594

Program analysis
and code
generation

in an APL/370
compiler

by Wai-Mee Ching

We have implemented an APL/370 compiler
which accepts a subset of APL that includes
most language features and a majority of APL
primitive functions. It produces System/370
assembly code directly to be run independently
of an interpreter. The compiler does not require
variable declarations. Its front end, which is
machine-independent, employs extensive type-
shape analysis based on a type-shape calculus
of the primitive functions and global dataflow
analysis. Its back end does storage mapping,
code generation for various primitive functions,
and register management. For one-line
functions, compiled code executes at 2-10
times the speed of the interpreter. On programs
with many iterations, the execution time of the
compiled code not only is dramatically better
than that of interpretation, but is actually fairly
close to that of FORTRAN. This removes the
performance penalty of APL in computation-
intensive applications.
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1. Introduction

In the spring of 1983, the author proposed a project to study
the automatic extraction by a compiler of the inherent
parallelism in high-level language programs. We could have
started from new dataflow languages, such as Id and VAL
(see [1]), which are specifically designed for parallel
execution. However, the disadvantage for such a study of
any new language not in wide use is the absence of a ready
pool of real-life programs for experimentation. On the other
hand, the use of a traditional sequential language such as
FORTRAN requires a highly sophisticated special system
such as Parafrase (due to Kuck at the University of Illinois)
to reconstruct the parallelism out of sequentialized
programs. Also, some of the inherent parallelism may be lost
beyond retrieval during the serial coding process.

Among existing widely used high-level languages, APL is
singularly well suited for our purpose because coding in APL
does not involve unnecessary serialization. Moreover, use of
arrays and high-level primitives generally causes a well-
written APL program to have large basic blocks, which is
very beneficial for parallel scheduling. (A basic block is a
segment of code such that, if the first instruction is executed,
all instructions in the segment must also be executed in
linear order.) Although APL has been derided as being
difficult to read, or worse, encouraging “unstructured
programming,” it nonetheless has a large and enthusiastic
following. It has been used for many years in a wide range of
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fields, such as finance, engineering, and design automation,
but rarely in computation-intensive scientific applications.
Its interpreter provided a marvelous programming
environment long before research on programming
environments became fashionable. The only problem is that
no APL compiler is available, thus depriving us of any low-
level code to study for rearrangement and scheduling. So, we
decided to implement an APL compiler from scratch.

By the middle of 1984, the front end of the compiler was
basically finished, and by the end of that summer a basic
back end that could generate E-code (machine code for a
hypothetical multifunction parallel machine; see [2]) was
implemented. Since each E-code instruction had already
been implemented as a macro on System/370, we were
running compiled APL on a 370. However, due to the
architectural mismatch between the E-code and the 370
uniprocessor, the observed efficiency of the code on a small
number of examples was not as high as expected. Therefore,
towards the end of 1984 we decided to implement an
APL/370 back end designed to allow a smooth transition to
the production of code for machines having 370-compatible
vector architectures. The compiler now produces 370 code
which can run under IBM’s two operating systems, VM and
MYVS. We are also preparing to modify the low-level code-
generation functions in the back end to permit utilization of
the new IBM 3090 Vector Facility. In addition to generating
vector code, we also plan to implement multitasking in the
near future, and to do experimentation on code generation
for some experimental parallel machines.

APL is quite difficult to compile because its very late
binding and high-level semantics cause difficulties for
traditional compiler technology which seem to preclude an
efficient compiler. There are many papers on this topic, but
usually no implementation on real machines was done.
Recently, two implementations of APL compilers were
reported: that due to Budd [3-5], where a modified
(concerning declarations and scope rules) version of APL is
translated into the C language and then compiled; and that
by Wiedmann [6] and Weigang [7], where APL is compiled
directly into System/370 code. However, in the second case,
the generated code exists in an interpreter environment in
the sense that it has to mesh with an existing interpreter but
can also call the interpreter to execute portions it cannot
compile. Hence, we believe that the work to be reported here
is the first traditional compiler for APL in the following
sense. First, it compiles a substantial subset of APL without
needing extra language features, such as variable declaration,
and it strictly preserves the original language semantics
within the subset (see the Appendix in [4] for a comparison).
Second, the code produced by this compiler executes
independently of the interpreter. Third, it compiles directly
to machine language, unlike APL compilers that convert
from APL to some other high-level language. Hence, our
approach certainly entails more effort than translating APL
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into C or FORTRAN. On the other hand, once such an APL
compiler becomes available, it can be an excellent tool for
studying the problem of automatic extraction of inherent
parallelism by a compiler from high-level language
programs. Since APL uses natural vector notation and
provides a very large group of high-level compound
functions as primitive operations in the language, it will be
easier to map APL programs to vector and parallel machines
than those written in a traditional sequential language such
as FORTRAN. This indeed was the original motivation for
this project. An alternative approach, in which APL is
translated into FORTRAN, is represented by the work of
Driscoll and Orth [8], which also appears in this issue.

In this paper, we first summarize the restrictions of our
APL compiler; we expect most scientific and engineering
APL users can live with them comfortably. Next we briefly
describe how to use the compiler and run compiled code.
We then discuss the program analysis component of the
front end, where the type-shape calculation and stream-
grouping are unique to APL compilers, but where the global
dataflow analysis framework, on which the final type-shape
analysis is based, is common to other optimizing high-level
language compilers. In the next section, we describe the basic
code-generation model of the compiler back end (which is
machine-dependent), the storage mapping of variables, and
the register management scheme. Finally, we give data on
the execution time of some compiled code in comparison
with the execution time of the interpreter as well as with
code generated by VS FORTRAN on corresponding
FORTRAN programs.

2. Language restrictions and the compiling
procedure

The difficulties of compiling APL are well known. Qur basic
philosophy is to impose a minimal number of restrictions to
make the language subset compilable, but maintain the
distinctive features of APL which most users find attractive
(e.g., no declarations of variables are required). Our compiler
imposes three kinds of restrictions on APL: fundamental
restrictions, design restrictions, and implementation
limitations. The restrictions of the first kind are fundamental
to our approach to APL compilation in the sense that
without them the present scheme would not work. For
example, we could not have stable parse trees if the execute
function were not excluded, and dynamic creation and
deletion of user-defined functions would make static analysis
impossible. Any APL compiler not relying on help from an
interpreter cannot function without these restrictions. From
our contacts with scientific and engineering users of APL, we
discovered that most of their applications already conform to
these restrictions and can be compiled without change. The
fundamental restrictions are the following:

1. The compilation unit must be self-contained; i.e., code in
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inputs, not defined in the unit. (We call a group of
functions intended to be compiled together a compilation
unit, which can be a whole workspace.)

2. A function name cannot be used as a variable name or a
label name anywhere in the workspace.

3. OF X which creates a function from a character matrix
(variable) cannot be used, and UE X which erases an item
can only apply to variables.

4. ¢ can only apply to B/'S"' (which means if B is true
execute S), with B a scalar boolean variable or a scalar
boolean parenthesized expression and S a directly
executable statement.

5. O input is restricted to constant expressions.

The design restrictions are those features we did not take
into consideration during our design. Unlike the
fundamental restrictions, there is no apparent reason that
they cannot be removed with an expanded effort based on
the present approach. These restrictions represent a
compromise between the need to limit our implementation
effort and the desire not to inconvenience APL programmers
who wish to use the compiler. There are three groups of
design restrictions:

o First, we do not consider shared variables, and most
system features of APL, such as OCR, ONC, OPW, 0AT
(dealing with the canonical representation of a function,
the name classification of character data, print width, and
account information, respectively), are excluded. The
atomic vector [JA V, representing the character set of the
system, is included, but 37 0, the index origin used to
indicate whether we count beginning from 0 or from 1,
can be chosen only once for the whole compilation unit.

e Second, for the sake of a simpler implementation, we
restrict the target of a branch to be one of the following
forms:

a. 0

b. 0,numeric-expression

¢. OXnumeric-expression

d. label

e. label,numeric-expression

f. boolean-expression/label-list
g. (label-list)/[index-expression}

o Third, a variable of general type (i.e., a variable used both
as numeric and character in a basic block) is not treated.

The implementation limitations are those language
features which are designed to be handled by the compiler
but have not yet been implemented due to our manpower
limitation. These restrictions will gradually be removed as
we make progress. They include the following:

1. The rank of a variable has to be a compile-time constant
and may not exceed 7.

WAI-MEE CHING

2. The primitive functions 3\ , [x]0R4AV?® !B, ie.,
the format, expand, laminate, rotate, transpose, grade up
and grade down, general logarithm, factorial and
binomial, and matrix division functions are not
supported at this moment.

3. Certain combinations of derived functions considered to
be used very infrequently are missing right now.

4. Character input-output is not supported at present.

The compiler is divided into a front end and a back end,
both of which are written in APL. Hence compilation is
carried out in the APL interpreter environment, and the
procedure is quite simple. To compile a unit of functions in
an APL workspace, the user first loads the front end of the
compiler. He then copies the group of functions from its
workspace and issues the command

'mainfntyps' COMPILE gdio shapel shape?

where ma 1 nf n is the name of the main function in the
compilation unit (all other functions in the compilation unit
are called directly or indirectly by that function); £ty ps is a
null, one-, or two-character string indicating the storage
types of the parameters, if there are any, of the main
function: B = boolean, I = integer, E = floating-point, and
C = character; gd 10 is either 0 or 1, representing the
intended (JI O for the compilation unit, and shapei and
shape?2 are numerical vectors indicating the shapes of the
main function parameters. A scalar is represented by a 0, a
vector isa a 1 v1, where vl is the length whichisa ~ 1 ifit
is not known at compile time. Similarly, a matrix is a

2d1 d2, with d1 and d2 the dimensions. The user then
copies in the compiler back-end workspace and issues the
command

CODEGEN'mainfn'

This generates a CMS file named “mainfn” ready to be
assembled into a load module. One or two input files are
prepared if the main function has parameters (each input file
must be headed by records indicating the storage type, the
rank, and the shape before the values of the argument), and
then the compiled code is executed. The generated 370 code
can also be shipped to the MVS system to be run under TSO
provided the input files are in the MVS environment.

We note that, although 0S VO is not supported at
present, the most common use of this system function is to
read a file into the APL environment. Since execution of the
compiled code starts with reading into memory one or two
input files if the main function for compilation has one or
two parameters, the current setup can be easily modified to
read in additional input files to cover the need for using
{5V O for input purposes. The newer features of APL2 [9)
are not addressed by our compiler. However, the AP1.2
interpreter has the capability of calling assembly language
modules. Therefore, a programmer can encapsulate the
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computation-intensive part of his program in a self-
contained unit not using the newer features and have it
compiled to be called by other parts of his APL2 program,
thus benefiting both from APL2 and the compiler.

3. Compiler organization and program analysis
The front end of the compiler has three components:

1. Lexical scanner and parser.
2. Global data flow analyzer and constant finder.
3. Type-shape analyzer.

The lexical scanner and parser produces flow graphs (one
for each defined function), a call graph, a name table, and
parse trees (one for each line). A name can be a function
name, a variable name, or a label. This component also sets
up the function table, variable table, constant tables (one for
numeric and one for character constant), shape table, and
branch table. The lexical scanner is actually integrated into
the parser as in the case of a typical Pascal compiler. It uses
a novel parsing algorithm which goes from left to right; parse
tree nodes are built up in the reverse order from the one in
which they would be executed. This algorithm combines the
two passes, one to scan the source code from left to right and
one to parse the tokenized line from right to left, needed by
a typical APL parser. Primarily due to the elimination of an
additional pass, our parser was found to be about eight times
faster than the parser, also written in APL, implemented by
J. J. Girardot in 1981 using the traditional two-pass method.
The algorithm is nonrecursive and uses a two-symbol look-
ahead technique and shifts between two parsing states.

The second component of the front end, the global
dataflow analyzer, is the most elaborate from an algorithmic
point of view. It is built on the important work of Allen and
Cocke [10] on the interval-based method of global data flow
analysis for program optimization.

The third component of the front end, the type-shape
analyzer, is unique to an APL compiler. Other high-level
language compilers, with the exception of SETL, do not
have, and do not need, this component since variables are
declared. The basic algorithm was devised by the author in
1981 [11]. Since variables are not declared, the main task for
the front end, other than those common to most other high-
level language compilers, is to analyze the number of
variables used and to infer their storage types and shapes
from their usage. Tennenbaum [12] is the first to have
reported type determination work in compilers; it was
implemented in the SETL language system (the work in [13]
is of a theoretical nature, as a representation of the
computation states at each node is quite impractical for real
languages on machines of present memory capacity). We
note that in Budd’s modified APL compiler [3] each variable
is declared with its storage type and carries a general shape
box which can be manipulated by the generated code. This

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

removes the necessity for compile-time type-shape analysis;
nevertheless, compile-time analysis still helps. In Wiedmann
[6], most work seems to be in finding the ranks of the
variables. Our compiler attempts to find the types and
shapes (not necessarily the exact shape, but as much
information about the shape as possible) of all variables, so
that they can be allocated either on the stack or in the heap
at compile time without requiring excessive indirect access at
run time. The worst case is that the front end of the
compiler finds some variable to be of general type or of
general shape; that is, nothing specific can be said about a
particular type or shape. The front-end compilation process
will continue to its end. But when the back-end compilation
process is started, it will ask the user to supply the type
(shape or rank) of any variable assigned a general type (a
general shape) because of our design (implementation)
limitation. As it turns out, most variables (with the exception
of the parameters of the outermost function) in real-life
programs that have been processed by our front end so far
have been scalars, vectors, or matrices whose types and
shapes can be inferred from the program text most of the
time. We have not yet encountered a case of a variable
assigned a general type in programs processed by the front
end. We have encountered some cases of general shape
resulting from loss of shape in our analysis in an
interprocedural setting. As can be seen from setting of the
storage formats of variables in the next section, we do intend
to handle variables having the general shape, since the
admission of the laminate function implies the admission of
variables of changing ranks. But our current implementation
effort has not yet covered this. That means, for the moment,
that the back end cannot generate code for a program having
a variable whose rank cannot be determined at compile
time.

There are five storage types of variables, each represented
by a number: boolean—0, integer— 1, real—2, character—3,
and general—4 (a variable of type 4 is not treated by the
back end at present). Since the number of possible shapes is
infinite, a shape is represented by a (variant) record of three
fields: the rank, the first dimension, and a pointer to where
the rest of shape (i.e., 1 ¥shape) is stored. Each field can take
a symbolic value which may be the unique value “unknown.”
When the rank field takes the value “unknown,” the third
field indicating the shape tail must also be “unknown.”
There is a unique shape, denoted by the number 6,
representing the most general shape. We associate a type and
a shape with each node in a parse tree, each variable in the
variable table, and each constant in the constant tables (one
numeric and one character). For any defined function (i.e., a
procedure), the initial source of information on types and
shapes is from constants and parameters, except for the main
function, where they are supplied as arguments to the
compilation procedure. We know the types and shapes of

constants but not those of parameters other than those of the 597
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Table 1 Properties of primitive APL functions.

fn right-typ left-typ resl-typ right-shape left-shape resl-shape
+ 2 2 6 A B R

= L 4 0 A B R

1 1 1 S 4

¢ 4 1 5 A W R

main function. Hence, we give parameters the general type
but assign each a unique shape number to denote an
unknown shape (a method inspired by the value-number
method in [14, Ch. 6]. Later each shape number is either
replaced by a more concrete shape or remains unknown. In
the latter case, we chain all nodes with this number to one
general shape.

Both constant propagation and local type-shape analysis
use a modified Schorr-Waite algorithm (see Algorithm E
[15, Section 2.3.5] for the basic algorithm) to traverse a tree
from the rightmost node to the root nonrecursively. For
constant propagation, in the first pass through trees we
collect, as the first group of constant variables, all those
variables assigned a literal constant only once. In the second
pass, all single-assignment variables are checked to see
whether the expressions assigned to them involve only literal
constants and constant variables from the first group. This
method was found to be quite effective for APL programs.

The local type-shape calculus is based on the fact that
each primitive function has certain type and shape
requirements and produces a result whose type and shape
are a function of the type(s) and shape(s) of its argument(s).
This semantic information about the transformations on
types and shapes effected by all primitive functions in APL is
encoded in a table such as that shown in Table 1.

The table shows the properties of primitive functions; for
example, the scalar functions = and + accept arguments of
compatible shapes and produce a result of the same shape;
the function = accepts arguments of any type (4) and
produces a boolean result; while the function + accepts
numerical arguments and produces a numerical result which
is the “maximum” of the two (6); i.e., a real argument and
an integer argument give a result of a real type. However, the
addition of two arguments of boolean type results in an
integer type because there we take the minimally required
type into consideration. The type-shape behaviors of mixed
functions are much less uniform. For example, the monadic
1 (1 N generates a vector of integers from 1 to &) accepts
only integer scalars, whereas dyadic ¢(rotate) accepts arrays
of any type and shape for its right argument, and the
resulting type and shape are the same as those of the right
argument, indicated by a 5 and R (see [11] for more
details). The flexibility provided by the language in allowing
one scalar argument to be reshaped to that of the other in
many cases causes great difficulty in the analysis because it
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represents a nonuniformity of the rules. The result of type-
shape calculation at each node is propagated forward
through the tree and through all basic blocks (in a defined
function) in a depth-first search order. The constraints that a
function node imposes on its argument(s), if not
immediately satisfied, are also propagated backward, but
only to the extent of one parse tree.

Global dataflow analysis is employed here primarily for
the global type-shape determination and the solution to the
live-analysis problem. The analysis is based on the reach and
live-analysis algorithms in Allen and Cocke [10]. We
modified their basic algorithm by using Tarjan’s fast
interval-finding algorithm [16] to find intervals without flow
graph reduction, and incorporated an iterative component to
deal with improper intervals—those containing irreducible
subgraphs (see [10]). We calculate the solution to the reach
problem; i.e., for each basic block we find the set of all
definitions that have arrived at the top of that block. This, in
turn, enables us to do U-D chaining; i.e., each exposed-use
of a variable in a basic block is chained to the list of
definitions of the same variable supplying its value from
other blocks. Finally, we solve the live variable problem.
More specifically, we mark the spot where a value of a
variable becomes dead, i.e., either is no longer needed or is
soon to be redefined. Global dataflow analysis is done in an
interprocedural framework. In particular, definitions in a
function can reach its calling function and vice versa.

In the global type-shape analysis we OR the types and
shapes of the definitions chained to a particular exposed-use
to get a new type and shape of that use before we begin a
new round of local propagation. This is done iteratively until
the types and shapes of all variables stabilize. They will
stabilize because the OR function on types and shapes to be
described below is monotone nondecreasing on the lattices of
types and shapes ordered by their generality (see [11]) and
there the general type and the general shape serve as the
greatest elements of the two lattices, respectively. (For
practical reasons, we set a limit of 12 on the number of
iterations at present.) To OR two types, we simply take their
maximum if both are numeric. If one is numeric and the
other is character, the result of OR is the general type. To
OR two shapes is more elaborate. For example, the OR of
two vectors, one with a known length and one with an
unknown length, results in a vector of unknown length.
There is a shape representing the most general shape, e.g.,
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neither its rank nor any of its dimensions are known, which
serves as the universal cover of the OR of shapes.

The front end also finds all streams in all parse trees. A
stream is a group of consecutive scalar primitive function
nodes where the output of one feeds the input of another so
that the shapes of the nodes are all the same. A simple
example is

A«B+(C«DxE

The recognition of streams helps to reduce the need for
intermediate storage and saves unnecessary stores and loads.
Table 2 shows the distribution of time (in CPU seconds
on an IBM 3081) spent by each of the three components of

the front end for three workspaces with their numbers of
functions and noncomment lines indicated. The first is a
printer simulation program, the second does topological
folding for PLAs (programmable logic arrays), and the third
does graph statistics. The first two are compiled by the front
end without modification, while the third is taken from a
package by stripping away the parts involving auxiliary
processors (device drivers).

The time could be substantially reduced if we eliminated
the extensive printouts which help compiler debugging and
program analysis.

4. Code generation and the execution time of
compiled code

The back end accepts the parse trees, flow graphs, and
various tables, and it generates 370 assembly code. We use
the traditional Pascal-like stack and heap management of
memory. The back end first decides the storage formats of
variables based on their shapes. There are five storage
formats for five cases:

0. A scalar or one-element vector.

1. An array with its shape completely known at compile
time,

2. A vector of unknown length.

. A nonvector array of known rank but unknown shape.

4. An array with unknown rank.

w

The last one corresponds to the most general shape, and is
not now supported by the code-generation functions. The
back end calculates the stack length for each defined
function and assigns displacements for variables. The stack
length of a defined function is the sum of the stack lengths of
its local variables, which is 4, 8, and (8+4-rank) bytes for
variables of storage format 0, 2, and 3, respectively; it is the
byte length needed to store the values of a particular type for
variables of storage-type 1. It also reserves system areas, such
as input-output buffers and four vector buffers (one for each
type), and it fills in the constants. The allocation of storage,
base registers for functions, and the function call mechanism
are designed to handle recursion.
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Table 2 CPU time in seconds needed for the three front-end
components to process three sample programs.

WS name  Funcs Lines Parsing  Dataflow Type-
analysis shape

analysis
SIMPLE 9 74 348 5.46 10.79
cur 4 245 9 5.53 29.76
PLOTL 22 526 343 41.82 44.83

The back end then generates code for each defined
function in the compilation unit one basic block at a time.
Each basic block consists of one or several parse trees. To
generate code for each parse tree, we walk through the tree
from the lower right corner to the root using a semi-
recursive algorithm. During the tree walk, the main code-
generation function calls various low-level code-generation
routines, one for each primitive function as it encounters the
various function nodes.

The computation state of the machine is represented by
the set of 20 System/370 machine registers (16 general-
purpose registers and four floating-point registers) and four
vector buffers. The convention of vector buffers is peculiar to
APL and is borrowed from our previous work on an APL
compiler generating E-code. This convention introduces a
conceptual simplification for our code generation. The
register management is quite simple and conventional. We
let scalars (and one-element vectors) stay in the registers as
long as they are alive. When we run out of registers during
code generation, we push some variables out of the registers
(either without necessarily carrying out a store or by actually
storing the contents of some registers in a backup store).
Those in the backup store will be restored after each unit of
code corresponding to one APL operation is completed. We
also generate code for segments like

A«B+(C

in an integrated fashion. That is, if B and C are two arrays,
part of the result of B+C is stored into A as soon as it is
generated without staying in any intermediate storage.

The quality of the code generated is surprisingly good. It
not only represents a significant improvement over that of
the interpreter but is also quite close to that of FORTRAN
on some of our test cases. In order to compare the execution
time of the compiled code with that of the interpreter, we
first measure the times for two (basically) one-line examples.
We all know that the interpreter becomes much less efficient
on programs with loops. Hence, it is easy to claim for an
APL compiler, which is somewhat faster than the interpreter,
any desired number as a speedup ratio by applying the
compiler to a program with a very large loop count. But with
one-liners, there is no comparable advantage for the
compiler in simply increasing the size of the input data (say,
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a vector), because the interpreter becomes more efficient
when the arrays it processes become larger. Hence, in a
certain sense, comparisons using one-liners measure the
intrinsic speedup of execution that a compiler can provide
over that of interpretation. When APL compilers become
widely available, there certainly will be people accustomed to
FORTRAN (or Pascal) who will write sequentialized APL
code. However, to claim a dramatic improvement in
performance on behalf of the compiler over the interpreter
based on that code is a bit misleading because people
knowledgeable in APL do not write code for the interpreter
in that way. Nevertheless, this kind of speedup is still
important for the popularization of APL. Only that, the true
measure of the quality of an APL compiler in these cases,
should be a comparison with that of code produced by a
FORTRAN (or Pascal) compiler because the new users that
an APL compiler can attract are from the FORTRAN camp.
Thus, we also provide some comparisons with FORTRAN
compiled code (on similar problems) in the Appendix.
Execution times are all in milliseconds, and input-output
times are excluded except in the first example, where there is
an explicit display. The interpreter is VS APL and the
FORTRAN compiler is VS FORTRAN, all running,
including our compiled code, on an IBM System 370 Model
3081.

Finally, we note that such standard code optimization
procedures as common subexpression elimination, strength
reduction, and loop-invariant code motion are all missing
from our compiler. Yet the compiler does reasonably well
without them. The reason, we believe, is that these
techniques are needed by traditional sequential languages
such as FORTRAN and Pascal to reduce the number of
machine instructions in tight inner loops, mostly involving
arithmetic computations of vectors and arrays and their
index calculations. In APL, these are treated in the code
routines for arithmetic primitive functions, and not many
index calculations appear in the source code. The major
concerns of the back end of our compiler are so different
from those in compilers for traditional scalar languages like
FORTRAN or PL/I that not only was there little duplication
of effort in implementing this APL/370 back end with other
scalar language compilers, but it also pioneered new methods
of code generation and register allocation.

5. Conclusions

We have implemented an APL/370 compiler for a
substantial subset of APL, one comprehensive enough for
scientific and engineering applications. The compiler applies
the basic program analysis framework developed by Allen
and Cocke for (sequential language) program optimization to
the unique needs of the APL language. The compiled code
executes at a speed 2-10 times that of the interpreter on one-
line functions. On programs with large amounts of iteration
the execution time of the compiled code is not only a
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dramatic improvement over that of interpretation but also
quite competitive with corresponding code produced by a
FORTRAN compiler. This makes APL a new member of
the family of languages with compilers, and hence a suitable
tool for computationally intensive scientific applications. It
also introduces a new perspective to the compiler-oriented
approach to parallel processing, since automatic extraction
of inherent parallelism from APL programs should be easier
than from FORTRAN programs.

The compiler was written in APL and has approximately
4000 lines of code for the front end and 8000 for the back

end.

Appendix

& Example 1
VD REDUCTE; A;B;C; F

[1]F<«2.3

[2] C«+/B+«FxA+«D3E

[310«LC

v

Length Interpreted Compiled (1 11 1)
5 4 2
20 4 2

& Example 2 (Finding primes up to N, I 0=1)
VZ«PRIMEN;V
[11Z«2, (~Ve(2+1LN*0.5)e.x2+1[N+3)
J/V«l+2x1L (N-1)+2

\Y

N Interpreted Compiled FORTRAN
200 9.5 1.75 2
500 75.75 5.5 6.25

& Example 3 (Polynomial product, A and B coefficient
vectors, 11 0=0)

VC«A POLYPROD B
(1] C«((RA«pA)+ (RB+pB)-1)p0
[(2]1I+«"1
[3]LO0:+>(RA=I<«I+1)/0
(uld«1
[5]L1:>(RB=J+«J+1) /L0
[6]CLV]«CLV«I+J]1+A[I1IxBLJ]

[(7]~+L1

v

Length Interpreted Compiled (1 ~1 1 ~ 1) FORTRAN
5 9 <1 <1
75 1501 8 6.2

& Example 4 (Heapsort, I 0=1)
(code-generation time was 4.879 s)

VZ«HEAPSORT A
[1]L«(L (N+pd)+2)+1
[2] R«N
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(3IWHILE:»(L<1)/WHILE?2
(4] L«L-1
[5] SIFT
[61>WHILE
(7] WHILE2:>(R<1)/END
[8]X«A[1]
[9]A[11+«A[R]
[10] ALR]«X
[11] R«R-1
[(12] SIFT
[13])>WHILE?2
[14]END:Z+A

v

VSIFT;I;d
[1] J«2xI<«L
[2] X«A[I]
[31WHILE1:>(J>R)/LABEL
(4]l >(J2R)/NEXT
[51+(ALJI<A[J+1])/NEXT
[6] J«J+1
{71NEXT:»(X<A[J]1)/LABEL
[8]ALI]«ALJ]
(9] I+«J
[10] J«2xI
(11]1-+WHILE1
(121 LABEL:A[T]«X

v
Length Interpreted Compiled Ratio
5 8 <1
75 235 3 78

& Example 5 POISSON solver (0 I 0=0, compiled 2 ~1 ~1)
VZ«SOLVPOIS RMINBU; P;Q;L;M;S5;T;V
(1] Z«10
[2]>(2=ppRMINBU) /O
[3] P«1+ 14pRMINBU
(4] Q«1+1+pRMINBU
[5]1 L+« 4x(100(1Q-1)%2xQ)*2
[6) M« 4x(100(1P-1)%+2xP)*2
[7]18«100(1Q-1)o.x(1Q-1)+4q
{81 POISSON1
[9] POISSON2
v
VPOISSON1
[1]8«S+(+/5[1;1*2)*0.5
[2]) T«100(1P-1)o.x(1P-1) =P
(3] T«T+(+/T[1;1*%2)*%0.5
[4] V«<Lo . +M
v
VPOISSON?2
[1] Z<LS+.x((S+.xRMINBU+ .xT)+V)+.xT
v
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R
0 0000 0 O
0 6 000 0 O
60 00 00 O O
01 00 0 "1 0
0 0000 0 O
0 0000 0 O
00000 0 O

BU
10 5§ 5 5 5 5 10
5 0 0 0 0 0 5
5 0 0 0 0 0 5
5 0 0 0 0 0 5
5 0 0 0 0 0 5
5 0 0 0 0 0 5
10 5 5§ 5 5 5 10

We note that 1~ 1 1~ 1 means we compiled with the
lengths of vector parameters unspecified, and 2~ 1~ 1
means a matrix of unknown length. The second example of
finding primes demonstrates the APL style of coding; most
likely a sequential algorithm with loops would be adopted
when using FORTRAN or Pascal. The third example
represents the FORTRAN-Pascal style of coding and is very
costly for interpretive APL. The fourth example is also of
Pascal style, and is unnecessary for APL as it has the grade
functions ¥ 4 to do sorting. But we purposely used that
example to test the capability of the compiler for WHILE
loops with function calls at different sites. The heapsort
example runs for 2 ms using Pascal for a list of 75 items, and
we know exactly where we can improve the performance of
our code to make it equal to Pascal. The last example is
important because the Poisson equation is the kernel of so-
called weather code which is extensively studied by various
researchers in parallel processing. For this example, with an
input of a 7 by 7 matrix, the compiled code executes in 5
ms, compared to 15 ms for interpretation. We note that
POISSON does not have a loop.

When we examine the generated code, we also discover
that the remaining inefficiency is primarily due to our not
treating the scalar case separately in our arithmetic code-
generating function and in our branch function. When we
do so, we expect to reduce the 8 ms to something very close
to that of FORTRAN and to pull even with Pascal on the
heapsort example.
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