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We  discuss  the  tunneling  current  density  in  the 
vacuum  region between two  planar metal 
electrodes,  one of which  has  an  atom 
chemisorbed  on its surface.  The  relation of this 
current  distribution  to  the  electronic  structure of 
the  adatom  is  analyzed.  The  study of  this  model 
problem leads  to  a  better understanding  of 
important aspects of the  current  flow  in  the 
scanning  tunneling  microscope.  The  emphasis 
of this  work is not so much  on the  question of 
resolution  discussed  in  other  theoretical  studies 
as on the  characteristic  signatures of chemically 
different  atoms. 

Introduction 
We consider here  the distribution  of tunneling  current in the 
vacuum region between two planar metallic  electrodes with a 
small bias voltage between them,  in  the instance in which 
there is an adsorbed atom  at its equilibrium distance on  one 
of the electrodes [I]. This analysis is designed to  illuminate 
certain important aspects  of the  current flow in  the scanning 
tunneling microscope [2-61. 

For  the  metal surface we use the jellium  model, which can 
be expected to be adequate for a general discussion of many 
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of the properties that  depend  on  the wave function well 
outside the surface. We begin with a brief outline of the 
calculation  of the ground-state  properties  of an  atom 
adsorbed on such a surface [7]. The density-functional 
theory  of inhomogeneous electron systems, with the local- 
density approximation for  exchange and correlation effects 
[SI, is used in this  calculation. 

Adatom  on  metal  surface 
When an  atom interacts with a system whose electronic 
states  form  a continuum,  the discrete levels of the  atom 
which are degenerate with the  continuum broaden into 
resonances. The resonances  formed in this way when Li, Si, 
and C1 atoms interact with a high-electron-density metal are 
shown in Figure 1 (at their calculated  equilibrium 
separations) [9]. The states  constituting the C1 3p resonance 
are below the  Fermi level and  are therefore  occupied;  those 
constituting the Li 2s resonance are mostly  empty. This 
implies that charge  transfer has taken place, toward the C1 
atom  and away from  the Li atom, as  would be expected 
from  their electronegativities. The prohibitively large energy 
required  either to fill or  empty  the Si 3p level forces this 
resonance to straddle the  Fermi level, resulting in the 
formation of  a  covalent, rather  than ionic, bond [lo]. 

The electron  densities [9] associated with the  three 
fundamental  bond types are exhibited  for comparison  in 
Figure 2. In  the  top row of the figure are presented contours 
of constant total  electron  density  for the  three adsorption 
systems. Note  the way in which the  contours rapidly regain 
their  bare-metal  form away from  the  immediate region of 
the  atom.  This is just a  manifestation  of the  short range of 
metallic screening. 
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The detailed  charge  rearrangements associated with the 
atom-surface interaction  are displayed in the  bottom row of 
Figure 2, which gives contour  maps of the difference between 
the electron  density in  the  metal-atom system and  the 
superposition  of  bare-metal and free-atom densities. The 
solid contours indicate regions of charge accumulation; 
broken  contours indicate regions of charge  depletion.  These 
maps reflect the directions  of  charge  transfer noted above. 

Two-electrode  system 
Although we have  available the self-consistent density- 
functional wave functions  for a jellium surface with and 
without  an  adatom, we do  not have them for the  combined 
two-electrode system. Finding such wave functions for the 
combined system, from which we could  directly determine 
the  tunneling  current, is a difficult problem. It would 
therefore  seem useful to consider the Bardeen tunneling 
Hamiltonian formalism [ I  11, which gives the total tunneling 
current in terms of wave functions  determined separately for 
each electrode in  the absence of the other. We wish, 
however, for purposes  of our discussion to exhibit the 
current density distribution; therefore, the  tunneling 
Hamiltonian formalism  as it  stands  cannot be used. It proves 
possible though, via a  derivation  analogous to  that of 
Bardeen, to obtain  an expression for the  current density in 
terms of the separate wave functions for the two electrodes. 

We first describe the way in which we obtain  our  formula 
for the  current density  (using atomic units,  in which 
h = m = I el  = 1). The  Hamiltonian for the left (right) 
electrode  considered separately is 

HL(R) has  eigenfunctions $: ($:) and eigenvalues E, (E”). 
The  Hamiltonian for the  combined (two-electrode) system is 
H = HL + VR. The wave function *,(?, t )  for the  combined 
system (whose form we need only  in  the  vacuum region) is 
taken  to coincide  with at t = - - t ~  and  to differ from it 
subsequently because of the  adiabatic  addition  to HL of VR, 
regarded  as  a perturbation [ 121. 

density is 

?(?) = 2 9”s dp 6(E, - E,) Im (\k:V*,). (1) 

(The factor 2 is for spins, which we do not  include in our 
labels p and u.) We  obtain 3,(?, t )  from the stationary 
eigenstates of HL and HR using  time-dependent perturbation 
theory. In doing  this we can of  course just  as well use $,”* in 
place of (and similarly, $p* in place of $p), and  it proves 
convenient  to  extend  the  meaning of J d p  (and Jdv  as well) 
to include a sum over  these two cases. We then  include a 
factor 1/2 with such integrals. 

For small  bias 9” and zero temperature,  the  current 

Now let us write 
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Curves of the difference in eigenstate  density between the  metal- 
adatom system and the bare metal for adsorbed Li, Si, and CI atoms. 
(The lower Si resonance corresponds to the 3s level; the correspond- 
ing level  for CI is a discrete state below the bottom of the metal band.) 
The metal electron density is 0.03 electrons/bohr3 (rs = 2). (From 
[9]; reproduced with permission.) 

Using the fact, demonstrated by Bardeen [ 1 11, that 
( v  I VR 1 j ~ )  = iJu,, where J ,  = J d s  . jv,(?), with S a  surface 
in  the  vacuum region, it can  then be shown (see [ 11) that 

j(?) = WJ dp J dv 6(E, - EF)6(Ev - EF)JvJ7,(J). (3) 

If this is integrated  over the surface  in the  vacuum region, we 
recover the usual tunneling  Hamiltonian expression for the 
total current [5]. (Note  that  there is a  factor 1/4 here due  to 
the redefinition of J dp and J dv.) 

Now let us discuss briefly the  computation of $L and 4”. 
In  the case of the bare  metal  in the jellium  model (which we 
take  as the right electrode), 

where we use cylindrical coordinates with the z axis  along 
the surface normal  and where u&), which is computed self- 
consistently, is oscillatory deep in the metal and decays 
exponentially  in the  vacuum.  The associated inverse decay 
length is given asymptotically by J 2 @  + K~ in atomic units; 
@ is the electrode  work function.  This is discussed in [9]. 
Also described there  are  the self-consistently computed 
density-functional wave functions used to  obtain Figure 2, 
but for that purpose they are only  required  within  a  sphere 
of -7 bohr  in radius about  the  atom. These wave functions 
(which we take  as our $L) must for the present  study be 
propagated further  into  the  vacuum;  this is done using the 
bare-metal Green’s function described in [9]. Note  that  in 
evaluating Equation (3) to  obtain  the  current density, the 
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Top  row: Contours of constant electron density in  a  plane  normal  to  the  metal  surface contaning the atom nucleus (indicated by + ). The metal is at 
the left-hand side; the solid vertical line indicates the positive-background edge. Atoms are  at  their equilibrium distance from  the metal. Contours 
are not  shown outside the inscribed circle of each square; contour values are selected to be visually informative. Bottom row:  Total electron density 
minus su osition of free-atom and  bare-metal electron densities electrons/bohr3 . From 9 . re roduced  with ermission. 

integrand (summand) will be diagonal  in m (because of the 
cylindrical symmetry of our system) but  not in K ,  and so we 
must integrate  over  both K~ and K~ [ 131. 

We now discuss our results. The  two metallic  electrodes 
are  taken  to have the  same high electron  density 
(corresponding to rs = 2 ,  which is broadly  representative  of 
many metals [ 141). We first show the case in which a Na 
atom is adsorbed on  the left electrode. The corresponding 
current density is shown in Figure 3. The left and right edges 
of the box  correspond to  the positive background edges for 
the two electrodes. The presence  of the  Na  atom is  indicated 
schematically by two  dashed circles with a  cross which gives 
the  computed  equilibrium distance of the nucleus. Results 
are shown only in  a strip  in  the  center of the  vacuum  bamer; 
much closer to  the surfaces, the representation of the 
combined-system wave function Q in  terms of $L and $" is 
not  adequate. At each point of  a grid in this  strip, the 
current density is represented by an arrow. The length (and 

thickness  as well) of the arrow is made proportional to 
In (ej/j,), where; is the  magnitude of the  current density and 
j, is the  current density that would be present  without the 
atom.  The factor e = 2.7 18 is included so that  at large lateral 
distances p, where j = j,, we show  a  unit-length  arrow 
instead  of  a blank space. Note for example that along the 
right edge of the  strip  the largest arrow  represents roughly a 
factor of 25 in current density compared with the smallest 
arrow (which corresponds  approximately  toj,). The  current 
distribution is quite  sharp  and shows a large enhancement 
due  to  the presence of the  atom.  The plate separation  of 30 
bohr ( 1  6 A) is larger than  the tip-to-surface separations 
presently typical of  scanning  tunneling  microscope 
experiments. If we reduce the plate  separation  to, e.g., 16 
bohr (8.5 A), which is closer to a typical value, the  current 
pattern (now  computable reliably only in a  narrower  strip) is 
in fact quite similar to  that seen in Figure 3. The  additional 
tunneling conductance  at this  latter  separation that is due  to 
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B Current density for the case in which a Na atom is adsorbed on  the 
8 left electrode. The z and p directions are, respectively, normal and 1 lateral to the surface. The lengths (and thicknesses) of the arrows are 
Q proportional to In (e j / j o )  evaluated at the spatial  positions  corre- 
6 sponding to the center of the arrows. (Corrects similar figure in [ I ] . )  

the presence of the  atom is 4 x IO-' Q" (which  is near the 
experimental range). Figure 4 shows a contour  map of jJj0 
for the case  given  in  Figure 3. 

The dashed curve in the left  half of Figure 5 shows the 
additional eigenstate density due to the presence  of the Na 
atom  on  the metal surface  which we have taken as our left 
electrode. The fact that the resonance, which corresponds to 
the 3s valence  level  of the free atom, is  mostly above the 
Fermi level indicates that  the 3s electron of the  Na  atom has 
been largely  lost to the metal, as in the case of Li shown in 
Figures 1 and 2. In the present low-bias  case only states in 
the immediate vicinity of the Fermi level contribute to the 
current; the density of such states is reduced  because the 
peak of the resonance is  significantly above the Fermi level. 
(Nonetheless there is  still an appreciable density of 3s states 
at the Fermi level.) 

We can study the cases  for  which the Fermi level  lies 
higher in the s resonance by considering atoms in the next 
column of the periodic table. Instead of discussing Mg, 
which  follows Na, we consider Ca, because it has the same 
calculated equilibrium metal-adatom separation as Na and 
thus our comparisons will not be complicated by the effects 

z (bok) 

Contour map ofj,/j,, for the case in which a Na atom is adsorbed on I the left electrode. (Corrects similar figure in [ I ] . )  

Energy  relative  to  vacuum (eV) 

* Curves of the difference i n  eigenstate  density between the  metal- 
adatom system and the bare metal for adsorbed Na and Ca atoms. The 
lower-energy Ca peak corresponds to the 4s state, the upper to 4p 
states (wi th  some  3d-state  contribution),  The  azimuthal  quantum 
number i5 denoted by m .  (From [ I ] ;  reproduced with permission.) 
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Contour map ofj,/jo for  the case in which a Ca atom is adsorbed on 
the left electrode. (Corrects similar figure in [ I ] . )  

Contour map ofj,/jo for  the case in which a S atom is adsorbed on the 
left electrode. 

of changes in this separation. In the free atom, of course, the 
Ca 4s valence  shell is filled, but in the adsorption case there 
is loss of electronic charge to the solid, with the result that 
the Fermi level is near the peak  of the 4s resonance, as seen 
in the left  half  of  Figure 5 (solid  curve). 

The calculations for the current distributions camed out 
here include wave functions of  all m values [m is the 
azimuthal quantum number; see Equation (4)]. Wave 
functions with m # 0 (e.g., p, states), however, have a node 
on  the z axis, and as a consequence their main weight  lies 
closer to the left electrode surface. Their contributions to the 
current are thus much smaller than those for m = 0 (e.g., s 
and pz states), and in fact these m # 0 wave functions make 
only a small contribution to the atom-induced current 
enhancement. For this reason, just  the m = 0 contributions 
to  the state densities are shown in the left part of  Figure 5. 

It is Seen that  the m = 0 Fermi-level state density for  Ca  is 
approximately four times that for Na; and our computation 
shows that  the total additional current due to the presence  of 
the  atom is larger by a similar factor (-6). A contour  map of 
jJj0 for Ca  is  shown in Figure 6. The right  half of Figure 5 
compares the state density computed for the Ca  case 
including contributions from all m values  with that for 
m = 0 only. It is clear that  the total state density (all m 

included), as might be measured in a photoemission 
experiment, is potentially misleading in a discussion  of 
tunneling currents. 

Let us now continue our calculation for those atoms in 
the Na row of the periodic table where the p resonance of 
the adatom is largely  below the Fermi level, and for  which 
therefore the additional Fermi-level state density is  very 
small.  We  find that  the  atom in such a case  yields a current 
enhancement far smaller than would be expected  from the 
distance the  atom projects out from the surface. This is 
exemplified by the current-density map for S shown  in 
Figure 7. This result emphasizes the fact that since a low- 
bias tunneling experiment only probes states near the Fermi 
level, most of the valence-p states, which  give the  atom its 
size,  will not be  visible in the experiment. 
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