Traversal time
for tunneling
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Tunneling of carriers through a barrier is
characterized not only by a transmission and
reflection probability, but also by the time it
takes a carrier to traverse the barrier. Recent
work which discusses the traversal time is
summarized, and its relevance is highlighted by
discussing several tunneling phenomena.

Introduction and alternative viewpoint
Every quantum mechanics textbook discusses tunneling
through a barrier and evaluates the transmission probability
for incident particles. The actual time spent traversing the
barrier has been a subject of discussion in the journals for
over half a century, but with little clarity and unanimity. In
Refs. [1-3], we have discussed our own approach and
contrasted it with other work. We will not attempt to
summarize the alternative answers again, but only stress the
relationship of our result to discussions by Stevens [4] and
by Jonson [5]. In this note, we first give an alternative
approach to our results, also discussed in Ref. [6].
Subsequently, we cite some illustrative numerical examples.
Our original approach analyzed the transmission through
the potential of interest, supplemented by a small oscillatory
perturbation [1]. At low modulation frequencies, the
transmission consists of the transmission as calculated for a
time-independent potential but adjusted to the actual
potential at each instant. As the modulation frequency is
increased, serious departures from this behavior occur, and
the corresponding oscillation period is taken as a measure of
the time over which the tunneling particle interacts with the
barrier.
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Alternatively, we now consider a time-independent
potential, and assume that we have a modulated incident
wave

Vv = explikx — iEt/h] + exp[i(k +Ak)x — i(E + AE)t/h]
= 2exp[i<k + % Ak)x - i(E + %AE)z/h]
1 1
X cos(i Akx - 3 AEt/h) (N

consisting of two interfering plane waves. (If the region of
incidence is not a region of constant potential, but one of
slowly varying potential, we can still write a decomposition
of the above form, based on the WKB approximation.) Now,
if AE is small, the incident wave is modulated very slowly,
and we can expect the emerging transmitted wave to follow
the incident wave faithfully. Let #(£) denote the complex
ratio of transmitted wave to incident wave, at energy E. The
transmitted wave is

¥ = t(E)exp[ikx — iEt/h]
+ H(E + AE)expli(k + Ak)x — i(E + AE)/h). )

As long as t{(E) and ((E + AE) are close to each other this is
simply ¥, as given in Equation (1), multiplied by #(E). In
that case, the terms in Equation (2) interfere constructively
at the same time as the terms in Equation (1) and similarly
the destructive interferences coincide. The immediate
response in the outgoing wave to the variation in the
incoming wave can be interpreted as a traversal time short
compared to the period of oscillation. We have, in our
earlier papers, criticized approaches which identify a peak in
an outgoing wave with a peak in the incoming wave; physics
has no law about a peak turning into a peak. In our present
argument it is not just a peak, but the time variation of the
total modulation waveform, which is invoked. As we
increase AE and shorten the modulation period, #(E) and
{(E + AE) will increasingly differ. Once they differ
appreciably, the transmitted wave will no longer reproduce 451
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the incident wave, and we can assume that a time delay, or
dispersion in transit time, has become comparable to the
modulation period.

In the case of transmission over a barrier the energy
dependence of #( E) comes primarily from the energy
dependence of the phase. The reasoning just invoked, in the
WKB approximation, leads to a transit time r =
fdx/v, where v(x) = h~'dE/dk. Within the WKB
approximation, at energies above the barrier peak, |{(E)| =
|t(E + AE)|. Thus, in this range, it is only the phase that
matters. If we go beyond the WKB approximation, then
| 2(E)| will also, in general, as a result of reflections [7], be
less than unity, and will have its own energy dependence.
That is consistent, however, with the fact that in the
presence of reflections we can expect an effect of these
reflections on the traversal time, and can no longer expect it
to be fdx/v.

We stress that it is the energy sensitivity of #(E) that
matters. For tunneling under a barrier with a small
transmission probability, it is the exponential decay that
matters; questions of phase are secondary. A naive
extrapolation, to the tunneling problem, of the phase
considerations which apply to ordinary wave packets in the
classically allowed range of motion, is at the root of some of
the earlier approaches. For V' > F let us take

t= exp(—f |k|dx> = exp(—a), (3)

with 2°K° = 2m(E — V). This expression applies within the
WKB approximation. It is also a good approximation in the
case of a rectangular barrier. In that case, however, the
energy-dependent factors arising from matching at the
potential discontinuities have been neglected. For barriers
with small transmission probability, that will account for
secondary corrections, independent of barrier length. We can
then ask how large AE must be to yield AE |da/dE]| = 1.
Let x, and x, be the turning points. Then

do d [7
d_E_dE . |k|dx

S5 o 45 g+ [
=JE Jh(x)| — JE [k(x,)] + ; dx(d|k|/dE). (4)

In the WKB approximation k(x,) = k(x,) = 0. For a
rectangular barrier dx,/dE = dx,/dE = 0. Thus, in either of
these two cases

AE ~ (|da/dE “=fd o 5
(I da/dE]) xhzlkl ()
where we have used dE/d| k| = —h*| k| /m. Now the

traversal time is related to the modulation period,  ~ #/AE,
yielding

m
T=fde (6)

in accordance with Refs. [1-6].
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We have already mentioned the relationship to the work
of Stevens and of Jonson, and have cited other early related
results in Refs. [1-3]. Here we will, briefly, allude to more
recent work. Pollak and Miller [8] state, “In quantal systems,
the time is complex; the real part gives the actual duration of
the collision, and the imaginary part is significant for systems
with more than one degree of freedom.” Their imaginary
part is our traversal time. We quote this statement without
any attempt to interpret it. Subsequently Pollak [9] pointed
out that Equation (6) is the time which, in tunneling under a
multi-dimensional saddle point, determines whether the
transverse degrees of freedom can adjust adiabatically to the
progress of the tunneling. Pollak and Miller {8, 9] are
correct, of course, in stressing the relevance to systems with
more than one degree of freedom. The traversal time is
relevant only if there is some sensitivity to time in the
problem, either through the adjustment to the tunneling
process by other degrees of freedom, or through an
externally impressed time variation as in Ref. [1].

A number of other recent and still unpublished
contributions relate to our traversal time. Bruinsma and Bak
[10] have analyzed macroscopic quantum tunneling from a
viewpoint in which the reservoir oscillators coupled to the
tunneling particle are treated in a way very close to that of
Ref. [1]. Furthermore, the temperature at which they find a
crossover from barrier penetration by tunneling to barrier
crossing by thermal activation is given by kT = #/7, where 7
is our traversal time. Schmid [11] has approached
macroscopic quantum tunneling through a many-
dimensional WKB approximation. In this connection he has
considered a tunneling particle damped by being tied to a
linear chain of coupled masses (or violin string). He finds
that during barrier penetration, by tunneling, the disturbance
propagates along the string for a distance determined by the
traversal time. Lane [12] has pointed to the relevance of the
traversal time in fusion catalyzed by muons. During the
tunneling event required in fusion, how much energy is
picked up by the muon? This, in turn, relates to its escape
and its subsequent availability for further catalysis. Guéret et
al. [13] study the effect of a transverse magnetic field on the
tunneling current through thick and low semiconductor
barriers. The Lorentz force due to the applied field lengthens
the tunneling path of the carriers through the barrier. This
effect is proportional to the square of the traversal time.

Estimates of the traversal time

In this section we estimate the traversal time for some
tunneling phenomena in solid state physics. Consider the
field-emission of electrons out of a metal (Hartstein et al.
[14], Hibner [15], Binnig et al. [16], and Jonson [5]). In that
case we have a triangular barrier described by a potential
V=0forx<Oand V=E .+ W — eFx forx>0. Eis the
Fermi energy and W is the work function. Electrons at the
Fermi energy have a probability [17]
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T « exp[—(4/3)V2mW*?/heF]

for tunneling out of the metal. Equation (6) yields a traversal
time r = 2mW)'?/eF. With W= 3.6 eV and F =
10° V/cm, parameters taken from Hartstein et al. [14], we
find 7 = 7-10™"* 5. With decreasing field the traversal time
increases in proportion to F~', but the tunneling probability
decreases exponentially, effectively setting a lower limit to
the observation of field-emission. Thus, it may be difficult to
achieve longer traversal times. Hiibner [15] applies an
oscillating electric field, F cos wt, with frequencies up to 18
GHz. He finds that the result can still be explained by
replacing the static field, F, in the Fowler-Nordheim formula
by the time-dependent field, a procedure valid for
frequencies small compared to 1/7. Hiibner correctly
concludes that the traversal time must be shorter than 2 ps
in his experiment, in agreement with the rough estimate
given above.

Another important tunneling mechanism is Zener
tunneling. Zener [18] found that electrons tunnel through a
small band gap AFE with a probability

T « exp[—(ma/2h*AE/eF))].

(See also Ref. [19].) Here « is the lattice constant and m is
the free electron mass and F the field which tilts the band
structure. Zener derived this result by calculating the wave
vector in the lowest band gap, where k = (z/a) + ix, and « is
given by

[(AE/2)" — (eFx)1". )

1
T E,
E = f121r2/2ma2 is the energy a free electron would have at
the zone boundary. Equation (7) is valid for nearly free
electrons, which, near the gap, have an effective mass m =
(AE/4E,)m. By analogy to the case of the ordinary barrier
we can expect that the effective velocity of a Zener tunneling
electron is given by |v| = fix/m, yielding a traversal time 7 =
fdx|v|™" = (ma/h)AE/4eF). For AE=0.75¢eV,a=5 A,
and F = 10° V/cm, the tunneling probability turns out to be
T = 4.5-107". Electrons take a time (#/eF)[dk = 2xh/eFa to
traverse the Brillouin zone. In the absence of Zener
tunneling the electrons execute Bloch oscillations with
frequency v, = eFa/2nh. During each cycle they tunnel into
the higher band with probability 7. Thus the conduction
band is depleted at a rate 7 = v, T = 6-10° Hz. The traversal
time for these parameters is r = 107" s. If we reduce the
field by a factor of two, the traversal time is twice as long,
but the Zener tunneling rate falls to r = 1.3- 10° Hz. (Note
that our reasoning has invoked the Bloch oscillation
frequency as a convenient device to characterize the
frequency with which electrons approach the band edge. The
particular conditions, however, needed for observation of
actual Bloch oscillations, i.e., low scattering rates, are not
required here.)
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Josephson junction circuits are our third example. The
junction has an energy E = (C/2) V* + W(9), where C is the
capacitance of the junction, V = (h/2e)d6/dt is the voltage,
and ¢ is the phase-difference across the junction. The
potential energy has the form of a tilted sinusoid given by

W(0) = (hl_/2e)[(1 — cos8) — (I/1 )],

where I is the maximum Josephson current and I the
external current. The superconducting states 8, = arcsin
(/1) correspond to points of fixed phase at a local
minimum of the tilted sinusoid. These are metastable states;
the circuit can tunnel [20, 21] from this superconducting
state to the voltage state, V" 0. In the metastable states the
energy of the junction is E = W(8) + fiw,/2. Here W(6)) is
the energy at the bottom of a valley and fiw,/2 is the zero-
point energy,

wy = w1 = (L))",

where v = (2eIm/hC)'/ % is the equilibrium plasma
frequency. The traversal time, as determined by Equation
(1), is given by

T = w, ' [d0/[2Q2e/hI X W) — E))".

For the Josephson junction discussed in Ref. [22], with [ =
02mA,I=09851_,C= 10™"* F, corresponding to a zero-
point energy of Aw,/2 = 1.07- 10™* eV and a barrier height of
1.4-107° eV, we obtain w, = 0.32-10"> Hz. Numerical
evaluation of the integral yields r = 1.3- 107" Hz, almost
three orders of magnitude larger than the typical traversal
time in a field-emission or Zener tunneling experiment! The
traversal time can, in turn, be used to calculate a reduction
in tunneling rate, due to friction, as sketched in Ref. [1].

We would also like to point to the relationship between
traversal time and the single-electron tunneling oscillations
discussed by Averin and Likharev [23] and by Ben-Jacob
and Gefen [24]. They point out that a tunneling event, in a
structure with a small capacitance, can only occur if the
electrostatic energy after tunneling is no larger than that
before tunneling. If the tunneling structure is supplied by a
current, i, through a resistor which delivers charge
continuously, rather than in quantized amounts, then the
voltage across the tunneling structure oscillates with
frequency i/e. Observation of this effect will require a very
small capacitance. Note, however, that only that part of the
capacitance matters which can supply charge to the
tunneling event within the tunneling time. Thus, if we use
an STM configuration, charge transfer from parts of the
structure where the electromagnetic wave propagation time
exceeds the traversal time is irrelevant.
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