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by N. Garcia

Theoretical studies on the scanning tunneling
microscope and its spectroscopic version are
reviewed. This research has shown that the
conductance of the tunneling electrons is
strongly influenced by the classical image
potential. The introduction of this potential
increases the conductance, although the slope
of the logarithm of the conductance versus
electrode separation remains practically
constant. The image force also has focusing
effects on the tunneling electrons and produces
a minimum in the resolution for ~5 A electrode
separation. Spectroscopic levels have been
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calculated for the image states held by the
tunneling potential. The results of this work
agree very well with experimental data and
indicate that the evolution of the observed
tunneling spectroscopic levels with applied field
is very sensitive to the image potential, and,
moreover, that the whole series of image states
can be obtained by extrapolation to zero applied
field. Work is also presented on the theoretical
aspects of tunneling spectroscopy of thin oxide
layers grown on a metal substrate—NiO on
Ni(100). From theory and experimental data,
information can be obtained about the electronic
band structure and the number of layers of the
oxide. All results of the above research are in
accord with the experimental data of Binnig,
Rohrer, et al. [1-3].

1. Introduction
Scanning tunneling microscopy (STM), developed by Binnig,
Rohrer, Gerber, and Weibel [1] in 1982, has become a
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Electron density n(z) and various potentials for a W—Au vacuum
planar tunneling junction withs = 6 A. V.,(2), electrostatic potential;

potential; V(z), tunneling potential. The dashed line is the approxi-
mate square barrier: ®(s) is the height and /(s) is the width of the
barrier.
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§ Vi(2), local density exchange and correlation potential; V. .(2), image
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powerful technique for the study of surface properties such
as surface topography in real space and surface spectroscopy.
Perhaps the most striking result in microscopy is the
visualization of the Si(111) (7 X 7) surface structure [2]. In
spectroscopy, results on the characterization of the surface
states of the image potential barrier as modified by an
applied external field also have been presented [3]. These
two results are by no means the only ones; there are
examples of many other successful and remarkable
experiments in all kinds of media, such as metals,
superconductors, semiconductors, metallic glasses, oxides,
charge density waves in lamellar compounds, and other
technological and biological materials.

In the ensuing sections, this paper reviews the theoretical
work on the tunneling conductivity between a tip electrode
and a sample separated by a vacuum gap. The work
describes the vacuum tunneling potential, in which the
classical image charge force plays a major role [4, 5] in the
determination of the tunneling conductivity and resolution
of the tip-sample junction. This potential is also significant
in the interpretation of spectroscopic levels as obtained by
STM [3] and provides further information on the surface
density of states and the distribution of the applied field.

Also discussed is the fact that the STM is not only
sensitive to the density of states in the last layer of atoms; it
can also give information on how layers grown on clean
surfaces develop bulk properties. For example, one of the
most studied but as yet unresolved problems is the oxidation
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of metals in its initial stages, and how the first few layers
achieve bulk physical properties. This is also addressed by
interpreting the recent results of Binnig et al. [6] on the
growth of NiO on a Ni(100) surface. Theoretical results show
that the characterization of the oxide layers can be
determined in a straightforward manner by examination of
the experimental data.

2. Scattering theory for electron tunneling
between jellium models

® Potential and image force

Potential between planar electrodes

For obtaining the tunneling conductance ¢ between the tip
and surface, we must first define the tunneling potential for
electrons tunneling in the tip-sample junction. For this we
have assumed that ¢ for metals can be described by jellium
models as shown schematically in Figure 1 for two typical
metals (W, Au) of Fermi energies E; of 8 and 5 eV, with
work functions ® of 4.5 and 5.2 eV, respectively. The
potential is assumed to be a flat-bottomed well of energy
—(E; + ®). For small distances the surfaces of the metals are
described by the local density theory for the exchange and
correlation potential V', as derived by Lang and Kohn [7]
(continuous line in Figure 1). At large distances, V. tends to
the classical image potential V, , as shown by theoretical
considerations for the transversal time of the tunneling
electrons [4]. The potential that goes from (V,, + V) to

(V, + V,,) is indicated by the dashed line in Figure 1; V,, is
the electrostatic dipole contribution to the potential. Figure 1
shows the potential calculated for two planar electrodes
separated by a typical distance between jellium models of
s=6 A and for applied voltages of <2 V. To calculate the
image potential part, one must consider the existence of two
image planes, located where (¥, + V,_ ) — —cc. The results
of such calculations [5-7] indicate that the image planes are
located approximately where the (V,, + V) curve intersects
the Ey. line, as illustrated in Figure 1. The distance between
image planes is d = #(s) = s — 1.5 A [8]. Note that as s
changes, the tunneling barrier height ®(s) (the maximum
potential energy barrier that the electrons tunnel through)
changes markedly for small values of s. A reasonable
approximation for &(s) is

a

8(s) = 8, - 5 (1)

where ®, is the average value of the work functions; d is
given above, and a = 9.97 eV/A.

Potential for a hemispherical tip on a flat surface [5]

Figure 2(a) shows the geometry of the jellium positive charge
background for a hemisphere of radius r, = 5 A upon a flat
surface. The sample surface is a planar electrode. The tip
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and the sample surface are centrosymmetrical about the tip
axis; the distance s from the apex of the tip to the sample is
6 A and the distance between the planar parts of the tip and
the sample surface is 12 A. The system is two-dimensional;
the distance in planes parallel to the sample surface at a
distance z from the planar extensions of the tip, which is the
distance from the intersection of the axis of the hemisphere
with the plane, is given by R. The potential for small s is
given by the local density theory for a spherical positive
charge background of radius r, in the spherical part and as a
planar electrode for the planar extensions of the tip. This
potential does not include the smear-out of the charge or
Smoluchowski effect [9] that tends to reduce the surface
dipole and may reduce the tunneling barrier. At large
distances the potential tends to the classical image potential;
however, the calculation is made more complicated because
of the intricate geometry required for the multiple addition
of the image charges, g,. This can be calculated by using the
formula
Vil = 172 5 = @
m AR A
where H(R, z) is the position vector, with R and z the paraliel
and perpendicular directions to the surface and r, the
position vectors of the multiple image charges [5].

Figure 2(a) shows a plot of the potential for two values of
z: The solid curve is for z = 6.5 A and the dashed one for
z=75A4,ie.,at0.5and 1.5 A from the tip apex. This
potential shows the reduction of the barrier height ®(s) due
to the geometrical configuration and the image force
contribution. The potential also shows a kind of channel
where the electrons may tunnel easily around the axis of the
tip because of the reduction of the effective tunneling barrier.
A similar result was reported in [10]. This “channel effect,”
as will be discussed, increases resolution and tends to reduce,
—d(In o)/ds, the slope of In ¢ versus s.

Figure 2(b) shows a plot of the potential in two lines
perpendicular to the flat electrode, one between flat surfaces
(dashed line) and the other along the axis of the tip
(continuous line) from the tip apex to the sample surface.
The geometrical effect which localizes the tunneling region is
again clear. There is also a non-negligible image force
concentration, as can be seen in Figure 2(c), where the
variation of the maximum height of the tunneling barrier
&(s) along the tip axis [continuous line in Figure 2(b)] is
plotted against s; note its variation with s and the large
decrease in ®(s) near the tip apex.

& Lateral resolution and conductance
Generalities
The lateral resolution L  is defined by the diameter of a

circle which has a constant current density j equal to that
obtained in the direction of the tip axis, i.e., j at R = 0 [see
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(a) Jellium model for a hemispherical tip on a flat surface (thick line).
The other lines are plots of the tunneling potential for two values of z
(z = 6.5 A, continuous line; z = 7.5 A, dashed line) as a function of R.
R is the distance measured from the intersection of the axis of the
hemisphere with the plane at constant z; z is measured from the planar
extension of the hemispherical tip. (b) Potential lines between the flat
regions of the junction (dashed line) and along the tip axisatR = 0
for the geometry of Figure | with varying z. @ is the barrier height for
5 = 6 A. (c) Variation of ®(s) versus s, the distance from the apex of
the hemisphere to the sample surface. Notice that the electron hole
charge has been assumed to be spherical such that at the image plane
[vertical dashed lines in (b)] V,, and V, | are the same, namely =~ 8 eV.

Figure 3(a)], and results in the same current, I(s), as that
provided by the entire tip-sample junction. In other words, it
is the effective surface area illuminated by the beam of the
tunneling electrons [11]. This implies that two defects can be
resolved if their separation is greater than L ;. Figure 3(b) is
an illustration of the effective area and resolution. The
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;2 (a) Lateral resolution L4 corresponding to the diameter of the effec-
i tive surface area illuminated by the beam of the tunneling electrons,
?5 as shown in (b), a schematic drawing of the effective illuminated area
% (shaded).
i

formula for L g is

L 2
™ <7°"> J(R=0) = Is), 3)

where L g, j, and the current [ are functions of s. For small
applied voltages V', I(s) is given by Ohm’s law, namely
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I(s) = Vo, 4)

but for ¥V, = 1 V, Ohm’s law is not obeyed [5].
The current I(s) can be determined by solving the
following equation:

2 Va
-5 fo 4V 2 116, (En = V) sl ©)

where e is the electron charge, # is Planck’s constant divided
by 2=, and T(0,, s) is the transmission probability for the
total potential of an electron with energy (E, — V) and at
angle ©, with the normal to the tip apex. The above formula
is valid for large s or T < 1. If these conditions are not
satisfied, the formula of Biittiker et al. [12] must be used. To
calculate 7(9,, 5), Schroedinger’s equation for the potential
V(R, z) must be solved.

Square potential barrier approximation

Solving Equation (5) and Schroedinger’s equation for a
square potential well with a constant barrier height &,
independent of z but dependent upon junction geometry,
yields for the tunnel conductance [11, 13-15]

o(d) = K,r, exp —(8kd). (6)

In Equation (6), K, = 1.84. 107°A/(A/eV), r, = tip radius,
and

k= 1/hV2md,,

where m is the electron mass. By fitting values of s, E,, and
& into Equation (6), one obtains 8 = 2.15, which accounts
for the fact that the maximum contribution to the tunneling
conductance comes from within a solid angle of 20°. (Note:
o is proportional to 7, and not to rf as reported in [16].)
Equation (6) fits well for 2 < s < 10 A [Recall thatd = 5 —
1.5A),2=<@,<6eV,andd < E. < 11 eV.

Values of L calculated using Equations (1) and (3) are
plotted in Figure 4, Curve A, and L can be approximated
[16-18] by

d+r,
k

chf =

ST

In the above discussion, it was assumed that &(s) = &,;
however, this is not the case because of the image potential,
and as shown in Equation (1), ®(s) = &, — «/d. Calculations
which use Equation (1) for the dependence of ® upon s, with
tip diameter r, = 5 A, &, =4.8 eV, and E, = 8 eV for the
sample and 5.5 eV for the tip, show that ¢ is 100 times larger
than the ¢ calculated for ®(s) = constant = &, = 4.8 eV.
Moreover, the calculations also show that —d(In ¢)/ds (the
negative slope of In ¢ versus s) is practically constant and
equal to B«/E;. This result is in accord with the experimental
observation that —d(In ¢)/ds remains constant even though
®(s) = 0 at s = 3 A. For small values of s, ®(s) is
considerably reduced and is reflected in the dependence of
L upon s, as illustrated in Curve B of Figure 4, where L
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has a shallow minimum at s = 5 A. Note that L ; only varies
from ~6 to 7 A for 3.5 < s < 8 A, which seems to be in
accord with experimental observations [13].

. Three-dimensional barrier
For three-dimensional barriers, calculations of ®(s) and ¢
were accomplished using other techniques [19]. The L 4 thus
obtained are illustrated by Curve C in Figure 4. Examining
Curve C with respect to Curve B indicates that the three-
dimensional calculation yielded an increased resolution
compared to the square barrier calculation. This is because
of the focusing effect of the image forces, creating a channel
around the tip axis where the electrons can tunnel more
easily [5].

& Conductance slope;, —d(In ¢)/ds
An interesting problem in STM theory concerns the
measured —d(In ¢)/ds [=¢’(s)]. Although constant over a
large range of 5, 4 < s < 11 A, in accord with theory, ¢’(s) is
occasionally very small, corresponding to & = 0.5 eV. This
latter value of & is to be compared with = 2-3.5 eV for
metals and for semiconductors ® = 4-5.5 eV. As yet there is
no theoretical explanation for small ¢’(s) values. Coombs
and Pethica [20] have presented evidence which proposes
that small values of ¢’(s) are caused by the presence of tip
irregularities in the junction.

Calculations for the three-dimensional potential [5] for
V, < 0.1 eV show that ¢'(s) can be reduced from the values
corresponding to ® = 4.8 eV at distances s > 12 A to values
of ¢'(s) correspondingto ® = 3.5eVfors =35 A and then
can be increased again if the equations of Biittiker et al. are
used for calculating the conductance [12]. Small ¢'(s) values
for work functions typical of metals are not obtained from
this three-dimensional calculation.

3. Scanning tunneling spectroscopy for
localized surface states: Image and field states
In the previous section the conductance properties of the
STM were calculated using the corrugated jellium model.
These calculations have pointed out that the image charge
potential plays an important role in the junction
conductance. The existence of image states due to the
surface potential was established by inverse photoemission
techniques [21, 22]. These image states introduce a large
density of states at the energies where they appear in the
interface and extend for distances of 2-15 A into the
interface from the last layer of atoms. They therefore should
be observable in tunneling spectroscopy when V, is such that
E, of the tip electrode is equal to the energy of the image
states [3]. The effects of these states should be observable as
oscillations in the /-, characteristics, as predicted by
Gundlach [23] for linear-barrier (field-barrier) resonances
and observed experimentally in semiconductor tunneling
junctions [24] and metal-metal interfaces [25], as well as in
Au tips in vacuum tunneling [26].
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Values of L versus s for the different barrier approximations.
Notice in Curves B and C the minimum at s = 5 A in L and the
increase in resolution due to the image force focusing effect. Curve A
represents ®(s) = @, = 4.8 ¢V, square barricr approximation.
Curve B corresponds to ®(s) = &, — a/d: [Equation (1)]. square
barrier approximation. Curve C shows the calculated results for the
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Energy diagram for the electrostatic potential (including image) at a
metal surface. On the left, the projected bulk band structure of the
Ni(100) surface is shown shaded. Note the 7.1-eV band gap strad-
dling the vacuum level £, = 0. (a) For simplicity. only the n = 1
and n = 2 hydrogenic energy levels are shown. (b) The surface cor-
rugation affects the celectronic x, v movement, pulling the levels
down. (¢) Expansion and shift of the image-state spectrum by an
applicd field F. The heavy solid line is the crystal potential plus the
field potential. From [3]. reprinted with permission.

Figure 5 shows schematically the surface image states at a
free interface and in the tunneling geometry for a Au tip and
a Ni(100) surface. The characteristics of the Ni(100) surface
are taken care of by introducing a gap of 7.9 eV at the
surface [27-30]. The existence of this gap localizes the
electron in the surface because its wave function decays
exponentially into the bulk. Figure 5(a) shows schematically
the free flat-surface image states n =1, 2, - - -, o, depending
upon the number of modes defining the state and ¢, energies.

N. GARCIA

537




538

n=1 2 3 45
A
o=
3
S
B
\
~
o
20 F
15
=
10 F C

Tunneling spectra dI/dV, versus V,, with the voltage scanned at con-
stant tunneling current, for (Curve A) clean Ni(100) surface, (Curve
B) oxygen-covered ¢(2 X 2) Ni(100) at low field. For Curve A, peaks
are assigned to hydrogenic-like levels n = 1, 2, -+, 5. Note the
break. indicated by the arrow, in the dependence of the oscillation in
Curve B at 10 V [3} (reprinted with permission). The oscillations in
Curve B are proportional to the derivative of Curve C, as shown by
Equation (7).

The number of states is infinite due to the long range of the
image potential in analogy with hydrogenic energy levels
[21, 22]. Figure 5(b) shows the same series of states, but
shifted to lower energies because the real surface is
corrugated by the ions [30] and having energies E, = ¢, +
E,,. .» where E__ is the corrugation energy. These energy
values are as observed in inverse photoemission [27-30]
because they are empty states above Ep. The values of E, are
known up to n = 2; however, there is no agreement as to the
size of E_ . Figure 5(c) shows the E, values as altered by

an applied field F of 0.3 V/A. The field is assumed constant
and z-independent (because the tips in these experiments are
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“blunt™ =30 A radius) in such a way that the field
distribution is not complicated, and the potential is linear
with distance.

Two observations should be made: 1) The infinite series of
image states that accurnulate in an infinite density of states
near vacuum is truncated to a finite number. 2) The states
increase their energy separation due to the introduction of
the potential Fz (Stark effect). This has been experimentally
observed [3] for several surfaces by measuring dl/dV,. Note
that in the constant-current operation mode (J constant with
respect to V)

al ds al
(;) av,* (3;7) =0 @

and since (31/s)V, is a slowly varying function, (31/3V,), =
~ds/dV; therefore (8I/3V,), will be mirrored by ds/dV, and
steps in s(V,) will be transformed into peaks in ds/dV, and
(81/aV), (= dI/dV,). The evidence for this is shown in Figure
6, where the undulations in s versus V, result in the peaks in
dI/dV, (Curve A) and in ds/dV, (Curve B) [3]. The values of
¥V, in dI/dV, indicate the values of the energy states for a

15F Ni(100)

\
\\x
A\

F (VIA)

Peak positions of dl/dV, versus V, tunneling spectra. The @symbol
represents £ (F) obtained from numerical integration of the
Schrodinger equation by introducing into the Hamiltonian the field
potential £z. The Aand A symbols are for the clean Ni(100) surface. The
hatched area denotes the Ni(100) projected bulk band structure. From [3].
reprinted with permission.
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given applied field E (F). At the limit F — 0 the image-state
series £, will be recovered. Experimentally, E (F) versus F
can be obtained; this should give useful information because
the large separation in energy of the states of different n
allows the improved resolution of their energies. Figure 7
shows the evolution of E,(F) for the Ni(100) surface.

A theoretical analysis [3] consistent with a unidimensional
n-dependent Hamiltonian,

2 2
& = —-<2h—m> dizi + V(2) + Fz, (8)
in which V (z) contains the image potential as previously
described for plane electrodes, plus a dipole layer region
which is n-dependent and accounts for the corrugation
potential to the surface, gives information about the image
and field states. Also, the bulk potential is described by a
sinusoidal potential that opens a gap of 7.9 eV as indicated
above. For values of z up to 5 A, and with the image plane
at z = 0.8 A, the value of F is much smaller than d Vv, /dz, the
derivative of the image potential at these distances.
Therefore, at small values of z the surface potential V (z) is
stronger than the applied field potential and can be
considered as a perturbation. In this Hamiltonian the only
parameter is the surface dipole layer, which is adjusted so
that at F = 0 the correct energy E,(F = 0) is obtained. By
varying F the model gives the evolution of the (image +
field) states.

Table 1 gives the energy values for Ni(100) that fit the data
of Figure 7. The values of E, are in agreement with
photoemission data of Johnson and Smith [27], and it
should be noted that this does not depend upon the validity
of E_ ., li.c., the only energy that enters our calculation is
E,, and there is only one set of E, that fits all the E,(F) as
shown in Figure 7]. Analysis of the calculated wave
functions shows that F (F) is extremely sensitive to
E (F = 0). The values of E, (F), n <2 are dominated by the
image potential; Fz is only a perturbation. E (F), n > 4 are
dominated by the Fz potential; they are called field states,
and n = 3 is an intermediate situation between image and
field states.

The presence of image states does not require the existence
of a gap such as exists in Ni(100). If there is no gap, the
surface image states transform into surface image resonances
as in Figure 7, V, < ~2 eV and V, > ~10 ¢V, and in [26].
Recently Becker and Golovchenko have also observed these
resonances, but have not identified them in terms of image
stages [31].

We have found that even if the image state is in a crystal
gap it can carry current because of its width and finite
lifetime, as calculated by Echenique and Pendry [32] and
discussed by Flores [33]. This is in contrast to the recent
results of Becker and Golovchenko [31], who claim that
surface image states cannot contribute to the tunneling
current because of the two-dimensional character of these
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Experimental and theoretical results of STM spectroscopy on thin
oxide layers. The three peaks A, B, and C indicate the oxidc layers.
The curve labeled Theory is calculated by using the model shown in
Figure 9.

S

Table 1 Zero-field values of binding energies E,, reference
binding energies ¢,, and corrugation energies £, .

n Ni(100)

En Zn Eoorr,n
1 -3.25 -2.40 -0.85
2 —-0.85 -0.33 -0.52
3 —0.365 -0.125 -0.24
4 -0.18 -0.065 -0.12
5 -0.10 -0.040 -0.06

states. Kaiser and Jaklevic have also presented results on the
spectroscopy of surface states [34].

4. Tunneling spectroscopy on thin oxide layers
[35]

The characteristics of dI/dV, versus V, can be obtained not
only for clean metal surfaces, but also for surfaces with a
monolayer of adsorbate, as shown in Figure 6. Such
experiments were done by Jaklevic and Lambe [36] for thin
metal films with oxide tunneling junctions. Recently Binnig
et al. [6] have performed spectroscopic experiments on NiO
grown on Ni(100) by letting O, into the vacuum chamber
after the experiment on Ni(100), the results of which are
shown in Figure 6. They observed, by scanning and
performing spectroscopy at certain areas of the surface, very
large peaks in dI/dV, [6, 37]. Figure 8 shows the
experimental results in the region where the oxide layers
were growing; such peaks were not present for the clean
metal surface or for the ¢(2 X 2) structure of oxygen. Binnig
et al. [6] ascribe this strong peak to the empty d band in
NiO, as shown by local density band structure calculations
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Electron tunneling through thin metal oxides

Band

Metal 4 Metal oxide Vacuum Tip

Model for a vacuum tunneling gap s and three oxide layers. The oxide
potential is described by & functions and the metals by jelliums.
Notice the decrease of the applied potential in the vacuum gap due to
the large oxide dielectric constant.
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Transmittivity 7 for the tunneling electrons through three oxide
layers, for s = 0 (no vacuum gap—see Figure 8) versus Ecos’6,
(electron energy in a direction perpendicular to the junction). The A,
B, and C peaks correspond very well with the energies of the A, B,
and C experimental peaks in Figure 9.
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by Terakura et al. [38], and the peak at V, = 5.5 V was
attributed to the s band of Ni in NiO [38, 39]. Identification
of the observed data as tunneling phenomena via tunneling
theoretical calculations was not performed. A tunneling
interpretation is very appealing because if such bands exist,
when an electron tunnels with its energy in the range of the
oxide band it ceases to be a tunneling electron; i.e., it is
described not by an evanescent wave but by a propagating
one in the oxide region. Therefore, if there are several layers
of oxide, the conductance at the band edge energy will have
a large increase, as suggested by the data [6].

To calculate tunneling conductance, the model shown in
Figure 9 is proposed for the metal-oxide-vacuum-metal
Jjunction [6]. The oxide is described by a one-dimensional set
of potential barriers (in our case § functions):

N. GARCIA

=N
Viiae = Vo — @ X 8(ja — 2), )
i=1
where V, is the background potential, « is the § function
strength, N is the number of layers, and q is the interspacing
of the oxide layers. This model has been used to calculate
conductivity properties through oxides [40] and also by Tsu
and Esaki [41] to calculate transport properties by
multibarrier tunneling in superlattices. Its one-
dimensionality is not a problem because we are concerned
with the conductivity in the z-direction, and this implies that
the multiband scattering in the (x, y) direction should not be
important. The tip is “blunt,” r, = 30 A, and for the electron
of =5 A wavelength this is practically a planar junction. The
calculations were performed with these “large” tips in order
to avoid complicated field distributions and to have
“practically” planar electrodes.

The model assumes a = 3.5 A for the interplanar spacing
in the close-packed crystallographic direction in NiQ. A
constant value for a = 5 eV-A was chosen so as to ensure
that as N —  the first band would have the theoretical d
bandwidth ~1.2 eV [38, 39]. The parameter V, is fixed to
obtain a large peak in the value of the transmittivity in
agreement with the experiment at V, = 0.6 V (V, = 2.6 eV
above the Ni Fermi level). The model also accounts for the
image potential at the tip interface as well as for the external
potential that is linear and decreases largely in the vacuum
gap region because of the large dielectric constant of the
oxide. This is schematically indicated in Figure 9. The three
experimental peaks are indicated in Figure 8 by points A, B,
and C; note that their energy positions correspond very well
to the three theoretical peaks. The large experimental peak A
is located just 0.05 eV to the left of peak A. The
experimental peak A appears as a consequence of the rapid
increase in transmittivity (conductivity) of the oxide layers.
Figure 10 shows the calculated values of 7(®,) for the three
oxide layers and s = 0 as indicated in Figure 9. The first
band (I) appears at V, = 0.6 V because of the assumed value
for V,. Notice the appearance of a second band (II) in
agreement with [40, 41] a higher oxide conduction band at
V, =7 ¢V above E_. This second band corresponds to the
experimental peak located at 5.5 eV above E, not only in
position but also in shape, and the peak is broad because the
conductivity increases at a lower rate than does the
conductivity for the peaks in band 1.

The results of a more extensive calculation [6] for I(s) and
dl/dV, are indicated by the curve labeled “Theory” in Figure
8. In this calculation the integration in Equation (5) was
performed over all values of 8, for each V, for the condition
I = constant = 1 nA. The calculation proceeds by finding
the value of s (=5-6 A) which will provide a current density
of about 10" to 107> A/A” and in turn gives an I(s) of 107
to 107° A for an area of ~500 A’ (recall that r, =~ 30 A).
Finally, dl/dV, is obtained from Equation (7). The “Theory”
curve in Figure 8 shows the remarkable agreement obtained
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with these calculations and the experimental data, and one
can conclude that these observations can indeed be
attributed to the tunneling of electrons in NiO layers.

The results of these calculations show that

1. The number of oxide layers is three because of the three
experimental peaks; if we introduce N layers, N peaks are
observed in the same energy range, ~1 eV energy
bandwidth.

2. There is clearly a second oxide band.

3. These results are in very good agreement with the band
structure calculations of Terakura et al. [38] and Kubler
and Williams [39].

5. Conclusions

We have presented theoretical aspects of our STM research.
Topographic microscopy and spectroscopic results on clean
adsorbed monolayers and thin oxide layers have been
discussed. From the results the following conclusions are
inferred:

1. In the determination of the conductance or current
intensity in STM, the tunneling potential barrier is
basically dominated by the classical contribution of the
image potential [5, 13], in agreement with the theoretical
studies for the tunneling electron transversal time [4].
The image contribution reduces the height of the
tunneling barrier ®(s) from the work function ¢, at
s — o, and to zero when the electrode separation is
s=3 A. The o’(s) remains practically constant and in the
range corresponding to a barrier height of & =~ 1.5 eV.
However, the values of ¢ are reduced by a factor of ~100
compared to the value obtained for a constant barrier,

&, = 5 eV. Finally, the influence of the image force has a
focusing effect on the resolution L 4, which is a minimum
at s = 5-6 A.

2. It has been shown that image force is important in
determining the empty electronic states, as observed
experimentally [3]. These surface image states as
corrected by the applied field have a one-dimensional
character up to distances of ~2 A from the last layers of
atoms and have important energy contributions from the
modulation of the potential in the region core. The STM
in its spectroscopic version is a powerful technique for
detecting localized surface states and is able to unravel
the series of image states because of the shift produced by
the applied external field between surface and tip. These
states are pure surface states if the material has a gap at
their binding energies and a resonance otherwise [21, 26].
Even if they are pure surface states, they can carry current
because their lifetime is shorter than the tunneling time
for the electrons [32, 33].

3. From our analysis in tunneling through thin oxide layers
we believe that the spectroscopic version of the STM can
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give information about the electronic and geometrical
properties of thin layers grown or deposited on a
substrate. We have used our calculations to understand
the growth and experimental data [6] of NiO layers on
Ni(100). The calculated results show very good agreement
with the data and are able to resolve the number of layers
grown (three in this case) as well as the density of states
or conduction bands of the oxide film. The calculations
are in agreement with local density band structure
calculations [38, 39]. These results open new perspectives
in the characterization of the growth and nucleation of
thin films on solid substrates.
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