
On  yield, by C. H. Stapper 

fault  distributions, 
and  clustering 
of particles 

Increasing  the levels of  semiconductor 
integration  to larger chips  with  more  transistors 
causes the fault and defect distributions of VLSl 
memory  chips  to deviate increasingly  further 
from  simple  random  Poisson  statistics. The 
spatial distributions of particles on 
semiconductor wafers have been analyzed to 
gain  insight  into  the nature of integrated circuit 
defect statistics. The analysis  was  done  using 
grids of squares  known as quadrats. It was 
found  that the cluster parameter, which until 
now has been treated as a  constant,  did vary 
with quadrat area. The results  also show that 
the  deviation  from  Poisson  statistics  continues 
to increase into  the realm of wafer-scale 
integration or WSI. Computer  simulations were 
used to  verify  this  effect. 

Introduction 
From  the onset of integrated  circuit  development in 1964 it 
was realized that simple Poisson statistics was not 
appropriate for the modeling  of  integrated  circuit yield 
calculations [ 11. Originally this was looked upon as an 
aberration  caused by high defect levels and  poor  control 
during  the early stages of manufacturing. Conventional 
wisdom of the early 1970s took for granted that  the lowering 
of defect levels and  improved manufacturing cleanliness 
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would eventually result in pure  randomness  of defects. It was 
believed that low defect densities  could  therefore be modeled 
with the  random defect statistics associated with Poisson’s 
distribution. Similarly, some theoreticians  claim that for 
large regions on wafers and full wafers the defect statistics 
should also revert to  pure simple Poisson statistics. 

circuit manufacturing lines are  more perverse. For instance, 
it has  already been reported that a  reduction of defect levels 
results in an increased deviation  from Poisson statistics [2]. 
The  same effect has  now  also been observed as a result of 
increased chip area,  circuit  complexity, and both of these 
combined. An investigation into  the  nature of this effect is 
the subject of this paper. 

The deviation  from Poisson statistics manifests itself by 
producing very long  tails in  the distributions of the  number 
of faults per chip.  A  fault is defined as a defect which causes 
a chip failure. An example  of  fault  distributions can be seen 
in Figure 1, which shows data from 450 experimental 
dynamic  random access memory chips. These  chips were 
processed under very clean  conditions. The  data in Figure 1 
were obtained with the array  diagnostic  technique described 
by Gangatirkar, Presson, and  Rosner [3]. Shown are  the 
frequency and  cumulative distributions of the  number of 
failing single cells, failing single rows or word lines, and 
failing single columns or bit lines. Not included here are 
some  other faults  such  as the  ones  that result in adjacent 
cell, row, or column failures and defects that cause large 
sections of chips or entire chips to fail. 

It is the experience  of  this author, however, that integrated 

The graphs on  the left-hand side in  Figure 1 represent the 
frequency distributions of the faults. These data have been 
truncated  and  the  remaining cells have been added to  the 
buckets of 40 faults per chip. This affects primarily the 
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Fault distributions: The graph  indicates  the  relative  number  of  failing  single  cells,  failing  rows, arfd failing  columns  that  were  observed in 
IM DRAM chips. 

distributions of the single cell and  column failures. On  the with more  than 40 failures per chip. The tails of these 
right-hand side of Figure 1 the  cumulative distributions are distributions appear well-behaved and include very large 
shown.  These have been extended to include the  data  points numbers of failures for all three cases. 
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Comparing data to  Poisson  statistics 
Some interesting statistics are associated with the results in 
Figure 1. The  data  on  the extreme left in the graphs 
represent the  number of chips  that  did  not fail electrical test. 
These  chips are fault-free and therefore  represent the yield. 
The actual values are 27.4% for the single cells, 72.5% for 
the single rows, and  47.3% for the single columns. If these 
yields had been associated with pure Poisson random defect 
statistics, they  would be related to  the average number of 
faults per chip by 

Y = e-’. (1) 

In this equation Y represents the yield and X the average 
number of faults per chip. Equation (1)  can be inverted to 
give 

X = -In Y, (2) 

thus making it possible to calculate the average number of 
faults per chip from the yield. For  the yields in Figure 1 such 
calculations result in an average of 1.296 single cells, 0.32 1 
single rows, and 0.748 single columns per chip. The  actual 
averages for the distributions  in Figure 1 are 28.65 single 
cells, 4.5 1 single rows, and 15.37 single bit lines. These 
values are  an  order of magnitude higher than those 
calculated with Equation (2). It can therefore be concluded 
that Poisson statistics do  not provide  a  good  model for these 
data; namely, defect levels calculated with those statistics are 
too low. 

That Poisson statistics are  not applicable to  the  data of 
Figure 1 can also be demonstrated in another way. Poisson’s 
distribution is given by the  formula 

P ( X  = k )  = e-’Xk/k!, (3) 

where X is a random variable designating the  number of 
faults per chip  and k an integer  having values of 0, I ,  2, 3,  
etc. It is generally known, and  not difficult to prove, that  the 
mean  and variance  of Equation  (3)  are both given by the 
value of X. In the  distributions of Figure I the variances are 
4299.9,  932.4, and 3285.1 for the cells, rows, and  columns 
respectively. These values are  at least two orders of 
magnitude higher than  the average number of faults. The 
statistics needed to model  these distributions  are therefore 
expected to be more complex than Poisson statistics. In the 
next sections some possible causes for this  complexity are 
investigated. 

quantified with the  ratio of the variance and  the  mean.  For a 
Poisson distribution  this ratio is equal to  one. For the single- 
cell, single-row, and single-column  distributions of Figure 1 
these  ratios  become 150. I ,  206.7, and 2 13.7. These are  the 
highest values of this  ratio that this author has ever observed 
for fault distributions of integrated  circuit chips. These data, 
however, also came from chips with the largest physical area, 
the greatest number of transistors, the smallest feature sizes, 

The deviation from Poisson’s distribution can be 

and  the  thinnest dielectrics ever analyzed in  this way  by this 
author. These data led to  the investigation of the cause for 
this  deviation from Poisson’s distribution  in very large and 
complex chips. Some of the early results of this study are  the 
subjects discussed in the following sections of this  paper. 

Compound  Poisson  statistics 
That simple Poisson statistics  could not be used for 
integrated  circuit yield calculations was confirmed 
experimentally  in the 1960s. It was clear  from the  data  that 
this effect was caused by defect clustering [4-71. It was also 
determined in the early 1970s that  the wafer-to-wafer 
variation  of defect densities  could be responsible for the 
same effect [8]. In either case, the  data could  only be 
modeled with some form of mixed or compound Poisson 
statistics. The  nature of these statistics is discussed in this 
section. 

The  compounding or mixing process can be applied to 
Poisson’s distribution (3) by assuming the value of X to be 
another  random variable. This  can be justified by assuming 
that  there  are a number of independent regions, each having 
random faults, with a different average number of faults per 
unit area. If each region is designated by an index number i, 
then  the corresponding average number of faults is indicated 
by X,. Within these regions Poisson’s distribution is assumed 
to be valid with X, as  a  parameter. Associated with the values 
of i are a set of probabilities Pl,  which have to satisfy the 
normalization condition 
m 

P, = I .  
r=O 

This normalization  assumes that  there  are  an infinite 
number of regions and values of X,. Situations with fewer 
regions can be modeled by assigning a  probability P, = 0 to 
any excess regions. 

discrete probability distribution P, is given by 
The mean or average number of faults associated with the 

m 

E(X) = 2 X,P,. 
I =O 

Similarly, the variance is given by 
m 

V(X) = XtP, - E(X)2. 
,=0 

The probabilities P, can be used to  compound Poisson’s 
distribution (3) by the  summation 

P ( x  = k )  = P,e-A’(X,)k/k!. 
m 

, = I  

This is the general form of the mixed or compound Poisson 
distribution that results from discrete compounding. 

It is also possible to use a continuous probability 
distribution  function P(X) for compounding. A detailed 
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derivation  of  this technique is described in [8]. It should be 
noted here that  the normalization  requires 

The mean and variance  of P( X) can be calculated with 

and 

Compounding of Poisson's distribution (3) with the 
probability distribution function P(X) is done with the 
integral 

This is the  fault  distribution resulting from  a continuous 
compounding or mixing process. 

It is not difficult to prove that  the  mean  and variance for 
the fault distributions formulated  in Equations (7) and (1  1) 
are given by 

E ( X )  = E ( h )  (12) 

and 

V ( X )  = E(X) + V(X). (13) 

This last equation shows why compound Poisson statistics is 
useful for  modeling the fault distributions of integrated 
circuits: The variance  in Equation ( 13) is always greater than 
the mean in Equation (12). The ratio of the variance and  the 
mean for distributions (7)  and ( I  I )  is given by 

which is always greater than  one. 

understood by assuming the existence of a  complexity factor. 
This factor depends  on  chip areas, ground rules, or feature 
sizes of the photolithographic  patterns, manufacturing 
complexities, dielectric thicknesses, circuit design 
sensitivities, and a host of unknown factors. It may  therefore 
be somewhat presumptuous  to assume that in  this case the 
average number of  faults  for any  chip  can be expressed by 

The ratio of the variance and  the mean can be better 

- 
X = CX,, (15) 

where C i s  the complexity  factor and x, the average number 
of faults on a chip with unit  complexity. However, if this 
assumption is made, it would imply that in general 

X = CX,, (16) 
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where X, is a random variable distributed  in the  same way as 
X. It follows therefore that 

E(X) = CE(X,) (17) 

and 

V(X) = C2 V( X,). (18) 

As a result the ratio of V ( X ) / E ( X )  in Equation (14) becomes 

This implies that  the ratio  of the variance and  the mean of 
integrated  circuit  fault  distributions increases linearly with 
the complexity  factor C. It also explains the observations 
that were described in the previous sections. 

unfortunately-impossible to define a single complexity 
factor  for each chip. The effect of complexity on the 
pertinent statistics has therefore been studied with particle 
distributions on blank  integrated  circuit wafers. This 
eliminates the presence of photolithographic patterns  and 
circuit sensitivities. As a  consequence, the complexity  factor 
reduces to  an area  ratio. The results of the studies  are 
therefore  reported  in terms of areas or relative areas in 
subsequent  sections and figures in this  paper. 

distributions  of X that  are  independent of the complexity 
factor. One of these is the coefficient of variation, which is 
defined by the ratio of the  standard deviation and  the mean. 
It is denoted here by u/p  and is calculated with the formula 

afp = Jv(x)/E(X). (20) 

Introduction of  relationships ( 1  7) and ( 18) into this equation 
gives 

The complexities of modern integrated  circuits  make it- 

It  is possible to define some ratios related to  the 

which is indeed independent of the complexity  factor C. 
In the following sections  a  cluster parameter a is used. 

This  quantity is related to  the coefficient of variation by 

a = Jpfc. (22) 

It  is therefore also independent of  the  complexity factor. For 
the distributions resulting from  Equations (7) and (1  1)  it is 
possible to define 

as  a general quantity. Its dependence on area, and therefore 
chip complexity, is also studied in the following sections. 

The preceding discussion was completely general. The 
type of compounders required in Equations (7)  and ( 1  I )  
depends entirely on the  nature of the fault distributions 
observed on manufactured chips. Until now the use of a 
gamma distribution  in Equation ( 1  1) has been found useful; 
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it  has been reported  in [8-111. The properties of this 
distribution and  some  other  compound distributions  are 
given in the Appendix. 

The  effect of defect clustering 
The clustering  of defects on wafers in  principle  should not be 
difficult to analyze. Wafer maps showing the location of 
usable and failing chips  can be obtained by anyone working 
in the industry. However, finding the  number  and  the 
location of the failing defects on  nonfunctioning chips is not 
easy. Until now, only data for half a wafer have appeared in 
the literature.  These were results published by Moore  [6]  that 
have been extensively analyzed by Warner [7, 121 and 
Stapper  [9]. Moore’s data do produce  a  long tail in the fault- 
per-chip  distribution. However, the  ratio of the variance to 
the  mean of these data was only 3.94. 

In order  to get more insight into  the statistics of clustering, 
F. M. Armstrong and K. Saji [ 131 decided to analyze  particle 
distributions on blank wafers from  a  manufacturing line. 
They  reasoned that  some of these particles might result in 
defects that cause chip failures. Understanding  the  nature of 330 
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these particle distributions could  therefore give an insight 
into  the statistics  applicable to integrated  circuit yields. 

The spatial  distributions that Armstrong and Saji 
investigated were obtained with an electronic particle 
detector. This tool used scattered light to  pinpoint  the 
location of particles on wafer surfaces, and was used to 
analyze  equal square areas on twelve wafers. This resulted in 
the  maps of particle locations that are  shown  in Figure 2. 
Armstrong and Saji subdivided each one of these  maps into 
36 smaller  squares or “quadrats.”  (The word quadrat 
originates  from the  methods used by ecologists to analyze 
the spatial  population distributions of animal  and plant life. 
A. Rogers [ 141 applied  this technique  to study  the spatial 
distributions of retail stores  in cities. Armstrong and Saji 
used the  “quadrat  method” for the analysis of particles on 
wafers.) They then  counted  the  number of particles in  each 
quadrat  and  thus  determined  the frequency distribution of 
the  number of particles per quadrat. These data were 
collected individually for each wafer. 

method described by Rogers [ 141. This consisted of 
determining which one of four different compound 
distributions provided a best fit to these data. In order  to do 
this, the  parameters for the theoretical distributions were 
calculated using a maximum likelihood technique. The 
goodness of fit for the result was established with a chi- 
square test. In this way it was found  that  the distributions 
from four wafers were best modeled with a mixed Poisson- 
binomial  distribution, four  others with a Neymann Type A 
distribution, and  three with a negative binomial  distribution. 
For one wafer all three of these distributions fitted equally 
well. In all cases it was found  that  any  one of these 
compound  distributions gave a much better fit to  the  data 
than Poisson’s distribution. The formulas and properties of 
the  four  distributions  that were used in this study are 
described in the Appendix of this paper. 

Armstrong and Saji also studied the fraction  of quadrats 
without any particles. This fraction was considered to be the 
quadrat yield. They  found that  the smallest difference 
between the theoretical yield and  the observed yield occurred 
with Neymann Type  A  statistics on eight wafers, negative- 
binomial  statistics on three wafers, and Poisson-binomial 
statistics on one wafer. 

The results of the particle counting were analyzed with a 

Results like these depend on the  conditions encountered 
by the wafers in the factory. Although  such conditions can 
be expected to differ between factories, this author 
anticipates that particle  clustering is universal in the 
industry. As a  consequence, some form of compound 
statistics is expected to be applicable for yield models 
everywhere. 

Only  a few of the particle maps in Figure 2 produced 
particle distributions with long tails when  analyzed by 
Armstrong and Saji. This suggests that defect clustering 
could  indeed be a  cause  for the tails of the fault  distributions 
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in Figure 1. However, since the majority of the  maps in 
Figure 2  did not show  this  behavior, there  must be an 
additional contributor.  This is the subject of the next section. 

Wafer-to-wafer variations 
It has been described in [8] how compound Poisson statistics 
can also result from wafer-to-wafer variations  in defect 
levels. It  is not difficult to  determine whether  this is the case 
with particles on wafers. Figure 3 shows the  cumulative 
distribution  of the  number of particles per map for the 
twelve maps  in Figure 2. The result from  this  small  sample is 
rather  scattered, and it is difficult to draw any definitive 
conclusions about  the  nature of the  number of particles per 
wafer distribution. Nevertheless, these data have a  mean of 
62.75 and a  variance of 1775.5, which results in  a variance- 
to-mean ratio of 28.29. Simple Poisson statistics does not 
therefore appear  to be applicable. Some form of compound 
Poisson statistics may be more applicable for modeling  these 
results. 

The preceding experiment is not difficult to repeat. At 
IBM, cleaned  blank wafers are periodically sent  through 
various  tools used for  photoresist  application, 
photolithographic  exposure, pattern etching, evaporation, 
etc. The  number of particles per wafer is counted before the 
wafer enters  the tool and again after  it exits. A  cumulative 
distribution of the  number of particles observed on 167 of 
such wafers is shown  in Figure 4. These data have a  mean of 
3 1.75 and a  variance of 41 16.2. The ratio of variance to  the 
mean is therefore 129.6, which is higher than  the  ratio of 
28.3 in  the Armstrong-Saji data.  This indicates that  the  map- 
to-map variation of the  number of particles per map in 
Figure 3 is  less than  the wafer-to-wafer variation of particles 
found in a  run-of-the-mill  sample. An analysis of the 
Armstrong-Saji data with respect to  the  map-to-map variation 
is therefore  expected to be conservative. This is one of the 
reasons why these maps are  studied  in  detail  in  this paper. 

Armstrong and Saji analyzed the particle  distributions 
individually for each one of the  maps in Figure 2. They used 
a single grid with a single quadrat area. In the analysis made 
in this  paper, the  data for all the maps are  combined  and six 
different quadrat sizes are used. This makes  it possible to 
study the applicable statistics and distributions  as  a  function 
of quadrat size. Furthermore, since no photolithographic 
patterns or circuit sensitivities are present, the previously 
described complexity  factor is simply equal to  the  quadrat 
area. 

The smallest quadrat area that was studied was obtained 
by dividing the maps  in Figure 2 into 12 X 12 squares. This 
produced 144 quadrats per map.  The next larger size used an 
8 X 8 grid with 64 squares. The third size consisted of 6 X 6 
squares, for a  total of 36 per map,  and is the  same  quadrat 
grid used by Armstrong and Saji. The  other  quadrat 
arrangements  that  are analyzed here are 4 X 4,  3 X 3, and 
2 X 2, each with 16, 9, and 4  squares per map respectively. 

Number of part~cles per nlap 

A cumulative  particle  distribution: This  curve  results  from  the 1 number of particles on each  map in Figure 2. 

0.5 Y 

Number of particles  per wafer 

Particle distributions from a  manufacturing  line:  The  cumulative  dis- 
tribution of the number of particles per wafer. These  numbers were 
counted  on wafers that  were  sent  through  manufacturing  tools to 
determine  their  cleanliness. 

The  distributions of the  numbers of particles per quadrat 
resulting from  this analysis are tabulated in Table 1. It  is 
clear from the result that  the distributions  for the 4 X 4, 
3 X 3, and 2 X 2 quadrat  arrangements  do have long tails. 
The mean,  variance, and mean-to-variance  ratios  are given 
in Table 2. The results show that  the larger quadrats have 
the greatest deviation  from Poisson statistics. This confirms 
the earlier observations and indicates that this effect could 
have been caused by particle clustering and  the wafer-to- 
wafer variation of clustered particles. 331 
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t 
Number of particles per quadrat area 

Statistical  models 
It is not difficult to fit the  data in Table 1 with compound 
Poisson statistics such as Neymann Type A, negative 
binomial, Poisson-binomial, or the Poisson-negative 
binomial, as  described by Rogers [ 141. For the analysis  used 
in this paper only negative binomial statistics were  used, 
since they appeared to provide an entirely satisfactory 
model. This is shown in Figure 5, which represents several 
cumulative distributions of the number of particles per 
quadrat. Each graph shows the  data  and  the theoretical 
results corresponding to a different quadrat area. The solid 
lines represent the  data in Table 1; the dashed lines are 
cumulative negative binomial distributions calculated with 
the formula 

In this expression X is the mean number of  particles per 
quadrat in  each distribution, a is a clustering parameter, and 
x is the cumulative number of particles per quadrat given  by 
an integer 0, 1, 2,  etc. The parameters X and a were 
determined with a nonlinear least-square method using 
Equation (24)  and  the cumulative distribution corresponding 
to  the data in Table 1. The parameter values obtained in this 
way are tabulated in Table 3. 

Two important conclusions can be drawn from these 
results.  Both conclusions have to  do with a model  described 
in [ 151. In that paper it was  claimed that  the negative 
binomial distribution and  the yield are affected by an 
experimental dependence of X on area. This dependence is 
plotted in Figure 6. Also  shown  is the straight line that 
corresponds to 

X = AD, (25) 

where A is the quadrat area and D the average number of 
particles per unit area. When the quadrat area of the 144 X 

144  grid arrangement is taken as unity, the defect density D 
is equal to 0.4358 particles per unit area. It  is  reassuring to 
find that this line corresponds closely to the  data points. The 
experimentally determined parameter X does therefore 
represent the average. 

Table 1 Distributions of the  number of particles per quadrat 
observed for different  quadrat  areas. 

Particles  Quadrat  arrangement 

quadrat 1 2 x 1 2  8 x 8  6 x 6  4 x 4  3 x 3  2 x 2  
per 

0 1275 459 229 62 28 5 
1 293 138 61 32 6 4  
2 101 83 39 21 10 5 
3  29 32 25 12 13 3 
4 8 23  23 10 3 1  
5 1 1  14 1 1  13 8 1  
6  3 1 10 4 4 0  
I 1 4  8 I 5 2  
8  5 0 6 5 4 0  
9 1 3  3  4 3 1  

10 1 2 1 3 1 2  
I 1  3 0 1 4 1  
12 3 1 4 1 3  
13 1 0 3 2 1  
14 2 1 0 2 1  
15 1 1 1 2  
16 0 0 1 0  
11 1 2 0 0  
18 1 1 3 0  
19 1 0 1 2  
20  2 1 0 2  
21 0 0 0 0  
22 1 0 0 0  
23 0 1 0 1  
24 0 0 2 0  
25 0 0 0 1  
26 0 2 I 1 
21 0 0 0 1  
28 I 1 0 0  
29 1 0 0  
30 0 0 0  
31 0 1 I 
32 0 1 1 
33 0 0 0  
34 0 0 0  
35 0 0 2  
36 0 1 0  
31 0 0 0  
38 0 0 0  
39 0 0 0  

240 1 2 4  
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It was also suggested in [ 151 that  the  components of the 
cluster parameter a might be dependent  on  the  area of a 
chip. As a result a would  become a function of chip area. In 
Figure 7 the experimentally determined values of a are 
plotted  as a function  of quadrat area. This shows that a is 
indeed dependent  on these areas. The results also indicate 
that these values have a minimum for the  quadrats of the 
6 x 6 arrangement. Low values of a in  the negative binomial 
distribution are associated with high degrees of clustering. 
Maximum clustering appears  therefore to be taking place for 
these quadrat areas. 

Yield  as  a  function of quadrat  area 
Yield as a function of integrated  circuit chip areas  has  been 
at  the center of yield modeling ever since the publication of 
[ 11. In  that  paper it was suggested that a plot of the 
logarithm of yield versus chip  area should  curve upwards. 
We can now see if this holds  for the  data  in Figure 2 by 
defining the yield to be equal to  the fraction  of particle-free 
quadrats.  The result of  this yield as a function of relative 
quadrat area is shown in Figure 8. The  data  points  do 
suggest upwards curvature  as predicted  in [ 11. 

negative binomial yield model of [6] in  the  form 
It is possible to  approximate  the  data  in Figure 8 with the 

where Yo is a gross particle yield, A the  quadrat area, D the 
particle density per unit area, and a a constant cluster 

Table 2 Means  and variances of the distributions  in  Table 1. 

Quadrat  area 

# Number of particles vs quadrat  area:  The average number of particles 
per quadrat  depends linearly on quadrat  area. 

Quadrat arrangement 

I 2  x 12 8 x 8  6 x 6  4 x 4  3 x 3   2 x 2  

Relative area I 2.25 4 9  16 36 

Mean 0.4358 0.98 1 1.14 3.92 6.91 15.69 

Variance 0.9785 3.605 1 1.26 31.43 110.5 384.2 

Variance-to-mean  ratio 2.25 3.68 6.45 9.55 15.84 24.49 

Table 3 Model  parameters resulting from a least-square analysis. 

Quadrat arrangement 

12 x 12 8 x 8  6 x 6  4 x 4  3 x 3   2 x 2  

Relative  area I 2.25 4 9  16  36 

Parameters 

h 0.4191 0.9418 1.69 1 3.829 6.61 I 15.536 

01 0.4896 0.4637 0.3157 0.50 10 0.5824 0.7301 
333 

IBM J .  RES. DEVELOP. VOL. 30 NO. 3 MAY 1986 c. n. STAPPER 



0. 

0. 
U 
i 
8 
g 
8 
L - 
a 
ti 

0. 

0. 

I I I I -c 
Quadrat  area 

uadrat area:  The  cluster  parameter CY as a  function of 

parameter.  With  a nonlinear least-square technique, values 
of Yo = 0.8339, D = 0.1479, and a = 1.1772 were obtained. 
When  these values are used in  formula (26),  the yield-versus- 
area curve is the  one indicated by the dashed  line  in Figure 
8.  The result fits comfortably between the 80% confidence 
limits  of the  data, suggesting that  Equation (26) is an 
acceptable  model. It  is, furthermore,  to be noted that these 
results were obtained for an  area range from 1 to 36. This is 
believed to be the widest area range ever published for which 
this  model is applicable. 

Although Equation  (26)  does reasonably fit the  data of 
Figure 8, it leaves us with a  problem to resolve. The average 
particle density needed in Equation  (26) was found  to be 
0.1479, while the results from  Table  3 suggested a particle 
density of 0.4358 particles per unit  area. Furthermore, in 
Figure 6 the values for a are seen to vary between 0.376 and 
0.73, while for  Equation  (26)  it is I .  1772. 

The differences between the  parameter values for Equation 
(26)  and  the  data in Table  3  are caused by the use of the 
gross yield factor Yo. This  quantity has been referred to in 
the industry  as an “area yield factor” since it usually affects 
areas of wafers. A treatise on this  can be found  in the work 
by Ham, who called it the “area usage factor” [ 161. Methods 

for measuring  this quantity have been described by Paz and 
Lawson [ 1 I ] ,  Warner [ 121. and Stapper [8]. In the work of 
Par  and Lawson the Yo factor contained  the yield associated 
with clusters of defects, while Warner used it to take  care of 
the  extra yield losses in the regions of high defect density. 
The  same is taking place in the  data analyzed here. The Yo 
factor  absorbs some of the yield of the clusters with high 
particle densities. As a  consequence fewer particles are 
included in the defect density of Equation  (26). thus 
resulting in a lower value for  D. The value of a obtained for 
Equation (26) is higher than  any  of the values of a in  Table 
3. This indicates less clustering, which seems reasonable. 
since most of the high-density clusters are already included 
in the Yo factor. 

The preceding results are a good illustration of the 
assumptions  that are associated with yield models that 
incorporate  a gross yield Yo or  an  area usage factor. The 
example also points out a  hazard that could result from 
using such  a  factor. The average particle densities and  the 
cluster parameter of the yield model are not necessarily the 
same  as those of the actual particle or fault  distributions. In 
general the particle densities or defect densities in such yield 
models  tend to be lower than  the  ones observed 
experimentally. Similarly, the cluster  parameters O( are higher 
for yield-versus-area models than they are in the actual 
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\ 

\ 
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y. Yield and quadrat  area:  The  yield-versus-area plot resulting from the 
maps of Figure 2. The bars  indicate  the 80% confidence  limits. 
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distributions.  These results are of prime importance in the 
modeling of yield with redundancy. In that application the 
correct defect densities and cluster  parameters for the 
distributions  are a necessity. 

be prevented by using the  correct yield model. Since the 
frequency distributions of the  number of particles per 
quadrat could be modeled with negative binomial 
distributions, the yield should be calculated with Equation 
(A5) of the  Appendix. This  formula can be written as 

Y = [ I  + AD/a(A)]'"''',  (27) 

where the area  dependence of the cluster parameter is 
indicated by a ( A  ). 

3. Also shown in that table are  the  quadrat areas that can be 
used for A .  With a particle density D equal to 0.4358 
particles per unit  area,  the yields calculated with (27) are 
0.732.  0.590,  0.522. 0.336. 0.225, and 0.103. The actual 
yields can be calculated from the distributions in Table I .  
They  are  0.738.  0.598,  0.530, 0.323. 0.259, and 0.104.  These 
two results are sufficiently close for all practical purposes. 

Obtaining the  area dependence of the cluster parameter a 

The difficulties resulting from the use of Equation  (26)  can 

The values of cy for use in  Equation  (27) are given in Table 

in the preceding example was straightforward. 
Unfortunately. it is virtually impossible to apply  this 
technique to actual test data because the locations of all the 
defects and faults cannot be determined. An alternative 
approach is therefore  required. 

first step  the nature of the fault distributions has to be 
determined with the array diagnostics of [3], or by 
alternative  fault  diagnostic  methods. The results should 
establish the model and parameters, like a, to be  used for the 
fault distribution. The second  step consists of doing a chip 
multiple or "window" analysis of wafer maps that show the 
locations of the functioning and defective chips. These 
results should establish the  relationship between yield and 
chip multiples or area. The results from the two steps must 
then be combined  to  determine  the area  dependence of the 
parameters in the model.  Since  this requires the solution of 
transcendental  equations,  it is often necessary to use 
computer programs for calculating these parameters. 

The two-step analysis of test data is often possible. In the 

~ 

A simulation model 
The  data in the preceding sections came from only twelve 
wafers. It  is difficult to ascertain whether the results and 
observations are  unique for this  sample, or whether they 
have wider implications.  More data are needed to confirm 
whether  the results are general. Unfortunately,  the analysis 
by hand of particle maps is laborious and time-consuming. 
To avoid this,  similar  maps have been created with 
computer simulations. Some of these are  shown in Figure 9. 
A large number of such  maps have been analyzed with the 
quadrat method directly by computer. 
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Simulated  clusters:  Cluster maps that were generated using computer 1 simulations. 

In the first step of the simulation process, clusters of hits 
that represent particles, defects, or faults are generated with a 
Gaussian  probability  distribution  function. The probability 
for the occurrence of a hit is highest at  the  center of the 
cluster and decreases radially away from the center. The 
central probability and  the  standard deviation of each cluster 
were random numbers. The clusters were therefore all 
different and unique. 

The hits or lack of hits within a  cluster were determined 
with yet another set of random numbers.  These  numbers 
had values between zero and  one  and occurred at tightly 
spaced grid points.  They were compared  to  the Gaussian 
probability calculated for each point. A hit was scored when 
such a number was smaller than or equal to this probability. 
The resulting clusters can be called symmetrical since they 
were generated with a radially symmetric probability 
distribution  function.  Many clusters of this  type were stored 
in a  cluster library for subsequent use. Clusters were taken at 
random from this library for further processing. 
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Variance-to-mean ratio: The deviation from Poisson statistlcs as a 
function of quadrat area for 200 simulated maps peaks at the size of 
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Defect clusters on semiconductor wafers are rarely 
symmetrical. To simulate asymmetry, clusters from the 
library were projected onto wafer maps with randomly 
generated lateral and  azimuthal angles. The centers of these 
clusters  occurred  at random spots on those maps. It was 
even possible for clusters to graze the edges of the maps, 
therefore  causing  most of the hits to fall outside the  map 
area  and leaving only  a few inside. The  number of hits 
required on a map was randomly selected from  a 
predetermined  probability  distribution  function.  Clusters 
were thrown at  the  map until  this number was reached or 
exceeded. If there were too many hits, the last cluster was 
randomly diluted to obtain the correct number. 

that  the cluster parameter (Y varies as  a  function of quadrat 
area. In general,  this  dependence was smoother  than  the 
results in Figure 7. Until now, for all these  simulation 
results, the  minimum value of N occurred at the smallest 
quadrat size. More work still has to be done  to  determine  the 
conditions  that result in the minimum shown  in Figure 7. 

The simulations have also confirmed that  the ratio of the 
variance to  the mean is highest for the largest quadrat sizes, 
just as it did for the particles of Figure 2. It was possible to 
determine  that this effect depends primarily on the 
distribution of the  number of  hits per map.  This dependence 
has been studied with a special simulation  experiment. In 
that experiment the  map-to-map variation of the  number of 
hits  per map was forced to fit a Poisson distribution.  A  mean 
of 3 1.75 hits per map was chosen. This corresponded to  an 
experimentally observed average number of particles per 
wafer. 

Results from  these  simulated  cluster  maps have confirmed 

Two  hundred maps were generated and analyzed for this 
experiment. Each map consisted of an array of 420 X 420 

points. All of these maps were analyzed with the  quadrat 
method. The smallest quadrat size corresponded to a grid of 
20 X 20 quadrats, while the largest quadrat size was equal to 
the complete map area. Areas of half maps were also 
analyzed. In that case horizontal and vertical partitioning of 
the  maps resulted in two  separate sets of data.  The results of 
the experiment are plotted  in Figure 10. The graph depicts 
the ratio of the variance to  the mean  as  a  function of area. 
This ratio reaches a maximum of 9.8 at  an area that 
corresponds to  four  quadrats per map.  The  minimum of 1 is 
not shown on the graph. This occurs off-scale to the right for 
areas  equal to  the full map. 

The  maximum value of the ratio of the variance and  the 
mean  in Figure I O  is of great interest. This ratio is smaller 
than the ones observed in the  map-to-map  and wafer-to- 
wafer variations that were discussed earlier. For example, the 
distribution of the  number of particles per map in Figure 2 
had a  variance-to-mean  ratio of 28.3. Furthermore, particle 
counts on wafers in one factory resulted in an average of 
31.75 particles per wafer and a variance of 41 16.2. The ratio 
of the variance and  the mean  in that case is equal to 129.6. 
This is an  order of magnitude higher than  the  maximum 
value resulting from the simulation  experiment. 

It therefore  appears that, for the particle data, the  map-to- 
map variations of the  number of particles per map  are  the 
major  source for the deviations  from Poisson statistics. This 
suggests that a  similar result can be expected from large 
variations in the  numbers of defects or faults per wafer. Such 
variations  could  therefore be the cause of the increasing 
deviations from Poisson statistics observed in large and 
complex semiconductor chips. 

Discussion and conclusions 
Two effects have been described in this  paper. One of these 
deals with the  nature of the distributions of the  number of 
particles, defects, or faults on integrated circuit chips. Such 
distributions appear  to deviate increasingly further from 
Poisson's distribution when the integrated circuit  complexity 
and  chip area are increased. This effect has been studied with 
particle maps and with clusters that were simulated with a 
computer. Although the effect seems to be partially caused 
by clusters on wafers, it originates predominantly from the 
wide wafer-to-wafer variation  in the  number of particles, 
defects, or faults per wafer. 

The second effect described in this  paper  has to  do with 
the cluster parameter N associated with negative binomial 
distributions. This  parameter has until now been treated as a 
constant. It  was found that it actually varies with chip or 
quadrat areas when clusters are present. 

Although these results dealt with negative binomial 
statistics. the area  dependence of distributional  parameters 
can be extended to  other  compound statistics. A number of 
such formulas are given in the Appendix. The cluster 
parameter CY in any of these  formulas  can be treated  as  a 
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function of area as well. No matter which statistics are used, 
this area dependence of the  cluster parameter affects the plot 
of yield as a  function of area.  Such plots could  curve 
upwards or downwards or be bumpy, depending on the 
nature of clusters and the  dependency of CY on area. 

With these possibilities in mind, it is timely to discuss one 
fallacy that has troubled yield modeling for some time. This 
has to  do with data  that show a  linear  relationship between 
the  logarithm of the yield and  the area of chips or quadrats. 
Such results are often believed to imply that pure,  simple 
Poisson statistics are applicable  as yield models. This, 
however, is not necessarily correct. The  same results can be 
obtained with any of the yield formulas in the Appendix 
when N varies appropriately with area. A Poisson yield 
model is applicable only when the  number of particles, 
defects. or faults per chip  or  quadrat are  distributed 
according to Poisson's distribution. In semiconductor 
manufacturing this  has  not yet been the case, and according 
to  the findings of  this  paper  this is not ever expected to 
happen. 

affect the fault distributions. As the integrated  circuit 
industry  matures, these dimensions  are continually 
decreased. The result is an increased sensitivity to 
photolithographic defects. This has the  same effect on the 
fault distributions  as the increase in area had on particle 
distributions. The reduction in ground rules therefore causes 
an increasing deviation from Poisson statistics. 

The  dimensions of the photolithographic patterns also 

Another  source of integrated circuit failures is the so- 
called pinholes that occur in the dielectrics that serve as 
insulation layers. These  pinhole defects can be caused by 
flaws in the  dielectric  material or by particulate 
contamination in the  manufacturing process. In either case 
the defect sensitivity increases if the dielectric thickness is 
decreased. Again, the trend in the  semiconductor industry is 
towards thinner dielectrics and therefore  towards increased 
defect sensitivities. An increased deviation from Poisson's 
statistics can therefore be expected to result from these 
defects also. 

The faults caused by pinholes,  photolithographic defects, 
and  other types of defects have to be combined  to obtain the 
fault  distribution  of  a semiconductor product. This is done 
by the convolution of the  distributions  that  are associated 
with each individual defect type. The actual statistics of 
defects and faults in integrated circuit  chips  are  therefore 
quite complicated. The distributions in Figure I are  an 
example of that.  The long tails in those distributions are the 
result of increased defect sensitivities in a number of defect 
types. In the  future  the tails of such  distributions are 
expected to become even longer. 

Appendix 
Negative binomial statistics as  applied to clustering can be 
derived in a number of ways.  At least four methods have 

been described by Rogers [ 141. The most commonly used 
derivation  makes use of the  compounding  method of 
Equation ( 1  I ) .  The  compounder used in that case is a 
gamma distribution. In whichever way the negative binomial 
distribution is derived, the result can be written as 

where X is a random variable designating the  number of 
faults, defects, or particles occurring in a  chip,  circuit, or 
quadrat with area A .  The variable X can be equal to  any 
positive integer value k = 0, 1, 2 ,  3, . . . , etc. The cluster 
parameter CY in Equation ( A I )  must always be larger than 
zero. 

The mean and variance of the negative binomial 
distribution  are given by 

E ( X )  = AD, (A2) 

V ( X )  = AD( 1 + AD/a) .  ( A 3  

The distribution-generating  function and  the yield are given 
by 

G( S) = [ 1 + ( 1  - s)AD/~]-", (A41 

Y = ( I  + AD/a)"?, (A5) 

Although negative binomial statistics have shown very 
good agreement with integrated circuit data, they are  not 
necessarily the only statistics applicable to integrated circuit 
manufacturing. Other  compound Poisson statistics are 
available. One example of this is Neymann Type A statistics. 
which can also be derived in a number of ways. The most 
straightforward approach uses a Poisson distribution for the 
discrete compounder in Equation (7).  The resulting formula 
has the form 

The mean and variance of this  distribution  are 

E ( X )  = AD,  (A7) 

V ( X )  = ,4D( 1 + AD/cY).  (A81 

The distribution-generating  function and  the yield associated 
with this  distribution  are 

~ ( , y )  = exp - ~ > ~ ( " s ) f " ' ~ r  I t ?  (A9) 

y = exp [-.(I - ~>-. .""~v)~, (A10) 

The method that has been used in this  paper for 
generating compound distributions is not the only one 
available. Some of the distributions investigated by 
Armstrong and Saji are  known  as generalized Poisson 
distributions.  They are derived by compounding a different 
Poisson equation  than the one in (3) with a  distribution that 
is the result of a  complex  convolution process. The Poisson- 337 
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binomial  distribution is an example of this. It has the form 

P ( X  = k )  

where n > 0 and 0 5 AD/an I 1. The mean and variance of 
this  distribution are given by 

E ( X )  = AD, (‘412) 

V ( X )  = AD[1 + ( n  - I )AD/an] .  (A13) 

The formulas for the distribution-generating  function and 
the yield are given by 

C(s) = exp[-all - [ I  - ( 1  - s )AD/an]”l] ,  (‘414) 

Y = exp (-a[ 1 - ( 1  - AD/an)“]l .  (A 15) 

The Poisson-negative binomial  distribution is another 
example of a generalized Poisson distribution. It can be 
expressed by the  formula 

P ( X  = k )  

-n a ~ ~ ‘ ( k i  + k - I ) !  AD ‘ 
i! k ! ( k i  - I)! (GI = e  ( 1  + AD/ak)-k“h, (A16) 

,=O 

where k > 0 and 0 < AD/ak  < I .  The mean and  the 
variance of this  distribution are given by 

E ( X )  = AD, (A 17) 

V ( X )  = AD[I + ( k  - I )AD/ak] .  (A 18) 

The distribution-generating  function and the yield are 

G(s) = exp [-.(I - [ I  + ( 1  - s)AD/ak]-‘l], (A19) 

Y = exp [-a11 - ( I  + A D / ~ ~ ) - ~ I J .  ( A m  

For all the preceding distributions  the average number of 
particles, defects, or faults is given by AD and  the cluster 
parameter by a. This cluster parameter has values between 
zero and infinity, or 0 5 a I m. For a = 00 all these 
distributions  become  equal to the Poisson distribution, while 
(Y = 0 signifies the case of maximum clustering. For this last 
condition all particles, defects, or faults are located in one 
small  area, while all other surface areas  are free from 
particles. 
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