Compiling APL.:
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APL Translator
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The Yorktown APL Translator (YAT) permits
functions written in APL to be compiled using an
existing compiler for part of the process. It also
creates tables that allow the APL2 Release 2
interpreter to call the compiled code. The code
can also be called from a Fortran main routine.
This paper outlines the history of APL
compilation, the motivation for producing YAT,
the design choices that were made, and the
manner of implementation. Sample APL
functions and their translations are shown, and
the time required to interpret these functions is
compared with the time required to execute the
compiled code. Possible further work is
discussed.

Introduction
We undertook the work described here to investigate the
extent to which compilation could accelerate the execution
of APL applications (vis-a-vis current interpreters). Our first
step, now successfully completed, was to design and build a
prototype translator that produces source code for the VS
Fortran compiler. We are now embarking on extended
studies of its performance and of the effects of various
modifications to it, e.g., idiom recognition. The translator
itself, being written in APL, will be one of our test
applications.

Throughout this paper, the words “translate,”
“translation,” and so on refer to translation from APL to
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Fortran or another high-level language. The words
“compile,” “compilation,” etc. refer variously, as the context
makes clear, to the transformation of Fortran or another
high-level language into Assembler, the direct transformation
of APL into Assembler, or the entire process of translating
APL to Fortran, say, and then transforming the Fortran into
Assembler.

This paper discusses our translator design and the reasons
we chose it, the way in which we expect the translator to be
used, the code it produces, computational accelerations that
we have measured, and further accelerations that we believe
are possible.

The following section summarizes the characteristics of
the APL language and the reasons for believing that a
compiler would be a valuable supplement to APL
interpreters. Next, we outline the history of previous efforts
to compile APL. In the section Design of the transiator we
discuss the overall form of our translator and how we
decided upon it. Details of our translation methods and
results and of how the translator is used, some sample
translations, and some accelerations we have measured are
to be found beginning with the section Some details of
translation.

Motivation

The fundamental unit of data in APL is the array, a
rectangular structure of essentially unlimited rank containing
numeric or character scalar values. Most APL interpreters
provide three or four storage types for numeric data—
Boolean, integral, real, and (possibly) complex—but
conversions are performed as necessary, and the storage type
of a numeric array is visible to a programmer only
indirectly, by the amount of storage that the array occupies.
No explicit statement binds an array permanently to a
particular rank, shape, or type. The same name may be
given, for example, to a vector and then to a matrix which
has no necessary relationship to that vector.
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APL has a large collection of primitive (built-in)
functions, mathematical, relational, and structural. Each
function accepts as arguments any arrays that are
meaningful for it, not just scalars; the APL processor handles
any indexing that is implicit in the definition of the function.
There are also primitive operators, which have higher
precedence than functions. Operators take functions (and
arrays) as operands and produce functions such as Inner
Product, Outer Product, and Reduce with Axis. The
functions produced by operators are called “derived”
functions. The arguments of a derived function are
sometimes loosely said to be the arguments of the operator
by which it is produced.

In this paper, we use the term “operation” to mean either
a primitive function or a primitive operator, and we
sometimes say “primitive operation” for emphasis.

APL has relatively few syntactical rules. There is, for
instance, no hierarchy of primitive functions: The order of
function execution is determined only by position,
parentheses, and brackets. Contributing to APL’s simplicity
(from the programmer’s point of view) are the systematic
provision for empty arguments in function definitions and
the extension of scalars and other unit arrays to conform to
non-unit arguments where appropriate: The same statement
form is used to add two matrices and to add a scalarto a
matrix; indeed, the very same statement may be executed
sometimes with two matrices as arguments and at other
times with a matrix and a scalar as arguments.

Having arrays as fundamental data types, no declarations,
a rich assortment of primitive functions, simple rules, and
automatic handling of what would be exceptions in many
other languages has made APL a language in which it is
comparatively easy to write programs for a substantial range
of applications.

Implicit indexing of arrays, inclusion of “exceptional”
cases, and the presence of a wide variety of operations often
allow the specification of a large amount of computation by
a very small amount of program text. In such a situation,
interpretive execution of programs can be quite efficient:
Most of the execution time is spent in actual data
manipulation and very little in interpreting the program text.

There are other situations, however, in which the
interpretive overhead looms much larger: where the arrays
are small or sparse or where there are many cases to be
considered, necessitating explicit branching and handling of
scalar elements of the arrays. Furthermore, the freedom to
change not only the value and shape but also the type of an
array requires the interpreter to check the characteristics of
the arguments of each primitive operation each time it is
executed, and this overhead can be significant for small
arrays. (Some of this checking could be done when a
programmer finishes editing a defined function, but much of
it must be done at run time, and in practice interpreters
almost always do it at run time.)
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Consequently, APL is not used for some applications to
which it seems otherwise well suited, because its execution
speed is too slow for them. Indeed, sometimes APL is not
used because the potential user does not know whether or
not its speed would be adequate, and he believes that if the
application were programmed in APL and turned out to run
too slowly, then it would have to be reprogrammed in
another language.

These considerations made the desirability of an APL
compiler clear long ago; there are, however, good reasons
why there is only one commercially available APL compiler
[1]. On the one hand, the pressure for a compiler was
reduced by several factors, among them the aptness of the
language for efficient translation, the excellent quality of the
translators that were written for it, and the fact that the early
APL systems were essentially stand-alone systems and were
well tuned for APL. On the other hand, the freedom that
APL gives the programmer—including explicit and implicit
reuse of names, dynamic establishment of defined functions,
and the execution of variable character vectors as APL
code—has seemed to make the job of compiling APL quite
difficult indeed.

History of APL compilation

The difficulties inherent in compiling APL and especially the
existence of noncompilable expressions in the language have
led to the construction of APL language processors that
cover the spectrum from pure interpreters to pure compilers
(the latter applying restrictions to the statements that are
acceptable for compilation). Hence it is often difficult to
decide whether to call a given processor an interpreter or a
compiler.

The Burroughs APL-700 system could perhaps be called
the first APL compiler, because it was the first interpreter to
keep parse trees during execution and regenerate them only
when necessary. Hewlett-Packard’s APL-3000 [2, 3],
however, is usually credited with being the first APL
compiler. This remarkable implementation went much
further in run-time binding than did APL-700: It compiled
code at run time based on the current storage types and
ranks and even shapes of variables. Unfortunately, the
performance of this system did not meet expectations, in
part because it was not possible to dynamically create and
run HP-3000 machine code, and therefore the target of the
compiler was a relatively high-level intermediate language.
Miller’s design [4, 5] goes beyond APL-3000, using type
inference to support code generation over a span of more
than one APL statement and to reduce the number of checks
required to validate the dynamically generated code on each
occasion when it might be reused. Guibas and Wyatt [6],
followed by Budd [7] and Treat and Budd [8), have
continued to refine these code generation methods.

All these compilers generate code at run time, based
largely on dynamic information, and aim for code that is
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quite specific to the instance. Clearly, it can be costly to
regenerate the compiled code for a statement when, on a
subsequent execution, the code previously compiled for it is
discovered to be no longer valid. More extensive inferring of
type [9, 10] can reduce the frequency with which such
situations occur, as can the generation of code that is more
general than is immediately required; typically these
methods generate code that is specific for storage type, but
not rank or shape. Another disadvantage of run-time code
generation is that run-time static analysis is necessarily
limited in scope, usually to a single statement or at most a
few neighboring statements, whereas a thorough analysis of
APL applications should not only encompass all of each
procedure (defined function) but also be interprocedural.
Although at run time information may be available that
cannot be deduced during static analysis but that could have
a substantial positive effect on the generated code, such as
whether or not a particular instance of Take is an overtake,
the very fact that it cannot be known statically implies that it
may vary from one execution to the next and thereby cause
excessive code regeneration.

The code generation schemes in these compilers are all
based on the work of P. Abrams [11]. Abrams suggested two
fundamental code improvements (“optimizations™) for APL
code. The first, which he called beating, refers to a method of
generating code for sequences of APL selection operations as
if the sequences themselves were individual selection
primitive operations. The second, called drag-along, involves
practices now commonly known as loop jamming (or loop
merging) and lazy evaluation. (Lazy, or demand-driven,
evaluation computes values when they are needed insofar as
possible, rather than when their computation appears in the
program, so that if a selection operation picks elements from
a computed temporary variable, only the selected elements
of that variable will be computed.)

There is a second line of inquiry into APL compilation,
based on the translation of APL to other high-level languages
[12-15]. All these studies are based on the one-for-one
replacement of APL primitives with code in the target
language, and none use type inference as an aid to code
generation. Even so, they all demonstrate the important fact
that even the most straightforward approaches to APL
compilation can yield dramatic improvements in many
cases.

The only commercial APL compiler available today is
offered by STSC, Inc. [1]. This compiler generates code for a
restricted set of cases of the APL primitives, and
concentrates on improving scalar code. For example, at the
time Weigang’s paper appeared, code for Take was generated
only in the case of vector right arguments. Finely tuned code
for T+ I+1 forscalar I and +*LABEL is generated. The
code is produced at compile time, not at run time, and is
permanently merged with code to be interpreted. Code
improvements are avoided which might produce run-time
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error reports differing from those that would be given were
the code interpreted. This compiler performs code
improvement on the scalar code it generates, as opposed to
transforming the APL source before code generation, and
consequently the improvements it makes resemble more
those of compilers for other languages, and are less like those
based on Abrams’ work. A compiler that is similar in spirit
to the one at STSC has been built at Cornell [16], but we do
not know whether or not it has been developed to the point
where it is in production use.

Our compiler differs from each of its predecessors by
virtue of at least one of these characteristics: The defined
function is the unit of compilation; thorough static
interprocedural analysis is carried out; code improvement is
done at the source level (as well as on the generated code,
and in addition to the code improvements made by the
Fortran compiler); all cases are compiled for each
compilable primitive operation; intermediate code in a high-
level language is available for the programmer’s inspection;
machine code is generated; and applications may consist of a
mixture of compiled functions and interpreted functions.

The three things that we believe most distinguish our
compiler are that we require variables to be of known fixed
rank; we do a thorough analysis of the shapes of variables
(including in the analysis the shapes and upper and lower
bounds on shapes that the programmer has put in
declaratory comments); and we use this shape information
to tailor the generated code to many special cases.

There is a series of excellent papers discussing various
aspects of APL compilation [17-20]. Wai-Mee Ching
introduced us to type inference schemes, and his own work
on APL compilation is based on a definition of compilable
APL that is similar to ours. He has worked on the problem
of generating code for parallel machines [21], and is
currently working on an APL compiler that generates
System/370 code directly [22].

Design of the translator

Writing a compiler to translate APL to Assembler would
have been a very substantial job for us, and much of the
effort would have duplicated work that has already gone into
other compilers. So, to make our task feasible and to allow
us to concentrate on the problems unique to APL, we
decided to translate APL to a high-level language already
having a compiler. We chose Fortran (in many ways the
lowest of the high) as the target language (or first target
language), since it has compilers that produce efficient code
and therefore can provide a reasonable test of the viability of
our approach.

Since we wrote our translator in APL and we translate
APL to a language for which compilers are generally
available, the entire compilation process is portable to a wide
range of systems, from large mainframes to personal
computers. In fact, we have already run compiled programs
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on the IBM 3090 system, making use of the Vector Facility,
as well as on the IBM 308X systems that were our original
targets.

We soon saw that the use of a high-level intermediate
language could be beneficial not only to us, by reducing the
amount of work we had to do, but also to some users of the
compiler. All that was needed was to make the intermediate
code as readable as possible and leave it exposed to the user,
rather than make one seamless package of our translator and
the Fortran compiler. The translated code need never be
looked at, but a programmer who is familiar with Fortran
can examine it and perhaps change it or—much better—
induce changes by changing the original APL code.

To make the translated code as readable as possible we
eliminate some needless labels and CONTINUE statements,
consolidate some sequential GO TO statements, evaluate
some arithmetic expressions involving constants, and so on,
in spite of the fact that these changes will make no difference
in the compiled code, and we indent the bodies of DO loops
and block IFs. To make correlating the original and
translated code easy, we include Fortran statement numbers
(ISNs) in the sequence field of the Fortran code, marked to
indicate where translation of a set of APL simple expressions
begins and ends, and provide an APL listing. (A block of
several Fortran statements may collectively translate each of
several APL simple expressions.) A sample listing is shown
in the section Examples of code generation. Such a listing
displays the original APL statements, each followed by the
expressions into which it has been analyzed. Each expression
is tagged by ISNs, to show where its translation can be
found.

Having decided to make use of an existing compiler, we
next had to consider how we wanted to restrict the APL
code that we would translate, in order to ensure significant
acceleration of execution. Only when the rank and type of
each variable are fixed and known can real opportunities for
performance improvement be found and burdensome run-
time computations be avoided. Therefore, our primary
requirement was that these attributes be constant and be
available to the compiler. A localized name can be reused
for a variable of a different rank or type; we just treat such
reuse as if a different name had been used. If, however, such
reuse were to occur for a global name or if a given instance
of any name were to refer at various times to arrays of
various ranks and types, or even just to an array of unknown
rank or type, there would be little hope of producing
Assembler code for the statement in which it appeared
whose execution would have much advantage over
interpretation of that statement.

We also had to consider how to handle those APL
expressions that cannot really be compiled, such as
Evaluated (Quad) Input and Execute with an argument
whose value is unknown. We did not want applications for
which the compiler could be used to be restricted to a subset
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of the APL language, so we had to accept the existence of
applications for which some code would be compiled and
some would continue to be interpreted. We saw two
principal ways of allowing for interpretation.

We could package a rudimentary interpreter with the
compiled code and maintain, during execution, the tables
that would allow interpretation of statements that could not
be compiled. Incorporating an interpreter in our run-time
support, however, would be too large a job for a small group
and is unnecessary for a prototype.

The alternative we chose was to use the VSAPL or APL2
interpreter for code that must be interpreted and to call the
compiled code from it. This choice involved little work for
us because we were fortunate enough to have available both
an experimental auxiliary processor that allows VSAPL to
call programs written in Fortran, PL/I, or Assembler
(produced at the IBM Heidelberg Scientific Center) and an
interface in the APL2 program product (Release 2) [23] to
Fortran, Assembler, and REXX.

We chose the defined function as the unit of compilation:
A function must be compiled in its entirety, together with all
the functions it calls, or not compiled at all. Furthermore,
the functions to be compiled would, like locked functions,
not be susceptible to suspension.

There were three major reasons for this choice:

& Allowing interpreted and compiled code to be interspersed
in a defined function precludes global flow analysis and
certain code improvements.

o Frequent crossing of the interface between compiled and
interpreted code creates unwanted overhead.

o The separation between interpreted and compiled code
occurs at points that are meaningful to the programmer,
and each translated procedure corresponds to one of his
functions.

What constructions would we interpret rather than
compile? That is, what constructions would render a
function containing them unacceptable to our translator? In
addition to expressions that are essentially not amenable to
compilation, there are expressions that severely inhibit the
analysis of a function containing them, such as a branch to a
computed value that could be the number of any line in the
function, and we wanted to place them outside the pale also.

In formulating the rules for the subset of APL we would
compile, we were guided by six main considerations:

o Whether an expression can be executed with minimal
run-time support.

® Whether its execution can actually be accelerated by
compilation.

® Whether its presence would severely degrade analysis and
code improvement.

o Whether it commonly appears in APL applications.
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e Whether it involves really bad programming practices
(which we see no need to support), e.g., branches to
absolute line numbers other than 0 and 1.

¢ What rules will be easy to learn and remember.

In keeping with these considerations, we have imposed
several requirements for a function to be accepted by our
translator. The principal ones are the following:

e There must be no need for run-time syntax analysis;
hence, the argument of any Execute must have known
values and there must be no Quad Input, dynamic
establishment of function definitions, or the like.

e To facilitate analysis, all branch targets must be labels,
zero, one, or empty (fall-through), and they must be visible
and manipulated in certain ways; i.e., branch statements
must be of certain forms. Most of the commonly used
branch expressions satisfy this requirement.

e The storage type and rank of each variable in the function
must be known. (Knowledge of the shape, or at least
bounds on the dimensions, is helpful, but not essential.)
Usually when these attributes are given for a relatively few
variables in a function they can be inferred for the
remaining variables and expressions.

e Distinguished axes must be known. If they are indicated
by constants or variables (of known value), then the index
origin must be known also.

e Scalar extensions must be deducible or explicitly indicated.

Note that we compile all VSAPL operations except system
functions and functions that involve the execution of code
that is not visible to the compiler. We do not yet, however,
handle recursion, shared variables, or the new APL2
constructs. The restriction on recursion could be lifted by
retargeting the compiler to another compilable high-level
language.

The section How the translator is used tells how the
programmer may explicitly give the translator information
that it cannot infer.

Clearly, the increased speed offered by our compiler is not
free. In order to take advantage of it the programmer must
understand the requirements of the compiler, be or become
familiar with the application he wants to compile, determine
what functions should be replaced by compiled versions,
think carefully about the array attributes to be used, and
make any required modifications.

If an APL compiler such as ours becomes generally
available, programmers will presumably keep its
requirements in mind when creating applications which
might someday be compiled. In particular, they should
isolate the computationally intensive parts of the application
in defined functions that conform to the requirements of the
compiler; include, in comments, all nonderivable
information about types and ranks and, if feasible, shapes or

IBM J. RES. DEVELOP. VOL. 30 NO. 6 NOVEMBER 1986

upper and lower bounds for shapes; and, if significant
attributes are unknown, instrument the application to
accumulate data regarding them.

Some details of translation
The two main steps of translation are analysis and code
generation.

Analysis provides information that is required for code
generation but that does not appear explicitly in APL
programs, such as ranks and storage types of arrays,
parameters for dimenston statements, and expressions for
shape computations. In addition, code improvements that
would generally be missed by Fortran compilers are
performed, such as eliminating common APL expressions
and statically evaluating expressions of the type that often
appear as left arguments to Take and Reshape.

Usually the attributes of variables can be inferred from the
APL code, and we go to considerable trouble to do so,
although the programmer may sometimes be asked to help
(see How the translator is used). Indexing betrays rank,
Boolean and arithmetic functions give type information,
explicit constants often appear in dimensions and may imply
nonemptiness, and relations between the shapes of variables
are often deducible (our restriction on scalar extension is
intended not only to simplify the generated code but also to
allow a more thorough analysis). For example, clues such as
W<(2+pV )4V or Y«(pX)pV are used to minimize the
information required of the user and to simplify the code
that is generated. (The first clue tells us that pV is less than
oW and that no check need be made to see whether W is
empty, the second that pX and pY are equal.)

The analysis produces, among other things, a list of simple
APL expressions to be executed, in the order in which they
appear (or are implied) in the APL function. Frequently, we
combine operations in the generated code, to avoid
executing similar nests of DOs several times, or to avoid the
allocation of storage for more than one element of the
temporary result of an expression that, if operations are
combined, can have each of its elements used immediately.
Because the generated code often depends upon the ranks,
shapes, and storage types of the variables involved, it is a
somewhat ticklish business to determine whether it is
possible or advantageous to combine the translations of a set
of operations.

Three goals of the prototype translation process itself are
clarity of the methods of translation, ease of modification of
the translator, and ease of retargeting to other languages
having compilers. For code generation, we have found it
convenient to use an archetype (an object similar to a
macro) for each APL primitive operation. The archetypes
clearly display the translation, they can be edited like any
other program, and their further translation can depend
upon the target language, although of course they must

contain some text specific to the currently intended target 587
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language. The language of the archetypes contains rank-
independent abbreviations for frequently occurring text,
such as DO nests and branches based on whether an array is
empty. There is syntax for selecting portions of archetypes,
since a large part of the accelerations we have achieved
comes from using code tailored to the special cases
uncovered by our analysis of the functions being compiled.

We assume that applications that are being compiled will
have been developed and debugged using interpretive
execution. We do not provide such facilities as tracing and
suspending of execution, and we make no general provisions
for handling unanticipated errors that occur when the
compiled code is executed. One source of acceleration is the
elimination of most domain checking: It is the programmer’s
responsibility to incorporate checks wherever necessary in a
function that is to be compiled. This requirement, we might
observe, is only what is expected of fully interpreted code
that is to be in general use, where the users must be
protected from APL error messages.

We do provide for run-time checks for bounds on array
shapes and for equality of array shapes (absence of scalar
extension); these checks are incorporated or omitted from
the generated Fortran text at the programmer’s option.

The organization of compiled applications

APL applications are arranged in workspaces, which are
collections of functions and data, and this arrangement
persists after compilation, with the difference that some of
the functions that are compiled are (automatically) replaced
by functions that refer to Fortran subroutines. Each
replacement APL function has the same name and syntax as
the one it replaces, but consists primarily of a call to a
Fortran subroutine through a suitable interface provided by
the host APL system, such as the name association
mechanism in APL2 [23]. From a user’s viewpoint, there is
no difference between the way an ordinary APL application
is used with pure interpretation and the way it would be
used after compilation. On the other hand, it is not
necessary to maintain a workspace arrangement after
compilation (and thereby dependency on an APL host
system) if all functions in an application have been compiled
and appropriate Fortran main programs are written to call
them.

A set of functions may be compiled piecemeal: It is not
necessary to compile simultaneously all the functions in a
workspace that are eventually to be compiled. Whenever a
function name is explicitly presented to the compiler,
however, with specific types and ranks for its arguments, that
function and all functions it calls are compiled (except for
called functions that have been compiled previously and not
altered since). A directory is maintained that contains APL
function names, associated Fortran subroutine names, and
descriptions of parameter lists; it is used to avoid
recompilation whenever possible. This information is also
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used to construct whatever is needed by the interface
through which the compiled Fortran subroutines are called.
In addition, the directory contains the text for run-time error
messages. Its name is based on a three-character sequence
that is given at the time of translation, unless the default
sequence YAT is to be used. The chosen sequence is also
used as a prefix for the names of the Fortran subroutines
produced during a compilation, and is therefore similar in
function to a workspace name.

When a function is compiled because it is called by
another function, and not because its name has been given
explicitly to the translator, that function will not necessarily
be replaced in the workspace. APL applications often
contain functions whose parameters can meaningfully vary
in rank and storage type. These functions serve as additional
primitive operations, and the translator treats them in much
the same way as it treats true primitive operations. All APL
operations apply to arrays of various ranks and types; a
requirement for compilation is that the parameters of every
operation at every distinct codepoint must be of fixed rank
and type. This same principle is applied to called functions;
the parameters of a called function may be of different type
and rank for different calls at different codepoints, but not at
the same call. Whenever such a function occurs in a
compilation, it is compiled separately for the different cases,
and therefore could not be replaced by a call to a single
Fortran subroutine.

The separate compilation of APL functions under a
variety of type and rank circumstances presents real
opportunities for specializing the resulting code in the
various cases. For example, it is not uncommon in these
functions that the parameters are regularized in rank early
on, so that the principal computation applies to objects of
fixed rank. An example of an expression that regularizes
rank is

X«("2411,04)p4

If A is a scalar, then X is a one-by-one matrix; if 4 is an
N-element vector, then X is a one-by-N matrix, and if 4 is a
matrix, then X is identical to 4. By statically “evaluating”
the expression

241 1,04

the translator is able to recognize these different cases,
generate simple code for that statement, and, in the first two
cases, generate specialized code whenever the shape of X is
involved.

How the translator is used

In the simplest possible case, the programmer loads the
translator, copies the functions to be compiled, and gives the
names of the entry points—the functions that are called by
users of the workspace. The functions whose names are
given are compiled, together with any functions they call.
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The programmer copies into his workspace the file
containing both the newly created versions of his functions
and the interface data for the Fortran routines. The
application runs faster than the old one, but otherwise acts
just the same, in the absence of erroneous data for which the
programmer has failed to put checks in the APL that was
compiled.

Furthermore, instead of running the compiled functions
from APL, the programmer can call them from a Fortran
main routine.

Other steps may be necessary or desirable, however.

The application may contain forbidden expressions. Then,
for each function containing such an expression, the
programmer must either change the function or not include
in the argument to the translator its name or the name of
any function calling it. To help him find illicit material, the
translator has a checking facility, which produces a report
listing the expressions that cannot be compiled but whose
inclusion is implied by the given set of entry points. If he is
unfamiliar with the application programs or their execution,
he can determine in which functions most of the execution
time is spent using a timing tool such as [24], perhaps
together with a workspace analysis tool such as [25]. He can
then analyze the cost (if any) of modifying the offending
functions to allow them to be compiled and the expected
benefits from doing so. We believe that in most applications
a relatively few functions consume most of the CPU time,
and no more than those few functions would need to be
modified.

The application may contain variables whose attributes
(e.g., domains) cannot be inferred from the APL code. To
allow the programmer to keep these attributes with the
function to which they pertain, and not in some separate
table that gives rise to logistical or documentation problems,
and to avoid introducing any new syntax into APL—both
for the sake of avoidance itself and so that the language for
the interpreter and the language for the compiler remain
identical—we allow declaratory comments. They begin
ADCLan, contain keywords such as SHAPE and
DOMA TN, keywords referring to upper and lower bounds
for dimensions along various axes, and so on, and may use
expressions that refer to other variables in the function or to
global variables present in the workspace at the time of
compilation.

We emphasize again that we make every effort to
determine attributes from the APL code, and thus to
minimize and perhaps eliminate the need for the
programmer to insert declaratory comments.

The programmer can examine the translated code and
perhaps make changes in it. He can, for example, specify
that the storage type for a given variable is two-byte integer
rather than four-byte. He can perhaps make changes to
increase execution speed; if feasible, the better way for him
to do this is to revise his APL functions to induce the
changes he wants.
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Examples of code generation
To give some idea of the code we generate, we discuss a few
instances.

A rather complicated APL primitive function in terms of
code generation is Take, which is so frequently used that the
code for it must be quite efficient. Its right argument can be
any array. Its left argument is a vector of integers, one for
each dimension of the right argument. The rank of the result
is the same as that of the right argument, and its shape is the
absolute value of the left argument. Each element of the left
argument indicates how many of the corresponding
subarrays of the right argument—rows, columns, or
whatever—are to appear in the result, and its sign indicates
where they are to come from; e.g., 5 indicates the first five
subarrays and —35 the last five subarrays. If the absolute value
of an element exceeds the number of subarrays along the
corresponding axis, then fill elements (zeros or blanks) are
inserted in the result to make up the deficit. If the element is
positive, the fill elements follow the selected subarrays;
otherwise they precede them.

The simplest case occurs when the left argument is known
to be positive, fill is known to be unneeded, and the result
can be given the same Fortran name as the right argument.
For this case we need only set the shape of the result; no
other code is required. (For an array of variable shape, we
distinguish between its current shape and its maximum
shape as determined by the maximum value of each of its
dimensions, which determines the storage area allotted to it
and is presented to Fortran simply as its dimension.) Thus
X<54X produces, when the length of X is known to be §
or greater, only

JiIX=5

where J1X is the length of JX, the Fortran variable
corresponding to X. (Our standard means of obtaining a
Fortran name for a variable is to prefix its APL name with a
J, V, A, or E, depending upon whether its storage type is
integral, real, character, or Boolean. The shape variables for
a variable whose APL name is NAME are called JINAME,
J2NAME, etc. Names of implicit subscripts begin with 1.)

In the extreme case for Take, it is necessary to compute at
run time the fill to be inserted along each axis (perhaps
none), at which end of the axis that fill is to go, where the
elements from the right argument are to be placed in the
result, and from what part of the right argument they are to
come. If the right argument to Take is a singleton array, then
the result can be constructed by creating it completely with
fill elements and then placing the single element of the right
argument in the appropriate position. If fill is to be added
along several axes of a non-singleton array, on the other
hand, then several DO nests are required to insert the fill
efficiently.

Although Catenation is not so complicated as Take, it has

similar simplifications in certain cases. 4«4 , B vyields, 589
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under suitable conditions, only

DO 240 I11=1J1B
240 JAJT1A+11) = JB(I1)
JIA=J1A + J1B

where the DO loop appends the elements of B to those of A
and the following line sets J1A to the new length of A.
Currently, a variable whose length may possibly vary is kept
left-adjusted in the storage allotted to it, and a pointer
indicates the end of the variable, as shown in the example.
We intend also to maintain a pointer indicating the
beginning of the variable in its allotted storage and to place
the variable wherever it seems best in that storage, so that
A+B , A can likewise be handled without moving any of the
original elements of 4.

As an example of our use of the same DO nest for several
APL operations, consider the code generated for the
sequence

A<B+C-D
M<N+P

where M and A are known to be two-dimensional arrays of
the same shape. The loops for Subtract and Add can be
combined and their computations merged in one statement
because the temporary C - D is used in the addition and
nowhere else and need never be stored. The division can also
be included in this same nest because of the similarity of
shapes. (Since we handle only certain errors, the question of
preserving order so as to get the right error message—or
indeed, in the case of redundant computation, any error
message—does not even arise.) From these considerations
we get, say,

DO 150 12=1,100
DO 150 11 =1,J1A
JA(I1,12) = JB(11,12) + (JC(11,12) — JD(I1,12))
150 VM(11,12) = VN(I1,12)/VP(I1,12)

Redundant parentheses are often retained in Fortran
expressions, in order both to make them correct when read
with either Fortran’s or APL’s order of execution in mind,
thus avoiding any confusion, and—where the two orders
yield the same result—to omit nontrivial calculations,
involving the hierarchy of Fortran operations, that would
enable at most a trifling improvement in our output.

When it is possible and there are no countervailing
considerations, loops are put in the order just shown, so as
to run through contiguous storage locations, thereby
minimizing cache faults, translation-lookaside-buffer misses,
and page faults, and also to ensure that the benefits of
interleaved storage are obtained. To be sure, the amount of
overhead for testing and resetting subscripts can be
minimized for a DO nest by putting the loops in order of
increasing number of traversals. When we tested the effect of
various nesting orders on execution time for the IBM 308X
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and IBM 3090 (scalar hardware), however, storage contiguity
was almost always the dominant factor; in the cases where it
was not, the 308X was slightly faster for the order based on
number of traversals, but the 3090 was faster, by a larger
margin, for the order based on contiguity.

The balance shifts when we consider not just reordering
but removing DOs. We ran some tests in which we unrolled
short loops that were traversed only two or three times. The
overhead that was thus avoided more than offset any
resulting disruptions in storage contiguity: For both the
308X and the scalar 3090, execution was accelerated even
when the loop that was unrolled was the outermost one.
During our postprocessing, therefore, this code:

DO 350 13=12
DO 350 12=1J2A
DO 350 H =12
350 JA(I1,12,13) = JB(11,12,13) = JC(11,12,13)

would be changed to this:

DO 350 I2=14J2A
JA(1,12,1) = JB(1,12,1) » JC(1,12,1)
JA@2,12,1) = JB(2,12,1) » JC(2,12,1)
JA(1,12,2) = JB(1,12,2) « JC(1,12,2)
350 JA@2,12,2) = JB(2,12,2) « JC(2,12,2)

Our aim is to produce code that will generally give the
best results. A programmer may find, for some section of his
program, that our nesting order or unrolling is suboptimal
for execution on a particular target computer, say, or as
input to a particular vectorizing compiler. If that section is
critically important, he can edit the Fortran program to
obtain the code that he has found to be faster.

In the previous example, merging code for operations
saved loop overhead and storage space. It can also save
computation. Consider the setting of a Boolean variable to
indicate whether a vector X is equal to one of the rows of a
matrix—e.g., whether a name appears in a list:

Z<+v /YA =X, Both the Or and the And offer the
opportunity for quitting early, but nevertheless the entire
inner product would have to be formed if the code
generating it were not merged with the code for Reduce. (In
fact, Inner Product itself is handled by merging code for
“Midproduct” into code for Reduce. We define Midproduct
as a derived function that applies the right operand of Inner
Product to its arguments, producing an array whose rank is
one less than the sum of the ranks of the arguments; Inner
Product is then completed by reducing this array using the
left operand. Midproduct might someday be made available
directly to users of the compiler.) Merging Inner Product
into Reduce exploits “lazy evaluation” (cf. the section
History of APL compilation) to the utmost in the generated
Fortran code:
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DO 1020 I =1J1Y
DO 1000 I2=14J1X
IF (NOT.(AY(1,12).EQ.AX(12))) THEN
F26 = .FALSE.
GO TO 1010
END IF
CONTINUE
F26 = .TRUE.
IF (F26) THEN
EZ = .TRUE.
GO TO 1030
END IF
CONTINUE
EZ = .FALSE.
1030 CONTINUE

1000

1010

1020

A similar example is provided by this APL fragment,
which produces the index of the row of LI ST in which
WORD appears:

aDCLAaCHARACTER DOMAIN LIST ,WORD
ADCLAS5000 18 SHAPE LIST

aDCLA2 SHAPFELBS WORD

nDCLa18 SHAPEUBS WORD

010+«1

I+ (LISTL;1pWORD]IA.=WORD)11

A lower bound (SHAPEL BS) for the shape of WORD is
given in order to avoid additional code for a special case.
The index origin is explicitly given to simplify the code,
since the index I is dependent upon it. For simplicity,
WORD is presumed to include a final delimiter if necessary.
The declaratory comments and specification of the index
origin are included to make this example complete in itself;
in a larger context the information in some or all of these
statements might be derivable and those ones might not
appear. This fragment is translated to

DO 1020 11 =1,5000
DO 1000 12 =1,J1WORD
IF (NOT.(ALIST(I1,12).EQ.AWORD(I2))) TH.EN
F37 = .FALSE.
GO TO 1010
END IF
1000 CONTINUE
F37 = .TRUE.
1010 IF (F37) GO TO 1030
1020 CONTINUE
1030 Ji=11

Since all operations have been merged, not only may
execution end early for both the Inner Product and the
Dyadic Iota, but also the Monadic lota and the use of its
result to index L Z.ST appear to vanish—they have no
computational cost. Notice that, although LI ST is

Z«¥Y F X
£11 ADCLa INTEGER DOMAIN Y, X
[21 aDCLa 3 5 SHAPE Y
€31 ADCLR 3 5 3 5 SHAPE X
{43 Z+(Y*2) o0 +Y*2

[51 Z+Z+xX

An example of a complete APL function.

SUBROUT INE YATOLO(VZ ,M1Z,M22,M37,M42,012,J2Z,J3Z,J42,JY, X, JYATOE, (1

CcJYATOM)
IMPLICIT CHARACTER(A-D), LOGICAL*1(E-H), INTEGER()-P), REAL*8(Q-Z) (2)

DIMENSION VZ{M1Z,M2Z,M32Z,M42),J¥(3,5),JX(3,5,3,5),¥29(3,5) (3)
¢ Translated to VS Fortran at 4:23 p.m., Nay. 7, 1986 by BLVersion
¢ 3 & CGVersion 6, with 7 6 5 as global value of COMBINE.
JYATOE = 0 (4)
JYATOM = 0 (5)
DO 1000 12 = 1,5 (6
v29(1,12) = DBLE(JY(1,12)) ** 2 7
v29(2,12) = DBLE(JY(2,12)) ** 2 8
1000 v29(3,12) = DBLE(JY¥(3,12}) ** 2 9)
00 1010 14 = 1,5 {10
DO 1010 13 = 1,3 11
D0 1010 12 = 1,5 12
DO 1010 11 = 1,3 13
(F (IX(11,12,13,(4).6T.0) THEN %
L33 =1 5
ELSE (F (JX(11,12,13,(4).LT.0) THEN 16
133 = -1 17
ELSE 18
L33 =0 19
END IF 20
1010 VZ{11,12,13,04) = (v29(11,12) + v29(13,14)) + L33 21)
Nz =3 (22)
J2Z2 = 5 (23)
3z =3 (24)
Jhz =5 (25)
END (26)

The Fortran translation of the APL function shown in Figure 1.

performance of this code would be improved if the words
were placed in the columns of L I ST rather than in the
rows (and the arguments of the Inner Product
correspondingly altered).

Figure 1 shows an example of an entire (small, rather
trivial) function. Its Fortran translation is shown in Figure 2
and the corresponding listing in Figure 3.

Several points about this example are worth noting.
Fortran statement numbers 4 and 5 in Figure 2 set up
JYATOE and JYATOM, the variables that are used for run-
time error handling; there are no reportable error conditions
in this function. The square of JY, although it is embedded

arranged optimally for the APL storage order, in Fortran the  in the outer product in the original APL, in Figure 1, is 591
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APL line number, then the original APL statement

+ Fortran ISNs; APL statement translated there

(4) JYATOEND+0

{5) JYATOMSG+0

{01l Z«Y F X

11 ADCLa INTEGER DOMAIN Y,X
[21 ADCLA 3 & SHAPE Y

31 aDCLa 3 5 3 5 SHAPE X

(6-9) YATOL2 :

tu] Z+(T%2) 0 +Y*2

(6-9) V29<«JY*2

[5] Z+Z+xX

(10-21) VZ« (V290 .+V29)+133+xJX
(22) J12+3

(23) J2Z+5

(2u) J3%Z«3

(25) JU4Z+5

(26) YATOLO :

The listing produced with the Fortran translation shown in Figure 2.

Table 1 Comparison of timings for defined and primitive
Grade functions.

Size Ratio of IBM 308X execution times
Interpreted/ Compiled| Primitive
Compiled
10 124 —
100 148 2.8
1000 151 1.8

Table 2 Comparison of timings for defined and primitive
Matrix Divide functions.

Size Ratio of IBM 308X execution times
Interpreted/ Compiled| Primitive
Compiled
5,5 7.6 5.0
10,10 6.5 27
20,20 39 2.1
40,40 25 1.9
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calculated separately in the Fortran because its elements are
used repeatedly in the outer product. In the listing, Figure 3,
APL statement 5 appears before statement 4’s expressions
have been completely shown, because the Outer Product in 4
is merged with the operations of statement 5, and therefore
the expression labeled (10-21) applies to both
statements, Were Signum JX implemented in Fortran as a
single statement (in addition to the DO nest in which it
appears), the expression that defines Signum JX would
appear right in the statement that sets the elements of VZ.
Since in fact it requires several statements, a variable must
be set; however, those statements can appear in the DO nest
for the final addition and need set only a scalar, since this
value is not used except in the addition. ISNs 22 through 25
set the shape variables of the result.

Sample execution times for compiled and
interpreted code

1t is interesting not only to compare the speed of interpreting
some APL code with the speed of executing a compiled
version of it, but also to compare the speed for the compiled
version with that for a finely tuned Assembler version.
Therefore, APL primitive functions, for which one can time
the (Assembler) interpreter code, make good test cases when
defined APL functions that model them are available. Of
course, the comparisons are not likely to be in any sense
exact; the APL models may diverge from the algorithms the
interpreter employs, and techniques may be used in the
Assembler coding which are not available in APL or which
would be avoided there because they would be obscure.
Nonetheless, the comparisons are useful, giving some notion
of the accelerations one can expect for various kinds of APL
programs and of possible bounds on such improvements.

We have two such examples. They are of special interest
because they represent extremes of APL coding,

The first example is an APL defined function {26] in
which essentially only scalars appear as arguments to
operations, except for the Index function. It produces the
same result as APL’s primitive ordering function, which is
called “Grade” and sometimes miscalled “Sort” although it
yields a permutation vector and leaves its argument
unchanged. The comparisons to be made, then, are between
this low-level defined function as interpreted and as
compiled, and between the compiled version and a simple
call to the interpreter, via a single statement of the form
Z+«AR, almost all of whose time will be spent in the Grade
code. In the defined function, interpretive overhead looms
large, as can be seen in Table 1. The Assembler routine—the
code for the primitive Grade function in VSAPL—runs
somewhat faster than the compiled code, however, as seen in
the right-hand column. (Grade was too fast to time
meaningfully for a vector of length 10.)

In summary, our compiled version of an APL model for
Grade is 124 to 151 times faster than the model as
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calculated separately in the Fortran because its elements are
used repeatedly in the outer product. In the listing, Figure 3,
APL statement 5 appears before statement 4’s expressions
have been completely shown, because the Outer Product in 4
is merged with the operations of statement 5, and therefore
the expression labeled (10-21) applies to both
statements, Were Signum JX implemented in Fortran as a
single statement (in addition to the DO nest in which it
appears), the expression that defines Signum JX would
appear right in the statement that sets the elements of VZ.
Since in fact it requires several statements, a variable must
be set; however, those statements can appear in the DO nest
for the final addition and need set only a scalar, since this
value is not used except in the addition. ISNs 22 through 25
set the shape variables of the result.

Sample execution times for compiled and
interpreted code

1t is interesting not only to compare the speed of interpreting
some APL code with the speed of executing a compiled
version of it, but also to compare the speed for the compiled
version with that for a finely tuned Assembler version.
Therefore, APL primitive functions, for which one can time
the (Assembler) interpreter code, make good test cases when
defined APL functions that model them are available. Of
course, the comparisons are not likely to be in any sense
exact; the APL models may diverge from the algorithms the
interpreter employs, and techniques may be used in the
Assembler coding which are not available in APL or which
would be avoided there because they would be obscure.
Nonetheless, the comparisons are useful, giving some notion
of the accelerations one can expect for various kinds of APL
programs and of possible bounds on such improvements.

We have two such examples. They are of special interest
because they represent extremes of APL coding,

The first example is an APL defined function {26] in
which essentially only scalars appear as arguments to
operations, except for the Index function. It produces the
same result as APL’s primitive ordering function, which is
called “Grade” and sometimes miscalled “Sort” although it
yields a permutation vector and leaves its argument
unchanged. The comparisons to be made, then, are between
this low-level defined function as interpreted and as
compiled, and between the compiled version and a simple
call to the interpreter, via a single statement of the form
Z+«AR, almost all of whose time will be spent in the Grade
code. In the defined function, interpretive overhead looms
large, as can be seen in Table 1. The Assembler routine—the
code for the primitive Grade function in VSAPL—runs
somewhat faster than the compiled code, however, as seen in
the right-hand column. (Grade was too fast to time
meaningfully for a vector of length 10.)

In summary, our compiled version of an APL model for
Grade is 124 to 151 times faster than the model as
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interpreted, depending on the length of the vector whose
grading vector is to be computed, while the actual primitive
in APL is about twice as fast as our version.

The other example is a defined function that describes the
VSAPL routine for the matrix-division primitive function
[27]. In this defined function, many operations have array
arguments. Here, the interpreter’s efficient inner loops show
to advantage; with a reduction in relative interpretive
overhead as the arguments grow, the advantage of the
compiler is less for larger arguments, as can be seen from
Table 2.

These two examples are reasonably typical of our
experience. We have compiled and timed a number of other
APL programs and found that they ran from 2 to 250 times
faster after compilation.

We believe that the results for these examples demonstrate
that it is well worthwhile to compile APL through an
intermediate language. We look forward to studying the
performance of many programs compiled from APL and
using the results to improve our translations.
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