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A time-discrete solution  method is proposed for 
realization of a spectral window  which is ideal 
from an energy concentration  viewpoint.  This 
window  is  one  that  concentrates the maximum 
amount of energy in  a specified bandwidth and 
hence provides  optimal spectral resolution. 

Introduction 
In computing  the spectrum  of  a truncated  data sequence,  it 
is frequently  desirable to multiply the  data by a set of 
weights. This is motivated by the fact that  the  truncation 
itself corresponds to a set of weights all equal to  one within 
the  truncation range and  to zero  outside  it, which is 
equivalent to a convolution of the  untruncated  data 
spectrum with a sin x/x type of spectrum. This,  in turn, can 
lead to a  spectral result with the well-known Gibbs 
oscillations if the original data have  discontinuities or sharp 
variations in their spectrum. A similar phenomenon can also 
occur  in the design of finite impulse response (FIR) digital 
filters. 

A number of spectral windows (i.e., the Fourier  transform 
of the set of weights) have been proposed for use in  both 
spectral analysis and design of FIR filters. One of these, an 
ideal window from an energy concentration viewpoint as 
noted  in [ I ] ,  is the prolate  spheroidal function introduced  in 
[2]. This function is the  one with maximum  concentration 
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of energy in the frequency domain  among all time-limited 
functions. It is appealing to use such  a  window  function 
when high spectral  resolution is desired: The  maximum 
energy concentration within  a  frequency band implies 
minimum total energy spill outside the desired band, hence 
minimum total  interference  from side frequencies. However, 
the prolate  spheroidal  function, besides being difficult to 
compute, is a time-continuous  function  and,  as such,  it 
cannot be used with time-discrete data.  The  time- 
discretization of such  a  function  certainly  implies  a loss in  its 
ideal property. In [ 1 J and [3], the  authors propose an 
approximation  to  the prolate  spheroidal  function,  namely, 
the I ,  - sinh window, also known  as the Kaiser window. 

Here we propose as an alternative  a  discrete-time 
realization having the  same objectives as the prolate 
spheroidal  function. This  approach has already been used 
successfully by the  author in connection with pulse slimming 
in magnetic  recording [4]. It entails  maximizing energy 
concentration directly in terms of the weights, without 
resorting to a discretized version of the continuous problem. 
This has the clear  advantage of achieving the best realizable 
energy concentration for  a  particular vector size at  the 
expense  of not having a  “closed”  solution. The  computation 
of the weights involves the search for the eigenvector 
corresponding to  the  maximum eigenvalue of a  certain N by 
N symmetric  matrix, Ai being the size of the  data segment. 
Programs to compute such eigenvectors, however, are readily 
available. 

It should be mentioned,  moreover, that  other windows 
exhibiting an equal ripple property have been  reported  in the 
literature, for example, in [5, 61. These windows are  superior 
when thejirst sidelobe attenuation is of concern. However, 
they also spread  more overall energy in the sidelobes, and 
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- Actual spectrum 
""" Nyquist window 

N -  I 

H ( f )  A Fw = wke -r2m/kA , 
k=O 

where the  operator F maps E N  into S, the spectral  space  of 
periodic functions with period ]/A. 

Moreover,  since F defines  a unitary  transformation,  there 
also exists an inverse F-l mapping S into EN: 

1 - 

(F-1H(f) lk  = ( F * H ( f ) ) ,  = J: H(f)e'2*FAdJ (2) 
" 

2A 

where F* is the  adjoint of F. 
Select a frequencyf,, the edge of a  frequency band 

[-h,,f,] within which it  is desired to  concentrate  the energy 
of the  spectrum of the weights. Let P be a truncation 
function in S defined by 

Frequency 

J G ( f )  for If1 = f , ,  
( p G ) ( f )  = 

1 0  elsewhere, (3) 

and, for any G ( f )  E S, let the  norm of G, )I G 11, be 
7 1 

- IIGII2 = i' lG(f)12dJ: 
""" 

~ Actual spectrum 
Hamming window " 

2A 
h 

2 0.2- 
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v 

Then, PFw is the  portion of the  spectrum of w within the 
ol m - above  frequency band  and  the desired weights w can be 
I .- - computed by solving the following problem: 
$ 0.1- maxII = 11 PFw subject to )I Fw 1 1 2  = I .  (4) , w 

- 1 
5 Let the scalar or dot  products in E N  and in S, respectively, 

be defined as follows: For u and w in EN, 
0 I 1  1 - 1  I I I 

0 0. I 0.2 0.3 0.4 N -  I 

w, = Ukwk > 

Frequency k=O 

and for H a n d  G in S, 

1 
P- 

ence  and  the  truncated  time ( H ,  G) = J " ~ ( f ) c * ( f ) d f :  
1 
28 

-- 

Note that P* = P = P2; hence, 

11 PFw [ I 2  = (PFw,  PFw) = (w, F*PFw) 

the calculation  of  these windows requires special computer  and 
programs to  implement Remez-like  algorithms. We stress 
the fact that  the energy distribution of the window  proposed l lF~11~  = (w, F*Fw) = (w ,  Iw) = llw1I2 1. 
here  has  a  superior concentration  in  the  main lobe, which 
implies that  the overall side interference is minimal. 

Then, it is well known from  the theory  of symmetric 
matrices that 

The maximum energy concentration window (w, F*PFw) 5 Xl(w1I2 
Let the N data  points  (or "taps") be taken at  the  time 
intervals t = kA, k = 0, I ,  . . . , N - 1, and let the weights be 
the vector w = (w,, w,,  . . . , wN- , )  E EN. The  spectrum of w, 

for some x, the  maximum eigenvalue  of F*PF, with equality 
if and only if 

322 denoted by Fw, is then Xw = F*PFw, ( 5 )  
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that is, w is an eigenvector  of the matrix M = F*PF 
corresponding to its maximum eigenvalue. By taking the  dot 
product of the eigenequation ( 5 )  with w and considering the 
constraint (w,  w) = 1, 

X = 11 PFw [I2. 
Hence, X, the  maximum eigenvalue  of F*PF, corresponds to 
the percentage of the spectral energy confined  in the 
frequency band [-f,, f,]. 

from ( 2 )  that 

(F*G) ,  = J,2A C( f )e'2*fkAdf: 

Let us  now compute  the matrix M = F*PF. First recall 

- 1 

" 

2A 

Hence,  from (1)-(3), assuming f, < 1/2A, 

In turn, this  implies that w is the eigenvector 
corresponding to  the  maximum eigenvalue of the matrix M 
with entries 

A variety of scientific software packages can be employed 
to  obtain  the eigenvector  solution  for  matrix M .  

Results 
In this section, results for the proposed window realization 
are  compared with some for other well-known windows. 
Such comparison is difficult, and  the final choice is 
inevitably dictated by subjective preferences. The first 
comparison here takes into  account  the resolution and  the 
capability of making trade-offs on resolution (i.e.,  first lobe 
bandwidth) versus side  interference (i.e., sidelobes). The 
original spectrum used for this comparison presents two 
peaks close together, as shown  in Figure 1. The  time  domain 
data were truncated so as  to have only 33  points, and  the 
resulting  spectrum was computed.  This corresponds to  the 
Nyquist  window, as shown in Figure 1. Notice the high 
resolution  of  this window and  the characteristic "ringing" in 
the baseline. Figure 2 again shows the  actual spectrum 
compared with the  one  obtained using the 33-point 
Hamming window. The only parameter in the  Hamming 
window is the  number of  points, and, therefore,  this window 
does  not allow trade-offs. The result is a relatively broad 
main lobe, with the first "zero" at a  frequency slightly higher 
than twice the Nyquist frequency. It hardly resolves the two 
peaks contained in the  data. However, the baseline is smooth 
due  to  the sidelobes' high attenuation of about 42 dB. In 
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Spectral  energy  dihtribution  comparison  for  the  discrctc  prolate 
spheroidal window, the Hamming window, and the Kaiser window. 

Figure 3, the  spectrum obtained by the use of the proposed 
window realization is compared with the  actual  spectrum. 
This window allows trade-offs and was computed for 
maximum energy within the Nyquist  bandwidth. Its first 
"zero," however, occurs at a  frequency about 38% higher. 
Notice the resolution of the peaks and  the  smooth baseline. 
The highest sidelobe for  this window occurs at -24.5 dB. 

A second comparison was made  on  the basis of energy 
distribution. The energy concentration of the discrete prolate 
spheroidal window was compared with the energy 
concentration of the  Hamming window, the Kaiser window, 
and  the FIR window as  proposed  in [ 5 ] .  The sample size in 
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these comparisons is N = 33. Due  to  the fact that  the 
sidelobes are over 40  dB below the  attenuation  at zero 
frequency, the energy spills outside the  main lobe are  quite 
small. Figure 4 shows the energy distribution (for each 
frequencyf;  the percentage  of the  total energy below f) for 
the discrete  prolate  spheroidal window, the Kaiser  window, 
and  the  Hamming window;  these windows have the first 
“zero” at  the frequency  0.065, and  the discrete  prolate 
spheroidal  window was computed for a maximum energy 
concentration  at  the frequency  of 0.06. Notice the similarity 
between the results for the proposed ideal window 
realization and  the Kaiser window. Notice also that  the 
residual energy outside the  main lobe is very small. Figure 5 
shows the  comparison of the discrete prolate  spheroidal 
window, the Kaiser  window, and  the FIR  window as 
proposed in [5]. They all have the first “zero” at f = 0.0624. 
The discrete  prolate  spheroidal  window, in this case, was 
computed  to maximize the energy concentration  at 
f = 0.057 

The  third  comparison was in  terms of sidelobe 
attenuation.  This  comparison was made with windows 
having the  main lobe (Le., the first “zero”) as similar  as 
possible to  the  Hamming window  corresponding to 33 data 
points  as above, with the first “zero” at  about f = 0.065. 
Figures 6,  7,8, and 9 show, respectively, the spectra of the 
Hamming,  the Kaiser, the discrete  prolate  spheroidal, and 
the  FIR window of [5]. The discrete  prolate  spheroidal 
window  has  a  sidelobe  rejection  of 44.5 dB as compared with 
41.8 dB for the  Hamming,  42.3  dB for the Kaiser, and 47.1 
for the  FIR. Notice that  the  main lobe of the FIR  window is 
slightly narrower than  the others, giving it an  additional 
advantage in sidelobe rejection. 

Conclusions 
The discrete  prolate  spheroidal window is the on’e that 
maximizes the percentage of its energy within  a !specified 
frequency band.  The  maximization is done directly in  terms 
of the window weights, and hence  it is not a  discrete 
approximation  to  the  continuous version of the window 
problem, like the Kaiser window. The price to pay  for 
having the  optimal energy concentration is the lack of a 
closed solution.  However, the  numerical  computation 
involves a standard eigenvector  problem  for an N by N 
symmetric matrix. For  this study,  such an eigenvector was 
found by iterating the matrix ten times,  starting with an 
initial weight of one  at  the  center  and zero elsewhere. This 
contrasts with the Kaiser  window, which is not  optimal  but 
has  a closed solution and involves the  computation of a 
Bessel function for N + 1 arguments. It was observed that 
the Kaiser  window is indistinguishable from  the discrete 
prolate  spheroidal  when the  main lobe is  near the Nyquist 
bandwidth. However, they differ at  broader bandwidths,  as 
seen in Figures 7 and 8. The  FIR window  reported in  [5] is 
an equal-ripple-type  window and, as  such,  has  a betterjirst 
sidelobe  rejection  instead  of maximum energy concentration 
in  the  main lobe.  Therefore, this window trades off close 
interference  for  resolution and total  interference. The 
Hamming window is by far the simplest one,  and its overall 
performance  should be suitable  for  most  applications. Except 
for the fact that  the  Hamming window does  not allow trade- 
offs to  be  made, all other windows  considered here are  quite 
comparable for  practical  purposes. Figures 1, 2,  and 3 show 
a requirement for  resolution. At narrow  bandwidth,  when 
the energy concentration is important because the sidelobes 
are higher, it was verified that  the Kaiser  window  performs 
as well as  the discrete  prolate  spheroidal. However, all 
windows discussed here are indistinguishable when they have 
a  broader main lobe, similar to  that of the  Hamming 
window. 
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