
An automatic
overlay generator

by Ron Cytron
Paul G. Loewner

We present an algorithm for automatically
generating an overlay structure for a program,
with the goal of reducing the primary storage
requirements of that program. Subject to the
constraints of intermodule dependences, the
algorithm can either find a maximal overlay
structure or find an overlay structure that, where
possible, restricts the program to a specified
amount of primary storage. Results are
presented from applying this algorithm to three
substantial programs.

1. Introduction
In response to the storage demands of complex
programming projects, the trend in language support has
been to offer programmers increasingly sophisticated address
spaces. The references to locations within these logical
address spaces are specified by a programmer, either directly
through machine language or indirectly through a language
processor. The logical address space is an abstraction of a
machine’s physical address space in several ways:

1. The logical address space may be of a different size than

2 . The logical address space may appear contiguous, but the
the physical address space.

physical address space may be discontiguous.
@Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM I. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

3. References to the logical address space may appear
identical in cost, but references to the physical address
space may vary in cost.

address space may differ from the names offered by the
physical address space.

4. The names by which a program references the logical

In each case, the logical address space simplifies a
programmer’s view of storage by hiding certain
implementation details of the physical address space.
Automatic mechanisms, in the form of paging and/or
Segmentation, translate references in the logical address space
to locations in the physical address space.

This paper is concerned with one abstraction offered by a
logical address space: A program can reference more
locations than exist in the physical address space. In
particular, we wish to consider an alternative to
accommodating this abstraction by paging or segmentation.
We propose to automate the heretofore manual process of
overlaying, by which a logical address space L, is mapped
into another, potentially smaller, logical address space L,.
One consideration in favor of overlaying is the observation
that low-end machines may lack the hardware to accomplish
paging or segmentation. Overlaying can allow large
programs, previously restricted to mainframe computers, to
execute on personal computers.

Overlaying occurs prior to the introduction of a physical
address space, as shown in Figure 1. A program P consists of
a set of M modules (m, , m2, . . . , m,) and each module m,
offers a set of entry points E,. Because entry points must be
known to all modules, they exist at a global level, so
n E, = 0. 603

RON CYTRON AND PAUL G. LOEWNER

Unoverlaid
modules

Module 1

Module2 -
Module 3

Module 4

Logical address spaces

-c

Module I

y Y2

Two modules of the logical address space L , are overlaid
in L, if they share portions of the lqgical address space L,.

In the manual overlaying process, a user constructs an
overlay structure that specifies those modules that can share
portions of the logical address space. This overlay structure
is given to a binder, or linkage editor, that normally resolves
references among the modules of a program: Code within
some module m, could reference an entry point within
module ml, and the binder resolves such references in the
logical address space L,. In the absence of an overlay
structure, a binder typically assigns logical addresses in
increasing order, placing the modules in disjoint portions of
L,. With an overlay structure, the binder is directed to start
multiple modules at the same logical address in L,.

There are several advantages associated with automatic
overlaying:

1. Modification of a program can alter intermodule
relationships, requiring a concomitant modification of the
overlay structure.

2. Failure to understand the relationships among the entry
points of a program’s modules can result in an unsafe
overlay structure. An unsafe structure allows two modules
mi and mk to share portions of L, when the residency of
both modules is required. (For example, m, calls mk and
mk calls mi.)

3. Maximum reduction of logical address space can require
a complex and quite lengthy overlay structure. Even
those users who understand intermodule relationships can
introduce errors into the specification of the overlay
structure.

In consideration of the above points, we propose an
automatic method for generating an overlay structure. In the
following sections, we discuss our method and show its
application to several large programs. Our algorithm
produces a maximal overlay structure for a program, in the
sense of minimizing the size of the logical address space.

2. Method
In this section, we present an algorithm that derives an
overlay structure for a program through the following steps:

1. Generate the call graph.
2 . Collapse each strongly connected component of the call

3. Generate an overlay structure from the DAG.
4. Output the overlay structure in a form acceptable by a

graph to create a directed acyclic graph (DAG).

binder.

Generation of the call graph
The call graph is produced using a program that accepts
a set of M modules in their compiled form. Each module
m, offers a set of entry points E, ({e,,), 1 5 j 5 I E, I), and
references a set of entry points Ri ((r,, }, 1 I j 5 I R, I). The
program constructs a call graph, with nodes corresponding to
the modules of a program. An arc exists between nodes m,
and ml if m, references an entry point declared in module
m, (R, n E, # 0.)

automatic overlay problem is apparent through the following
observation: The absence of an arc between modules m, and
mj implies that m, cannot directly invoke ml. Let a call chain
be defined as a path through the call graph. If no path exists
between two modules, then the two modules cannot be
active simultaneously, since there is no call chain that can
cause m, to be invoked until mi has returned. It is precisely
such circumstances that allow m, and m, to be overlaid.

Intuitively, the relevance of the call graph to the

RON CYTRON AND PAUL G. LOEWNER IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

X 3 N M 3 0 1 ‘9 I A V d a N V N O X l A 2 NOll 9861 X3EN3AON 9 ‘ON OE ‘IOA ‘d013A3a ‘ S 3 X ‘I Ne1

/’ \

Procedure GENOVLY (n) Procedure OUTPUT (n , u, h)

absorbed (n) := 0 ; PLACE (n) ;

For Each child E Successors(n)
GENOVLY (child);

/* Node n is now the root of a subtree */

If Indegree (n) > 1 Then
d = Idom(n);
absorbed(d) := absorbed(d) U En]

/* Delete arcs incident on node n */
U absorbed(n)

In Figure 4, we present a summary of the GENOVLY
algorithm with the following notation:

Successors(n)

Indegree(n)

Idom(n)
absorbed(n)

is the set of nodes S such that for each
s E S, n + s in the DAG.
is the number of arcs incident on node n
in the DAG.
is the immediate dominator of node n.
is the set of nodes absorbed into node n.

Emitting the overlay structure
Given the tree constructed by GENOVLY and the absorbed
sets, an overlay structure is easily produced. For
completeness, this section shows how to emit an overlay
structure in the style accepted by the IBM Linkage Editor
[3]. The algorithm shown in Figure 5 refers to the following
functions:

CURSEG (v , h)

PLACE (n)

606

RON CYTRON P rND I

closes the currently open segment and
opens an instance of segment (v , h). Code
placed in different instances of segment
(v , h) is overlaid. Code placed outside any
segment is placed in the root. For the IBM
Linkage Editor, CURSEG emits an
0 VERLA Y statement with a name based
on the values of v and h.
allocates the modules associated with node
n to the current segment. For the IBM
Linkage Editor, PLACE emits an INSERT
statement for the modules of node n.

'AUL G. LOEWNER

FOREACHe E absorbed(n)
OUTPUT (e, u , h + 1) ;

FOR EACH child E Successors(n)
CURSEG (u, h) ;
OUTPUT (child, u + 1, h) ;

The algorithm is initialized by invoking OUTPUT
(root, 0, 0). The algorithm first emits the modules associated
with node n. These modules were previously identified as a
strongly connected component of the call graph. Then, the
OUTPUT procedure is called recursively for each node
absorbed into node n. The modules associated with those
nodes are all placed in the same segment instance as node n,
but the children of the absorbed nodes are eligible for
overlaying. Finally, a distinct instance of the same segment
name is opened for each child of n, causing all children to be
overlaid. Since the children themselves may have successors,
OUTPUT is called recursively for each child.

Generating non-maximal overlay structures
The algorithms presented above generate a maximal overlay
structure for a program. If a specific bound on program size
is desired, then the current size of the overlaid program
could be maintained during the OUTPUT procedure. Once
the program fits in the desired logical address space, all
subsequent PLACE operations could place modules in the
root segment. We do not claim this strategy to be optimal,
because execution time depends on the frequency of overlay
segment traffic as well as the size of the overlay segments.

3. Results
In Table 1, we show some results from applying the
automatic overlay algorithm to three programs. Our tests
were performed under the VM operating system [4] using
the OS Linkage Editor [3]. The overlay algorithm generated
the maximum overlay structure for the object code (data
areas excluded) of each program. The test cases are as
follows:

IBM 1. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

Procedure GENOVLY (n) Procedure OUTPUT (n , u, h)

absorbed (n) := 0 ; PLACE (n) ;

For Each child E Successors(n)
GENOVLY (child);

/* Node n is now the root of a subtree */

If Indegree (n) > 1 Then
d = Idom(n);
absorbed(d) := absorbed(d) U En]

/* Delete arcs incident on node n */
U absorbed(n)

In Figure 4, we present a summary of the GENOVLY
algorithm with the following notation:

Successors(n)

Indegree(n)

Idom(n)
absorbed(n)

is the set of nodes S such that for each
s E S, n + s in the DAG.
is the number of arcs incident on node n
in the DAG.
is the immediate dominator of node n.
is the set of nodes absorbed into node n.

Emitting the overlay structure
Given the tree constructed by GENOVLY and the absorbed
sets, an overlay structure is easily produced. For
completeness, this section shows how to emit an overlay
structure in the style accepted by the IBM Linkage Editor
[3]. The algorithm shown in Figure 5 refers to the following
functions:

CURSEG (v , h)

PLACE (n)

606

RON CYTRON P rND I

closes the currently open segment and
opens an instance of segment (v , h). Code
placed in different instances of segment
(v , h) is overlaid. Code placed outside any
segment is placed in the root. For the IBM
Linkage Editor, CURSEG emits an
0 VERLA Y statement with a name based
on the values of v and h.
allocates the modules associated with node
n to the current segment. For the IBM
Linkage Editor, PLACE emits an INSERT
statement for the modules of node n.

'AUL G. LOEWNER

FOREACHe E absorbed(n)
OUTPUT (e, u , h + 1) ;

FOR EACH child E Successors(n)
CURSEG (u, h) ;
OUTPUT (child, u + 1, h) ;

The algorithm is initialized by invoking OUTPUT
(root, 0, 0). The algorithm first emits the modules associated
with node n. These modules were previously identified as a
strongly connected component of the call graph. Then, the
OUTPUT procedure is called recursively for each node
absorbed into node n. The modules associated with those
nodes are all placed in the same segment instance as node n,
but the children of the absorbed nodes are eligible for
overlaying. Finally, a distinct instance of the same segment
name is opened for each child of n, causing all children to be
overlaid. Since the children themselves may have successors,
OUTPUT is called recursively for each child.

Generating non-maximal overlay structures
The algorithms presented above generate a maximal overlay
structure for a program. If a specific bound on program size
is desired, then the current size of the overlaid program
could be maintained during the OUTPUT procedure. Once
the program fits in the desired logical address space, all
subsequent PLACE operations could place modules in the
root segment. We do not claim this strategy to be optimal,
because execution time depends on the frequency of overlay
segment traffic as well as the size of the overlay segments.

3. Results
In Table 1, we show some results from applying the
automatic overlay algorithm to three programs. Our tests
were performed under the VM operating system [4] using
the OS Linkage Editor [3]. The overlay algorithm generated
the maximum overlay structure for the object code (data
areas excluded) of each program. The test cases are as
follows:

IBM 1. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

Table 1 Results: Space is given in kilobytes; time is given in seconds.

Program Unoverlaid Overlaid

Space Time Product Space Time Product

1. xx 9482 3.52 33376.6 8218 3.67 301 60.0
2. PG 225 I .04 234.0 119 1.11 132.0
3. PR 7363 34.00 250342.0 3434 45.00 154530.0

X X is a language processor. Data areas comprise the bulk
of the space, and these were not overlaid.

PC is a parser-generator.
PR is the Parafrase restructuring compiler from the

University of Illinois at Urbana-Champaign [5] . The
organization of this program is especially well suited
to an overlay structure: One main routine could
invoke fifty other routines along independent call
chains.

The call graph of a program contains insufficient
information to allow automatic overlaying of data areas. If a
module depends on the persistence of data between
invocations, then overlaying such data could change the
semantics of the program. In the X X test case, data areas
comprised the bulk of the logical address space, and the
results of overlaying code did not significantly reduce the
logical address space. However, in the PC test case, the
author knew that the data areas could be overlaid. The space
requirement then dropped to 110 kilobytes, and the program
executed for 1.10 seconds with a space-time product of
121.0.

A sample of the overlay structure for the test case PR is
shown in Figure 6 .

Acknowledgments
The authors wish to thank those at IBM Yorktown who
provided help with the ideas and presentation of this paper,
especially Philippe Charles, who provided the PG program,
and Fran Allen, who provided many helpful comments.

References
1. R. Tarjan, “Depth-First Search and Linear Graph Algorithms,”

SIAM J. Comput. 1, No. 2, 146-160 (1972).
2. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The

Design and Anal.vsis of Computer Algorithms, Addison-Wesley
Publishing Co., Reading, MA, 1974.

3. OS/ VS Linkage Editor and Loader, Order No. GC26-38 13-6,
1983; available through IBM branch offices.

4. VMISP CMS Command and Macro Reference, Order No. SC 19-
6209-2, 1983; available through IBM branch offices.

5. J . Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe, “The Structure
of an Advanced Vectorizer for Pipelined Processors,” Proceedings
of CompSAC 80 (Fourth IEEE International Computer Software
and Applications Conference), October 1980, pp.109-7 15.

IBM J . RES. DEVELOP. VOL. 30 NO 6 NOVEMBER 1986

/* Root Segment */
INSERT ANALYZE1

/* BLD-DD Absorbed
INSERT *BLD_DDI

into Root */
/* Called by BLD-DD: */

es */

OVERLAY VOOH24

OVERLAY VOOH24

OVERLAY VOOH24

INSERT *STRONG1

INSERT *DDNAMEl

INSERT *DDARRAI

Overlaid Modul
/* Long Sequence of
OVERLAY VOOHOO

OVERLAY VOOHOO

OVERLAY VOOHOO

OVERLAY VOOHOO

INSERT ***INIT1

INSERT *#TIMER1

INSERT #REVPRTI

INSERT #SWPASSI

Received August 26, 1985; accepted for pubkcation June 20,
I986

Ron Cytron IBM Thomas J. Watson Research Center, P.O. Box
218, Yorktown Heights, New York 10598. Dr. Cytron is a member of
the PTRAN project in the Advanced Fortran group at the IBM
Thomas J. Watson Research Center. An undergraduate of Rice

RON CYTRON AND PAUL G. LOEWNER

University (B.S.E.E.), he attended graduate school at the University
of Illinois at Urbana-Champaign, where he received an MS. in 1982
and a Ph.D. in 1984 in computer science. Dr. Cytron’s current
interests include software for parallel processing, primarily automatic
dependence analysis and restructuring techniques.

Paul G. Loewner IBM Thomas J. Watson Research Center, P.O.
Box 218, Yorktown Heights, New York 10598. Mr. Loewner is an
advisory programmer in the Computer Science Department, where
he is working on the Research Queuing Package (RESQ) compiler
and graphical workstation. He joined the Service Bureau
Corporation (then a subsidiary of IBM) in 1958 and the Research
Division in 1967. Mr. Loewner had previously worked on compiler
construction with constant propagation, a linked data base
subsystem, an automatic program documentation system (PLIDOC),
graphics for speech system, radix exchange sort with lookahead, APL
vs. PL/I interfacing problems, an interactive debugging system, and a
generalized interprogram binding system. Mr. Loewner was a
mathematician and programmer for Boeing Aircraft and North
American Aviation from 1954 to 1957. He studied mathematics at
Syracuse University from 1948 to 195 I ; at Stanford University from
1951 to 1953, receiving his B.S. with distinction in 1952 and his
M.S. in 1953; at the University of California at Berkeley from 1953
to 1955; and at the Courant Institute of Mathematics, New York
University, from 1958 to 1960. Mr. Loewner is a member of
American Mathematical Society, the Association for Computing
Machinery, the Mathematical Association of America, and the
Society for Industrial and Applied Mathematics.

608

RON CYTRON AND PAUL G. LOEWNER IBM J . RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

