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We  present  an  algorithm  for  automatically 
generating  an  overlay  structure  for  a  program, 
with  the  goal of reducing  the  primary  storage 
requirements of  that  program.  Subject  to  the 
constraints  of  intermodule  dependences,  the 
algorithm can  either  find  a  maximal  overlay 
structure  or  find  an  overlay  structure  that, where 
possible,  restricts  the  program  to  a  specified 
amount  of  primary storage.  Results are 
presented  from  applying  this  algorithm  to  three 
substantial  programs. 

1. Introduction 
In response to  the storage demands of  complex 
programming projects, the  trend  in language support has 
been to offer programmers increasingly sophisticated  address 
spaces. The references to locations  within  these logical 
address spaces are specified by a programmer,  either directly 
through  machine language or indirectly through a language 
processor. The logical address  space  is an abstraction of a 
machine’s physical address space in several ways: 

1. The logical address  space may be of a different size than 

2 .  The logical address space may  appear contiguous, but  the 
the physical address space. 

physical address  space  may be discontiguous. 
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3. References to  the logical address  space may  appear 
identical in cost, but references to  the physical address 
space may vary in cost. 

address  space  may differ from  the  names offered by the 
physical address space. 

4. The  names by which a program references the logical 

In  each case, the logical address  space simplifies a 
programmer’s view of storage by hiding  certain 
implementation details of the physical address space. 
Automatic mechanisms, in  the  form of paging and/or 
Segmentation, translate references in  the logical address  space 
to locations in  the physical address space. 

This  paper is concerned with one abstraction offered by a 
logical address space: A program can reference more 
locations than exist in  the physical address  space. In 
particular, we wish to consider an alternative to 
accommodating  this abstraction by paging or segmentation. 
We propose to  automate  the heretofore manual process of 
overlaying, by which a logical address  space L,  is mapped 
into  another, potentially  smaller, logical address space L,. 
One consideration in favor of overlaying is the observation 
that low-end machines may lack the hardware to accomplish 
paging or segmentation.  Overlaying  can allow large 
programs, previously restricted to  mainframe  computers,  to 
execute on personal computers. 

Overlaying occurs prior  to  the  introduction of a physical 
address  space, as shown  in Figure 1. A program P consists of 
a set of M modules (m, ,  m2, . . . , m,) and each module m, 
offers a set of entry  points E,. Because entry  points  must be 
known to all  modules, they exist at a global level, so 
n E, = 0. 603 

RON CYTRON AND PAUL G. LOEWNER 



Unoverlaid 
modules 

Module 1 

Module2 - 
Module 3 

Module 4 

Logical address spaces 

-c 

Module I 

y Y2 

Two  modules of the logical address  space L ,  are overlaid 
in L, if they share  portions of the lqgical address  space L,. 

In  the  manual overlaying process, a user constructs  an 
overlay structure  that specifies those modules  that  can  share 
portions of the logical address space. This overlay structure 
is given to a binder, or linkage editor, that  normally resolves 
references among  the  modules of a  program: Code within 
some  module m, could reference an entry  point within 
module ml, and  the binder resolves such references in  the 
logical address  space L,. In  the absence  of an overlay 
structure, a binder typically assigns logical addresses in 
increasing order, placing the  modules in  disjoint portions of 
L,. With  an overlay structure,  the  binder is directed to  start 
multiple modules  at  the  same logical address in L,. 

There  are several advantages associated with automatic 
overlaying: 

1. Modification of a  program can  alter  intermodule 
relationships,  requiring  a concomitant modification of the 
overlay structure. 

2.  Failure to  understand  the relationships among  the  entry 
points of  a program’s modules  can result in an unsafe 
overlay structure. An unsafe structure allows two  modules 
mi and mk to  share  portions of L, when the residency of 
both modules is required. (For example, m, calls mk and 
mk calls mi.) 

3. Maximum reduction  of logical address  space can require 
a  complex and  quite lengthy overlay structure. Even 
those users who  understand  intermodule relationships can 
introduce  errors  into  the specification of the overlay 
structure. 

In consideration  of the above  points, we propose an 
automatic  method for  generating an overlay  structure. In the 
following sections, we discuss our method  and show  its 
application to several large programs. Our algorithm 
produces  a maximal overlay structure for  a  program, in  the 
sense of minimizing  the size of the logical address space. 

2. Method 
In this section, we present an algorithm that derives an 
overlay structure for a  program through  the following steps: 

1. Generate  the call graph. 
2 .  Collapse each strongly connected  component of the call 

3. Generate  an overlay structure  from  the  DAG. 
4. Output  the overlay structure  in a form acceptable by a 

graph to create  a  directed acyclic graph  (DAG). 

binder. 

Generation of the call  graph 
The call graph  is produced using a  program that accepts 
a set of M modules  in their  compiled  form. Each module 
m, offers a set of entry  points E, ( {e,, ), 1 5 j 5 I E, I), and 
references a set of entry  points Ri ((r,, }, 1 I j 5 I R, I). The 
program constructs a call graph, with nodes corresponding to 
the  modules of  a  program. An arc exists between nodes m, 
and ml if m, references an  entry  point declared in  module 
m, (R, n E, # 0.) 

automatic overlay problem is apparent  through  the following 
observation: The absence of an  arc between modules m, and 
mj implies that m, cannot directly invoke ml. Let a call chain 
be defined as a path  through  the call graph. If no  path exists 
between two  modules, then  the two modules  cannot  be 
active  simultaneously,  since there is no call chain that  can 
cause m, to be invoked until mi has  returned. It is precisely 
such  circumstances that allow m, and m, to  be overlaid. 

Intuitively, the relevance of the call graph to  the 
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Procedure GENOVLY ( n )  Procedure OUTPUT (n ,  u, h )  

absorbed ( n )  := 0 ;  PLACE ( n ) ;  

For Each child E Successors(n) 
GENOVLY (child); 

/* Node n is now the root of a  subtree */ 

If Indegree ( n )  > 1 Then 
d = Idom(n); 
absorbed(d) := absorbed(d) U En] 

/* Delete arcs incident on node n */ 
U absorbed(n) 

In Figure 4, we present  a summary of the  GENOVLY 
algorithm with the following notation: 

Successors(n) 

Indegree(n) 

Idom(n) 
absorbed( n)  

is the set of  nodes S such that  for each 
s E S, n + s in  the DAG. 
is the  number of arcs  incident on node n 
in the DAG. 
is the  immediate  dominator of node n. 
is the set of  nodes  absorbed into  node n. 

Emitting the  overlay  structure 
Given  the tree  constructed by GENOVLY  and  the absorbed 
sets, an overlay structure is easily produced. For 
completeness,  this  section  shows  how to  emit  an overlay 
structure  in  the style accepted by the IBM Linkage  Editor 
[3]. The algorithm  shown  in Figure 5 refers to  the following 
functions: 

CURSEG (v ,  h) 

PLACE ( n )  

606 
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closes the currently open segment and 
opens  an instance  of  segment (v ,  h). Code 
placed in different instances of segment 
(v ,  h) is overlaid. Code placed outside any 
segment  is placed in  the root. For  the IBM 
Linkage Editor, CURSEG  emits  an 
0 VERLA Y statement with a name based 
on  the values  of v and h. 
allocates the  modules associated with node 
n to  the  current segment. For the IBM 
Linkage  Editor,  PLACE emits  an INSERT 
statement for the  modules of node n. 

'AUL G. LOEWNER 

FOREACHe E absorbed(n) 
OUTPUT (e, u , h  + 1) ;  

FOR EACH child E Successors(n) 
CURSEG ( u, h ) ;  
OUTPUT (child, u + 1, h ) ;  

The algorithm is initialized by invoking OUTPUT 
(root, 0,  0). The algorithm first emits  the  modules associated 
with node n. These modules were previously identified as a 
strongly connected  component of the call graph. Then,  the 
OUTPUT procedure is called recursively for  each node 
absorbed into  node n. The  modules associated with those 
nodes are all placed in  the  same segment  instance as  node n, 
but the children of the absorbed  nodes are eligible for 
overlaying. Finally, a  distinct  instance of the  same segment 
name is opened for each child of n, causing all children to be 
overlaid. Since the children  themselves may have successors, 
OUTPUT is called recursively for  each  child. 

Generating non-maximal overlay  structures 
The algorithms  presented above generate  a maximal overlay 
structure for a  program. If a specific bound  on program size 
is desired, then  the  current size of the overlaid  program 
could be  maintained  during  the  OUTPUT procedure. Once 
the program fits in the desired logical address space, all 
subsequent  PLACE operations could place modules  in  the 
root  segment. We do  not claim  this strategy to  be  optimal, 
because execution time  depends  on  the frequency  of  overlay 
segment traffic as well as  the size of the overlay segments. 

3. Results 
In Table 1, we show some results from  applying the 
automatic overlay algorithm to  three programs. Our tests 
were performed under  the  VM operating system [4] using 
the OS Linkage  Editor [3]. The overlay algorithm generated 
the  maximum overlay structure for the object  code (data 
areas  excluded)  of  each  program. The test cases are  as 
follows: 
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FOREACHe E absorbed(n) 
OUTPUT (e, u , h  + 1) ;  

FOR EACH child E Successors(n) 
CURSEG ( u, h ) ;  
OUTPUT (child, u + 1, h ) ;  

The algorithm is initialized by invoking OUTPUT 
(root, 0,  0). The algorithm first emits  the  modules associated 
with node n. These modules were previously identified as a 
strongly connected  component of the call graph. Then,  the 
OUTPUT procedure is called recursively for  each node 
absorbed into  node n. The  modules associated with those 
nodes are all placed in  the  same segment  instance as  node n, 
but the children of the absorbed  nodes are eligible for 
overlaying. Finally, a  distinct  instance of the  same segment 
name is opened for each child of n, causing all children to be 
overlaid. Since the children  themselves may have successors, 
OUTPUT is called recursively for  each  child. 

Generating non-maximal overlay  structures 
The algorithms  presented above generate  a maximal overlay 
structure for a  program. If a specific bound  on program size 
is desired, then  the  current size of the overlaid  program 
could be  maintained  during  the  OUTPUT procedure. Once 
the program fits in the desired logical address space, all 
subsequent  PLACE operations could place modules  in  the 
root  segment. We do  not claim  this strategy to  be  optimal, 
because execution time  depends  on  the frequency  of  overlay 
segment traffic as well as  the size of the overlay segments. 

3. Results 
In Table 1, we show some results from  applying the 
automatic overlay algorithm to  three programs. Our tests 
were performed under  the  VM operating system [4] using 
the OS Linkage  Editor [3]. The overlay algorithm generated 
the  maximum overlay structure for the object  code (data 
areas  excluded)  of  each  program. The test cases are  as 
follows: 
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Table 1 Results: Space  is given in kilobytes; time is given in seconds. 

Program Unoverlaid Overlaid 

Space Time Product Space Time Product 

1. xx 9482  3.52 33376.6 8218 3.67 301 60.0 
2. PG 225 I .04 234.0 119 1.11 132.0 
3. PR 7363  34.00 250342.0 3434  45.00 154530.0 

X X  is  a  language processor. Data  areas comprise the bulk 
of the space, and these were not overlaid. 

PC is  a  parser-generator. 
PR is the Parafrase  restructuring  compiler from  the 

University  of Illinois at  Urbana-Champaign [ 5 ] .  The 
organization  of  this  program is especially well suited 
to  an overlay  structure: One  main  routine  could 
invoke fifty other  routines  along  independent call 
chains. 

The call graph  of  a  program contains insufficient 
information  to allow automatic overlaying of  data areas. If a 
module  depends  on  the persistence of data between 
invocations, then overlaying such data  could change the 
semantics of the program. In  the X X  test case, data areas 
comprised the bulk  of the logical address  space, and  the 
results of overlaying code did  not significantly reduce the 
logical address space. However,  in the PC test case, the 
author knew that  the  data  areas  could be overlaid. The space 
requirement  then  dropped  to 110 kilobytes, and  the program 
executed  for 1.10 seconds with a  space-time product of 
121.0. 

A sample of the overlay structure for the test case PR is 
shown  in Figure 6 .  
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/* Root  Segment */ 
INSERT  ANALYZE1 

/* BLD-DD  Absorbed 
INSERT  *BLD_DDI 

into  Root */ 
/* Called  by  BLD-DD: */ 

es */ 

OVERLAY  VOOH24 

OVERLAY  VOOH24 

OVERLAY  VOOH24 

INSERT  *STRONG1 

INSERT  *DDNAMEl 

INSERT  *DDARRAI 

Overlaid  Modul 
/* Long  Sequence of 
OVERLAY  VOOHOO 

OVERLAY  VOOHOO 

OVERLAY  VOOHOO 

OVERLAY  VOOHOO 

INSERT  ***INIT1 

INSERT  *#TIMER1 

INSERT  #REVPRTI 

INSERT  #SWPASSI 
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