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We present an algorithm for automatically
generating an overlay structure for a program,
with the goal of reducing the primary storage
requirements of that program. Subject to the
constraints of intermodule dependences, the
algorithm can either find a maximal overlay
structure or find an overlay structure that, where
possible, restricts the program to a specified
amount of primary storage. Results are
presented from applying this algorithm to three
substantial programs.

1. Introduction

In response to the storage demands of complex
programming projects, the trend in language support has
been to offer programmers increasingly sophisticated address
spaces. The references to locations within these logical
address spaces are specified by a programmer, either directly
through machine language or indirectly through a language
processor. The logical address space is an abstraction of a
machine’s physical address space in several ways:

1. The logical address space may be of a different size than
the physical address space.

2. The logical address space may appear contiguous, but the
physical address space may be discontiguous.
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3. References to the logical address space may appear
identical in cost, but references to the physical address
space may vary in cost.

4. The names by which a program references the logical
address space may differ from the names offered by the
physical address space.

In each case, the logical address space simplifies a
programmer’s view of storage by hiding certain
implementation details of the physical address space.
Automatic mechanisms, in the form of paging and/or
segmentation, translate references in the logical address space
to locations in the physical address space.

This paper is concerned with one abstraction offered by a
logical address space: A program can reference more
locations than exist in the physical address space. In
particular, we wish to consider an alternative to
accommodating this abstraction by paging or segmentation.
We propose to automate the heretofore manual process of
overlaying, by which a logical address space L, is mapped
into another, potentially smaller, logical address space L,.
One consideration in favor of overlaying is the observation
that low-end machines may lack the hardware to accomplish
paging or segmentation. Overlaying can allow large
programs, previously restricted to mainframe computers, to
execute on personal computers.

Overlaying occurs prior to the introduction of a physical
address space, as shown in Figure 1. A program P consists of
a set of M modules {m,, m,, - - -, m,,} and each module m,
offers a set of entry points E,. Because entry points must be
known to all modules, they exist at a global level, so
NE =@
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Two modules of the logical address space L, are overlaid
in L, if they share portions of the logical address space L,.

In the manual overlaying process, a user constructs an
overlay structure that specifies those modules that can share
portions of the logical address space. This overlay structure
is given to a binder, or linkage editor, that normally resolves
references among the modules of a program: Code within
some module m, could reference an entry point within
module m,, and the binder resolves such references in the
logical address space L,. In the absence of an overlay
structure, a binder typically assigns logical addresses in
increasing order, placing the modules in disjoint portions of
L,. With an overlay structure, the binder is directed to start
multiple modules at the same logical address in L,.
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There are several advantages associated with automatic
overlaying:

1. Modification of a program can alter intermodule
relationships, requiring a concomitant modification of the
overlay structure.

2. Failure to understand the relationships among the entry
points of a program’s modules can result in an unsafe
overlay structure. An unsafe structure allows two modules
m; and m,_to share portions of L, when the residency of
both modules is required. (For example, m; calls m, and
m, calls m,.)

3. Maximum reduction of logical address space can require
a complex and quite lengthy overlay structure. Even
those users who understand intermodule relationships can
introduce errors into the specification of the overlay
structure.

In consideration of the above points, we propose an
automatic method for generating an overlay structure. In the
following sections, we discuss our method and show its
application to several large programs. Our algorithm
produces a maximal overlay structure for a program, in the
sense of minimizing the size of the logical address space.

2. Method
In this section, we present an algorithm that derives an
overlay structure for a program through the following steps:

1. Generate the call graph.

2. Collapse each strongly connected component of the call
graph to create a directed acyclic graph (DAG).

3. Generate an overlay structure from the DAG.

4. Output the overlay structure in a form acceptable by a
binder.

& Generation of the call graph
The call graph is produced using a program that accepts
a set of M modules in their compiled form. Each module
m; offers a set of entry points E, (fe;}, 1 sj < |E||), and
references a set of entry points R, ({r, , 1=j<|[R,). The
program constructs a call graph, with nodes corresponding to
the modules of a program. An arc exists between nodes m,
and m; if m, references an entry point declared in module
m;(R,NE #3.)

Intuitively, the relevance of the call graph to the
automatic overlay problem is apparent through the following
observation: The absence of an arc between modules 7, and
m, implies that m, cannot directly invoke m,. Let a call chain
be defined as a path through the call graph. If no path exists
between two modules, then the two modules cannot be
active simultaneously, since there is no call chain that can
cause m; to be invoked until /m, has returned. It is precisely
such circumstances that allow m, and m; to be overlaid.
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Procedure GENOVLY (n)

absorbed (n) := o;

For Each child € Successors(n)
GENOVLY (child);

/* Node n is now the root of a subtree */

If Indegree (n) > 1 Then
d = Idom(n);
absorbed(d) := absorbed(d) U {n}
U absorbed(n)
/* Delete arcs incident on node n */

In Figure 4, we present a summary of the GENOVLY
algorithm with the following notation:

Successors(n) is the set of nodes S such that for each
s € S, n — s in the DAG.

Indegree(n)  is the number of arcs incident on node n
in the DAG.

Idom(n) is the immediate dominator of node ».

absorbed(n) s the set of nodes absorbed into node n.

o Emitting the overlay structure

Given the tree constructed by GENOVLY and the absorbed
sets, an overlay structure is easily produced. For
completeness, this section shows how to emit an overlay
structure in the style accepted by the IBM Linkage Editor
[3]. The algorithm shown in Figure 5 refers to the following
functions:

CURSEG (v, i) closes the currently open segment and
opens an instance of segment (v, 4). Code
placed in different instances of segment

(v, h) is overlaid. Code placed outside any
segment is placed in the root. For the IBM
Linkage Editor, CURSEG emits an
OVERLAY statement with a name based
on the values of v and 4.

allocates the modules associated with node
n to the current segment. For the IBM
Linkage Editor, PLACE emits an INSERT
statement for the modules of node x.

PLACE (n)
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Procedure OUTPUT (n, v, h)
PLACE (n);

FOR EACH e € absorbed(n)
OUTPUT (e, v, h + 1);

FOR EACH child € Successors(n)
CURSEG ( o, h);
OUTPUT (child, v + 1, h);

Generation of the overlay structure.

51

The algorithm is initialized by invoking OUTPUT

(root, 0, 0). The algorithm first emits the modules associated
with node n. These modules were previously identified as a
strongly connected component of the call graph. Then, the
OUTPUT procedure is called recursively for each node
absorbed into node n. The modules associated with those
nodes are all placed in the same segment instance as node n,
but the children of the absorbed nodes are eligible for
overlaying. Finally, a distinct instance of the same segment
name is opened for each child of », causing all children to be
overlaid. Since the children themselves may have successors,
OUTPUT is called recursively for each child.

o Generating non-maximal overlay structures

The algorithms presented above generate a maximal overlay
structure for a program. If a specific bound on program size
is desired, then the current size of the overlaid program
could be maintained during the OUTPUT procedure. Once
the program fits in the desired logical address space, all
subsequent PLACE operations could place modules in the
root segment. We do not claim this strategy to be optimal,
because execution time depends on the frequency of overlay
segment traffic as well as the size of the overlay segments.

3. Results

In Table 1, we show some results from applying the
automatic overlay algorithm to three programs. Our tests
were performed under the VM operating system [4] using
the OS Linkage Editor [3]. The overlay algorithm generated
the maximum overlay structure for the object code (data
areas excluded) of each program. The test cases are as
follows:
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Table 1 Results: Space is given in kilobytes; time is given in seconds.

Program Unoverlaid Overlaid
Space Time Product Space Time Product
[. XX 9482 3.52 33376.6 8218 3.67 30160.0
2. PG 225 1.04 234.0 119 1.11 132.0
3.PR 7363 34.00 250342.0 3434 45.00 154530.0

XX s a language processor. Data areas comprise the bulk
of the space, and these were not overlaid.

PG is a parser-generator.

PR is the Parafrase restructuring compiler from the
University of Illinois at Urbana-Champaign [5]. The
organization of this program is especially well suited
to an overlay structure: One main routine could
invoke fifty other routines along independent call
chains.

The call graph of a program contains insufficient
information to allow automatic overlaying of data areas. If a
module depends on the persistence of data between
invocations, then overlaying such data could change the
semantics of the program. In the XX test case, data areas
comprised the bulk of the logical address space, and the
results of overlaying code did not significantly reduce the
logical address space. However, in the PG test case, the
author knew that the data areas could be overlaid. The space
requirement then dropped to 110 kilobytes, and the program
executed for 1.10 seconds with a space-time product of
121.0.

A sample of the overlay structure for the test case PR is
shown in Figure 6.
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/% Root Segment */
INSERT ANALYZE1

/* BLD_DD Absorbed
into Root #*/
INSERT *BLD_DDH1
/* Called by BLD DD: */
OVERLAY VOOH24
INSERT *STRONG1
OVERLAY VOOH24
INSERT *DDNAME1
OVERLAY VOOH24
INSERT *DDARRA1
/* Long Sequence of
Overlaid Modules */
OVERLAY VOOHOO
INSERT ***INITI
OVERLAY VOOHQO
INSERT *#TIMER1
OVERLAY VOOHOO
INSERT #REVPRTI1
OVERLAY VOOHOO
INSERT #SWPASS

Excerpt of the overlay structure for Parafrase.
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