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On yield,

fault distributions,
and clustering

of particles

by C. H. Stapper

Increasing the levels of semiconductor
integration to larger chips with more transistors
causes the fault and defect distributions of VLSI
memory chips to deviate increasingly further
from simple random Poisson statistics. The
spatial distributions of particles on
semiconductor wafers have been analyzed to
gain insight into the nature of integrated circuit
defect statistics. The analysis was done using
grids of squares known as quadrats. It was
found that the cluster parameter, which until
now has been treated as a constant, did vary
with quadrat area. The results also show that
the deviation from Poisson statistics continues
to increase into the realm of wafer-scale
integration or WSI. Computer simulations were
used to verify this effect.

introduction

From the onset of integrated circuit development in 1964 it
was realized that simple Poisson statistics was not
appropriate for the modeling of integrated circuit yield
calculations [1]. Originally this was looked upon as an
aberration caused by high defect levels and poor control
during the early stages of manufacturing. Conventional
wisdom of the early 1970s took for granted that the lowering
of defect levels and improved manufacturing cleanliness
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“would eventually result in pure randomness of defects. It was

believed that low defect densities could therefore be modeled
with the random defect statistics associated with Poisson’s
distribution. Similarly, some theoreticians claim that for
large regions on wafers and full wafers the defect statistics
should also revert to pure simple Poisson statistics.

It is the experience of this author, however, that integrated
circuit manufacturing lines are more perverse. For instance,
it has already been reported that a reduction of defect levels
results in an increased deviation from Poisson statistics [2].
The same effect has now also been observed as a result of
increased chip area, circuit complexity, and both of these
combined. An investigation into the nature of this effect is
the subject of this paper.

The deviation from Poisson statistics manifests itself by
producing very long tails in the distributions of the number
of faults per chip. A fault is defined as a defect which causes
a chip failure. An example of fault distributions can be seen
in Figure 1, which shows data from 450 experimental
dynamic random access memory chips. These chips were
processed under very clean conditions. The data in Figure 1
were obtained with the array diagnostic technique described
by Gangatirkar, Presson, and Rosner [3]. Shown are the
frequency and cumulative distributions of the number of
failing single cells, failing single rows or word lines, and
failing single columns or bit lines. Not included here are
some other faults such as the ones that result in adjacent
cell, row, or column failures and defects that cause large
sections of chips or entire chips to fail.

The graphs on the left-hand side in Figure 1 represent the
frequency distributions of the faults. These data have been
truncated and the remaining cells have been added to the
buckets of 40 faults per chip. This affects primarily the
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Fault distributions: The graph indicates the relative number of failing single cells, failing rows, arfd failing columns that were observed in
IM DRAM chips.

distributions of the single cell and column failures. On the with more than 40 failures per chip. The tails of these
right-hand side of Figure 1 the cumulative distributions are distributions appear well-behaved and include very large
shown. These have been extended to include the data points numbers of failures for all three cases. 327
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Comparing data to Poisson statistics

Some interesting statistics are associated with the results in
Figure 1. The data on the extreme left in the graphs
represent the number of chips that did not fail electrical test.
These chips are fault-free and therefore represent the yield.
The actual values are 27.4% for the single cells, 72.5% for
the single rows, and 47.3% for the single columns. If these
yields had been associated with pure Poisson random defect
statistics, they would be related to the average number of
faults per chip by

Y=e¢ ~ (1

In this equation Y represents the yield and X the average
number of faults per chip. Equation (1) can be inverted to
give

A=-InY, 2

thus making it possible to calculate the average number of
faults per chip from the yield. For the yields in Figure | such
calculations result in an average of 1.296 single cells, 0.321
single rows, and 0.748 single columns per chip. The actual
averages for the distributions in Figure 1 are 28.65 single
cells, 4.51 single rows, and 15.37 single bit lines. These
values are an order of magnitude higher than those
calculated with Equation (2). It can therefore be concluded
that Poisson statistics do not provide a good model for these
data; namely, defect levels calculated with those statistics are
too low.

That Poisson statistics are not applicable to the data of
Figure 1 can also be demonstrated in another way. Poisson’s
distribution is given by the formula

P(X = k) = e "Nk, (3)

where X is a random variable designating the number of
faults per chip and k an integer having values of 0, 1, 2, 3,
etc. It is generally known, and not difficult to prove, that the
mean and variance of Equation (3) are both given by the
value of A. In the distributions of Figure 1 the variances are
4299.9, 932.4, and 3285.1 for the cells, rows, and columns
respectively. These values are at least two orders of
magnitude higher than the average number of faults. The
statistics needed to model these distributions are therefore
expected to be more complex than Poisson statistics. In the
next sections some possible causes for this complexity are
investigated.

The deviation from Poisson’s distribution can be
quantified with the ratio of the variance and the mean. For a
Poisson distribution this ratio is equal to one. For the single-
cell, single-row, and single-column distributions of Figure 1
these ratios become 150.1, 206.7, and 213.7. These are the
highest values of this ratio that this author has ever observed
for fault distributions of integrated circuit chips. These data,
however, also came from chips with the largest physical area,
the greatest number of transistors, the smallest feature sizes,
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and the thinnest dielectrics ever analyzed in this way by this
author. These data led to the investigation of the cause for
this deviation from Poisson’s distribution in very large and
complex chips. Some of the early results of this study are the
subjects discussed in the following sections of this paper.

Compound Poisson statistics
That simple Poisson statistics could not be used for
integrated circuit yield calculations was confirmed

experimentally in the 1960s. It was clear from the data that
this effect was caused by defect clustering [4-7]. It was also

determined in the early 1970s that the wafer-to-wafer
variation of defect densities could be responsible for the
same effect [8]. In either case, the data could only be
modeled with some form of mixed or compound Poisson
statistics. The nature of these statistics is discussed in this
section.

The compounding or mixing process can be applied to
Poisson’s distribution (3) by assuming the value of X to be
another random variable. This can be justified by assuming
that there are a number of independent regions, each having
random faults, with a different average number of faults per
unit area. If each region is designated by an index number /,
then the corresponding average number of faults is indicated
by \,. Within these regions Poisson’s distribution is assumed
to be valid with X, as a parameter. Associated with the values
of i are a set of probabilities P,, which have to satisfy the
normalization condition

P =1 4

i

L8

i

This normalization assumes that there are an infinite
number of regions and values of A,. Situations with fewer
regions can be modeled by assigning a probability P, = 0 to
any excess regions.

The mean or average number of faults associated with the
discrete probability distribution P, is given by

EN) =3 \P. (5)

i=0

Similarly, the variance is given by

V() = $ NP, — EOV. (6)
i=0

The probabilities P, can be used to compound Poisson’s

distribution (3) by the summation

P(x= k)= 3 Pe ™(\) k. %)
i=1
This is the general form of the mixed or compound Poisson
distribution that results from discrete compounding.
It is also possible to use a continuous probability
distribution function P(A) for compounding. A detailed
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derivation of this technique is described in [8]. It should be
noted here that the normalization requires

J: PO = 1. (8)
The mean and variance of P(\) can be calculated with

EQ\) = fo ) AP(N)dA, )
and

V(N = f NP(\dX = E(\Y. (10)
0
Compounding of Poisson’s distribution (3) with the
probability distribution function P()) is done with the
integral
P(X = k)= f dANP(\e Nk (1n
(4]

This is the fault distribution resulting from a continuous
compounding or mixing process.

It is not difficult to prove that the mean and variance for

the fault distributions formulated in Equations (7) and (11)
are given by

E(X) = EON) (12)

and

V(X) = E(\) + V(M. (13)

This last equation shows why compound Poisson statistics is
useful for modeling the fault distributions of integrated
circuits: The variance in Equation (13) is always greater than
the mean in Equation (12). The ratio of the variance and the
mean for distributions (7) and (11) is given by

X _
EX)

P )

O’ (14)

which is always greater than one.

The ratio of the variance and the mean can be better
understood by assuming the existence of a complexity factor.
This factor depends on chip areas, ground rules, or feature
sizes of the photolithographic patterns, manufacturing
complexities, dielectric thicknesses, circuit design
sensitivities, and a host of unknown factors. It may therefore
be somewhat presumptuous to assume that in this case the
average number of faults for any chip can be expressed by

(15)

where C is the complexity factor and X, the average number
of faults on a chip with unit complexity. However, if this
assumption is made, it would imply that in general

X = C¥,,

A= C),, (16)
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where A, is a random variable distributed in the same way as
A. It follows therefore that
E\) = CE(N) (17)
and

V) = CTV(N). (18)
As a result the ratio of V(X)/E(X) in Equation (14) becomes

V(X)
E(\)

e _

EX) (19)

This implies that the ratio of the variance and the mean of
integrated circuit fault distributions increases linearly with
the complexity factor C. It also explains the observations
that were described in the previous sections.

The complexities of modern integrated circuits make it—
unfortunately—impossible to define a single complexity
factor for each chip. The effect of complexity on the
pertinent statistics has therefore been studied with particle
distributions on blank integrated circuit wafers. This
eliminates the presence of photolithographic patterns and
circuit sensitivities. As a consequence, the complexity factor
reduces to an area ratio. The results of the studies are
therefore reported in terms of areas or relative areas in
subsequent sections and figures in this paper.

It is possible to define some ratios related to the
distributions of A that are independent of the complexity
factor. One of these is the coefficient of variation, which is
defined by the ratio of the standard deviation and the mean.
It 1s denoted here by o/u and is calculated with the formula

ofu = NV(N/EN). (20)

Introduction of relationships (17) and (18) into this equation

gives

o/p = VVNIEQ),

which is indeed independent of the complexity factor C.
In the following sections a cluster parameter « is used.

This quantity is related to the coefficient of variation by

20

a = Vu/o. (22)

It is therefore also independent of the complexity factor. For
the distributions resulting from Equations (7) and (11) it is
possible to define

_EQ

a= 700 (23)

as a general quantity. Its dependence on area, and therefore
chip complexity, is also studied in the following sections.
The preceding discussion was completely general. The
type of compounders required in Equations (7) and (11)
depends entirely on the nature of the fault distributions
observed on manufactured chips. Until now the use of a
gamma distribution in Equation (11) has been found useful;
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Particle maps: The locations of particles on wafers obtained with an
electronic particle detector.

it has been reported in [8-11]. The properties of this
distribution and some other compound distributions are
given in the Appendix.

The effect of defect clustering

The clustering of defects on wafers in principle should not be
difficult to analyze. Wafer maps showing the location of
usable and failing chips can be obtained by anyone working
in the industry. However, finding the number and the
location of the failing defects on nonfunctioning chips is not
easy. Until now, only data for half a wafer have appeared in
the literature. These were results published by Moore [6] that
have been extensively analyzed by Warner [7, 12] and
Stapper [9]. Moore’s data do produce a long tail in the fault-
per-chip distribution. However, the ratio of the variance to
the mean of these data was only 3.94.

In order to get more insight into the statistics of clustering,
F. M. Armstrong and K. Saji [13] decided to analyze particle
distributions on blank wafers from a manufacturing line.
They reasoned that some of these particles might result in
defects that cause chip failures. Understanding the nature of
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these particle distributions could therefore give an insight
into the statistics applicable to integrated circuit yields.

The spatial distributions that Armstrong and Saji
investigated were obtained with an electronic particle
detector. This tool used scattered light to pinpoint the
location of particles on wafer surfaces, and was used to
analyze equal square areas on twelve wafers. This resulted in
the maps of particle locations that are shown in Figure 2.
Armstrong and Saji subdivided each one of these maps into
36 smaller squares or “quadrats.” (The word quadrat
originates from the methods used by ecologists to analyze
the spatial population distributions of animal and plant life.
A. Rogers [14] applied this technique to study the spatial
distributions of retail stores in cities. Armstrong and Saji
used the “quadrat method™ for the analysis of particles on
wafers.) They then counted the number of particles in each
quadrat and thus determined the frequency distribution of
the number of particles per quadrat. These data were
collected individually for each wafer.

The results of the particle counting were analyzed with a
method described by Rogers [14]. This consisted of
determining which one of four different compound
distributions provided a best fit to these data. In order to do
this, the parameters for the theoretical distributions were
calculated using a maximum likelihood technique. The
goodness of fit for the result was established with a chi-
square test. In this way it was found that the distributions
from four wafers were best modeled with a mixed Poisson-
binomial distribution, four others with a Neymann Type A
distribution, and three with a negative binomial distribution.
For one wafer all three of these distributions fitted equally
well. In all cases it was found that any one of these
compound distributions gave a much better fit to the data
than Poisson’s distribution. The formulas and properties of
the four distributions that were used in this study are
described in the Appendix of this paper.

Armstrong and Saji also studied the fraction of quadrats
without any particles. This fraction was considered to be the
quadrat yield. They found that the smallest difference
between the theoretical yield and the observed yield occurred
with Neymann Type A statistics on eight wafers, negative-
binomial statistics on three wafers, and Poisson-binomial
statistics on one wafer.

Results like these depend on the conditions encountered
by the wafers in the factory. Although such conditions can
be expected to differ between factories, this author
anticipates that particle clustering is universal in the
industry. As a consequence, some form of compound
statistics is expected to be applicable for yield models
everywhere.

Only a few of the particle maps in Figure 2 produced
particle distributions with long tails when analyzed by
Armstrong and Saji. This suggests that defect clustering
could indeed be a cause for the tails of the fault distributions
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in Figure 1. However, since the majority of the maps in
Figure 2 did not show this behavior, there must be an
additional contributor. This is the subject of the next section.

Wafer-to-wafer variations

1t has been described in [8] how compound Poisson statistics
can also result from wafer-to-wafer variations in defect
levels. It is not difficult to determine whether this is the case
with particles on wafers. Figure 3 shows the cumulative
distribution of the number of particles per map for the
twelve maps in Figure 2. The result from this small sample is
rather scattered, and it is difficult to draw any definitive
conclusions about the nature of the number of particles per
wafer distribution. Nevertheless, these data have a mean of
62.75 and a variance of 1775.5, which results in a variance-
to-mean ratio of 28.29. Simple Poisson statistics does not
therefore appear to be applicable. Some form of compound
Poisson statistics may be more applicable for modeling these
results.

The preceding experiment is not difficult to repeat. At
IBM, cleaned blank wafers are periodically sent through
various tools used for photoresist application,
photolithographic exposure, pattern etching, evaporation,
etc. The number of particles per wafer is counted before the
wafer enters the tool and again after it exits. A cumulative
distribution of the number of particles observed on 167 of
such wafers is shown in Figure 4. These data have a mean of
31.75 and a variance of 4116.2. The ratio of variance to the
mean is therefore 129.6, which is higher than the ratio of
28.3 in the Armstrong-Saji data. This indicates that the map-
to-map variation of the number of particles per map in
Figure 3 is less than the wafer-to-wafer variation of particles
found in a run-of-the-mill sample. An analysis of the
Armstrong-Saji data with respect to the map-to-map variation
is therefore expected to be conservative. This is one of the
reasons why these maps are studied in detail in this paper.

Armstrong and Saji analyzed the particle distributions
individually for each one of the maps in Figure 2. They used
a single grid with a single quadrat area. In the analysis made
in this paper, the data for all the maps are combined and six
different quadrat sizes are used. This makes it possible to
study the applicable statistics and distributions as a function
of quadrat size. Furthermore, since no photolithographic
patterns or circuit sensitivities are present, the previously
described complexity factor is simply equal to the quadrat
area.

The smallest quadrat area that was studied was obtained
by dividing the maps in Figure 2 into 12 X 12 squares. This
produced 144 quadrats per map. The next larger size used an
8 X 8 grid with 64 squares. The third size consisted of 6 X 6
squares, for a total of 36 per map, and is the same quadrat
grid used by Armstrong and Saji. The other quadrat
arrangements that are analyzed here are 4 X 4, 3 X 3, and
2 X 2, each with 16, 9, and 4 squares per map respectively.
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Particle distributions from a manufacturing line: The cumulative dis-
tribution of the number of particles per wafer. These numbers were
counted on wafers that were sent through manufacturing tools to
determine their cleanliness.

The distributions of the numbers of particles per quadrat
resulting from this analysis are tabulated in Table 1. It is
clear from the result that the distributions for the 4 X 4,

3 x 3, and 2 X 2 quadrat arrangements do have long tails.
The mean, variance, and mean-to-variance ratios are given
in Table 2. The results show that the larger quadrats have
the greatest deviation from Poisson statistics. This confirms
the earlier observations and indicates that this effect could
have been caused by particle clustering and the wafer-to-
wafer variation of clustered particles.
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Two important conclusions can be drawn from these
results. Both conclusions have to do with a model described
in [15]. In that paper it was claimed that the negative
binomial distribution and the yield are affected by an
experimental dependence of A on area. This dependence is
plotted in Figure 6. Also shown is the straight line that
corresponds to

X = AD, (25)

where A4 is the quadrat area and D the average number of
particles per unit area. When the quadrat area of the 144 X
144 grid arrangement is taken as unity, the defect density D
is equal to 0.4358 particles per unit area. It is reassuring to
find that this line corresponds closely to the data points. The
experimentally determined parameter A does therefore
represent the average.

Cumulative occurrences

, Table 1 Distributions of the number of particles per quadrat
120  observed for different quadrat areas.

Number of particles per quadrat area Farticles Quadrat arrangement
per
quadra[ 12x 12 8x 8 6 X6 4x4 Ix3 2x2

Distributions of the number of particles per quadrat: Data and models 0 1275 459 229 62 28 5
for the cumulative distributions of the number of particles per quad- 1 293 138 67 32 6 4
rat. These results were obtained from the maps in Figure 2. 2 101 83 39 21 10 5
3 29 32 25 12 13 3
4 8 23 23 10 3 1
5 11 14 11 13 8 1
6 3 1 10 4 4 0
7 1 4 8 7 5 2
- 8 5 0 6 5 4 0
Statistical models 9 1 3 3 4 3 1
It is not difficult to fit the data in Table 1 with compound 10 1 2 1 3 1 2
Poisson statistics such as Neymann Type A, negative i; g (1) ‘1‘ ‘1‘ ;
binomial, Poisson-binomial, or the Poisson-negative 13 1 0 3 2 1
binomial, as described by Rogers [14]. For the analysis used 14 2 1 0 2 1
in this paper only negative binomial statistics were used, :2 (1) (1) } (2)
since they appeared to provide an entirely satisfactory 17 1 2 0 0
model. This is shown in Figure 5, which represents several 18 1 1 3 0
cumulative distributions of the number of particles per ;‘g ; (1) (1) %
quadrat. Each graph shows the data and the theoretical 21 0 0 0 0
results corresponding to a different quadrat area. The solid 22 1 0 0 Y
lines represent the data in Table 1; the dashed lines are %i 8 (1) (2) (1)
cumulative negative binomial distributions calculated with 25 0 0 0 1
the formula 26 0 2 1 1
. 27 0 0 0 1
X

T(a+ k) (M) 28 1 1 0 0
Clx)= X pory i (24) 29 1 0 0
In this expression A is the mean number of particles per gé 8 } :
quadrat in each distribution, « is a clustering parameter, and 33 0 0 0
x is the cumulative number of particles per quadrat given by g‘s‘ 8 8 (2)
an integer 0, 1, 2, etc. The parameters A and « were 36 0 1 0
determined with a nonlinear least-square method using 37 0 0 0
Equation (24) and the cumulative distribution corresponding ;g g g g
to the data in Table 1. The parameter values obtained in this =40 1 7 4

332 way are tabulated in Table 3.
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It was also suggested in [15] that the components of the
cluster parameter « might be dependent on the area of a
chip. As a result o would become a function of chip area. In
Figure 7 the experimentally determined values of « are
plotted as a function of quadrat area. This shows that « is
indeed dependent on these areas. The results also indicate
that these values have a minimum for the quadrats of the
6 % 6 arrangement. Low values of a in the negative binomial
distribution are associated with high degrees of clustering.
Maximum clustering appears therefore to be taking place for
these quadrat areas.

Yield as a function of quadrat area
Yield as a function of integrated circuit chip areas has been
at the center of yield modeling ever since the publication of
[1]. In that paper it was suggested that a plot of the
logarithm of yield versus chip area should curve upwards.
We can now see if this holds for the data in Figure 2 by
defining the yield to be equal to the fraction of particle-free
quadrats. The result of this yield as a function of relative
quadrat area is shown in Figure 8. The data points do
suggest upwards curvature as predicted in [1].

It is possible to approximate the data in Figure 8 with the
negative binomial yield model of [6] in the form

Y = Y,(1 + AD/a) ™, (26)

where Y, is a gross particle yield, 4 the quadrat area, D the
particle density per unit area, and o a constant cluster

Table 2 Means and variances of the distributions in Table 1.

Average number of particles per quadrat

1 1

Quadrat area

‘% Number of particles vs quadrat area: The average number of particles
{  per quadrat depends linearly on quadrat area.

Quadrat arrangement

12x 12 8% 8 6X%X6 4x4 3% 3 2% 2
Relative area 1 2.25 4 9 16 36
Mean 0.4358 0.981 1.74 392 6.97 15.69
Variance 0.9785 3.605 11.26 37.43 110.5 384.2
Variance-to-mean ratio 2.25 3.68 6.45 9.55 15.84 24.49
Table 3 Model parameters resulting from a least-square analysis.
Quadrat arrangement
12x 12 8% 8 6X%X6 4x4 3Ix3 2x%2
Relative area | 2.25 4 9 16 36
Parameters
A 0.4191 0.9418 1.691 3.829 6.671 15.536
« 0.4896 0.4637 0.3757 0.5010 0.5824 0.7301
C. H. STAPPER
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parameter. With a nonlinear least-square technique, values
of Y, = 0.8339, D = 0.1479, and « = 1.1772 were obtained.
When these values are used in formula (26), the yield-versus-
area curve is the one indicated by the dashed line in Figure
3. The result fits comfortably between the 80% confidence
limits of the data, suggesting that Equation (26) is an
acceptable model. It is, furthermore, to be noted that these
results were obtained for an area range from 1 to 36. This is
believed to be the widest area range ever published for which
this model is applicable.

Although Equation (26) does reasonably fit the data of
Figure 8, it leaves us with a problem to resolve. The average
particle density needed in Equation (26) was found to be
0.1479, while the results from Table 3 suggested a particle
density of 0.4358 particles per unit area. Furthermore, in
Figure 6 the values for « are seen to vary between (.376 and
0.73, while for Equation (26) it is 1.1772.

The differences between the parameter values for Equation
(26) and the data in Table 3 are caused by the use of the
gross yield factor Y,. This quantity has been referred to in
the industry as an “area yield factor” since it usually affects
areas of wafers. A treatise on this can be found in the work
by Ham, who called it the “area usage factor” [16]. Methods
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for measuring this quantity have been described by Paz and
Lawson [11], Warner [12], and Stapper [8]. In the work of
Paz and Lawson the Y, factor contained the yield associated
with clusters of defects, while Warner used it to take care of
the extra yield losses in the regions of high defect density.
The same is taking place in the data analyzed here. The Y,
factor absorbs some of the yield of the clusters with high
particle densities. As a consequence fewer particles are
included in the defect density of Equation (26), thus
resulting in a lower value for D. The value of « obtained for
Equation (26) is higher than any of the values of « in Table
3. This indicates less clustering, which seems reasonable,
since most of the high-density clusters are already included
in the Y, factor.

The preceding results are a good illustration of the
assumptions that are associated with yield models that
incorporate a gross yield Y, or an area usage factor. The
example also points out a hazard that could result from
using such a factor. The average particle densities and the
cluster parameter of the yield model are not necessarily the
same as those of the actual particle or fault distributions. In
general the particle densities or defect densities in such yield
models tend to be lower than the ones observed
experimentally. Similarly, the cluster parameters « are higher
for yield-versus-area models than they are in the actual

TatF T 1

Yield of particle-free quadrats
(=]
Ny
T
’

1 I | E S -

Quadrat area

Yield and quadrat area: The yield-versus-area plot resulting from the

maps of Figure 2. The bars indicate the 80% confidence limits.
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distributions. These results are of prime importance in the
modeling of yield with redundancy. In that application the
correct defect densities and cluster parameters for the
distributions are a necessity.

The difficulties resulting from the use of Equation (26) can
be prevented by using the correct yield model. Since the
frequency distributions of the number of particles per
quadrat could be modeled with negative binomial
distributions, the yield should be calculated with Equation
(AS) of the Appendix. This formula can be written as

Y =1 + ADJal A", (27)

where the area dependence of the cluster parameter is
indicated by a(A4).

The values of « for use in Equation (27) are given in Table
3. Also shown in that table are the quadrat areas that can be
used for 4. With a particle density D equal to 0.4358
particles per unit area, the yields calculated with (27) are
0.732. 0.590, 0.522, 0.336, 0.225, and 0.103. The actual
yields can be calculated from the distributions in Table 1.
They are 0.738, 0.598, 0.530, 0.323, 0.259, and 0.104. These
two results are sufficiently close for all practical purposes.

Obtaining the area dependence of the cluster parameter «
in the preceding example was straightforward.
Unfortunately, it is virtually impossible to apply this
technique to actual test data because the locations of all the
defects and faults cannot be determined. An alternative
approach is therefore required.

The two-step analysis of test data is often possible. In the
first step the nature of the fault distributions has to be
determined with the array diagnostics of 3], or by
alternative fault diagnostic methods. The results should
establish the model and parameters, like a, to be used for the
fault distribution. The second step consists of doing a chip
multiple or “window” analysis of wafer maps that show the
locations of the functioning and defective chips. These
results should establish the relationship between yield and
chip multiples or area. The results from the two steps must
then be combined to determine the area dependence of the
parameters in the model. Since this requires the solution of
transcendental equations, it is often necessary to use
computer programs for calculating these parameters.

A simulation model

The data in the preceding sections came from only twelve
wafers. It is difficult to ascertain whether the results and
observations are unique for this sample, or whether they
have wider implications. More data are needed to confirm
whether the results are general. Unfortunately, the analysis
by hand of particle maps is laborious and time-consuming.
To avoid this, similar maps have been created with
computer simulations. Some of these are shown in Figure 9.
A large number of such maps have been analyzed with the
quadrat method directly by computer.
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§ Simulated clusters: Cluster maps that were generated using computer

simulations.

In the first step of the simulation process, clusters of hits
that represent particles, defects, or faults are generated with a
Gaussian probability distribution function. The probability
for the occurrence of a hit is highest at the center of the
cluster and decreases radially away from the center. The
central probability and the standard deviation of each cluster
were random numbers. The clusters were therefore all
different and unique.

The hits or lack of hits within a cluster were determined
with yet another set of random numbers. These numbers
had values between zero and one and occurred at tightly
spaced grid points. They were compared to the Gaussian
probability calculated for each point. A hit was scored when
such a number was smaller than or equal to this probability.
The resulting clusters can be called symmetrical since they
were generated with a radially symmetric probability
distribution function. Many clusters of this type were stored
in a cluster library for subsequent use. Clusters were taken at
random from this library for further processing.
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Variance-to-mean ratio: The deviation from Poisson statistics as a
function of quadrat area for 200 simulated maps peaks at the size of
1/4 map.

Defect clusters on semiconductor wafers are rarely
symmetrical. To simulate asymmetry, clusters from the
library were projected onto wafer maps with randomly
generated lateral and azimuthal angles. The centers of these
clusters occurred at random spots on those maps. It was
even possible for clusters to graze the edges of the maps,
therefore causing most of the hits to fall outside the map
area and leaving only a few inside. The number of hits
required on a map was randomly selected from a
predetermined probability distribution function. Clusters
were thrown at the map until this number was reached or
exceeded. If there were too many hits, the last cluster was
randomly diluted to obtain the correct number.

Results from these simulated cluster maps have confirmed
that the cluster parameter « varies as a function of quadrat
area. In general, this dependence was smoother than the
results in Figure 7. Until now, for all these simulation
results, the minimum value of « occurred at the smallest
quadrat size. More work still has to be done to determine the
conditions that result in the minimum shown in Figure 7.

The simulations have also confirmed that the ratio of the
variance to the mean is highest for the largest quadrat sizes,
just as it did for the particles of Figure 2. It was possible to
determine that this effect depends primarily on the
distribution of the number of hits per map. This dependence
has been studied with a special simulation experiment. In
that experiment the map-to-map vaniation of the number of
hits per map was forced to fit a Poisson distribution. A mean
of 31.75 hits per map was chosen. This corresponded to an
experimentally observed average number of particles per
wafer.

Two hundred maps were generated and analyzed for this
experiment. Each map consisted of an array of 420 x 420
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points. All of these maps were analyzed with the quadrat
method. The smallest quadrat size corresponded to a grid of
20 X 20 quadrats, while the largest quadrat size was equal to
the complete map area. Areas of half maps were also
analyzed. In that case horizontal and vertical partitioning of
the maps resulted in two separate sets of data. The results of
the experiment are plotted in Figure 10. The graph depicts
the ratio of the variance to the mean as a function of area.
This ratio reaches a maximum of 9.8 at an area that
corresponds to four quadrats per map. The minimum of 1 is
not shown on the graph. This occurs off-scale to the right for
areas equal to the full map.

The maximum value of the ratio of the variance and the
mean in Figure 10 is of great interest. This ratio is smaller
than the ones observed in the map-to-map and wafer-to-
wafer variations that were discussed earlier. For example, the
distribution of the number of particles per map in Figure 2
had a variance-to-mean ratio of 28.3. Furthermore, particle
counts on wafers in one factory resulted in an average of
31.75 particles per wafer and a variance of 4116.2. The ratio
of the variance and the mean in that case is equal to 129.6.
This is an order of magnitude higher than the maximum
value resulting from the simulation experiment.

It therefore appears that, for the particle data, the map-to-
map variations of the number of particles per map are the
major source for the deviations from Poisson statistics. This
suggests that a similar result can be expected from large
variations in the numbers of defects or faults per wafer. Such
variations could therefore be the cause of the increasing
deviations from Poisson statistics observed in large and
complex semiconductor chips.

Discussion and conclusions

Two effects have been described in this paper. One of these
deals with the nature of the distributions of the number of
particles, defects, or faults on integrated circuit chips. Such
distributions appear to deviate increasingly further from
Poisson’s distribution when the integrated circuit complexity
and chip area are increased. This effect has been studied with
particle maps and with clusters that were simulated with a
computer. Although the effect seems to be partially caused
by clusters on wafers, it originates predominantly from the
wide wafer-to-wafer variation in the number of particles,
defects, or faults per wafer.

The second effect described in this paper has to do with
the cluster parameter « associated with negative binomial
distributions. This parameter has until now been treated as a
constant. It was found that it actually varies with chip or
quadrat areas when clusters are present.

Although these results dealt with negative binomial
statistics, the area dependence of distributional parameters
can be extended to other compound statistics. A number of
such formulas are given in the Appendix. The cluster
parameter « in any of these formulas can be treated as a
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function of area as well. No matter which statistics are used,
this area dependence of the cluster parameter affects the plot
of yield as a function of area. Such plots could curve
upwards or downwards or be bumpy, depending on the
nature of clusters and the dependency of « on area.

With these possibilities in mind, it is timely to discuss one
fallacy that has troubled yield modeling for some time. This
has to do with data that show a linear relationship between
the logarithm of the yield and the area of chips or quadrats.
Such results are often believed to imply that pure, simple
Poisson statistics are applicable as yield models. This,
however, is not necessarily correct. The same results can be
obtained with any of the yield formulas in the Appendix
when « varies appropriately with area. A Poisson yield
model is applicable only when the number of particles,
defects, or faults per chip or quadrat are distributed
according to Poisson’s distribution. In semiconductor
manufacturing this has not yet been the case, and according
to the findings of this paper this is not ever expected to
happen.

The dimensions of the photolithographic patterns also
affect the fault distributions. As the integrated circuit
industry matures, these dimensions are continually
decreased. The result is an increased sensitivity to
photolithographic defects. This has the same effect on the
fault distributions as the increase in area had on particle
distributions. The reduction in ground rules therefore causes
an increasing deviation from Poisson statistics.

Another source of integrated circuit failures is the so-
called pinholes that occur in the dielectrics that serve as
insulation layers. These pinhole defects can be caused by
flaws in the dielectric material or by particulate
contamination in the manufacturing process. In either case
the defect sensitivity increases if the dielectric thickness is
decreased. Again, the trend in the semiconductor industry is
towards thinner dielectrics and therefore towards increased
defect sensitivities. An increased deviation from Poisson’s
statistics can therefore be expected to result from these
defects also.

The faults caused by pinholes, photolithographic defects,
and other types of defects have to be combined to obtain the
fault distribution of a semiconductor product. This is done
by the convolution of the distributions that are associated
with each individual defect type. The actual statistics of
defects and faults in integrated circuit chips are therefore
quite complicated. The distributions in Figure | are an
example of that. The long tails in those distributions are the
result of increased defect sensitivities in a number of defect
types. In the future the tails of such distributions are
expected to become even longer.

Appendix
Negative binomial statistics as applied to clustering can be
derived in a number of ways. At least four methods have
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been described by Rogers [14]). The most commonly used
derivation makes use of the compounding method of
Equation (11). The compounder used in that case is a
gamma distribution. In whichever way the negative binomial
distribution is derived, the result can be written as

Tle + k) (ADfa)*

PX=k)= —%
K'T(a) (1 + AD/a)

(A1)

where X is a random variable designating the number of
faults, defects, or particles occurring in a chip, circuit, or
quadrat with area 4. The variable X can be equal to any

positive integer value k = 0, 1, 2, 3, - - -, etc. The cluster
parameter « in Equation (A1) must always be larger than
Zero.

The mean and variance of the negative binomial
distribution are given by

E(X) = AD, (A2)
V(X) = AD(1 + AD/«). (A3)
The distribution-generating function and the yield are given
by

G(s) =[1 + (1 — s)AD/a] ™", (A4)
Y= (1 + AD/a)™", (A5)

Although negative binomial statistics have shown very
good agreement with integrated circuit data, they are not
necessarily the only statistics applicable to integrated circuit
manufacturing. Other compound Poisson statistics are
available. One example of this is Neymann Type A statistics.
which can also be derived in a number of ways. The most
straightforward approach uses a Poisson distribution for the
discrete compounder in Equation (7). The resulting formula
has the form

_ e (AD/a)*

P(X = k) o

@ [.k
Z _' al()—/:iD/(r. (A6)
o 1!

The mean and variance of this distribution are
E(X) = AD, (AT)
V(XY = AD(1 + AD/«). (A8)

The distribution-generating function and the yield associated
with this distribution are

G(s) = exp |—a[l — '), (A9)

—A’)/u)].

Y=exp[—afl —¢ (A10)

The method that has been used in this paper for
generating compound distributions is not the only one
available. Some of the distributions investigated by
Armstrong and Saji are known as generalized Poisson
distributions. They are derived by compounding a different
Poisson equation than the one in (3) with a distribution that
is the result of a complex convolution process. The Poisson- 337
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binomial distribution is an example of this. It has the form

P(X = k) X ni—k
_ a_(gL<AD> (1_/’_D> . (A1)

2 1 KN (ni — k) \an an

where 7> 0 and 0 < AD/an < 1. The mean and variance of
this distribution are given by

E(X) = AD, (A12)
V(X) = AD[l + (n — 1)AD/an]. (A13)

The formulas for the distribution-generating function and
the yield are given by

G(s) = exp[—afl = [1 = (1 — s)AD/an]"}], (Al14)
Y = exp {—a[l = (1 — AD/an)"]}. (A15)

The Poisson-negative binomial distribution is another
example of a generalized Poisson distribution. It can be
expressed by the formula

P(X = k)
A
e G altkitk=1(4D ik
= L S <ak> (1 + ADjak)™ ™, (A16)

where k> 0 and 0 < AD/ak < 1. The mean and the
variance of this distribution are given by

E(X) = AD, (A17)
V(X) = AD[1 + (k — 1)AD/ak]. (A18)
The distribution-generating function and the yield are

G(s) = exp[~afl — [L + (1 = $)AD/ak] ™M), (A19)
Y = exp |—a[l — (1 + AD/ak)™"]}. (A20)

For all the preceding distributions the average number of
particles, defects, or faults is given by AD and the cluster
parameter by «. This cluster parameter has values between
zero and infinity, or 0 < o < «. For @ = o all these
distributions become equal to the Poisson distribution, while
a = 0 signifies the case of maximum clustering. For this last
condition all particles, defects, or faults are located in one
small area, while all other surface areas are free from
particles.
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