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We have  implemented  an  APL/370  compiler 
which  accepts  a  subset  of APL that  includes 
most  language  features  and  a  majority of  APL 
primitive  functions. It produces  System/370 
assembly  code directly to be run  independently 
of an interpreter. The compiler  does  not  require 
variable  declarations. Its front end,  which is 
machine-independent,  employs  extensive  type- 
shape  analysis  based  on  a  type-shape  calculus 
of  the  primitive  functions  and  global  dataflow 
analysis. Its back  end  does  storage  mapping, 
code  generation  for  various  primitive  functions, 
and  register  management.  For  one-line 
functions,  compiled  code  executes  at 2-10 
times  the  speed of the  interpreter. On programs 
with many iterations,  the  execution  time of the 
compiled  code  not  only is dramatically  better 
than  that  of  interpretation, but is actually  fairly 
close to that  of FORTRAN. This  removes  the 
performance  penalty  of APL in computation- 
intensive  applications. 

“Copyright 1986 by International Business Machines Corporation. 
Copying  in printed form  for private use is permitted without 
payment of  royalty  provided that (1)  each reproduction is done 
without alteration and (2) the Journal reference and IBM copyright 
notice are included on the first  page. The title and abstract, but no 
other portions, of this paper may  be  copied or distributed royalty 
free without further permission by computer-based and other 
information-service systems.  Permission to republish any other 
portion of this paper must be obtained from the Editor. 

1. Introduction 
In  the spring of 1983, the  author proposed a project to study 
the  automatic extraction by a compiler of the  inherent 
parallelism in high-level language  programs. We could have 
started from new dataflow languages, such as Id and VAL 
(see [ l]), which are specifically designed for parallel 
execution. However, the disadvantage  for  such  a  study of 
any new language not  in wide use is the absence of a ready 
pool of real-life programs for experimentation.  On  the  other 
hand,  the use of a traditional sequential  language  such as 
FORTRAN requires  a highly sophisticated special system 
such as Parafrase (due  to  Kuck  at  the University of Illinois) 
to reconstruct the parallelism out of sequentialized 
programs. Also, some of the  inherent parallelism may  be lost 
beyond retrieval during  the serial coding process. 

Among existing widely used high-level languages, APL  is 
singularly well suited  for our purpose because coding in APL 
does  not involve unnecessary serialization.  Moreover, use of 
arrays and high-level primitives generally causes  a well- 
written  APL  program to have large basic blocks, which is 
very beneficial for parallel scheduling. (A basic block is a 
segment of code  such that, if the first instruction is executed, 
all instructions in the segment must also be executed in 
linear  order.)  Although APL has been derided  as being 
difficult to read, or worse, encouraging “unstructured 
programming,”  it  nonetheless  has  a large and enthusiastic 
following. It has been used for many years in a wide range  of 
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fields, such as finance,  engineering, and design automation, 
but rarely in computation-intensive scientific applications. 
Its interpreter provided  a  marvelous programming 
environment long before research on  programming 
environments became fashionable. The only  problem is that 
no  APL  compiler is available, thus depriving us of any low- 
level code to  study for rearrangement  and scheduling. So, we 
decided to  implement  an  APL compiler  from  scratch. 

By the  middle of 1984, the front end of  the compiler was 
basically finished, and by the  end of that  summer a basic 
back end  that  could generate E-code (machine code  for  a 
hypothetical multifunction parallel machine; see [2]) was 
implemented. Since  each E-code instruction  had already 
been implemented  as a macro  on System/370, we were 
running compiled APL on  a 370. However, due  to  the 
architectural mismatch between the E-code and  the 370 
uniprocessor, the observed efficiency of the code on a  small 
number of examples was not  as high as  expected.  Therefore, 
towards the  end of  1984 we decided to  implement  an 
APL.1370 back end designed to allow  a smooth transition to 
the  production of code for machines having  370-compatible 
vector  architectures. The  compiler now  produces  370  code 
which can  run  under IBM’s two operating systems, VM and 
MVS. We are also  preparing to modify the low-level code- 
generation functions  in the back end  to  permit utilization  of 
the new IBM 3090 Vector  Facility. In addition  to generating 
vector code, we also  plan to  implement multitasking  in the 
near future, and  to  do  experimentation  on code  generation 
for some  experimental parallel machines. 

APL  is quite difficult to compile because its very late 
binding  and high-level semantics cause difficulties for 
traditional  compiler technology which seem to preclude an 
efficient compiler. There  are  many papers on this  topic, but 
usually no  implementation  on real machines was done. 
Recently,  two implementations of APL  compilers were 
reported: that  due  to Budd [3-51, where  a modified 
(concerning declarations  and scope rules) version of APL is 
translated into  the C language and  then compiled; and  that 
by Wiedmann  [6]  and Weigang [7],  where  APL is compiled 
directly into  System/370 code. However, in  the second case, 
the generated  code exists in an  interpreter  environment  in 
the sense that it  has to mesh with an existing interpreter  but 
can also call the  interpreter  to execute portions it cannot 
compile.  Hence, we believe that  the work to be reported  here 
is the first traditional  compiler for  APL in  the following 
sense. First, it  compiles  a  substantial subset of APL  without 
needing extra language  features,  such as variable  declaration, 
and it strictly preserves the original  language semantics 
within the subset  (see  the  Appendix  in [4] for  a  comparison). 
Second, the  code produced by this compiler  executes 
independently of the interpreter. Third, it  compiles directly 
to  machine language,  unlike APL compilers that  convert 
from APL to  some  other high-level language. Hence, our 
approach certainly  entails more effort than translating APL 
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into C or FORTRAN.  On  the  other  hand,  once such an APL 
compiler  becomes  available,  it can be an excellent tool  for 
studying the problem  of automatic extraction of inherent 
parallelism by a  compiler from high-level language 
programs. Since APL uses natural vector notation  and 
provides  a very large group of high-level compound 
functions  as primitive operations in the language, it will be 
easier to  map  APL programs to vector and parallel machines 
than those  written  in  a traditional sequential  language  such 
as  FORTRAN.  This indeed was the original motivation for 
this project. An alternative approach,  in which APL is 
translated into  FORTRAN, is represented by the work  of 
Driscoll and  Orth [SI, which also appears in  this issue. 

In this  paper, we  first summarize  the restrictions of our 
APL  compiler; we expect  most scientific and engineering 
APL users can live with them comfortably.  Next we briefly 
describe how to use the  compiler  and  run compiled code. 
We then discuss the program analysis component of the 
front end, where the type-shape  calculation and stream- 
grouping are  unique  to  APL compilers, but where the global 
dataflow analysis framework, on which the final type-shape 
analysis is based, is common  to  other optimizing high-level 
language compilers. In  the next section, we describe the basic 
code-generation  model  of the compiler back end (which is 
machine-dependent), the storage  mapping of variables, and 
the register management scheme. Finally, we give data  on 
the execution time of some compiled  code  in comparison 
with the execution time of the  interpreter  as well as with 
code  generated by VS FORTRAN on  corresponding 
FORTRAN programs. 

2. Language restrictions  and  the  compiling 
procedure 
The difficulties of compiling  APL are well known.  Our basic 
philosophy  is to impose  a minimal  number of  restrictions to 
make  the language  subset  compilable, but  maintain  the 
distinctive  features of APL which most users find attractive 
(e.g., no declarations of variables are required). Our compiler 
imposes three kinds of restrictions on APL: fundamental 
restrictions, design restrictions, and  implementation 
limitations. The restrictions of the first kind are  fundamental 
to  our  approach  to APL compilation  in  the sense that 
without them  the present  scheme  would not work. For 
example, we could not have  stable parse trees if the execute 
function were not excluded, and  dynamic creation and 
deletion of user-defined functions would make static analysis 
impossible. Any APL  compiler not relying on help from  an 
interpreter cannot function  without  these restrictions. From 
our contacts with scientific and engineering users of APL, we 
discovered that most of their  applications  already conform  to 
these  restrictions and  can be compiled  without  change. The 
fundamental restrictions are  the following: 

1. The  compilation unit must be self-contained; i.e., code in 
the  unit  cannot refer to  functions or variables, except 
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inputs, not defined in the unit. (We call a group of 
functions intended to be compiled together a compilation 
unit, which can be a whole  workspace.) 

2. A function name  cannot be  used as a variable name or a 
label name anywhere in the workspace. 

(variable) cannot be  used, and OEX which erases an item 
can only apply to variables. 

4. can only apply to B/ S (which means if B is true 
execute S), with B a scalar boolean variable or a scalar 
boolean parenthesized expression and S a directly 
executable statement. 

3. U F X  which creates a function from a character matrix 

5 .  0 input is restricted to constant expressions. 

The design restrictions are those features we did not take 
into consideration during our design. Unlike the 
fundamental restrictions, there is no apparent reason that 
they cannot be removed  with an expanded effort  based on 
the present approach. These restrictions represent a 
compromise between the need to limit our implementation 
effort and the desire not to inconvenience APL programmers 
who wish to use the compiler. There are three groups of 
design restrictions: 

First, we do not consider shared variables, and most 
system features of APL, such as OCR, ONC, UPW, O A  I 
(dealing with the canonical representation of a function, 
the name classification  of character data, print width, and 
account information, respectively), are excluded. The 
atomic vector U A  V ,  representing the character set of the 
system, is included, but 010, the index origin used to 
indicate whether we count beginning from 0 or from 1, 
can be  chosen only once for the whole compilation unit. 

restrict the target of a branch to be one of the following 
forms: 

a. 0 
b. 0,numeric-expression 
c. 0 X numeric-expression 
d. label 
e. labe1,numeric-expression 
f. boolean-expression/label-list 
g. (label-list)/[index-expression] 

Second, for the sake of a simpler implementation, we 

Third,  a variable of general type  (i.e., a variable used both 
as numeric and character in a basic  block)  is not treated. 

The implementation limitations are those language 
features which are designed to be handled by the compiler 
but have not yet  been implemented due to our manpower 
limitation. These restrictions will gradually be removed as 
we make progress. They include the following: 

1. The rank of a variable  has to be a compile-time constant 
and may not exceed I .  

2. The primitive functions i \ , C x I 4Q 4 t ? ! 8, i.e., 
the format, expand, laminate, rotate, transpose, grade up 
and grade down, general logarithm, factorial and 
binomial, and matrix division functions are not 
supported at this moment. 

be  used  very infrequently are missing  right  now. 
4. Character input-output is not supported at present. 

3. Certain combinations of derived functions considered to 

The compiler is divided into  a front end and a back end, 
both of  which are written in APL. Hence compilation is 
camed out in the APL interpreter environment, and  the 
procedure is quite simple. To compile a  unit of functions in 
an APL workspace, the user  first loads the front end of the 
compiler. He then copies the group of functions from its 
workspace and issues the  command 

‘mainfn t y p s ‘  C O M P I L E q d i o  shape1   shape2  

where ma  inf n is the name of the main function in the 
compilation unit (all other functions in  the compilation unit 
are called directly or indirectly by that function); typs is a 
null, one-, or two-character string indicating the storage 
types  of the parameters, if there are any, of the main 
function: B = boolean, I = integer, E = floating-point, and 
C = character; qdio is either 0 or 1, representing the 
intended 0 IO for the compilation unit,  and shape  1 and 
Shape2 are numerical vectors indicating the shapes of the 
main function parameters. A scalar is represented by a 0, a 
vector is a  a 1 vl, where vl is the length  which is a 1 if it 
is not known at compile time. Similarly, a matrix is a 
2 d l  d2, with dl and d2 the dimensions. The user then 
copies  in the compiler back-end  workspace and issues the 
command 

CODEGEN’mainfn’ 

This generates a CMS file named “mainfn” ready to be 
assembled into a load module. One  or two input files are 
prepared if the main function has parameters (each input file 
must be headed by records indicating the storage type, the 
rank, and the shape before the values  of the argument), and 
then the compiled code is executed. The generated 370 code 
can also be shipped to the MVS system to be run under TSO 
provided the  input files are in the MVS environment. 

We note that, although 0s V O  is not supported at 
present, the most common use  of this system function is to 
read a file into the APL environment. Since execution of the 
compiled code starts with reading into memory one or two 
input files  if the main function for compilation has one or 
two parameters, the current setup can be  easily  modified to 
read  in additional input files to cover the need  for  using 
U S V O  for input purposes. The newer features of APL2 [9] 
are not addressed by our compiler. However, the APL2 
interpreter has the capability of calling assembly  language 
modules. Therefore, a programmer can encapsulate the 

- 
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computation-intensive part of his program in a self- 
contained unit not using the newer features and have it 
compiled to be  called by other parts of  his  APL2 program, 
thus benefiting both from APL2 and  the compiler. 

3. Compiler  organization and program  analysis 
The front end of the compiler has three components: 

1. Lexical scanner and parser. 
2. Global data flow analyzer and constant finder. 
3. Type-shape analyzer. 

The lexical scanner and parser produces flow graphs (one 
for each defined function), a call graph, a name table, and 
parse trees (one for each line). A name can be a function 
name, a variable name, or a label. This  component also sets 
up the function table, variable table, constant tables (one for 
numeric and  one for character constant), shape table, and 
branch table. The lexical scanner is actually integrated into 
the parser as in the case of a typical Pascal compiler. It uses 
a novel parsing algorithm which  goes from left to right; parse 
tree nodes are built up in the reverse order from the  one in 
which they would  be executed. This algorithm combines the 
two  passes, one to scan the source code from left to right and 
one to parse the tokenized line from right to left,  needed by 
a typical APL parser. Primarily due to the elimination of an 
additional pass, our parser was found to be about eight times 
faster than  the parser, also written in APL, implemented by 
J.  J. Girardot in 198 1 using the traditional two-pass method. 
The algorithm is nonrecursive and uses a two-symbol look- 
ahead technique and shifts  between  two parsing states. 

The second component of the front end,  the global 
dataflow analyzer, is the most elaborate from an algorithmic 
point of  view. It is built on  the  important work  of  Allen and 
Cocke [ I O ]  on  the interval-based method of  global data flow 
analysis for program optimization. 

The third component of the front end,  the type-shape 
analyzer, is unique to an APL compiler. Other high-level 
language compilers, with the exception of SETL, do not 
have, and do not need, this component since variables are 
declared. The basic algorithm was  devised by the  author in 
198 1 [ 1 11. Since variables are not declared, the main task  for 
the front end, other than those common to most other high- 
level  language compilers, is to analyze the number of 
variables used and  to infer their storage types and shapes 
from their usage. Tennenbaum [ 121  is the first to have 
reported type determination work in compilers; it was 
implemented in the SETL  language  system (the work  in [ 131 
is of a theoretical nature, as a representation of the 
computation states at each node is quite impractical for real 
languages on machines of present memory capacity). We 
note that in  Budd‘s  modified  APL compiler [3] each variable 
is declared with its storage  type and cames a general shape 
box  which can be manipulated by the generated code. This 

removes the necessity  for compile-time type-shape analysis; 
nevertheless, compile-time analysis  still  helps. In Wiedmann 
[6], most work seems to be  in  finding the ranks of the 
variables. Our compiler attempts  to find the types and 
shapes (not necessarily the exact shape, but as much 
information about  the shape as possible) of all variables, so 
that they can be allocated either on the stack or in the heap 
at compile time without requiring excessive indirect access at 
run time. The worst  case is that the front end of the 
compiler finds some variable to be  of general type or of 
general shape; that is, nothing specific can be  said about a 
particular type or shape. The front-end compilation process 
will continue to its end. But  when the back-end compilation 
process is started, it will ask the user to supply the type 
(shape or rank) of any variable  assigned a general  type  (a 
general shape) because of our design (implementation) 
limitation. As it  turns out, most variables (with the exception 
of the parameters of the outermost function) in real-life 
programs that have  been  processed by our front end so far 
have  been  scalars,  vectors, or matrices whose  types and 
shapes can be inferred from the program text most of the 
time. We have not yet encountered a case  of a variable 
assigned a general  type in programs processed by the front 
end. We have encountered some cases of general shape 
resulting from loss of shape in our analysis in an 
interprocedural setting. As can be  seen  from setting of the 
storage formats of  variables  in the next section, we do intend 
to handle variables  having the general shape, since the 
admission of the laminate function implies the admission of 
variables  of changing ranks. But our current implementation 
effort  has not yet covered this. That means, for the  moment, 
that the back end cannot generate code for a program having 
a variable  whose rank cannot be determined at compile 
time. 

There are five storage  types  of  variables,  each represented 
by a number: boolean-0,  integer- I ,  real-2, character-3, 
and general-4 (a variable of type 4 is not treated by the 
back end at present). Since the number of possible shapes is 
infinite, a shape is represented by a (variant) record of three 
fields: the rank, the first dimension, and a pointer to where 
the rest  of shape (i.e., 1 +shape) is stored. Each  field can take 
a symbolic value which may be the  unique value “unknown.” 
When the rank field takes the value “unknown,”  the  third 
field indicating the shape tail must also  be “unknown.” 
There is a unique shape, denoted by the number 6, 
representing the most general shape. We associate a type and 
a shape with  each node in a parse tree, each  variable in the 
variable table, and each constant in the constant tables (one 
numeric and  one character). For any defined function (i.e., a 
procedure), the initial source of information on types and 
shapes is from constants and parameters, except  for the main 
function, where they are supplied as arguments to the 
compilation procedure. We know the types and shapes of 
constants but not those of parameters other than those of the 597 

IBM J .  RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986 WAI-MEE CHING 



Table 1 Properties of primitive  APL functions. 

fn  right-typ  left-typ  resl-typ  right-shape  left-shape  resl-shape 

+ 2 2 6 A B 
0 A B 
1 S 

4 
1 

4 
R 
R 

4 4 1 5 A W R 
V 

- - 
1 

main  function.  Hence, we give parameters  the general type 
but assign each a unique  shape  number  to  denote  an 
unknown  shape  (a  method inspired by the  value-number 
method  in [ 14, Ch. 61. Later  each  shape  number is either 
replaced by a more concrete shape or remains  unknown.  In 
the  latter case, we chain all nodes  with this  number  to  one 
general shape. 

Both constant propagation and local type-shape  analysis 
use a modified Schorr-Waite algorithm (see Algorithm E 
[ 15, Section 2.3.51 for the basic algorithm) to traverse  a tree 
from  the rightmost node  to  the root  nonrecursively. For 
constant propagation,  in the first pass through trees we 
collect, as  the first group of constant variables, all  those 
variables assigned a  literal constant only  once. In  the second 
pass, all single-assignment variables are checked to see 
whether the expressions assigned to  them involve only literal 
constants  and  constant variables from  the first group. This 
method was found  to be quite effective for  APL  programs. 

The local type-shape  calculus is based on  the fact that 
each  primitive function has certain type and  shape 
requirements  and produces  a  result whose type  and  shape 
are a function of the type(s) and shape(s) of its  argument(s). 
This  semantic  information  about  the  transformations  on 
types and  shapes effected by all primitive functions  in  APL is 
encoded  in a table  such as that shown in Table 1. 

The  table shows the properties of primitive  functions;  for 
example, the scalar functions = and + accept arguments of 
compatible shapes and  produce a  result  of the  same shape; 
the  function = accepts arguments of any  type (4)  and 
produces a  boolean result; while the  function -I- accepts 
numerical  arguments  and  produces a numerical result which 
is the  “maximum” of the  two (6); i.e., a real argument  and 
an integer argument give a result of a real type.  However, the 
addition of two  arguments of  boolean type results in  an 
integer type because there we take  the  minimally required 
type into consideration. The type-shape  behaviors  of  mixed 
functions  are  much less uniform. For example, the  monadic 
I ( I  N generates  a vector of  integers from 1 to N) accepts 
only integer  scalars,  whereas dyadic  +(rotate) accepts  arrays 
of any type and  shape for its right argument,  and  the 
resulting type  and  shape  are  the  same as  those  of the right 
argument, indicated by a 5 and R (see [ 1 11 for  more 
details). The flexibility provided by the language in allowing 
one scalar argument  to  be reshaped to  that of the  other  in 
many cases causes  great difficulty in  the analysis because it 

represents  a nonuniformity of the rules. The result of type- 
shape  calculation at  each  node is propagated  forward 
through  the  tree  and  through all basic blocks (in a  defined 
function)  in a depth-first search  order. The  constraints  that a 
function  node imposes on its  argument(s), if not 
immediately satisfied, are also propagated  backward, but 
only to  the  extent of one parse tree. 

Global dataflow  analysis is employed  here  primarily  for 
the global type-shape determination  and  the solution to  the 
live-analysis problem.  The analysis is based on  the reach and 
live-analysis algorithms in Allen and  Cocke [IO]. We 
modified their basic algorithm by using  Tarjan’s fast 
interval-finding  algorithm [ 161 to find intervals without flow 
graph reduction,  and  incorporated  an iterative component  to 
deal with improper intervals-those containing irreducible 
subgraphs (see [ 101). We calculate the solution to  the reach 
problem; i.e., for  each basic block we find the set of all 
definitions that have amved  at  the  top of that block. This, in 
turn, enables us  to  do U-D chaining; i.e., each exposed-use 
of  a variable in  a basic block  is chained  to  the list of 
definitions  of the  same variable  supplying  its value from 
other blocks. Finally, we solve the live variable problem. 
More specifically, we mark  the spot  where  a value of a 
variable becomes dead, i.e., either is no longer needed or is 
soon to be redefined. Global dataflow  analysis is done  in  an 
interprocedural  framework. In particular,  definitions  in  a 
function  can reach  its  calling function  and vice versa. 

In the global type-shape analysis we OR the types and 
shapes of the definitions chained  to a particular exposed-use 
to get a new type and  shape  of  that use before we begin a 
new round of local propagation. This is done iteratively until 
the types and shapes  of all variables stabilize. They will 
stabilize because the OR function  on types and shapes to be 
described below is monotone nondecreasing on  the lattices of 
types and shapes  ordered by their generality (see [ 1 I]) and 
there  the general type and  the general shape serve as  the 
greatest elements of the  two lattices, respectively. (For 
practical reasons, we set a  limit  of 12 on  the  number of 
iterations at present.) To OR two types, we simply take  their 
maximum if both  are  numeric. If one is numeric  and  the 
other is character,  the result  of OR is the general type. To 
OR two  shapes  is more elaborate. For example, the OR of 
two vectors, one with a known length and  one with an 
unknown length, results in a vector of unknown length. 
There is  a shape representing the most general shape, e.g., 
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neither its rank  nor  any of its  dimensions  are  known, which 
serves as the universal  cover  of the  OR of shapes. 

The  front  end also finds all streams in all parse  trees.  A 
stream is  a group  of consecutive  scalar  primitive function 
nodes where the  output of one feeds the  input of another so 
that  the  shapes of the nodes are all the same.  A  simple 
example is 

A+B+C+DxE 

The recognition of streams helps to reduce the need  for 
intermediate storage and saves unnecessary  stores and loads. 

Table 2 shows the  distribution  of  time (in CPU seconds 
on  an IBM 308 1) spent by each of the  three  components of 
the  front  end for three workspaces with  their numbers of 
functions  and  noncomment lines  indicated. The first is  a 
printer  simulation program, the second does topological 
folding  for  PLAs (programmable logic arrays), and  the  third 
does graph  statistics. The first two are compiled by the front 
end  without modification, while the  third is taken  from a 
package by stripping away the  parts involving  auxiliary 
processors (device drivers). 

The  time  could be substantially  reduced if  we eliminated 
the extensive printouts which help  compiler debugging and 
program analysis. 

4. Code generation and the execution time of 
compiled code 
The back end accepts the parse trees, flow graphs, and 
various tables, and it  generates  370 assembly code. We use 
the  traditional Pascal-like stack and  heap  management of 
memory.  The back end first decides the storage formats of 
variables based on  their shapes. There  are five storage 
formats for five cases: 

0. A  scalar or one-element vector. 
1. An array with  its shape completely known  at compile 

2. A  vector  of unknown length. 
3. A nonvector  array of  known rank  but  unknown shape. 
4. An array with unknown  rank. 

time. 

The last one  corresponds  to  the  most general shape, and is 
not  now  supported by the code-generation  functions. The 
back end calculates the stack  length  for  each  defined 
function  and assigns displacements  for variables. The stack 
length  of  a  defined function is the  sum of the stack  lengths  of 
its local variables, which is 4, 8, and  (8+4-rank) bytes for 
variables of storage format 0, 2, and 3, respectively; it is the 
byte  length  needed to store the values  of a particular  type  for 
variables of storage-type 1. It also reserves system areas,  such 
as  input-output buffers and  four vector buffers (one for  each 
type), and it fills in  the  constants.  The allocation  of storage, 
base registers for functions, and  the  function call mechanism 
are designed to  handle recursion. 

Table 2 CPU time in seconds  needed for the  three  front-end 
components to process  three  sample programs. 

WS name Funcs  Lines Parsing Dataflow Tvpe- 
analysis  shape 

analysis 

S I M P L E  9 
CUT 

74 3.48 5.46 10.79 
4 245 9 

PLOTL 22 
5.53  29.76 

526 34.3  41.82 44.83 

The back end  then generates code  for each defined 
function  in  the  compilation  unit  one basic block at a  time. 
Each basic block  consists of one or several parse trees. To 
generate  code for each  parse  tree, we walk through  the  tree 
from the lower right corner  to  the root using a semi- 
recursive algorithm. During  the  tree walk, the  main code- 
generation function calls various low-level code-generation 
routines, one for each primitive function  as  it  encounters  the 
various function nodes. 

The  computation state  of the  machine is represented by 
the set of 20 System/370 machine registers (1 6 general- 
purpose registers and  four floating-point registers) and  four 
vector buffers. The  convention of vector buffers is peculiar to 
APL  and is borrowed from  our previous  work on  an  APL 
compiler  generating E-code. This  convention  introduces a 
conceptual simplification  for our code  generation. The 
register management is quite simple and conventional. We 
let scalars (and one-element vectors) stay in  the registers as 
long  as they  are alive. When we run  out of registers during 
code  generation, we push some variables out of the registers 
(either without necessarily carrying out a  store or by actually 
storing the  contents of some registers in a backup store). 
Those in the  backup store will be restored after  each unit of 
code  corresponding to  one  APL  operation is completed. We 
also generate  code  for  segments like 

A+B+C 

in an integrated  fashion. That is, if B and c are two  arrays, 
part of the result of B+C is stored into A as soon as it is 
generated  without  staying in  any  intermediate storage. 

The quality  of the code  generated is surprisingly good. It 
not only  represents  a significant improvement over that of 
the  interpreter  but is also quite close to  that of FORTRAN 
on  some of our test cases. In  order  to  compare  the execution 
time of the compiled  code with that of the  interpreter, we 
first measure the  times for two (basically) one-line  examples. 
We all know that  the  interpreter becomes much less efficient 
on programs  with loops. Hence, it is easy to claim for  an 
APL  compiler, which is somewhat faster than  the interpreter, 
any desired number as  a speedup  ratio by applying the 
compiler to a  program with a very large loop  count. But with 
one-liners, there is no  comparable  advantage  for  the 
compiler  in  simply  increasing the size of the  input  data (say, 599 
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a vector), because the interpreter becomes more efficient 
when the arrays it  processes become larger. Hence, in a 
certain sense, comparisons using one-liners measure the 
intrinsic speedup of execution that a compiler can provide 
over that of interpretation. When APL compilers become 
widely available, there certainly will  be people accustomed to 
FORTRAN (or Pascal) who will write sequentialized APL 
code. However, to claim a dramatic improvement in 
performance on behalf of the compiler over the interpreter 
based on that code is a bit misleading because people 
knowledgeable in APL do not write code for the interpreter 
in that way. Nevertheless, this kind of speedup is still 
important for the popularization of  APL. Only that,  the  true 
measure of the quality of an APL compiler in these cases, 
should be a comparison with that of code produced by a 
FORTRAN (or Pascal) compiler because the new users that 
an APL compiler can attract are from the FORTRAN camp. 
Thus, we also provide some comparisons with FORTRAN 
compiled code (on similar problems) in the Appendix. 
Execution times are all in milliseconds, and input-output 
times are excluded except in the first example, where there is 
an explicit display. The interpreter is VS APL and  the 
FORTRAN compiler is VS FORTRAN, all running, 
including our compiled code, on an IBM System 370 Model 
308 1. 

Finally, we note  that such standard code optimization 
procedures as common subexpression elimination, strength 
reduction, and loop-invariant code motion are all missing 
from our compiler. Yet the compiler does reasonably well 
without them. The reason, we believe,  is that these 
techniques are needed by traditional sequential languages 
such as FORTRAN  and Pascal to reduce the  number of 
machine instructions in tight inner loops, mostly involving 
arithmetic  computations of vectors and arrays and their 
index calculations. In APL,  these are treated in  the code 
routines for arithmetic primitive functions, and not many 
index calculations appear in the source code. The major 
concerns of the back end of our compiler are so different 
from those in compilers for traditional scalar languages like 
FORTRAN or PL/I  that  not only was there little duplication 
of  effort in implementing this APL/370 back end with other 
scalar language compilers, but it also pioneered new methods 
of code generation and register allocation. 

5. Conclusions 
We  have implemented an APL/370 compiler for a 
substantial subset of  APL, dne comprehensive enough for 
scientific and engineering applications. The compiler applies 
the basic program analysis framework developed by  Allen 
and Cocke for (sequential language) program optimization to 
the unique needs of the APL  language. The compiled code 
executes at a speed 2-10 times that of the interpreter on one- 
line functions. On programs with  large amounts of iteration 
the execution time of the compiled code is not only a 600 

WAI-MEE C 

dramatic improvement over that of interpretation but also 
quite competitive with corresponding code produced by a 
FORTRAN compiler. This makes APL a new member of 
the family  of  languages  with compilers, and hence a suitable 
tool for computationally intensive scientific applications. It 
also introduces a new perspective to the compiler-oriented 
approach to parallel  processing, since automatic extraction 
of inherent parallelism from APL programs should be easier 
than from FORTRAN programs. 

The compiler was written in APL and has approximately 
4000 lines of code for the  front  end and 8000 for the back 
end. 

Appendix 

Example 1 

C11 Ft2.3 
C 2 1 C++/B+FxA+DtE 
C 3 l  O+LC 
0 
Length lnterpreted Compiled ( 1 - 1 1 - 1 ) 

VD  REDUCTE; A ;  B ;  C; F 

5 4 2 
20 4 2 

Example 2 (Finding primes up to N, OIO=l) 

c11 Z+2, ( “ V E ( ~ C ~ L N * O . ~ ) O . ~ ~ C ~ ~ N ~ ~ )  

V 

VZtPRIME  N; V 

/ V + l + 2 x t L  (N-1) t 2  

N Interpreted Compiled FORTRAN 
200 9.5 1.75 2 
500 75.75 5.5 6.25 

Example 3 (Polynomial product, A and B coeficient 
vectors, 0 I O=O) 

C11 C+( (RA+pA)+(RB+pB) - 1 )  p 0  
c 2 1  I+-l 
C 3 1  LO:+(RA=I+l+l)/O 
C41 J+-1 
C 5 1  Ll:+(RB=J+J+l)/LO 
C6lCCVl+CCV+I+J1+ACIlxBCJl 
c71 +L1 
V 

VC+A  POLYPROD B 

Length lnterpreted Compiled ( 1 - 1 1 - 1 FORTRAN 
5 9 <1  <1 

75 1501 8 6.2 

Example 4 (Heapsort, 0 I O = l )  
(code-generation time was  4.879 s) 

V Z+HEAPSORT A 
c11 L+(L ( N + p A ) + 2 ) + 1  
C 2 1  R+N 
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C 5 1 SIFT 
C 6 1 +WHILE 
C 7 1 WHILE2 :+ (RS1) /END 
C81 X+ACll 
C91 ACll+ACRl 
C l O I  ACRl+X 
Clll R+R-1 
C1 2 1  SIFT 
C131 +WHILE2 
C141 END:Z+A 

V 
VSIFT; I; J 

C 11 J+2xI+L 
C 2 1  X+ACIl 
C 3 1 WHILE1 :+ (J>R) /LABEL 
C41 +(J>R)/NEXT 
C5l+(ACJl1ACJ+ll)/NEXT 
C61 J+J+l 
C71 NEXT:+(X<ACJl)  /LABEL 
C81 ACIItACJI 
C91 I+J 
Cl O l  Jt2xI 
C 11 1 +WHILE1 
C1 2 1  LABEL:ACIl+X 

V 

Length Interpreted Compiled Ratio 

75 235 3 78 
5 8 <1 

Example 5 POISSON solver (aIO=O, compiled 2 - 1 - 1) 

c11 Z+lO 
C21+(2tppRMINBU)/O 
[31P+l+-l4pRMINBU 
C41&+1+14pRMINBU 

VZ+SOLVPOISRMINBU; P;&;L;M;S;T;V 

C5I L+-4x(lOO(1&-1)+2~&)*2 
C ~ ] M + - ~ X ( ~ O O ( ~ P - ~ ) + ~ X P ) * ~  
[ : 7 l S + l O O ( ~ & - l ) o . ~ ( ~ & - l ) i &  
C81POISSON1 
C 9 1 POISSON2 

V 
VPOISSON1 

C13s+s+(+/sC1;1*2)*0.5 
C ~ ] T + ~ O O ( ~ P - ~ ) ~ . X ( ~ P - ~ ) + P  
C3lT+T+(+/TCl;l*2)*0.5 
C41 V+Lo.+M 

V 
VPOISSON2 

C11 Z+LS+.x( (S+.xRMINBU+.xT)iV)+.xT 
V 

0 0 0 0 0  0 0 
0 0 0 0 0  0 0 
0 1 0 0 0 - 1 0  
0 0 0 0 0  0 0 
0 0 0 0 0  0 0 
0 0 0 0 0  0 0 

BU 
1 0 5 5 5 5 5 1 0  
5 0 0 0 0 0  5 
5 0 0 0 0 0  5 
5 0 0 0 0 0  5 
5 0 0 0 0 0  5 
5 0 0 0 0 0  5 
1 0 5 5 5 5 5 1 0  

We note that 1 - 1 1 - 1 means we compiled with the 
lengths of  vector parameters unspecified, and 2 - 1 - 1 
means a matrix of unknown length. The second example of 
finding primes demonstrates the APL  style  of coding; most 
likely a sequential algorithm with loops would be adopted 
when  using FORTRAN or Pascal. The third example 
represents the FORTRAN-Pascal style of coding and is  very 
costly  for interpretive APL. The fourth example is  also  of 
Pascal  style, and is unnecessary  for  APL  as it has the grade 
functions t 4 to  do sorting. But we purposely  used that 
example to test the capability of the compiler for WHILE 
loops with function calls at different sites. The heapsort 
example runs for 2 ms  using  Pascal  for a list  of 75 items, and 
we know  exactly  where we can improve the performance of 
our code to make it equal to Pascal. The last example is 
important because the Poisson equation is the kernel of so- 
called weather code which  is  extensively studied by various 
researchers in parallel  processing. For this example, with an 
input of a 7 by 7 matrix, the compiled code executes in 5 
ms, compared to 15 ms for interpretation. We note  that 
POISSON does not have a loop. 

When we examine the generated code, we also  discover 
that the remaining inefficiency is primarily due to  our not 
treating the scalar case separately in our arithmetic code- 
generating function and in our branch function. When we 
do so, we expect to reduce the 8 ms to something very close 
to that of FORTRAN and  to pull  even  with  Pascal on  the 
heapsort example. 
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