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FP is  a functional  programming  language 
proposed  by  John  Backus  to liberate 
programming  from  the  “von  Neumann  style.’’  We 
define  here  an  architecture (FP machine  model) 
that is intended  to  allow  easy  and  efficient 
implementation of  FP  on a conventional  von 
Neumann  machine.  We  present  a  new  execution 
architecture  for  FP  based  on  Johnston’s  contour 
model  and  on  Hoevel and Flynn’s  notion  of 
DEL/DCA  architectures.  We  call  our  architecture 
DELfp,  a  Directly  Executed  Language for  FP. 

1. Introduction 
FP,  the  functional  programming language  proposed by 
John Backus, comprises a set of objects, a set of  primitive 
functions, a set of functional forms, and  an “application” 
operator. In FP, all programs are  functions built from 
existing functions using the  functional forms. There  are  no 
variables  in an  FP program. All functions  map objects into 
objects and always take a single argument. Details of the  FP 
syntax can be found  in Backus’s Turing Award lecture [I] .  

Following Backus’s proposal, a number of architectures 
have  been  designed to execute functional languages [2]. Our 
goal was to define an  architecture  that would permit us to 
implement  FP easily and efficiently on a conventional 
von Neumann  machine. Our execution architecture is based 
on  Johnston’s  contour model [3] and  on Hoevel and Flynn’s 
notion of DEL/DCA architectures [4,5]. 
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Our architecture is called DELfp for Directly Executed 
Language for  FP. DELfp is both a language-sensitive and a 
host-sensitive execution  architecture.  DELfp is language- 
sensitive in  that it  embodies all of the  semantic  content of 
the source language. Indeed, the  structure of  DELfp parallels 
the  structure  of FP. The  operator codes  (opcodes) in  DELfp 
instructions  are functional  forms’ rather  than functions. The 
arguments  are  functions  rather  than  data objects. FP 
functions  map sequences of objects (atoms  and sequences) 
into sequences  of objects. FP has no variables or global data 
storage. Similarly, there  are  no locations, data address offsets, 
or variables mentioned explicitly in a DELfp  program. 

However, DELfp  is also designed with the host machine  in 
mind.  In our experiment  the IBM PC  AT is the host 
machine. Information  as  to  the  intent, restrictions, and 
structure of the original  source  program  is  encoded in a 
manner  that minimizes the  data transfers  needed to execute 
a DELfp  program. This objective follows from our 
presumption of a memory-limited host with multiple levels 
of storage hierarchy,  each  of which must be used in  an 
optimal  manner. 

We divide  DELfp  programs into two categories: external 
and local. User-defined functions  are translated into external 
programs. Local programs  correspond to  the predicate or 
consequence parts of a conditional functional form,  the 
applied part of an apply-to-all functional form, or the 
inserted part of an insert functional  form  in  the FP source 
program. The  only difference between an external  program 
and a local program is that external  programs  have  symbolic 
names, and therefore can be referenced by other external 
programs. Local programs can only be referenced within the 
program in which  they are defined. 

’ A functional form (or functional or combining form) takes functions or values as 

takesfand g a s  arguments and results  in  a new function/(g(x)). 
arguments and produces a function as a result. For example, the composition fig 
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Table 1 Comparison of DELfp with conventional architecture. 

Operator Operand  Execution  Control 

Conv. ALU 
ISA 

Storage Sequence of Explicit 
functions: cells states  operators 
1.e., 
+, -, x, i 

DELfp Functionals: Functions: Sequence of Implicit in 
I.e., primitive functional formats 
if, apply, or user- computation 
insert defined 

DELfp is in close correspondence with the source high- 
level language. Hence, DELfp programs can be converted 
back to the FP source syntax simply by one pass  of 
translation. This is in contrast to the traditional luck of 
correspondence between von Neumann instruction set 
architectures and conventional high-level  languages.  We  find 
untranslation to be an elegant technique and one that avoids 
the fix-but-don't-recompile syndrome. We have only one 
version  of a function at a time. 

DELfp and a conventional architecture are similar in the 
following ways: 

0 Both consist of a sequence of  syllables (bytes or words). 
0 Both  have formats binding operands to  an operator. 
0 Both  use the general sequencing rule of increasing the 

instruction pointer. 

DELfp  differs from a conventional architecture in the 
following ways: 

DELfp operators are functional forms rather than ALU 
functions. 
DELfp operands are primitive or user-defined functions 
rather than storage cells. 
DELfp execution computes the value of a functional 
rather than changing a global state. 
DELfp control is encoded implicitly in the formats rather 
than employing explicit operators. There are no explicit 
jump operators in DELfp. 

These comparisons are  broadly summarized in Table 1. 
DELfp is defined by 

An instruction set, 
A set  of residual control variables, describing the 
interpretive environment at any execution point (for 
example, one residual control variable is the instruction 
pointer), 
A  contour model [3] for retention of activation records, 
and 
A set  of format rules to determine the location of data 
manipulation during each computation step. 

We  now examine the details of this definition, as well as a 
prototype DELfp implementation consisting of a compiler, 
interpreter, and decompiler. 

2. DELfp instructions 
Each DELfp instruction corresponds to  an FP functional. 
DELfp instructions are encoded byte strings in the DELfp 
program space. All instructions are partitioned into distinct 
syllables [6],  each  of  which  is one byte long. The leading byte 
is  always the format syllable. Therefore, the length  of each 
instruction is at least one byte, but may  vary up to four 
bytes. 

which may be one of five different types: 

A pointer to a primitive function. 
An indirect pointer to  the address of an external program. 

0 An integer in the range from 0 to 255. 
A pointer to  the constant object table.2 
An indirect pointer to the address of a local program. 

The interpretive mechanism recognizes the type of the 
operand syllable  (if any) once the format syllable  has  been 
decoded. 

3. Residual control  variables 
DELfp semantics can be modeled using four residual control 
variables to contain the  current state of a  computation. 

The environment pointer (ep) identifies the active 
contour; it points to  the logical  base  of the architecture 
contour, and all entities in the active contour are identified 
as  offsets from ep. In our implementation, contours are kept 
in a LIFO stack; this is a direct result  of the function 
call/return semantics of FP. Data are not stored in the 
contour, but rather in an object space to which the  contour 
can point. 

The instruction pointer (ip) is used to locate an execution 
point in the instruction stream. When a  contour is entered, 
the current value  of ip is saved, and ip is set to point to  the 
first instruction of the program. On leaving a contour, ip is 
set to  the saved  value  of the instruction pointer. 

The source pointer (sp) specifies the  input location for the 
next function evaluation. It may be a pointer to a parameter 
passed from the calling function, or to  the address within 
this contour of a temporary variable pointing to  an 
intermediate result. The destination pointer (dp)  specifies the 
output location for the result  of an evaluation. Together, sp 
and dp are the residual control for identifying the DELfp 
data stream. 

The remaining bytes, if any, are operand syllables,  each  of 

Together, these four control variables  identify a particular 
point of execution and all the functions and objects 
accessible at that point of execution. 

We do not express numeric and character constants in line. That would result in large 
instruction formats. Instead we place constants in a table. Instructions, then, index 
into the table for constant operands. This generalizes easily to constant sequences and 
trees, which would he impractical in the instruction stream. 
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4. DELfp contour 
We  use a  contour model,3 similar to that developed by 
Johnston [3], to describe the storage mapping transforms 
required by the allocation, release, and retention rules of 
DELfp. We chose this model  because  of its generality and 
simplicity. DELfp passes parameters “by reference” simply 
by copying the appropriate descriptors from the caller’s 
argument slots into the callee’s argument slots. We differ 
from Johnston in that we do not trace through layers  of 
contours to resolve a reference [7]. Each  cell in our contour 
points to the data or to the location for a  return parameter. 

The layout of an active contour is  shown in Figure 1. 
In DELfp, a skeleton contour is associated  with  each 

program definition. The skeleton contour describes the 
starting address of the program and  the  number of 
temporary variables needed to execute the program. When a 
program is called, a new contour is created. The first entity 
of the  contour indicates the minimum number of temporary 
variables needed to execute the program. Hence, the value  of 
the first entity specifies the  number of stack cells that are 
reserved  for the  contour.  The first  six entities of the contour 
are fixed  for all programs, but  the number of temporary 
variables may  vary. The final destination pointer holds the 
address within the calling function where the result of the 
program will be stored. 

interpretive mechanism creates a new contour. Therefore, it 
is  necessary to save the next instruction’s address and the 
source and destination pointers (intermediate values)  in the 
continuation cells. Note that the cell that is  used  for storing 
the saved  value of the source pointer initially holds the 
address of the input argument, so it is also an argument slot. 
Also note  that tail-recursive calls can be detected at compile 
time, permitting us to chain together the  returns from nested 
user-defined functions. 

Note that  the value of ep from the calling function is not 
saved in the contour.  Our LIFO implementation permits us 
to compute  the value upon contour exit. 

The residual control flag  is  used only when a conditional 
functional form is encountered. It is  used to determine 
whether the predicate or consequence part should be 
executed. 

5. Formats 

If the current program calls another program, the 

In DELfp, the format syllable  specifies the meanings of the 
subsequent syllables, determines the size  of the instruction, 
and indicates which operator is to be applied. It also 
provides the context so that the interpreter can deduce the 
appropriate temporary locations of the  input and output 
data streams. Since DELfp is built on  a von Neumann-style 

A contour is an architectural abstraction that shares many of the aspectsofan activation 
record, kame, or stack window. We do not use the full  power  of contours in DELfp, 
hut this work  is  derived from other architectural work that does.  Hence, we have made 
a conscious decision to cite the historical roots of our memory model  in [3]. 
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number of 
temporary  variables 

fiial destination  pointer 
(holds the address where  the 
final result will be stored) 

saved value of ip 
(holds intermediate value of ip 

for continuation) 

saved  value of sp 
(holds intermediate value of  sp 

for continuation) 

saved value  of dp 
(holds intermediate value of  dp 

for continuation) 

residual control flag 
(used  to determine whether  the 
predicate or  consequence part 

of a conditional functional 
form should be executed) 

temporary  variables 
(zero or  more  consecutive cells 

reserved for temporary variables) 

workstation (IBM PC AT), we cannot avoid allocating 
temporary memory locations to store the intermediate 
results of each computation. However, the allocation of 
these temporary variables can be done by decoding the 
instruction formats, hence  freeing the DELfp instructions 
from explicitly introducing variables. 

The format syllable  is divided into two half-byte  fields. 
The leading field is called the context mode, and it  specifies 
the context of an instruction. We  use seven designations to 
describe the context modes. 

I: instruction is inside a construction unit, 
B: instruction is at the beginning of a composition unit, 
M: instruction is at the middle of a composition unit, 
E: instruction is at the end of a composition unit, 
R: instruction is at the end of the program, 
I,: instruction is at the  end of the program and  the  end of a 

N: instruction has no effect on  the context, 
composition unit, 

where a construction unit is of the form [ X  g, h, . . ‘1 and a 
composition unit is  of the form [ fg. h . . . . 1. 
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Table 2 Rules for determining temporary locations for the 
input and output data  streams. 

APF, AUF, U S ,  ARS. 
ACF,  COND, ALPHA, INSERT 

Before After 
execution execution 

1 D = D + l  

push S on Ssrk S = D 
B D = D + l  

M 

E S = SsrkCtop] 
pop Ssrk 

ENDCONS 

Make sequence from 
D..Dsik[top] 

D = DsikCtop] 
pop Dsrk 

D = DsrkCtop] 
pop  Dsik 
push S on Sstk 
S = D  

D = Dsrkctop] -1  
pop  Dsik 

D = DstkCtop] - 1 
pop Dsrk 

D = O  
pop Dstk 

D = O  
pop  Dstk 
pop  Sstk 

The second field  of the format syllable is the operator. It 
specifies the functional form and the meaning of the 
subsequent syllables. There are ten such operators in DELfp. 
Their mnemonic codes are described as follows: 

ALS 

APF Apply Primitive Function: This applies a 
primitive function to the input  data object. 
Its operand is a pointer to the primitive 
function being applied. 

user-defined function to the  input  data 
object. Its operand is a pointer to the user- 
defined function symbol table, which  in turn 
points to  the starting address of that function 
in the program space. 
Apply  Left Selection: This selects the nth 
element from the left  of the  input  data 
object, where n is encoded in the subsequent 
syllable  as the operand. 

ARS Apply  Right  Selection: This operator has the 
same function as ALS except that  the 
selection  is from the right. 

ACF Apply Constant Function: This returns a 
constant object. Its operand is a pointer to 
the constant object table containing the value 
to be returned. 

AUF Apply  User-defined Function: This applies a 

COND Condition: COND takes three operands, 
which point to the starting address of the 
predicate (IF part), the positive consequence 
(THEN part), and the negative consequence 
(ELSE part). Each part is represented by a 
local program. 612 
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ALPHA 

INSERT 

BEGCONS 

ENDCONS 

Apply to all: This applies the operand 
function to each element of the input stream. 
The operand function is a local program. 
Insert: This inserts the operand function 
between  each element of the  input stream. 
The operand function is a local program. 
Begin Construction: This indicates that  a 
construction is encountered. Its operand is an 
integer indicating the depth of consecutive 
nested ‘‘I” in the  FP source text. 
End Construction: This operator concludes a 
construction. It links all the results produced 
by each component inside that construction 
into  one sequence. This operator does not 
have an operand. 

Note that the BEGCONS and ENDCONS operators are 
not symmetric because the context mode of the BEGCONS 
operator is irrelevant to the interpretive mechanism; 
therefore, we can encode nested  BEGCONS (“I”) into  one 
instruction. We treat ALS and ARS as functionals instead of 
as primitive functions because they both need one more byte 
than primitive functions to encode the position of the 
desired element in the input sequence object. 

As mentioned before,  each DELfp instruction has a 
format syllable, and hence each instruction has a context 
mode. The rules  for  assigning the context mode to an 
instruction are 

1. An instruction with the BEGCONS operator always  has 

2. The last instruction of an external or a local program has 
an R context mode if it is not bound to a composition 
unit. 

3. The last instruction of an external or  a local program has 
an L context mode if it is bound to a composition unit. 

4. Any instruction that is bound to a composition unit has 
one of the B, M, or  E context modes, depending on 
whether it is the beginning, middle, or ending component 
of that composition unit. 

bound to any composition unit has an “I” context mode. 

an  N context mode. 

5 .  Any instruction that is inside a construction but not 

In Table 2 the rules are presented for deducing the 
appropriate temporary locations for the  input  and  output 
data streams from the formats. S (source), D (destination), 
and 0 (final destination) are all  indexes  of object storage 
locations in the contour. The variables Sstk and Dstk 
represent two  global stacks used to save the S and D values 
during intermediate computations. 

The semantics of the ENDCONS instruction is to form a 
sequence from the objects pointed to by stack locations 
D, D - 1, . . . , Dstk[top] (the value  of D is obtained from the 
prior instruction). The resulting sequence is then stored in 
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r 
the location pointed to by the D derived from the table. 
When we say “form a sequence,” we assume that  the 
architecture can create a new compound object (sequence) 
out of a collection of objects (atoms  or sequences). 

The semantics of the BEGCONS instruction is to push 
D + K on Dstk, where K is the argument to the instruction. 
BEGCONS  always takes context mode N. 

6. An example 
Having the context modes, operators, and rules for  assigning 
context modes, we can now  show  how DELfp instructions 
are generated from FP programs. Suppose we are given  user- 
defined functionsf,, &, f,, f ,  and primitive functions 
p,,  p2,  p3. Let FI, F2, F3, F4 be pointers to the symbol table 
forf,,&,&,f,  and P1, P2, P3 be pointers to primitive func- 

is compiled into sequences of DELfp instructions: 
tions P, ,  p2,  p3. The FP programf, . [P,,&, p2 . I&, All . p3 

B  APF PE 
N BEGCONS 2 
I AUF F4 
I AUF F3 
B ENDCONS 
E APF P2 
I AUF F2 
I APF PI 
M ENDCONS 
L AUF F1 

To illustrate how  storage  cells can be deduced from the 
formats, we use the same example. Let S = 0 and 0 = 1; 
that is, the input  data object  for the program is stored in 
location L[O] and the  output, when  finished, should be 
stored in L[ I ] .  Our goal  is to derive the proper indices for 
the source and destination in each instruction to match the 
following sequences of functional computation: 

1. Apply p3 to object in L[O] and store the result in L[2].  
2.  Apply& to object in L[2] and store the result in L[3].  
3. Applyf, to object in L[2] and store the result in L[4].  
4. Make a sequence from objects in L[4],  L[3] and store it 

5. Applyp, to object in L[3] and store the result in L[3]. 
6. Apply& to object in L[2] and store the result in L[4].  
7. Apply p ,  to object in L[2] and store the result in L[5].  
8. Make a sequence from objects in L[5],   L[4],  L[3] and 

9. Apply4  to object in 4 2 1  and store the result in L[ 11. 

in L[3].  

store it in L[2].  

We  now  go through each instruction of the program and 
record the changes to S and D. Initially, D is set equal to 0, 
and both Sstk and Dstk are empty. 
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Instruction: B APF P3 
Actions: push S on Sstk + Sstk[top] = 0 

D =   D +  1 + D = 2  
apply p3 to object in L[SI = L[O] 

S =  D +5=2 
and store result into L[D] = L[2] 

Instruction: N BEGCONS 2 
Actions: push D + I on Dstk twice + Dstk[top] = 3 

Instruction: I AUF F4 
Actions: D = D + 1 + D = 3  

applyf,  to object in L[SI = L[2] 
and store result into L[D] = L[3] 

Instruction: I AUF F3 
Actions: D = D + 1 + D = 4  

applyf, to object in L[SJ = L[2] 
and store result into L[D] = L[4] 

Instruction: B ENDCONS 
Actions: form a sequence from objects 

in L[D..Dstk[top]] = L4..3] 
D = Dstk[top] + D = 3  
pop Dstk + Dstk[top] = 3 
store the resulting sequence into L[D] = L[3] 
push S on Sstk + Sstk[top] = 2 
S = D  +5=3 

Instruction: E APF P2 
Actions: apply pz to object in L[SI = L[3] 

S = Sstk[top] +5=2 
pop Sstk + Sstk[top] = 0 

and store result into L[D] = L[3] 

Instruction: I  AUF F2 
Actions: D = D + 1 + D = 4  

applyf,  to object in L [ q  = L[2] 
and store result into L[D] = L[4] 

Instruction: I APF P1 
Actions: D = D + 1 + D = 5  

apply p ,  to object in L[SI = L[2] 
and store result into L[D] = L[5] 

Instruction: M ENDCONS 
Actions: from a sequence from objects 

in L[D..Dstk[top]] = L[5..3] 
D = D ~ t k [ t ~ p ]  - I 4 D = 2 
pop Dstk + Dstk is empty 
store the resulting sequence into L[D] = L[2] 
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0 

P3 rl F1 

F2 P1 

r l  A P2 

F4 F3 

j Abstract syntax tree 

Instruction: L AUF F l  
Actions: D = 0 + D =  1 

apply f, to object in L[Sl = L[2] 

pop Sstk + Sstk is empty 
and store result into L[D] = L[ I] 

7. Compilation 
Our compiler translates the FP source text into DELfp 
programs using a two-phase process. In the first phase, we 
employ an LR parser to parse the FP source text and 
generate its abstract syntax tree. For instance, the last 
example compiles into  the abstract syntax tree shown in 
Figure 2. 

Here ' L .  " and "[ 1" are canonical forms of a composition 
unit and a construction unit, respectively.  Both composition 
and construction are n-ary operators in the parse tree. We 
implement this by conventional parent/first-sibling and 
sibling/next-sibling links. 

generate the DELfp instructions using the following 
algorithm: 

In the second phase, the abstract syntax tree is traversed to 

Generator: 
begin 

GenDEL(abstract-syntax-.tree)/* generate main body 
of external 
program*/ 

While queue is not empty do 
GenDEL(tree-on-top-of-queue)/* generate local 

program*/ 
end 

end 

614 where GenDEL is  defined as 

GenDEL(root): 
begin 

If root < > nil then 
begin 

If root is a CONDITION, ALPHA, or INSERT 
Then put root's subtree(s) on queue to be a local 
program 
Else GenDEL(root's-leftmost-subtree) 
Convert root to corresponding DELfp instruction 
GenDEL(root's-right-subtree(s)) 

end 
end 

8. Interpreter 
Our interpreter is implemented on a partially mapped host 
(universal host). During interpretation, each syllable  of the 
execution instruction stream is first decoded and  then 
executed sequentially. The interpretive mechanism can be 
viewed as cycles of the following operations: 

1. Decode  Format-extract the leading  syllable, and deduce 

2. Decode Operands-extract the operand syllable(s), if any. 
Bind operand(s) with the operator and transfer control to 
the appropriate semantic routine. 

store the result. 

the source and destination addresses. 

3. Execute-perform the designated semantic action, and 

4. Housekeep-rearrange source or destination address if 
needed, and begin another cycle  of interpretation. 

In DELfp, the instructions can be  easily  fetched and 
decoded. There are no complicated residual controls during 
execution time, and there are  no branch instructions. As a 
result, the interpretive mechanism is simple and suitable for 
implementation in software, microcode, or hardware. 

9. Decompilation 
As  we mentioned earlier, because of the close corre- 
spondence between  DELfp and FP, DELfp codes can be 
converted back to FP codes without much extra effort. The 
following  recursive algorithm accepts the starting address of 
a DELfp program and converts it  back to an FP program: 

GenFP(starting-address): 
begin 

Let ip = address of  first instruction with an R or L 
context mode 
Repeat 

Convert instruction pointed to by ip  to corresponding 
FP notation 
If instruction calls other local program(s) 
Then GenFP(starting-address-of-local-program) 
Reduce ip to point to address of instruction prior to 
current one 

Until ip < starting-address 
end. 
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Using this  algorithm,  the source  text that  the user  types 
need not be retained after parsing. In  order  to retrieve the 
exact  image of the source codes, however, the  interpreter 
must  keep  an “alter  table” specifying details of indentation, 
spacing, and capitalization. 

10.  Comparison 
A worthwhile comparison  to  other  implementation strategies 
[2] is beyond the scope of this paper. We plan to  make such 
a comparison  in  the future. We also believe it  is premature 
to  make execution comparisons with other systems, because 
of the lack of large FP  benchmarks  and  the different 
implementation vehicles (for examples, PCs, VAXs, and 
meta-interpreters in LISP on various  workstations). 

step  towards such a comparison.  Our  prototype 
editor/interpreter  source consists  of 4000 lines of Turbo 
Pascal code. This translates to a ".corn" file of 43K bytes. 
We give two examples from [ 11, factorial and  matrix 
multiply, which have the following FP syntax: 

Def ! = eq . [id, 01 + i, x . [id, ! . - . [id, i]] 

Def MM = ( a  a IP) . ( a  distl) . distr . [ 1, trans . 21 

where 

We can, however,  describe our implementation  as a first 

Def IP = (/+) . ( a  X) . trans 

The size of the corresponding DELfp programs  in bytes 
and  the  running speed  (Given  in clock-on-the-wall seconds) 
on a PC AT (6 MHz)  are shown  in Table 3. 

11. Summary 
We have  presented  a new execution architecture  for FP. In 
our model, we emphasize the one-to-one  correspondence 
between source- and execution-level entities.  Keeping the 
execution architecture  as close to  the source  as possible 
makes  the  translation  and  untranslation simple and natural. 
But  even though translation is simple, the  intermediate 
architecture is designed so that  interpretation is still efficient. 
Furthermore,  an execution architecture with high 
transparency ensures that program  portability and 
compatibility  need be assumed  only at  the source level. In 
our future work, we  will investigate other  options  in  format 
or opcode  encoding  and  extend  the  DELfp  to  FFP [ I ]  or 
FP84 [SI. 
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