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Theoretical  studies on the  scanning  tunneling 
microscope  and its spectroscopic  version  are 
reviewed.  This  research  has  shown  that  the 
conductance of the  tunneling  electrons is 
strongly  influenced by  the  classical  image 
potential.  The  introduction  of  this  potential 
increases  the  conductance,  although  the  slope 
of the  logarithm of the  conductance  versus 
electrode  separation  remains  practically 
constant.  The  image  force  also  has  focusing 
effects on the  tunneling  electrons aFd produces 
a  minimum in the  resolution  for -5 A electrode 
separation.  Spectroscopic  levels  have  been 
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calculated  for  the  image  states  held  by  the 
tunneling  potential. The results  of this work 
agree  very  well  with  experimental  data  and 
indicate  that  the  evolution of the  observed 
tunneling  spectroscopic  levels  with  applied field 
is very  sensitive to the  image  potential, and, 
moreover,  that  the  whole  series of image  states 
can  be  obtained  by  extrapolation to zero  applied 
field. Work is also  presented on the  theoretical 
aspects of tunneling  spectroscopy  of  thin  oxide 
layers  grown  on  a  metal  substrate-NiO on 
Ni(100).  From  theory  and  experimental  data, 
information  can  be  obtained  about  the  electronic 
band  structure  and  the number  of layers of the 
oxide. All results of the  above  research  are in 
accord  with  the  experimental  data  of  Binnig, 
Rohrer, et  al. [l-31. 

1. Introduction 
Scanning tunneling microscopy (STM), developed by Binnig, 
Rohrer,  Gerber,  and Weibel [ 11 in 1982, has become a 533 
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I O  20 of metals in its initial stages, and how the first  few layers 

: 
achieve  bulk  physical  properties. This is  also  addressed by - interpreting the recent  results of Binnig et al.  [6] on the 

0 v that the characterization of the oxide  layers can be 
5 growth  of NiO on a Ni( 100) surface. Theoretical results  show 
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determined in a straightforward manner by examination of 
the experimental data. 

2. Scattering theory for electron tunneling 
between jellium models 

v 

aJ 

- 5  

Potential and image  force 

Potential between planar electrodes 
For obtaining the tunneling conductance u between the tip 
and surface, we must  first  define the tunneling potential for 

- 10 
-8 -4 0 4 8 
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powerful technique for the study of surface properties such 
as surface topography in real  space and surface  spectroscopy. 
Perhaps the most striking result  in  microscopy  is the 
visualization of the Si( 1 1 1) (7 X 7)  surface structure [2].  In 
spectroscopy,  results on the characterization of the surface 
states of the image potential barrier as  modified by an 
applied external field  also  have  been  presented [ 31. These 
two  results are by no means the only  ones; there are 
examples of many other successful and remarkable 
experiments in all kinds of media, such as metals, 
superconductors, semiconductors, metallic  glasses,  oxides, 
charge  density  waves in lamellar compounds, and other 
technological and biological  materials. 

In the ensuing sections, this paper reviews the theoretical 
work on the tunneling conductivity between a tip electrode 
and a sample separated by a vacuum gap. The work 
describes the vacuum tunneling potential, in which the 
classical  image  charge  force  plays a major role  [4, 51 in the 
determination of the tunneling conductivity and resolution 
of the tip-sample junction. This potential is  also  significant 
in the interpretation of spectroscopic  levels as obtained by 
STM [ 31 and provides further information on the surface 
density of states and the distribution of the applied field. 

Also discussed is the fact that the STM  is not only 
sensitive to the density of states in the last  layer of atoms; it 
can also give information on how layers  grown on clean 
surfaces  develop bulk properties. For example, one of the 
most studied but as yet  unresolved problems is the oxidation 

-(EF + a). For  small distances the surfaces of the metals are 
described by the local  density theory for the exchange and 
correlation potential Vx,, as derived by  Lang and Kohn [7] 
(continuous line in Figure 1). At  large distances, Vxc tends to 
the classical  image potential vi,, as shown by theoretical 
considerations for the transversal time of the tunneling 
electrons [4]. The potential that goes from (V,, + Vxc) to 
(Vel + y,,,) is indicated by the dashed line in Figure 1 ; Vel is 
the electrostatic dipole contribution to the potential. Figure 1 
shows the potential calculated for two planar electrodes 
separated by a typical distance between jellium models of 
s = 6 8, and for applied voltages of 5 2  V. To calculate the 
image potential part, one must consider the existence of two 
image  planes,  located  where (Vel + V,,,,) 4 -m. The results 
of such calculations [5-71 indicate that the image  planes are 
located approximately where the (Vel + Vxc) curve intersects 
the EF line, as illustrated in Figure 1. The distance between 
image  planes  is d = P(s) 1: s - 1.5 8, [ 81. Note that as s 
changes, the tunneling barrier height +(s) (the maximum 
potential energy barrier that the electrons tunnel through) 
changes  markedly  for  small  values of s. A reasonable 
approximation for @(s) is 

cp(s) = Go - - d 
a 

(1) 

where a0 is the average  value of the work functions; d is 
given above, and 01 1: 9.97  eVf8,. 

Potential for a hemispherical tip on a flat surface (51 
Figure 2(a) shows the geometry of the jellium positive  charge 
background  for a hemisphere of radius r, = 5 8, upon a flat 
surface. The sample  surface  is a planar electrode. The tip 
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and the sample surface are centrosymmetrical about the tip 
axis; the distance s from the apex  of the tip to the sample is 
6 A and the distance between the planar parts of the tip  and 
the sample surface is 12 A. The system  is two-dimensional; 
the distance in planes parallel to the sample surface at a 
distance z from the planar extensions of the  tip, which is the 
distance from the intersection of the axis  of the hemisphere 
with the plane, is given  by R. The potential for small s is 
given  by the local density theory for a spherical positive 
charge background of radius rt in the spherical part and as a 
planar electrode for the planar extensions of the tip. This 
potential does not include the smear-out of the charge or 
Smoluchowski effect [9] that tends to reduce the surface 
dipole and may reduce the tunneling bamer. At large 
distances the potential tends to the classical  image potential; 
however, the calculation is made more complicated because 
of the intricate geometry required for the multiple addition 
of the image  charges, 4,. This can be calculated by using the 
formula 

where r(R, z )  is the position vector, with R and z the parallel 
and perpendicular directions to the surface and  ri  the 
position vectors  of the multiple image charges [5]. 

z: The solid curve is for z = 6.5 A and  the dashed one for 
z = 7.5 A, i.e., at 0.5 and I .5 A from the  tip apex. This 
potential shows the reduction of the bamer height +(s) due 
to  the geometrical configuration and the image  force 
contribution. The potential also shows a kind of channel 
where the electrons may tunnel easily around  the axis of the 
tip because  of the reduction of the effective tunneling bamer. 
A similar result was reported in [IO]. This “channel effect,” 
as  will  be  discussed,  increases resolution and tends to reduce, 
-d(ln u)/ds, the slope  of In u versus s. 

perpendicular to  the flat electrode, one between  flat  surfaces 
(dashed line) and the other along the axis  of the  tip 
(continuous line) from the tip apex to the sample surface. 
The geometrical effect  which  localizes the tunneling region  is 
again clear. There is also a non-negligible image force 
concentration, as can be  seen  in Figure 2(c), where the 
variation of the maximum height of the tunneling bamer 
+(s) along the tip axis [continuous line in Figure 2(b)] is 
plotted against s; note its variation with s and  the large 
decrease in +(s) near the  tip apex. 

Figure 2(a)  shows a plot  of the potential for  two  values of 

Figure 2(b) shows a plot  of the potential in two  lines 

Lateral resolution and conductance 

Generalities 
The lateral resolution Le, is defined by the diameter of a 
circle  which has a constant current density j equal to that 
obtained in the direction of the  tip axis, i.e., j at R = 0 [see 
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(a) Jellium model for a hemispherical tip on a flat surface (thick line). 
The otherJines are plots of the tunneling potential for two values of z 
( z  = 6.5 A, continuous line; z = 7.5 A, dashed line) as a function of R .  
R is the distance measured from the intersection of the axis of the 
hemisphere with the plane at constant z ;  z is measured from the planar 
extension of the hemispherical tip. (b) Potential lines between the flat 
regions of the junction (dashed line) and along the tip axis at R = 0 
for the geometry of Figure I with varying z .  @ is the barrier height for 
s = 6 A. (c) Variation of @(s) versus s, the distance from the apex of 
the hemisphere to the sample surface. Notice that the electron hole 
charge has been assumed to be spherical such that at the image plane 
[vertical dashed lines in (b)] Vex and V,, are the same, namely 8 eV. 

Figure 3(a)], and results  in the same current, Z(s), as that 
provided by the entire tip-sample junction. In other words,  it 
is the effective  surface area illuminated by the beam of the 
tunneling electrons [ 1 11. This implies that two defects can be 
resolved  if their separation is  greater than LeK. Figure 3(b) is 
an illustration of the effective area and resolution. The 
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j ($) 

Z(s) = Vau, 

but for V, 2 1 V, Ohm's law  is not obeyed  [5]. 

following equation: 
The current I (s)  can be determined by solving the 

where e is the electron charge, h is  Planck's constant divided 
by 2x, and YOi, s) is the transmission probability for the 
total potential of an electron with  energy (EFt - V )  and  at 
angle Oi with the normal to the tip apex. The above formula 
is  valid  for  large s or T << 1. If these conditions are not 
satisfied, the formula of Buttiker et al. [ 121 must be  used. To 
calculate T(Oi, s), Schroedinger's equation for the potential 
V(R, z )  must be solved. 

(a) 
Lateral  resolution 

/ / 

formula for Le, is 

K - j ( R  = 0 )  = Z(s), (?Y 
where Le,, j ,  and the current Z are functions of s. For small 
applied voltages Va, I (s)  is given  by Ohm's law, namely 

Square potential barrier approximation 
Solving Equation ( 5 )  and Schroedinger's equation for a 
square potential well with a constant barrier height a0, 
independent of z but dependent upon junction geometry, 
yields  for the tunnel conductance [ 1 1, 13- 151 

u(d) = Kor, exp -(pkd). 

In Equation (6), KO = 1.84.10-'A/(A/eV), r, = tip radius, 
and 

k = l / h m ,  

where m is the electron mass. By fitting  values  of s, EF, and 
into Equation (6), one obtains p = 2.15,  which accounts 

for the fact that the maximum contribution to the tunneling 
conductance comes from within a solid  angle  of 20". (Note: 
u is proportional to r, and not to r: as reported in [ 161.) 
Equation (6) fits  well for 2 5 s 5 10 A [Recall that d = s - 
lS(A)], 2 5 a0 5 6 eV, and 4 5 EF 5 11 eV. 

Values  of Le, calculated using Equations (1) and (3) are 
plotted in Figure 4, Curve A, and Le, can be approximated 
[16-181  by 

Le, P 2 *. 

In the above discussion, it was assumed that @(s) = ao; 
however, this is not the case  because of the image potential, 
and as  shown in Equation (I), @(s) c- a. - a/d. Calculations 
which  use Equation (1)  for the dependence of upon s, with 
tip diameter rt = 5 A, Go = 4.8 eV, and EF = 8 eV  for the 
sample and 5.5 eV  for the tip, show that u is  100 times larger 
than the u calculated for @(s) = constant = a. = 4.8 eV. 
Moreover, the calculations also show that -d(ln u)/ds (the 
negative  slope  of In u versus s) is  practically constant and 
equal to ad<. This result is in accord with the experimental 
observation that -d(ln u)/ds remains constant even though 
a(s) = 0 at s c- 3 A. For small values  of s, G(s) is 
considerably reduced and is reflected in the dependence of 
Le, upon s, as illustrated in Curve B of Figure 4,  where Le, 
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has a shallow minimum at s = 5 A. Note that Le, only  varies 
from -6 to I A for 3.5 I s I 8 A, which seems to be in 
accord with experimental observations [ 131. 

. Three-dimensional barrier 
For three-dimensional bamers, calculations of @(s) and u 

were accomplished using other techniques [ 191. The Le, thus 
obtained are illustrated by Curve C in Figure 4. Examining 
Curve C with  respect to Curve B indicates that the three- 
dimensional calculation yielded an increased resolution 
compared to the square bamer calculation. This is because 
of the focusing  effect  of the image  forces, creating a channel 
around  the tip axis where the electrons can tunnel more 
easily  [5]. 

Conductance slope; -d(h u)/ds 
An interesting problem in STM theory concerns the 
measured -d(ln u)/ds [=O'(S)] .  Although constant over a 
large  range of s, 4 I s I 11 A, in accord with theory, ~ ' ( s )  is 
occasionally  very small, corresponding to @ = 0.5 eV. This 
latter value  of @ is to be compared with @ = 2-3.5  eV  for 
metals and for semiconductors @ = 4-5.5 eV. As  yet there is 
no theoretical explanation for small u'(s) values. Coombs 
and Pethica [20]  have presented evidence  which  proposes 
that small values  of ~ ' ( s )  are caused by the presence  of tip 
irregularities in the  junction. 

Calculations for the three-dimensional potential [5] for 
V, I 0.1 eV show that ~ ' ( s )  can be reduced from the values 
corresponding to @ = 4.8 eV at distances s > 12 A to values 
of ~ ' ( s )  corresponding to @ = 3.5  eV  for s = 5 A and then 
can be increased again if the equations of Buttiker et al. are 
used  for calculating the conductance [ 121. Small u'(s)  values 
for  work functions typical of metals are not obtained from 
this three-dimensional calculation. 

3. Scanning  tunneling  spectroscopy  for 
localized  surface states: Image and  field  states 
In the previous section the conductance properties of the 
STM were calculated using the corrugated jellium model. 
These calculations have pointed out that  the image charge 
potential plays an  important role  in the  junction 
conductance. The existence  of image states due to the 
surface potential was  established  by  inverse photoemission 
techniques [2 I ,  221. These  image states introduce a large 
density of states at the energies  where they appear in the 
interface and extend for distances of  2- 15 8, into  the 
interface from the last layer  of atoms. They therefore should 
be observable in tunneling spectroscopy  when V, is such that 
EFt of the  tip electrode is equal to  the energy of the image 
states [3]. The effects  of these states should be  observable  as 
oscillations in the Z- V, characteristics, as predicted by 
Gundlach [23] for linear-bamer (field-bamer) resonances 
and observed experimentally in semiconductor tunneling 
junctions [24] and metal-metal interfaces [25], as well as in 
Au tips in vacuum tunneling [26]. 
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I Values o f  k t ,  versus s for  the  different  barrier  agproximations. 
i Notice in Curves B and  C  the  mininlum at .s = S A in k , ,  and  the 
8 8 Increase in  resolution  due  to  the  image  force  focusing  effect.  Curve A 

represents @ ( s )  = (D,, = 4.8 eV, q u a r e  barrier  approximation. 4 Curve B corresponds  to @(s) = @,, - aid: [Equation ( I ) ] .  square 
j harrler  approximation.  Curve C \bows the  calculated  results  for  the 

- I O 4  

Figure 5 shows  schematically the surface  image states at a 
free interface and in the tunneling geometry  for a Au tip and 
a Ni( 100) surface. The characteristics of the Ni(  100) surface 
are taken care of  by introducing a gap  of 7.9 eV at the 
surface [27-301. The existence of this gap  localizes the 
electron in the surface  because its wave function decays 
exponentially into the bulk.  Figure 5(a) shows schematically 
the free  flat-surface  image states n = I ,  2, . . . , m, depending 
upon the number of modes defining the state and e, energies. 
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n= 1 2 3 4 5  

\ 

1 1 1 1 1 1 1 1 1 1 1  
0 5 10 

Voltage Va 

Tunneling  spectra dlidy,  versus L!,, with the voltage scanned at con- 
stant  tunneling  current, for (Curve A )  clcan Ni(  100) surfice,  (Curve 
B) oxygen-covered c(2 X 2) Ni( 100) at low field. For Curve A. peaks 
are assigned  to  hydrogenic-like levels 11 = I ,  2. . . . .  5 .  Note the 
break. indicated by the arrow. in  the dependence o f  the oscillation in 
Curve I3 at I O  V 131 (reprinted with permission). The oscillations in 
Curve B are proportional to the derivative of Curve C,  as shown by 
Equation (7). 

The number of states is infinite due to the long  range of the 
image potential in analogy  with  hydrogenic  energy  levels 
[21, 221. Figure 5(b) shows the same series of states, but 
shifted to lower  energies  because the real  surface  is 
corrugated by the ions [30] and having  energies E, = E, + 
E,,, n, where E,,,,, is the corrugation energy.  These  energy 
values are as observed in inverse photoemission [27-301 
because  they are empty states above EF. The values of E, are 
known up to n = 2; however, there is no agreement as to the 
size  of Ew,,n. Figure  5(c)  shows the E, values as altered by 
an applied field F of 0.3 V/A. The field  is  assumed constant 
and z-independent (because the tips in these experiments are 538 
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“blunt”: -30 A radius) in such a way that the field 
distribution is not complicated, and the potential is linear 
with  distance. 

Two  observations should be made: 1)  The infinite series of 
image states that accumulate in an infinite density of states 
near vacuum is truncated to a finite number. 2) The states 
increase their energy separation due to the introduction of 
the potential Fz (Stark  effect). This has  been  experimentally 
observed [3] for  several  surfaces by measuring dl/dV,. Note 
that in the constant-current operation mode ( I  constant with 
respect to V,) 

and since (d l /&)  V, is a slowly  varying function, (dZ/d VJS - 
-ds/dV,; therefore (aZ/dV,), will  be mirrored by ds/dV, and 
steps in s( V,) will be transformed into peaks in ds/dV, and 
(dZ/dV,), (= dZ/dV,). The evidence  for this is  shown in Figure 
6, where the undulations in s versus V, result in the peaks in 
dZ/dV, (Curve A) and in ds/dV, (Curve B) [3]. The values of 
V, in dZ/dV, indicate the values of the energy states for a 

Ni(100) 

0 0.1 0.2 0.3 0.4 0.5 0.6 

F (Vi.&) 

Peak positions of  cllidV, versus V ,  tunneling  spectra.  The symbol 
represents E,,(F) obtained  from  nunlerical  integration o f  the 
Schrodinger  equation by introduclng into the Hamiltonian the field 
potential Fz .  The Aand A symbols are for  the  clean  N1(100)  surface.  The 
hatched  area  denotes  the Ni(100) projected  bulk  band structure. From 131. 
=printed  with pemlission. 
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given applied field E,(F). At the limit F + 0 the image-state 
series E,, will be recovered. Experimentally, E,,(F) versus F 
can  be  obtained;  this should give useful information because 
the large separation in energy of the states  of different n 
allows the  improved resolution  of their energies. Figure 7 
shows the  evolution of E,(F) for the Ni( 100) surface. 

n-dependent Hamiltonian, 
A  theoretical  analysis  [3]  consistent with a unidimensional 

in which V,(z) contains  the image  potential as previously 
described  for  plane electrodes, plus a  dipole layer region 
which is n-dependent and  accounts for the corrugation 
potential  to  the surface, gives information  about  the image 
and field states. Also, the bulk  potential is described by a 
sinusoidal potential  that  opens a gap of 7.9 eV as indicated 
above. For values of z up  to 5 A, and with the image  plane 
at z = 0.8 A, the value of F is much smaller than dV,,/dz, the 
derivative  of the image  potential at these  distances. 
Therefore, at small values of z the surface  potential Vn(z) is 
stronger than  the applied field potential and  can be 
considered as a perturbation.  In  this  Hamiltonian  the only 
parameter is the surface  dipole layer, which is adjusted so 
that  at F = 0 the correct energy E,(F = 0) is obtained. By 
varying F the  model gives the evolution of the (image + 
field) states. 

of  Figure  7. The values of En are  in agreement with 
photoemission data of Johnson  and  Smith [27], and it 
should be noted  that this does  not  depend  upon  the validity 
of E,,,,, [i.e., the  only energy that  enters  our calculation is 
E,,, and  there is only  one set of E, that fits all the E,,(F) as 
shown in Figure 71. Analysis of the calculated wave 
functions shows that E,,(F) is extremely sensitive to 
E,(F = 0). The values of E,(F), n < 2 are  dominated by the 
image  potential; Fz is only a perturbation. E,(F), n > 4 are 
dominated by the Fz potential;  they are called field states, 
and n = 3 is an  intermediate  situation between image and 
field states. 

Table 1 gives the energy values  for Ni( 100) that fit the  data 

The presence  of image states does  not require the existence 
of a gap such as exists in Ni( 100). If there is no gap, the 
surface  image  states  transform into surface  image  resonances 
as in  Figure 7, V, < -2 eV and V, > -10 eV,  and  in [26]. 
Recently Becker and  Golovchenko have also observed  these 
resonances, but have not identified them  in  terms of image 
stages [31]. 

We have found  that even if the image  state is in a crystal 
gap it can carry current because of  its  width and finite 
lifetime, as calculated by Echenique and Pendry  [32] and 
discussed by Flores  [33]. This is in  contrast  to  the recent 
results of Becker and  Golovchenko [31], who claim that 
surface  image  states cannot  contribute  to  the  tunneling 
current because of the two-dimensional character of these 

- A  

I 2 3 4 5 6 

Table 1 Zero-field  values of binding energies E,, reference 
binding energies en, and corrugation energies Em=,". 

n Ni(100) 

E. e" E,," 

1 
2 

-3.25  -2.40 -0.85 

3 
-0.85  -0.33  -0.52 

4 
-0.365  -0.125  -0.24 

5 
-0.18  -0.065  -0.12 
-0.10 -0.040  -0.06 

states. Kaiser and Jaklevic  have also presented results on  the 
spectroscopy of surface states [34]. 

4. Tunneling  spectroscopy  on  thin  oxide layers 
1351 
The characteristics of dI/dVa versus V, can  be obtained not 
only  for  clean  metal surfaces, but also for surfaces with a 
monolayer  of  adsorbate,  as  shown  in  Figure 6. Such 
experiments were done by Jaklevic and  Lambe [36]  for thin 
metal films with oxide tunneling  junctions. Recently Binnig 
et al.  [6]  have  performed spectroscopic experiments  on  NiO 
grown on Ni( 100) by letting 0, into  the  vacuum  chamber 
after the  experiment  on Ni( IOO), the results of which are 
shown in Figure 6. They observed, by scanning and 
performing spectroscopy at certain  areas of the surface, very 
large peaks in dZ/dV, [6, 371. Figure 8 shows the 
experimental results in  the region where the oxide layers 
were growing; such peaks were not present  for the clean 
metal surface or for the c(2 X 2) structure of oxygen. Binnig 
et al. [6] ascribe this  strong peak to  the  empty d band  in 
NiO, as shown by local density band  structure calculations 
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Electron tunneling through  thin metal oxides 

Band 

Metal I Metal oxide 1 Vacuum 1 Tip 

Model for a vacuum tunneling  gap s and  three  oxide  layers. The oxide 
potential  is  described by 6 functions  and  the  metals by jelliums. 
Notice the decrease of the applied potential in the vacuum gap  due to 
the  large  oxide  dielectric  constant. 

- 2  

- 4  

- 8  - 7 v  ~ 

- 9  I 

I 
I 
E,=O E cos’ Gi (eV) 

Transmittivity T for  the  tunneling  electrons  through  three  oxide 
$ layers, for s = 0 (no vacuum gap-see Figure 8) versus Ecos’B, 
4 (electron  energy in adirection  perpendicular  to the junction).  The A,  

B ,  and C peaks  correspond very  well with the  energies of the A,  B, ! and C ex erimental  eaks in Fi ure 9. 

by Terakura et al. [38], and the peak at V, = 5.5 V was 
attributed to  the s band of  Ni in NiO [38, 391. Identification 
of the observed data as tunneling phenomena via tunneling 
theoretical calculations was not performed. A tunneling 
interpretation is very appealing because if such bands exist, 
when an electron tunnels with its energy in the range of the 
oxide band it  ceases to be a tunneling electron; i.e., it is 
described not by an evanescent wave but by a propagating 
one in the oxide region. Therefore, if there are several  layers 
of oxide, the conductance at the band edge  energy  will  have 
a large increase, as suggested  by the  data [6]. 

To calculate tunneling conductance, the model shown in 
Figure 9 is proposed for the metal-oxide-vacuum-metal 
junction [6]. The oxide is described by a one-dimensional set 
of potential bamers (in our case 6 functions): 

N. GARCIA 

,=N 

Voxidc = V0 - a C 6(ia - 4, 
j =  I 

where V, is the background potential, a is the 6 function 
strength, N is the number of  layers, and a is the interspacing 
of the oxide layers. This model has  been  used to calculate 
conductivity properties through oxides [40] and also by Tsu 
and Esaki [41] to calculate transport properties by 
multibamer tunneling in superlattices. Its one- 
dimensionality is not a problem because we are concerned 
with the conductivity in the z-direction, and this implies that 
the multiband scattering in the (x ,  y )  direction should not be 
important. The tip is “blunt,” rt - 30 A, and for the electron 
of -5 8, wavelength this is  practically a planar junction.  The 
calculations were performed with  these  “large” tips in order 
to avoid complicated field distributions and  to have 
“practically” planar electrodes. 

in the close-packed crystallographic direction in NiO. A 
constant value  for a = 5 eV-A  was chosen so as to ensure 
that as N + 01 the first band would  have the theoretical d 
bandwidth -1.2 eV [38, 391. The parameter V, is  fixed to 
obtain a large  peak  in the value of the transmittivity in 
agreement with the experiment at V, - 0.6 V (V,  = 2.6 eV 
above the Ni Fermi level). The model also accounts for the 
image potential at the  tip interface as well as  for the external 
potential that is linear and decreases  largely in the vacuum 
gap  region  because of the large dielectric constant of the 
oxide. This is schematically indicated in Figure 9. The three 
experimental peaks are indicated in Figure 8 by points A, B, 
and C; note that their energy positions correspond very  well 
to the three theoretical peaks. The large experimental peak A 
is  located just 0.05 eV to the left of peak A. The 
experimental peak A appears as a consequence of the rapid 
increase  in transmittivity (conductivity) of the oxide  layers. 
Figure 10 shows the calculated values  of T(Oi) for the three 
oxide  layers and s = 0 as indicated in Figure 9. The first 
band (I) appears at V, - 0.6 V because  of the assumed value 
for V,. Notice the appearance of a second band (11) in 
agreement with [40,41] a higher  oxide conduction band at 
V, = I eV above EF. This second band corresponds to the 
experimental peak located at 5.5 eV above EF, not only in 
position but also in shape, and the peak is broad because the 
conductivity increases at a lower rate than does the 
conductivity for the peaks  in band I. 

The results of a more extensive calculation [6] for I (s)  and 
dI/dV, are indicated by the curve labeled “Theory” in Figure 
8. In this calculation the integration in Equation ( 5 )  was 
performed over all values of Oi for  each Va for the condition 
I = constant - 1 nA. The calculation proceeds by finding 
the value  of s (=5-6 A) which  will provide a current density 
of about lo-” to 10-l2 A/A2 and in turn gives an I (s)  of IO-* 
to A for an area of -500 A’ (recall that rt - 30 A). 
Finally, dI/dVa is obtained from Equation (7). The “Theory” 
curve in Figure 8 shows the remarkable agreement obtained 

The model assumes a = 3.5 A for the interplanar spacing 
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with these  calculations and  the experimental data,  and  one 
can  conclude  that these  observations  can indeed be 
attributed  to  the  tunneling of electrons  in NiO layers. 

The results of  these  calculations  show that 

1. The  number of oxide layers is three because of the  three 
experimental  peaks; if  we introduce N layers, N peaks are 
observed in  the  same energy range, - 1 eV energy 
bandwidth. 

2. There is clearly a  second  oxide band. 
3.  These results are  in very good  agreement with the  band 

structure calculations of Terakura et al. [38] and Kubler 
and Williams [39]. 

5. Conclusions 
We have  presented  theoretical  aspects of our  STM research. 
Topographic  microscopy and spectroscopic results on clean 
adsorbed monolayers  and  thin oxide layers have been 
discussed. From  the results the following conclusions are 
inferred: 

1. In the  determination of the  conductance or current 
intensity  in STM,  the  tunneling potential bamer is 
basically dominated by the classical contribution of the 
image  potential [ 5 ,  131, in  agreement with the theoretical 
studies  for the  tunneling electron  transversal time [4]. 
The image contribution reduces the height of the 
tunneling  bamer 0(s) from  the work function 0, at 
s + m, and  to zero when the electrode  separation is 
s = 3 A. The ~ ' ( s )  remains practically constant  and in the 
range corresponding to a bamer height of = 1.5 eV. 
However, the values of u are reduced by a  factor of - 100 
compared  to  the value obtained for  a constant  bamer, 
0,, = 5 eV. Finally, the influence of the image force has  a 
focusing effect on  the resolution LeR, which is  a minimum 
at s = 5-6 b;. 

2. It  has been  shown that image  force is important  in 
determining  the  empty electronic  states, as observed 
experimentally [3]. These surface image  states as 
corrected by the applied field have  a  one-dimensional 
character  up  to distances  of -2 b; from  the last layers of 
atoms  and have important energy contributions  from  the 
modulation of the potential in  the region core. The  STM 
in its  spectroscopic version is a powerful technique for 
detecting localized surface states and is able to unravel 
the series of image  states because of the shift produced by 
the applied  external field between surface and tip.  These 
states are  pure surface  states if the material has a gap  at 
their  binding energies and a  resonance  otherwise [2 1, 261. 
Even if they are  pure surface states, they can carry current 
because their lifetime is shorter  than  the  tunneling  time 
for the electrons [32, 331. 

3. From  our analysis in  tunneling  through  thin oxide layers 
we believe that  the spectroscopic version of the  STM  can 
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give information  about  the electronic and geometrical 
properties  of thin layers grown or deposited on a 
substrate. We have used our calculations to understand 
the growth and experimental data [6] of NiO layers on 
Ni( 100). The calculated results show very good  agreement 
with the  data  and  are able to resolve the  number of layers 
grown (three  in  this case) as well as the density  of  states 
or conduction  bands of the oxide film. The calculations 
are in agreement with local density band  structure 
calculations [38, 391. These results open new perspectives 
in the characterization  of the growth and nucleation of 
thin films on solid substrates. 
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