementation in software, microcode, or hardware,

9. Decompilation

As we mentioned earlier, because of the close corre-
spondence between DELfp and FP, DELfp codes can be
converted back to FP codes without much extra effort. The
following recursive algorithm accepts the starting address of
a DELfp program and converts it back to an FP program:

GenFP(starting__address):
begin
Let ip = address of first instruction withan Ror L
context mode
Repeat
Convert instruction pointed to by ip to corresponding
FP notation
If instruction calls other local program(s)
Then GenFP(starting_address__of_local_program)
Reduce ip to point to address of instruction prior to
current one
Until ip < starting_address
end.

IBM J. RES. DEVELOF. VOL. 30 NO. 6 NOVEMBER 1986

Using this algorithm, the source text that the user types
need not be retained after parsing. In order to retrieve the
exact image of the source codes, however, the interpreter
must keep an “alter table” specifying details of indentation,
spacing, and capitalization.

10. Comparison

A worthwhile comparison to other implementation strategies
[2] is beyond the scope of this paper. We plan to make such
a comparison in the future. We also believe it is premature
to make execution comparisons with other systems, because
of the lack of large FP benchmarks and the different
implementation vehicles (for examples, PCs, VAXs, and
meta-interpreters in LISP on various workstations).

We can, however, describe our implementation as a first
step towards such a comparison. Qur prototype
editor/interpreter source consists of 4000 lines of Turbo
Pascal code. This translates to a “.com” file of 43K bytes.
We give two examples from [1], factorial and matrix
multiply, which have the following FP syntax:

Def!=eq - [id, 0] - T, x - [id,! - — - [id, T]]
Def MM = (a « IP) - (« distl) - distr - [1, trans - 2]
where

Def IP = (/+) - (a X) - trans

The size of the corresponding DELfp programs in bytes
and the running speed (Given in clock-on-the-wall seconds)
on a PC AT (6 MHz) are shown in Table 3.

11. Summary

We have presented a new execution architecture for FP. In
our model, we emphasize the one-to-one correspondence
between source- and execution-level entities. Keeping the
execution architecture as close to the source as possible
makes the translation and untranslation simple and natural.
But even though translation is simple, the intermediate
architecture is designed so that interpretation is still efficient.
Furthermore, an execution architecture with high
transparency ensures that program portability and
compatibility need be assumed only at the source level. In
our future work, we will investigate other options in format
or opcode encoding and extend the DELfp to FFP [1] or
FP84 [8].

Acknowledgment
We would like to thank the three anonymous referees for
their help in revising an earlier draft of this paper.

References
1. John Backus, “Can Programming Be Liberated from the von

Neumann Style? A Functional Style and Its Algebra of
Programs,” Commun. ACM 21, No. 8, 613-641 (August 1978).

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

Table 3 Size versus running time on a PC-AT (8 MHz).

Example Size Speed
(bytes) (s)
Factorial of 10 30 0.05
Matrix multiply (MM + IP) 50 33

(10 by 10) (10 by 10)

2. Steven R. Vegdahl, “A Survey of Proposed Architectures for the
Execution of Functional Languages,” IEEE Trans. Computers
C-33, No. 12, 1050-1071 (December 1984).

3. J. B. Johnston, “The Contour Model of Block Structured
Processes,” SIGPLAN Notices 6, 55-82 (February 1971).

4. Michael J. Flynn and Lee W. Hoevel, “Measures of Ideal
Execution Architectures,” IBM J. Res. Develop. 28, No. 4, 356-
369 (July 1984).

5. Michael J. Flynn and Lee W. Hoevel, “Execution Architecture:
The DELtran Experiment,” IEEFE Trans. Computers C-32, No. 2,
156-175 (February 1983).

6. Michael J. Flynn, John D. Johnson, and Scott P. Wakefield, “On
Instruction Sets and Their Formats,” IEEE Trans. Computers
C-34, No. 3, 242-254 (March 1985).

7. Lee W. Hoevel, “Directly Executed Language,” Ph.D. Thesis, The
Johns Hopkins University, Baltimore, MD, 1978.

8. Joseph Y. Halpern, John H. Williams, Edward L. Wimmers, and
Timothy C. Winkler, “Denotational Semantics and Rewrite Rules
for FP: Preliminary Version,” Research Report RJ-4245, IBM San
Jose Research Laboratory, San Jose, CA, December 1984.

Received June 27, 1985, accepted for publication June 5,
1986

Tien Huynh /BM Thomas J. Watson Research Center, P.O. Box
218, Yorktown Heights, New York 10598. Mr. Huynh received his
B.S. and M.S. in computer science from Kent State University,
Ohio, in 1983 and 1985. He is a senior associate programmer in the
experimental languages project at the IBM Thomas J. Watson
Research Center, where he has worked since 1984. His interests
include functional languages and computer architecture.

Brent Hailpern IBM Thomas J. Watson Research Center, P.O.
Box 218, Yorktown Heights, New York 10598. Dr. Hailpern received
his B.S. in mathematics from the University of Denver, Colorado, in
1976, and his M.S. and Ph.D. in computer science from Stanford
University, California, in 1978 and 1980. Dr. Hailpern is the senior
manager of the experimental languages and concurrent systems
projects at the IBM Thomas J. Watson Research Center, where he
has worked since 1980. His research interests include concurrent
programming, programming languages, and program verification.
Dr. Hailpern is a member of the Association for Computing
Machinery and a senior member of the Institute of Electrical and
Electronics Engineers.

Lee W. Hoevel National Cash Register, Dayton, Ohio.
Dr. Hoevel received his B.A. in mathematics and economics from
Rice University, Houston, Texas, in 1968 and his Ph.D. in electrical

engineering from The Johns Hopkins University, Baltimore, 615

TIEN HUYNH, BRENT HAILPERN, AND LEE W. HOEVEL

616

Maryland, in 1979. In 1968, he joined the staff of The Johns
Hopkins Applied Physics Laboratory, Silver Spring, Maryland. He
took a leave of absence in the fall of 1972 to become a full-time
graduate student of The Johns Hopkins University. He was a
Research Assistant with the Department of Electrical Engineering,
Stanford University, Stanford, California, from 1975-1979.

Dr. Hoevel was a member of the technical staff at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, from
1978-1985. He is currently Director of the Advanced System
Architecture Program at NCR World Headquarters, Dayton, Ohio.
His current research interests include distributed programming, user
interfaces, and system architecture.

TIEN HUYNH, BRENT HAILPERN, AND LEE W. HOEVEL

iBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

