A maximum-
energy-
concentration
spectral window

by Lineu C. Barbosa

A time-discrete solution method is proposed for
realization of a spectral window which is ideal
from an energy concentration viewpoint. This
window is one that concentrates the maximum
amount of energy in a specified bandwidth and
hence provides optimal spectral resolution.

Introduction

In computing the spectrum of a truncated data sequence, it
is frequently desirable to multiply the data by a set of
weights. This is motivated by the fact that the truncation
itself corresponds to a set of weights all equal to one within
the truncation range and to zero outside it, which is
equivalent to a convolution of the untruncated data
spectrum with a sin x/x type of spectrum. This, in turn, can
lead to a spectral result with the well-known Gibbs
oscillations if the original data have discontinuities or sharp
variations in their spectrum. A similar phenomenon can also
occur in the design of finite impulse response (FIR) digital
filters.

A number of spectral windows (i.e., the Fourier transform
of the set of weights) have been proposed for use in both
spectral analysis and design of FIR filters. One of these, an
ideal window from an energy concentration viewpoint as
noted in [1], is the prolate spheroidal function introduced in
[2]. This function is the one with maximum concentration
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of energy in the frequency domain among all time-limited
functions. It is appealing to use such a window function
when high spectral resolution is desired: The maximum
energy concentration within a frequency band implies
minimum total energy spill outside the desired band, hence
minimum total interference from side frequencies. However,
the prolate spheroidal function, besides being difficult to
compute, is a time-continuous function and, as such, it
cannot be used with time-discrete data. The time-
discretization of such a function certainly implies a loss in its
ideal property. In [1] and [3], the authors propose an
approximation to the prolate spheroidal function, namely,
the 7, — sinh window, also known as the Kaiser window.

Here we propose as an alternative a discrete-time
realization having the same objectives as the prolate
spheroidal function. This approach has already been used
successfully by the author in connection with pulse slimming
in magnetic recording [4]. It entails maximizing energy
concentration directly in terms of the weights, without
resorting to a discretized version of the continuous problem.
This has the clear advantage of achieving the best realizable
energy concentration for a particular vector size at the
expense of not having a “closed” solution. The computation
of the weights involves the search for the eigenvector
corresponding to the maximum eigenvalue of a certain N by
N symmetric matrix, NV being the size of the data segment.
Programs to compute such eigenvectors, however, are readily
available.

It should be mentioned, moreover, that other windows
exhibiting an equal ripple property have been reported in the
literature, for example, in 5, 6]. These windows are superior
when the first sidelobe attenuation is of concern. However,

they also spread more overall energy in the sidelobes, and 321
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the calculation of these windows requires special computer
programs to implement Remez-like algorithms. We stress
the fact that the energy distribution of the window proposed
here has a superior concentration in the main lobe, which
implies that the overall side interference is minimal.

The maximum energy concentration window

Let the N data points (or “taps”) be taken at the time
intervalst = kA, k=0, 1, ..., N — 1, and let the weights be
the vector w = (wy, w,, ---, wy_,) € E" The spectrum of w,
denoted by Fw, is then
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N—-1
H(f) & Fw= Y we ™7, (1)
k=0
where the operator F maps E" into .£, the spectral space of
periodic functions with period 1/A.
Moreover, since F defines a unitary transformation, there
also exists an inverse F~' mapping ./ into EY

1
FHO, = FHO, = 2 H(ETd, @
T2

where F* is the adjoint of F.

Select a frequency f,, the edge of a frequency band
[~f.. /] within which it is desired to concentrate the energy
of the spectrum of the weights. Let P be a truncation
function in .£ defined by

J'G(f) for |/1=/,,
(PGYS) = 1
0

elsewhere, (3)
and, for any G(f) € ., let the norm of G, |G|, be

1

||G||2=f1” \GUNHIdS

2A

Then, PFw is the portion of the spectrum of w within the
above frequency band and the desired weights w can be
computed by solving the following problem:

max| PH|> = | PFw|’ subjectto | Fw|> = 1. )

Let the scalar or dot products in E" and in £, respectively,

be defined as follows: For u and w in EN,
N—1

(u, w) = Z UWWy s
k=0

and for H and G in ./,

RE
2A

(H, G) = H(NHGH)df.

2A
Note that P*= P = PZ; hence,
| PFw|* = (PFw, PFw) = (w, F*PFw)
and
|Fw|® = (w, F*Fw) = (w, Iw) = |w|® 2 1.

Then, it is well known from the theory of symmetric
matrices that

(w, F*PFw) < \|w|’

for some \, the maximum eigenvalue of F*PF, with equality
if and only if

A\w = F*PFw, (5)
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that is, w is an eigenvector of the matrix M = F*PF
corresponding to its maximum eigenvalue. By taking the dot
product of the eigenequation (5) with w and considering the
constraint (w, w) = |,

A = || PFw|’.

Hence, A, the maximum eigenvalue of F*PF, corresponds to
the percentage of the spectral energy confined in the
frequency band [—f,, £, ].
Let us now compute the matrix M = F*PF. First recall
from (2) that
1

2 )
(F*G), = f1 G(f)e* " df.

2A

Hence, from (1)-(3), assuming f, < 1/24,
S

(F*PFW)A = f 2 w/e—iwaA(/_k)df
- !

=2 T w sin 2xf, A/ — k)

LW A =T - (MW

In turn, this implies that w is the eigenvector
corresponding to the maximum eigenvalue of the matrix M
with entries

sin 27f, A4 — k)

M= 2 S A= R

A variety of scientific software packages can be employed
to obtain the eigenvector solution for matrix M.

Results

In this section, results for the proposed window realization
are compared with some for other well-known windows.
Such comparison is difficult, and the final choice is
inevitably dictated by subjective preferences. The first
comparison here takes into account the resolution and the
capability of making trade-offs on resolution (i.e., first lobe
bandwidth) versus side interference (i.e., sidelobes). The
original spectrum used for this comparison presents two
peaks close together, as shown in Figure 1. The time domain
data were truncated so as to have only 33 points, and the
resulting spectrum was computed. This corresponds to the
Nyquist window, as shown in Figure 1. Notice the high
resolution of this window and the characteristic “ringing” in
the baseline. Figure 2 again shows the actual spectrum
compared with the one obtained using the 33-point
Hamming window. The only parameter in the Hamming
window is the number of points, and, therefore, this window
does not allow trade-offs. The result is a relatively broad
main lobe, with the first “zero™ at a frequency slightly higher
than twice the Nyquist frequency. It hardly resolves the two
peaks contained in the data. However, the baseline is smooth
due to the sidelobes’ high attenuation of about 42 dB. In
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Figure 3, the spectrum obtained by the use of the proposed
window realization is compared with the actual spectrum.
This window allows trade-offs and was computed for
maximum energy within the Nyquist bandwidth. Its first
“zero,” however, occurs at a frequency about 38% higher.
Notice the resolution of the peaks and the smooth baseline.
The highest sidelobe for this window occurs at —24.5 dB.

A second comparison was made on the basis of energy
distribution. The energy concentration of the discrete prolate
spheroidal window was compared with the energy
concentration of the Hamming window, the Kaiser window,
and the FIR window as proposed in [5]. The sample size in
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these comparisons is N = 33. Due to the fact that the
sidelobes are over 40 dB below the attenuation at zero
frequency, the energy spills outside the main lobe are quite
small. Figure 4 shows the energy distribution (for each
frequency f, the percentage of the total energy below /') for
the discrete prolate spheroidal window, the Kaiser window,
and the Hamming window; these windows have the first
“zero” at the frequency 0.065, and the discrete prolate
spheroidal window was computed for 2 maximum energy
concentration at the frequency of 0.06. Notice the similarity
between the results for the proposed ideal window
realization and the Kaiser window. Notice also that the
residual energy outside the main lobe is very small. Figure 5
shows the comparison of the discrete prolate spheroidal
window, the Kaiser window, and the FIR window as
proposed in [5]. They all have the first “zero” at f'= 0.0624.
The discrete prolate spheroidal window, in this case, was
computed to maximize the energy concentration at
f=0.057.

The third comparison was in terms of sidelobe
attenuation. This comparison was made with windows
having the main lobe (i.e., the first “zero”) as similar as
possible to the Hamming window corresponding to 33 data
points as above, with the first “zero” at about /= 0.063.
Figures 6, 7, 8, and 9 show, respectively, the spectra of the
Hamming, the Kaiser, the discrete prolate spheroidal, and
the FIR window of [5]. The discrete prolate spheroidal
window has a sidelobe rejection of 44.5 dB as compared with
41.8 dB for the Hamming, 42.3 dB for the Kaiser, and 47.1
for the FIR. Notice that the main lobe of the FIR window is
slightly narrower than the others, giving it an additional
advantage in sidelobe rejection.
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Conclusions _

The discrete prolate spheroidal window is the one that
maximizes the percentage of its energy within a specified
frequency band. The maximization is done directly in terms
of the window weights, and hence it is not a discrete
approximation to the continuous version of the window
problem, like the Kaiser window. The price to pay for
having the optimal energy concentration is the lack of a
closed solution. However, the numerical computation
involves a standard eigenvector problem for an N by N
symmetric matrix. For this study, such an eigenvector was
found by iterating the matrix ten times, starting with an
initial weight of one at the center and zero elsewhere. This
contrasts with the Kaiser window, which is not optimal but
has a closed solution and involves the computation of a
Bessel function for N + 1 arguments. It was observed that
the Kaiser window is indistinguishable from the discrete
prolate spheroidal when the main lobe is near the Nyquist
bandwidth. However, they differ at broader bandwidths, as
seen in Figures 7 and 8. The FIR window reported in [5] is
an equal-ripple-type window and, as such, has a better first
sidelobe rejection instead of maximum energy concentration
in the main lobe. Therefore, this window trades off close
interference for resolution and total interference. The
Hamming window is by far the simplest one, and its overall
performance should be suitable for most applications. Except
for the fact that the Hamming window does not allow trade-
offs to be made, all other windows considered here are quite
comparable for practical purposes. Figures 1, 2, and 3 show
a requirement for resolution. At narrow bandwidth, when
the energy concentration is important because the sidelobes
are hfgher, it was verified that the Kaiser window performs
as well as the discrete prolate spheroidal. However, all
windows discussed here are indistinguishable when they have
a broader main lobe, similar to that of the Hamming
window,
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