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Tunneling of carriers  through  a  barrier  is Alternatively, we now consider  a  time-independent 
characterized not  only  by a transmission  and potential, and  assume  that we have  a modulated incident 
reflection  probability,  but  also  by  the  time  it wave 
takes  a  carrier  to  traverse  the  barrier.  Recent 
work  which  discusses  the  traversal  time  is 1c/ = exp [ikx - iEt/h] + exp [ i (k   +Ak)x - i (E + AE)t/h]  
summarized,  and  its  relevance  is  highlighted by 
discussing several tunneling  phenomena. 

Introduction  and  alternative  viewpoint 
Every quantum mechanics  textbook discusses tunneling 
through a bamer  and evaluates the transmission  probability 
for  incident particles. The  actual  time  spent traversing the 
bamer has  been  a subject of  discussion in  the  journals for 
over half a century,  but with little clarity and  unanimity. In 
Refs. [ 1-31, we have discussed our own approach  and 
contrasted it with other work. We will not  attempt  to 
summarize  the alternative  answers  again, but  only stress the 
relationship  of our result to discussions by Stevens [ 4 ]  and 
by Jonson [ 5 ] .  In this note, we first give an alternative 
approach to our results, also discussed in Ref. [ 6 ] .  
Subsequently, we cite some illustrative  numerical examples. 

Our original approach analyzed the transmission  through 
the potential  of  interest, supplemented by a  small oscillatory 
perturbation [ 1 1 .  At low modulation frequencies, the 
transmission  consists  of the transmission as calculated  for  a 
time-independent potential but adjusted to  the  actual 
potential  at each instant. As the  modulation frequency is 
increased,  serious departures  from  this behavior  occur, and 
the corresponding oscillation period  is  taken as a  measure  of 
the  time over which the  tunneling particle interacts with the 
bamer. 
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consisting of two  interfering  plane waves. (If the region of 
incidence is not a region of constant potential, but  one of 
slowly varying potential, we can still write a decomposition 
of the  above  form, based on  the  WKB  approximation.) Now, 
if AE is  small, the incident wave is modulated very slowly, 
and we can expect the emerging transmitted wave to follow 
the incident wave faithfully. Let t ( E )  denote  the complex 
ratio of transmitted wave to incident wave, at energy E. The 
transmitted wave is 

1c/ = t ( E )  exp [ ikx - iEt/h] 

+ t ( E  + AE)exp[i(k + Ak)x - i (E  + AE)t/h] .  ( 2 )  

As long as t( E )  and t( E + AE)  are close to each other this is 
simply IC., as given in Equation ( l ) ,  multiplied by t (E) .  In 
that case, the  terms  in  Equation ( 2 )  interfere  constructively 
at  the  same  time  as  the  terms  in  Equation (1) and similarly 
the destructive  interferences  coincide. The  immediate 
response in  the outgoing wave to  the variation in  the 
incoming wave can be interpreted as a traversal time  short 
compared  to  the period  of oscillation. We have, in  our 
earlier papers, criticized approaches which identify  a peak in 
an outgoing wave with a peak in  the  incoming wave; physics 
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the  incident wave, and we can  assume  that a time delay, or 
dispersion in  transit time,  has  become comparable  to  the 
modulation period. 

In  the case of  transmission over a bamer  the energy 
dependence of t (  E )  comes primarily from  the energy 
dependence of the phase. The reasoning just invoked, in  the 
WKB  approximation, leads to a transit time T = 
Jdx/u, where v ( x )  = h-‘dE/dk. Within  the  WKB 
approximation,  at energies above the  bamer peak, I t (E)  I = 
I t ( E  + AE) 1.  Thus,  in  this range, it is only the phase that 
matters. If  we go beyond the  WKB  approximation,  then 
I t (E)  I will also, in general, as a  result  of reflections [7], be 
less than unity, and will have  its own energy dependence. 
That is consistent, however, with the fact that  in  the 
presence of reflections we can expect an effect of  these 
reflections on  the traversal time,  and  can  no longer  expect  it 
to be Jdxfu. 

We stress that it is the energy sensitivity of t (E)  that 
matters. For  tunneling  under a  barrier with a  small 
transmission  probability,  it is the exponential decay that 
matters; questions of  phase are secondary. A naive 
extrapolation, to  the  tunneling problem,  of the phase 
considerations which apply to  ordinary wave packets in  the 
classically allowed range of motion, is at  the root of some of 
the earlier  approaches. For V > E let us take 

t = e x p ( - s  lkldx)  = exp(-a), (3) 

with h2k2 = 2m(E - V).  This expression applies  within the 
WKB  approximation. It is also  a good approximation  in  the 
case of a  rectangular bamer.  In  that case, however, the 
energy-dependent  factors  arising from  matching  at  the 
potential  discontinuities  have been neglected. For barriers 
with small  transmission  probability, that will account for 
secondary  corrections, independent of bamer length. We can 
then ask  how large AE must be to yield AE I da/dE I = 1. 
Let x, and x, be the  turning points. Then rl”=ds lkldx dE  dE x ,  

x2 

In  the  WKB  approximation k(x,) = k(x , )  = 0. For a 
rectangular bamer dx,/dE = dx,/dE = 0. Thus, in  either  of 
these  two cases 

AE - (Ida/dEI)-’ = s dx -, 

where we have used dE/dl kl = -h2 I k l / m .  Now the 
traversal time is related to  the  modulation period, T - h/AE, 
yielding 

m 
h21kl 

( 5 )  

,. 
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We have already mentioned  the relationship to  the work 
of Stevens and of Jonson,  and have cited other early related 
results in Refs. [ 1-31. Here we will, briefly, allude to  more 
recent  work. Pollak and Miller [8] state,  “In quantal systems, 
the  time is complex; the real part gives the  actual  duration of 
the collision, and  the imaginary part is significant for systems 
with more  than  one degree of freedom.” Their imaginary 
part is our traversal time. We quote this statement without 
any  attempt  to interpret it. Subsequently  Pollak [9] pointed 
out  that  Equation  (6) is the  time which, in tunneling  under a 
multi-dimensional  saddle point,  determines whether the 
transverse degrees of freedom can adjust  adiabatically to  the 
progress of the tunneling. Pollak and Miller [8, 91 are 
correct,  of  course,  in stressing the relevance to systems with 
more than  one degree of  freedom. The traversal time is 
relevant only if there is some sensitivity to  time in the 
problem,  either through  the  adjustment  to  the  tunneling 
process by other degrees of  freedom, or through  an 
externally impressed time variation  as  in Ref. [ 11. 

A number of other recent and still unpublished 
contributions relate to  our traversal time.  Bruinsma and Bak 
[ IO]  have  analyzed  macroscopic quantum  tunneling  from a 
viewpoint in which the reservoir oscillators coupled to  the 
tunneling particle are treated  in  a way very close to  that of 
Ref. [ 11. Furthermore,  the  temperature  at which they find a 
crossover from bamer  penetration by tunneling  to  bamer 
crossing by thermal activation  is given by kT = h / ~ ,  where T 

is our traversal time.  Schmid [ 1 11 has approached 
macroscopic quantum  tunneling through  a  many- 
dimensional WKB  approximation.  In  this  connection he  has 
considered  a tunneling particle damped by being tied to a 
linear chain of  coupled masses (or violin string). He finds 
that  during  bamer  penetration, by tunneling, the  disturbance 
propagates  along the string  for  a  distance determined by the 
traversal time.  Lane [ 121 has  pointed to  the relevance of the 
traversal time in fusion catalyzed by muons.  During  the 
tunneling event  required in fusion, how much energy is 
picked up by the  muon? This, in  turn, relates to its escape 
and its  subsequent availability for further catalysis. Gukret  et 
al. [ 131 study  the effect of  a  transverse  magnetic field on  the 
tunneling  current through  thick and low semiconductor 
barriers. The Lorentz  force due  to  the applied field lengthens 
the  tunneling path of the  camers  through  the  bamer.  This 
effect is proportional  to  the  square of the traversal time. 

Estimates of the  traversal  time 
In this  section we estimate the traversal time for some 
tunneling  phenomena in solid state physics. Consider the 
field-emission of electrons out of a metal  (Hartstein  et al. 
[ 141, Hubner [ 151, Binnig et al. [ 161, and  Jonson [5]). In  that 
case we have  a  triangular  barrier described by a  potential 
V = O f o r x < O a n d  V = E , +  W-eFxforx>O.E, i s the  
Fermi energy and W is the work  function.  Electrons at  the 
Fermi energy have  a  probability [ 171 
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T 0~ e~p[-(4/3)&W~/~/heF] 

for tunneling  out of the metal. Equation (6) yields a traversal 
time T = (2m W)'''/eF. With W = 3.6 eV and F = 

IO6 V/cm,  parameters taken from Hartstein et al. [ 141, we 
find 7 E 7 .  s. With decreasing field the traversal time 
increases  in proportion  to F-', but  the  tunneling probability 
decreases  exponentially, effectively setting  a lower limit to 
the observation  of field-emission. Thus, it may be difficult to 
achieve  longer traversal times. Hiibner [ 151 applies an 
oscillating  electric field, F cos ut, with frequencies up  to 18 
GHz.  He finds that  the result can still be explained by 
replacing the static field, F,  in  the Fowler-Nordheim formula 
by the  time-dependent field, a procedure valid for 
frequencies  small compared  to  l/r.  Hubner correctly 
concludes that  the traversal time  must be shorter  than 2 ps 
in his experiment,  in agreement  with the rough estimate 
given above. 

Another  important  tunneling  mechanism is Zener 
tunneling. Zener [ 181 found  that electrons tunnel  through a 
small band  gap A E  with  a  probability 

T a exp[-(rna/2h2)(AE2/eF)].  

(See also Ref. [ 191.) Here a is the lattice constant  and m is 
the free electron  mass and F the field which tilts the  band 
structure.  Zener derived  this  result by calculating the wave 
vector in the lowest band gap, where k = (*/a) + iK, and K is 
given by 

K = - - [(AE/2)2 - ( ~ F x ) ~ ] " ~  7 r l  
Eb 

E, = h T /2ma2 is the energy a free electron  would  have at 
the  zone  boundary.  Equation (7) is valid for  nearly free 
electrons,  which,  near the gap,  have an effective mass m = 
(AE/4Eb)m. By analogy to  the case of the  ordinary  bamer 
we can expect that  the effective velocity of  a Zener  tunneling 
electron is given by I u 1 = hK/m, yielding a traversal time 7 = 

$dxlul-' = (rnu/h)(AE/4eF). For A E  = 0.75 eV, u = 5 A, 
and F = lo6 V/cm,  the  tunneling probability turns  out  to be 
T = 4.5.  Electrons  take  a time  (h/eF)Jdk = 2~h /eFa   t o  
traverse the Brillouin zone. In  the absence  of Zener 
tunneling  the electrons  execute Bloch oscillations with 
frequency uB = eFu/21rh. During each cycle they tunnel  into 
the higher band with probability T. Thus  the  conduction 
band is depleted at a rate r = u,T E 6.10'  Hz.  The traversal 
time for  these parameters is 7 = s. If  we reduce the 
field  by a  factor  of  two, the traversal time is twice as long, 
but  the  Zener  tunneling rate falls to r = 1.3. IO4 Hz. (Note 
that  our reasoning has invoked the Bloch oscillation 
frequency  as  a convenient device to characterize the 
frequency with which electrons approach  the  band edge. The 
particular  conditions, however, needed for observation of 
actual Bloch oscillations, i.e., low scattering  rates, are  not 
required here.) 
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Josephson junction  circuits are  our  third example. The 
junction has an energy E = (C/2) V' + W(8), where C is the 
capacitance  of the  junction, V = (h/2e)dO/dt is the voltage, 
and 8 is the phase-difference across the  junction.  The 
potential energy has  the  form of a  tilted  sinusoid given by 

W(8) = (hIm/2e)[(l - cos8) - (Z/Z,,,)8], 

where I,,, is the  maximum Josephson current  and I the 
external current.  The  superconducting states 8, = arcsin 
( I / I m )  correspond to  points of fixed phase at a local 
minimum of the tilted  sinusoid.  These are metastable  states; 
the circuit can  tunnel [20, 211 from  this  superconducting 
state  to  the voltage state, V # 0. In the metastable  states the 
energy of the  junction is E = W(8,) + hw0/2. Here W(8,) is 
the energy at  the  bottom of  a valley and  ho0/2 is the zero- 
point energy, 

wo = up( 1 - (1/1,,,)2)'/4, 

where wp = (2eI,,,/hC)1/2 is the  equilibrium plasma 
frequency. The traversal time, as determined by Equation 
( I ) ,  is given by 

T = w,lJd0/[2(2e/hIm)( W(8) - E)]'I2. 

For  the Josephson junction discussed in Ref. [22], with I,,, = 
0.2 mA, I = 0.985 I,,,, C = 10"' F,  corresponding to a zero- 
point energy of hw0/2 = 1.07.1 0-4 eV and a bamer height of 
1.4. eV, we obtain coo = 0.32. IO'* Hz.  Numerical 
evaluation  of the integral yields 7 = 1.3. lo-''  Hz,  almost 
three orders of magnitude larger than  the typical traversal 
time in  a field-emission or  Zener  tunneling experiment! The 
traversal time  can, in turn, be used to calculate  a  reduction 
in tunneling rate, due  to friction,  as  sketched  in Ref. [ 11. 

We would  also like to  point  to  the relationship between 
traversal time  and  the single-electron tunneling  oscillations 
discussed by Averin and Likharev  [23] and by Ben-Jacob 
and Gefen [24]. They  point  out  that a tunneling event, in a 
structure with  a  small  capacitance, can  only  occur if the 
electrostatic energy after tunneling is no larger than  that 
before tunneling. If the  tunneling  structure is supplied by a 
current, i, through a resistor which delivers charge 
continuously, rather  than  in  quantized  amounts,  then  the 
voltage across the  tunneling  structure oscillates with 
frequency i/e. Observation  of this effect  will require  a very 
small  capacitance.  Note, however, that only that  part of the 
capacitance matters which can supply  charge to  the 
tunneling  event within the  tunneling time. Thus, if we use 
an STM configuration,  charge  transfer from parts of the 
structure where the electromagnetic wave propagation time 
exceeds the traversal time is irrelevant. 
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