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Electronic
structure and
tunneling current
for chemisorbed
atoms

by Norton D. Lang

We discuss the tunneling current density in the
vacuum region between two planar metal
electrodes, one of which has an atom
chemisorbed on its surface. The relation of this
current distribution to the electronic structure of
the adatom is analyzed. The study of this model
problem leads to a better understanding of
important aspects of the current flow in the
scanning tunneling microscope. The emphasis
of this work is not so much on the question of
resolution discussed in other theoretical studies
as on the characteristic signatures of chemically
different atoms.

introduction
We consider here the distribution of tunneling current in the
vacuum region between two planar metallic electrodes with a
small bias voltage between them, in the instance in which
there is an adsorbed atom at its equilibrium distance on one
of the electrodes [1]. This analysis is designed to illuminate
certain important aspects of the current flow in the scanning
tunneling microscope [2-6].

For the metal surface we use the jellium model, which can
be expected to be adequate for a general discussion of many
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of the properties that depend on the wave function well
outside the surface. We begin with a brief outline of the
calculation of the ground-state properties of an atom
adsorbed on such a surface [7]. The density-functional
theory of inhomogeneous electron systems, with the local-
density approximation for exchange and correlation effects
[8], is used in this calculation.

Adatom on metal surface

When an atom interacts with a system whose electronic
states form a continuum, the discrete levels of the atom
which are degenerate with the continuum broaden into
resonances. The resonances formed in this way when Li, Si,
and Cl atoms interact with a high-electron-density metal are
shown in Figure 1 (at their calculated equilibrium
separations) [9]. The states constituting the Cl 3p resonance
are below the Fermi level and are therefore occupied; those
constituting the Li 2s resonance are mostly empty. This
implies that charge transfer has taken place, toward the Cl
atom and away from the Li atom, as would be expected
from their electronegativities. The prohibitively large energy
required either to fill or empty the Si 3p level forces this
resonance to straddle the Fermi level, resulting in the
formation of a covalent, rather than ionic, bond [10].

The electron densities [9] associated with the three
fundamental bond types are exhibited for comparison in
Figure 2. In the top row of the figure are presented contours
of constant total electron density for the three adsorption
systems. Note the way in which the contours rapidly regain
their bare-metal form away from the immediate region of
the atom. This is just a manifestation of the short range of
metallic screening.
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The detailed charge rearrangements associated with the
atom-surface interaction are displayed in the bottom row of
Figure 2, which gives contour maps of the difference between
the electron density in the metal-atom system and the
superposition of bare-metal and free-atom densities. The
solid contours indicate regions of charge accumuiation;
broken contours indicate regions of charge depletion. These
maps reflect the directions of charge transfer noted above.

Two-electrode system
Although we have available the self-consistent density-
functional wave functions for a jellium surface with and
without an adatom, we do not have them for the combined
two-electrode system. Finding such wave functions for the
combined system, from which we could directly determine
the tunneling current, is a difficult problem. It would
therefore seem useful to consider the Bardeen tunneling
Hamiltonian formalism [11], which gives the total tunneling
current in terms of wave functions determined separately for
each electrode in the absence of the other. We wish,
however, for purposes of our discusston to exhibit the
current density distribution; therefore, the tunneling
Hamiltonian formalism as it stands cannot be used. It proves
possible though, via a derivation analogous to that of
Bardeen, to obtain an expression for the current density in
terms of the separate wave functions for the two electrodes.
We first describe the way in which we obtain our formula
for the current density (using atomic units, in which
h=m = |e| = 1). The Hamiltonian for the left (right)
electrode considered separately is

1 2
HL(R)=-§V + VL

R)?

Hy g, has eigenfunctions \l/‘]: (\lzf) and eigenvalues E, (E).
The Hamiltonian for the combined (two-electrode) system is
H = H; + V. The wave function ¥ (#, 1) for the combined
system (whose form we need only in the vacuum region) is
taken to coincide with \(/: at t = —oo and to differ from it
subsequently because of the adiabatic addition to H, of V5,
regarded as a perturbation [12].

For small bias 2" and zero temperature, the current
density is

=29 f dp 8(E, — E) Im (V*V¥,). (1)

(The factor 2 is for spins, which we do not include in our
labels p and ».) We obtain ¥ (7, 1) from the stationary
eigenstates of H; and H, using time-dependent perturbation
theory. In doing this we can of course just as well use ¢:* in
place of \//: (and similarty, \bf* in place of \&f), and it proves
convenient to extend the meaning of [ du (and [ dv as well)
to include a sum over these two cases. We then include a
factor 1/2 with such integrals.

Now let us write

1 R
TuF) = =5 AV, = ¥, V). @
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Curves of the difference in eigenstate density between the metal-

(The lower Si resonance corresponds to the 3s level; the correspond-
ing level for Cl is a discrete state below the bottom of the metal band.)
The metal electron density is 0.03 electrons/bohr? (r, = 2). (From
[9]; reproduced with permission.)

&
% adatom system and the bare metal for adsorbed Li, Si, and Cl atoms.

Using the fact, demonstrated by Bardeen [11], that
(v | Vel u) = iJ,,, where J,, = [dS - j,(F), with S a surface

in the vacuum region, it can then be shown (see [1]) that

jA == 97/f du f dv (E, — EQS(E, — EDJ, ji(P). (3)

If this is integrated over the surface in the vacuum region, we
recover the usual tunneling Hamiltonian expression for the
total current [S]. (Note that there is a factor 1/4 here due to
the redefinition of [ dp and [ dv.)

Now let us discuss briefly the computation of " and ¢~
In the case of the bare metal in the jellium model (which we
take as the right electrode),

Vam7) = €™ (xp)ug,(2), 4

where we use cylindrical coordinates with the z axis along
the surface normal and where u, (z), which is computed self-
consistently, is oscillatory deep in the metal and decays
exponentially in the vacuum. The associated inverse decay
length is given asymptotically by v2® + «? in atomic units;
& is the electrode work function. This is discussed in [9].
Also described there are the self-consistently computed
density-functional wave functions used to obtain Figure 2,
but for that purpose they are only required within a sphere
of ~7 bohr in radius about the atom. These wave functions
(which we take as our 1[/L) must for the present study be
propagated further into the vacuum,; this is done using the
bare-metal Green'’s function described in [9]. Note that in
evaluating Equation (3) to obtain the current density, the
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integrand (summand) will be diagonal in m (because of the
cylindrical symmetry of our system) but not in «, and so we
must integrate over both «, and «, [13].

We now discuss our results. The two metallic electrodes
are taken to have the same high electron density
(corresponding to r, = 2, which is broadly representative of
many metals [14]). We first show the case in which a Na
atom is adsorbed on the left electrode. The corresponding
current density is shown in Figure 3. The left and right edges
of the box correspond to the positive background edges for
the two electrodes. The presence of the Na atom is indicated
schematically by two dashed circles with a cross which gives
the computed equilibrium distance of the nucleus. Results
are shown only in a strip in the center of the vacuum barrier;
much closer to the surfaces, the representation of the
combined-system wave function ¥ in terms of " and ¢~ is
not adequate. At each point of a grid in this strip, the
current density is represented by an arrow. The length (and
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Top row: Contours of constant electron density in a plane normal to the metal surface contaning the atom nucleus (indicated by + ). The metal is at
the left-hand side; the solid vertical line indicates the positive-background edge. Atoms are at their equilibrium distance from the metal. Contours
are not shown outside the inscribed circle of each square; contour values are selected to be visually informative. Bottom row: Total electron density
minus superposition of free-atom and bare-metal electron densities (electrons/bohr3). (From [9]; reproduced with permission.)

thickness as well) of the arrow is made proportional to

In (ej/j,), where j is the magnitude of the current density and
Jo 1s the current density that would be present without the
atom. The factor e = 2.718 is included so that at large lateral
distances p, where j = j,, we show a unit-length arrow
instead of a blank space. Note for example that along the
right edge of the strip the largest arrow represents roughly a
factor of 25 in current density compared with the smallest
arrow (which corresponds approximately to j;). The current
distribution is quite sharp and shows a large enhancement
due to the presence of the atom. The plate separation of 30
bohr (16 A) is larger than the tip-to-surface separations
presently typical of scanning tunneling microscope
experiments. If we reduce the plate separation to, e.g., 16
bohr (8.5 A), which is closer to a typical value, the current
pattern (now computable reliably only in a narrower strip) is
in fact quite similar to that seen in Figure 3. The additional
tunneling conductance at this latter separation that is due to
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Current density for the case in which a Na atom is adsorbed on the
left electrode. The z and p directions are, respectively, normal and
lateral to the surface. The lengths (and thicknesses) of the arrows are
proportional to In (ej/jy) evaluated at the spatial positions corre-
sponding to the center of the arrows. (Corrects similar figure in [1].)
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the presence of the atom is 4 X 107 Q™' (which is near the
experimental range). Figure 4 shows a contour map of j./j,
for the case given in Figure 3.

The dashed curve in the left half of Figure 5 shows the
additional eigenstate density due to the presence of the Na
atom on the metal surface which we have taken as our left
electrode. The fact that the resonance, which corresponds to
the 3s valence level of the free atom, is mostly above the
Fermi level indicates that the 3s electron of the Na atom has
been largely lost to the metal, as in the case of Li shown in
Figures 1 and 2. In the present low-bias case only states in
the immediate vicinity of the Fermi level contribute to the
current; the density of such states is reduced because the
peak of the resonance is significantly above the Fermi level.
(Nonetheless there is still an appreciable density of 3s states
at the Fermi level.)

We can study the cases for which the Fermi level lies
higher in the s resonance by considering atoms in the next
column of the periodic table. Instead of discussing Mg,
which follows Na, we consider Ca, because it has the same
calculated equilibrium metal-adatom separation as Na and
thus our comparisons will not be complicated by the effects
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Contour map of j /j, for the case in which a Na atom is adsorbed on
the left electrode. (Corrects similar figure in [1].)
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Curves of the difference in eigenstate density between the metal-
adatom system and the bare metal for adsorbed Na and Ca atoms. The
lower-energy Ca peak corresponds to the 4s state, the upper to 4p
states (with some 3d-state contribution). The azimuthal quantum
number is denoted by m. (From [1]; reproduced with permission.)
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Contour map of j,/j, for the case in which a Ca atom is adsorbed on
the left electrode. (Corrects similar figure in [1].)
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Contour map of j./j, for the case in which a S atom is adsorbed on the
left electrode.

of changes in this separation. In the free atom, of course, the
Ca 4s valence shell is filled, but in the adsorption case there
is loss of electronic charge to the solid, with the result that
the Fermi level is near the peak of the 4s resonance, as seen
in the left half of Figure 5 (solid curve).

The calculations for the current distributions carried out
here include wave functions of all 72 values [m is the
azimuthal quantum number; see Equation (4)]. Wave
functions with m # 0 (e.g., p,, states), however, have a node
on the z axis, and as a consequence their main weight lies
closer to the left electrode surface. Their contributions to the
current are thus much smaller than those for m =0 (e.g., s
and p, states), and in fact these m # 0 wave functions make
only a small contribution to the atom-induced current
enhancement. For this reason, just the m = 0 contributions
to the state densities are shown in the left part of Figure 5.

It is seen that the m = O Fermi-level state density for Ca is
approximately four times that for Na; and our computation
shows that the total additional current due to the presence of
the atom is larger by a similar factor (~6). A contour map of
J.1J, for Ca is shown in Figure 6. The right half of Figure 5
compares the state density computed for the Ca case
including contributions from all m values with that for
m = 0 only. It is clear that the total state density (all m
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included), as might be measured in a photoemission
experiment, is potentially misleading in a discussion of
tunneling currents.

Let us now continue our calculation for those atoms in
the Na row of the periodic table where the p resonance of
the adatom is largely below the Fermi level, and for which
therefore the additional Fermi-level state density is very
small. We find that the atom in such a case yields a current
enhancement far smaller than would be expected from the
distance the atom projects out from the surface. This is
exemplified by the current-density map for S shown in
Figure 7. This result emphasizes the fact that since a low-
bias tunneling experiment only probes states near the Fermi
level, most of the valence-p states, which give the atom its
size, will not be visible in the experiment.
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