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Pulse  (dibit)  and  step  (transition)  responses  for 
magnetic-storage  channels  are  important  for 
detection-circuitry  design  and for  comparison  of 
various  media,  heads,  and  other  channel 
components.  This  paper  presents a least- 
squares  procedure  that  can  be  used  to  identify 
the  dibit  and  transition  responses  from 
measurements of  the read-head  response to  any 
known data  sequence  written on  the  medium. 
The  method  yields  significantly  higher-quality 
estimates  for  the  dibit  and  step  shapes  than 
does  determining  these  same  characteristics by 
measuring  the  average  response  to  isolated 
transition  or  by  performing a  Discrete  Fourier 
Transform  (DFT)  on  the  response  to a 
pseudorandom  data  pattern.  The  new  method 
can be implemented off line  but  also  can  be 
made sufficiently  efficient  to be implemented 
with a microprocessor  for use in  self-optimizing 
(adaptive)  channel  detection circuitry. 

1. Introduction 
Storage-channel  identification is the  measurement  and/or 
computation of the characteristics  of the read-back channel 
in a data storage device, such  as  a  magnetic disk, magnetic 
tape, or optical  disk. The identified characteristics are most 
often the channel’s  response to a step input  (the  “transition” 
response) or to a pulse (the “dibit” response). These 
characteristics are  important  for  many purposes, such  as the 
design of the detection  circuitry (especially for  equalizers and 
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for  maximum-likelihood  detectors),  for determining  the 
maximum  data density  of the device, and for comparing 
various  media, heads, and  other  channel  components. 

This  paper presents  a  least-squares procedure for 
identification  of the linear  time-invariant filter that most 
closely approximates  the desired step or pulse responses. The 
storage device is excited with a known  data sequence, and, 
later, the read-head  response to  the  known sequence is 
measured (or digitized) at regular intervals. The resulting 
measurements  are  then processed via the least-squares 
procedure to  determine  the step and/or pulse responses. 

The resultant  estimates  of  these responses are of 
significantly higher resolution (higher quality) than those 
produced by previous  procedures,  such as measuring the 
average response to isolated transitions (or isolated dibits) or 
computing  the Discrete Fourier  Transform (DFT) of the 
response to  some known  (usually pseudorandom)  data 
pattern.  Furthermore,  the new method,  although based on a 
linear  model  of the  channel  as presented  here, can indicate 
the average accuracy of the linear  model  over any  data 
pattern, thus indicating the presence of potential 
nonlinearities  in the responses, unlike the  aforementioned 
methods. The degree of agreement between the linear  model 
and  measurements  can be useful in  determining  the  data 
rates at which various data detection methods do  and  do  not 
apply. 

Section 2 defines in more detail the  quantities used in 
channel identification and  the least-squares procedure, and it 
compares  the quality of estimates of the new and previous 
procedures.  Section 3 studies some details  of the solution 
and displays the results of the new procedure  for several 
measurements taken from actual storage devices, including 
magnetic  disks with thin-film heads, tape systems with 
magnetoresistive heads, and optical disks. Section 4 is a brief 
conclusion.  Appendix  A extends  the  channel identification 
procedure to apply at  any digitizer sampling rate  (an integer 
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ratio of the  sampling  to  data rates is assumed  in the  main 
body  of the paper).  Appendix B discusses streamlining  of the 
least-squares procedure for possible use with  adaptive 
detection methods, while Appendix C discusses the detection 
of nonlinearities. 

Noise 
u(t) 

xk 
Data 
sequence Pulse  response  Signal 

2. Storage-channel  identification  methods 
This section  mathematically defines and analyzes the 
quantities  and procedures used in  storage-channel 
identification. Figures l(a) and l(b) summarize  the 
definitions used throughout  this section. 

Variable  definitions 
The read-back channel  and associated identification 
parameters are illustrated in Figures 1 (a) and 1 (b). The 
continuous read-head output signal, d( t ) ,  can be modeled in 

sk - h,(t) 
Three-level 
data sequence  Step  response  signal 

one of  two ways [ I ] :  

d ( t )  = 2 Xkh(f  - kT)  + u(t) ,  
k 

d ( t )  = 2 skh,(t - kT)  + ~ ( t ) ,  
k 

where h( t )  and h,( t )  are  the  unknown linear  time-invariant 
pulse and  step responses, respectively, and u( t )  denotes  an 
uncorrelated,  additive,  zero-mean noise,t x, takes on  the 
values + I  (or +1 and 0 for some optical storage systems), 
corresponding to 1’s and O’s, respectively, in  the stored data 
sequence at  time kT, 1/T is the  data rate, and k is an integer. 
In  Equation  (lb), sk can  take  on  the values +2 or 0 (+ l  or 0 
for optical)  according to  the relation 

Sk = x, - X k - ,  . (2) 

Likewise, one  determines for a linear channel 

h ( t )  = h,,(t) - h,(t - T). (3) 

It is a  property  of the  method presented that  the estimates 
also obey Equation (3); however, it  is  sometimes  informative 
to separately identify h( t )  and h,( t ) ,  rather  than identify only 
one  and  compute  the  other from it. It is assumed that d( t )  is 
digitized at  some  rate Td, such that 

T Td 0 - 
P ’  

where p is an integer ( 2  1)  oversampling  factor. This 
restriction is relaxed to a  rational  fraction  in  Appendix A. 
The sampled  read-head output is then, with t = mTd in ( l ) ,  

d(mTd) = xkh(mTd - k T )  + u(mTd) 
k 

= xkh[(m - kP)Td] + u(mTd) ( 5 4  
k 

t Even though the assumption that the noise is addltive may not be completely true in 
practice,  our objective is lo find  the values for the parameters in such a model that 
most closely approximate the measured responses, and deviations from such a model 
appear  in the final results of the method in this paper. 

Summary of storage quantity definitions (a) for pulse responses and 
(b) for step responses. 

or t 

d(mTd) = skhs(mTd - kT)  + u(mTd) 
k 

= Skh,[(m - kP)TdI + u(mTd). (5b) 
k 

The  channel is estimated by 

&mTd) P xkw(mTd - kT),  (6)  

where w( t )  is a  linear filter response whose sampled values at 
times mTd are  to  be  computed via the  channel identification 
procedure [ideally w( 1 )  = h( t )] .  Likewise, for  the step 
response, the  estimate is 

d5(mTd)  skws(mTd - kpTd). (7) 

We also define an  error signal 

t(mTd) P d(mTd) - i$mTd). (8) 

As an example, note  that, if x, or sk is a  sequence 
corresponding to  an isolated pulse or transition input, (5a) 
and (5b)  reduce to 

d( mTd) = h( mTd) + u(mTd) ( 9 4  

k 

k 

respectively, the desired pulse shapes  in noise. Then, w(mT,) 

$The reader  may note that (Sa) and (5b) are equlvalent to P subchannels. each  at 
spacing r; this observation is exploited to reduce computation in the new procedure 
in Section 3. 
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and w,( mT,) can be estimated by the averages 

w(mT,) = - d(mT,;k), 
I ”  

( 104 
k = l  

where the index k denotes the  kth experiment. That is, one 
measures the response n times and averages,  which  is the 
basis  for the aforementioned isolated step and dibit 
identification methods. Some deficiencies  of the estimates 
identified via such isolated step or pulse methods are 
discussed later. Equations (9) and (10) were  given only to 
verify the utility of the definitions in (I)-@). We  now 
proceed  with a discussion of the least-squares channel- 
identification procedure. 

The application of least squares 
In the least-squares identification procedure, a known data 
pattern is written on the storage  device. The w( mT,) are 
chosen to minimize 

where E( m T,) is given in (8). If  we denote WM,/  by the M X 1 
column vector 

W/(O) 

wM,/ ’ [ ’ 1 3  (12) 
w/[(M - l)Tdl 

then the solution to ( I  1) is conveniently written [2] 

wM./ = ( m= i 1 XM,mxL,m)” ( i XM,md(mTd))3 (13) 
W I = I  

where ’ denotes transpose, and 

x,, P [ ? ] 
xm-M+I 

for p = 1. There are p - I zeros  between entries in (14) if 
p > 1. We have further assumed that M is  large enough to 
span the nonzero extent of the pulse (step) response in 
intervals of sampling periods or MT, = N T  data periods 
containing p samples each, M = Np. Equation ( 1  3) can be 
rewritten 

A similar expression holds for the step response,  with x’s 
replaced by s’s and w’s replaced by ws’s in the solution. Note 312 
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that M X M matrix inversion is  explicit in ( 1  3); however, 
because  of the special structure in this problem, no matrix 
need  ever  be inverted directly. For more details, see Section 
3 and especially [2].  

A performance  measure 
The mean of WM,/ can be  easily determined as 

= H M  = (17) 

the desired solution, when the above least-squares method is 
used. The Norm Tap Deviation is a mean-square measure of 
statistically  how far the estimated WM,/ is from H , ,  and is 
also  easily computed, if u( t )  is white (spectrally flat over the 
frequency range  of interest), as 

where 

u: A E[u(KT,Y]. (19) 

We show  in the next few sections that both the isolated 
transition (or dibit) and  DFT methods are special cases of 
the general least-squares method with  very  special 
restrictions on the input sequence and  on M and 1. Thus, we 
are able to use (1 8) as a performance indicator for those 
methods as  well. 

Isolated transition example and  analysis of resolution 
As an example, once again consider an isolated dibit; then 
XM,,, has only one nonnegative entry per column and (1 3 )  
reduces to (using generalized  inverses,  see [3]) 

wM,/ = ET:]’ (204 

A string of n “isolated” (far enough apart) dibits occumng 
within a large data record (length I )  has a least-squares 
solution, 

that is  exactly the same as the isolated  pulse solution in 
(loa). The least-squares identification procedure is more 
general  in that the input need not be an isolated transition or 
dibit. 

Equation (1 8) allows us to compare the quality of the 
least-squares estimates of HM,/ ( WM,J for different input 
sequences. Note that, for a string of n isolated (MT, apart, 
so 1 = M n )  inputs, one determines for  white zero-mean u 

IBM J. RES. DEVELOP.  VOL. 30 NO. 3 MAY 1986 



Pseudorandom sequences are generally desirable [4, 51 for 
channel  inputs because of their  broadband spectral response. 
An identity for R , ,  can easily be  determined, if I = length of 
the  pseudorandom sequence,$ as (see [6-81) 

1 
RM,/  = - [ ( I  + - l&f1L1> I (224  

where 1, is an M X I vector of M ones. One  can also easily 
show that 

Thus, (18) becomes, for a pseudorandom sequence of length 
M repeated n times, 

For n = I ,  there is an  improvement of ( M  + 1)/2 with 
respect to (21). As n increases to a large value, there is an 
improvement by a factor of M in  estimate quality, or 
equivalently, M more digitized outputs  from isolated dibits 
must be processed in the isolated dibit  identification  schemes 
to get the  same resolution  estimates as those  produced by 
least squares with a pseudorandom length” input. For 
oversampling ( p  > I) ,  the  comparison favors the 
pseudorandom  input by the  same  amount. Heuristically, 
when using pseudorandom or “scrambled” data  in  channel 
identification, the  input is more spectrally “rich” and all 
frequencies are  more equally weighted than when a single 
pulse is used. The resulting flat nature of the spectrum 
results in the inverse  autocorrelation  matrix being close to  an 
identity which makes OM., in (18) smaller (better). When x, 
has a flat spectrum, sk does not have a flat spectrum,  but a 
similar slightly more complex argument  can be given to 
justify the least-squares improvements. 

for the isolated input  method. However, there is another 
very practical  advantage  of using more  random  data, as was 
first noted by C. M. Melas [9]. This is that  in  the isolated 
transition or isolated dibit methods,  the  AGC  (Automatic 
Gain  Control)  must be removed from  the  channel  to prevent 
the  sudden  change in energy associated with the isolated 
input from  suddenly varying the gain parameter of the AGC. 
Then,  the identified pulse characteristics will not include the 
effect of the AGC. This effect can  commonly be more  than a 
simple gain factor and is determined by the bandwidth and 
tracking  rate  of the AGC. 

In practice, it may  not be difficult to average the extra data 

Comparison with frequency-domain  methods 
Another  more recent method used in storage-channel 
identification is [4, 5, IO] to  compute  the DFT of the 

g Even  when the output is oversampled, we show later  that the only autocorrelatlon 
matnx of interest is at the data rate; thus all of the analysis here  is also valid for p > I 
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response to  some prescribed pattern written on  the media. In 
order  to invert the D I T  to get a time-domain estimate of the 
pulse response, one  must first divide the measured D I T  by 
the D I T ,  including phase, of the  input before the inverse 
DFT, which [ IO]  also observes. Using this last restriction, 
one  can also generalize the  methods of [4, 5, 101 to estimate 
the  channel response for any  inputs, including the  *2,0 
normally associated with identification  of the step 
(transition) response. 

frequency-domain method is the  same  as  the  time-domain 
least-squares method of this  paper if M = I ,  and as we shall 
see, the case M = I gives very poor  estimate quality. In  the 
case that u( m T,) is white and  Gaussian,  the least-squares 
method (see [ 1 I ] )  achieves the famed Cramer-Rao  bound for 
a fixed I and M; that is, no  other  estimator has higher 
resolution for the given data. If the  assumption  on u( t )  is 
just white (not also necessarily Gaussian), then  the least- 
squares estimator is a Best Linear Unbiased  Estimator 
(BLUE) [ 31. 

Theoretically, the difference between the  DFT  technique 
and  the  time-domain least-squares method  can be quantified 
via the following analysis. It is usually wise to pick M < I so 
as to  introduce  more noise averaging, or equivalently, to 
make  the  Cramer-Rao  bound lower for fewer parameters. 
Generally  speaking,  in any estimation  scheme, we desire 
I > M to get good  quality  estimates. Nevertheless, picking M 
too small can  introduce  extraneous  harmonic distortion in 
the estimated  step response. The  time-domain least-squares 
method  can be rewritten  as that WM./ that minimizes [2] 

Nevertheless, with the division by input spectra, the 

where 

and 

where p - 1 zeros can be inserted between nonzero entries  in 
?/.k and 

.u,/.k = [-x/& X L k - l >  . . . )  X/.k”+II.  (26b) 

The  DIT-based  method is a special case of a linear M X I 
transformation  on e,./, that is, let 

E M , /  = @!,./ (27) 

where @ is an M X I (possibly complex)  matrix  representing 
the linear transformation.  Then 

where * denotes conjugate  transpose. If @ is a unitary 
transformation (@*@ = I ) ,  then 313 
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11 EM,/ [ I 2  = llcM,/ 1 1 2 >  ( 2 9 )  

and  the  minimized e , ,  is obtained by 

CM,/ = @*EM,/ ’ (30) 

In the DFT methods of [4, 51, the matrix @ is chosen, under 
the very special assumptions  that M = 1 and the input is 
periodic (pseudorandom) of length 1 = M, as 

314 

where 

.27r 
IT 

w , = 1 -  i = O ,  ..., M -  1. 

@M can easily be shown to  be unitary [ 121, so the relation in 
(29) holds, apparently yielding the  time-domain least-squares 
solution. 6% is the inverse DFT in this case. However, in  the 
time-domain  method of this paper, M is much less than 
1 to average the effects of noise and  other nonideal effects. 

(32) 

Using our performance  measure  in ( 18) and (23) ( n  = I ,  
1 = M )  again, one  determines  the estimate  quality  as 

while the general formula for a pseudorandom sequence of 
length 1 with M parameters is 

2 M + M I - M 2  2 

OM./=  ( 1  + 1)(1 - M + 1) CJu . (34) 

Substitution  of 1 = IOM, a good  practical  rule of thumb,  into 
(34) yields the advantage 

0/./ 21(0.91 + 1) - (0.91 + I )  -= 
0 *,,/ 0.0912 + 0.21 - 2o (0.91 + 2 )  ’ 

Even for 1 I 1000, another reasonable number,  the 
improvement in (35) is close to its  limiting value of 20. This 
large improvement is typically evident  when comparing  the 
spectra of a pulse produced by the time-domain least squares 
and by the DFT method,  as we have  illustrated  in Figures 
2(a) and 2(b). Note  from the level of “frequency  ripple”  in 
the DIT  plot that  the  time-domain least squares is at least 
an  order of magnitude  improvement. Also note  the lower 
“noise level” at higher  frequencies with the least-squares 
identification  procedure. It is also important  to  note  that 
I = M = 2‘ - 1 ( i  a positive integer)  for a pseudorandom 
input, which, at least, requires special attention for efficient 
D F I  implementation [ 12- 141. The reason  for the two 
different lengths ( M ’ s )  in Figures 3(a) and 3(b) is discussed 
later. 

A n  averaged DFT identification scheme 
Here, we propose an averaged DFT method for the special 
case that 1 = nM, where n is an integer  greater than 1, and 
the  input  sequence is periodic with period M. [The case of 
oversampling ( p  > 1) is identical for each  of the subchannels 
(see Section 3).] There is a very special set of  circumstances 
when the inverted  matrix  in (1 3) is Toeplitz and DITS can 
be used. Generally, (1 3) is not Toeplitz and  DFTs  are  not 
appropriate. This  method is equivalent to least squares,  as 
can be seen from  the following. Define 4, by 

Multiplication by @ is equivalent to n M-point  DFTs 
performed on  the n groups of M inputs. Note  that $/ is 
unitary, 

= I .  

The least-squares estimates  in the frequency domain  are 
given for  each  frequency bin by 

(37) 
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, = I  

k = 0, ..., M -  1, (38) 

where U( k )  and x(  k )  are  the  M-point  DFTs of W,,/ and 
X,,,, respectively. 6( k, i )  is the  M-point  DFT of the  time 
series dk in the  ith of the n groups. Equation (38) is really the 
average of n uses of the original DFT  method, when  a 
period-M  input is recycled to fill I time periods. Then,  some 
averaging will be introduced, in the  optimal least-squares 
sense, into  the  DFT identification  scheme. The  method of 
(36 )  and  (38), because of (37 ,  is equivalent to  an /-point 
least-squares time-domain procedure.  Of  course, an inverse 
DFT  on  the  quantities in  (38) must be performed to  obtain 
the desired time-domain parameters, W,,/. This  method 
requires the unnecessary imposition of an integer  ratio 
restriction on I and m, which is not required  in the  more 
general and straightforward time-domain least-squares 
solution ( 13). 

A note on maximum-likelihood detection schemes 
The identified responses can be used in  Maximum- 
Likelihood  Sequence  Detection  (MLSD) [ 15, 161. In this 
case, the  Mean  Square  Error (MSE) is  a more useful estimate 
of performance than ( 18). It is shown  in [ 171 that (given a 
certain input sequence) 

MS.E = E [ ~ ~ ( ~ T , ) I  = u~Y,,/ , (39) 

7M. l  = 1 - G , / ~ ; , / 4 4 /  (40) 

where yw,, is given by 

and ‘ denotes transpose. One also can show (see [ 171) that 

0 5 Y,W./ 5 1; (41) 

thus, the worst (because the desired value is 0: )  MSE after M 
measurements is 

MSEwOrs, = 0, (42) 

which is exactly the value given by a length” 
pseudorandom sequence. In fact, it is shown in [8] that 
choices  for x,  other  than length” pseudorandom sequences 
can yield MSE between 0 and 0: after M data points, while 
still maintaining good (low) E [  1) W,,/ - H,,/ll*]. Thus  the 
l e n g t h 4  pseudorandom  sequence  may not be the best 
training sequence if MLSD is used. Some  data with statistics 
equivalent to what is expected in actual use would be the 
best choice  for MLSD  and  other similar  sampling  detection 
schemes. 

Signal-to-noise ratio estimation 
The  SNR for the read-head  response can be estimated (when 
M << I )  by 

where 11 W,,/ 1I2/p is the signal power for the binary input  to 
the pulse response, and [,,//I - N is the noise power. 
However, one  must  ensure  that  data measured at  the read- 
head output have NOT BEEN AVERAGED before 
digitizing to  ensure a  meaningful  estimate  in (43). Also, as 
Howell [4] has  noted, that distortion  in the measuring 
devices, particularly the nonlinearities in  the  CRT sweep rate 
if a storage scope is used, can  add appreciable noise not 
inherent in the  actual storage channel. Of  course,  such 
contamination would leave (37) as a  measure  of the  mean- 
square distortion  in the measuring  procedure, rather  than 
the desired channel noise + media noise + modeling mean- 
square  errors. Even if measurements  are carefully taken, (43) 
is usually more indicative of the levels of nonlinear 
mismatch to  the model and  can therefore be very useful in 
evaluating the potential success or failure of  advanced 
detection schemes. 

Determination of M 
We have previously assumed that  the  order M (number of 
identified parameters) was overestimated or known a  priori. 
However, the best quality estimate for 1 data points is given 
by the so-called “Minimum Description  Length”  principle of 
[ 181, which jointly estimates M and  the corresponding W,,) 
for /-points. The  improvement  in  the general storage-channel 
identification  problem is negligible if I 2 IOM. It is 
interesting to  understand  just what happens if M is chosen 
too small.  Suppose h( kT,) # 0 for k < 0, k > M. Then 
u(kT,) can be modeled as  the  sum of  white noise and  the 
distortion caused by the neglected terms in h. This second 
distortion term is just a  linear filter acting on  the 
pseudorandom pattern.  When  oversampled, the  output of 
such  a filter is the  product of its transfer function  and  the 
transform of the oversampled pseudorandom pattern. The 
response of the oversampled pseudorandom  pattern  can 
easily be shown to be maximum  at multiples of 1/T, thus 
explaining why choosing M larger in Figure 2(b) than in 
Figure 2(a) caused the  “harmonics”  to disappear.  Of  course, 
picking M too large as  in the  DFT  methods has  a far more 
distorting effect on  the  output because of the lack of noise 
averaging. Generally speaking, conservative values for M and 
I are 15 bit periods and I = IOM, respectively. 

Summary 
In this  section, we have  introduced the least-squares channel- 
identification  procedure, compared its  performance with 
other  commonly used procedures, and  found  the least- 
squares method superior in  the quality of estimates that it 
produces. We now turn  to implementation/programming of 
this new procedure. 
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(a) n = L (T), 
(44) 

1000 

where 1 denotes  the “greatest integer less than,”  and i takes 
the values 0, . . . , p - I .  Equation (5a)  is  rewritten [(5b) can 

0 be similarly rewritten] 
d(nT + iT,) = x,h[(n - k)T + iTd] + u(nT + iT,). (45) 

The index i has no effect upon  the  convolution operation, 
k 

- io00 and  the p phases of d( mT,) per  sample  period, T = pT,, are 

- described by 
- 5 - Id, = x;h,-, - ‘u, i = 0, . . . , P -  1, (46) 
2 l X I O S  

k 

(b) where the ‘h, are i independent “subchannels.” With  minor 
algebra, one  can reduce the least-squares identification 

separately. The p solutions  can be interspersed to  obtain 
WM,/ = WNP,/, where N = M / p  (we assume  that p divides M 
or that M is picked slightly larger so that  it does). Then,  only 
one N X N matrix need be inverted  (it  is the  same for all 
subchannels), rather  than  one M X M matrix, a  considerable 
computational  and storage saving. This matrix is the 
autocorrelation  matrix of the  input  data alluded to  in  an 

available. 

5 X lo4 procedure to p subprocedures  that  can all be solved 

0 

-S X lo4 

- I  x IOS 

0 200 400 600 earlier footnote ($). However, much greater savings are also 

‘l‘irne ( n h )  

Use of fast algorithms 
The most efficient solution to  the Zeneral least-squares 

Pulse responses at 27 Mbih Ibr (a) thin-film  mediurn  and  thin-film identification  problem appears in [2]. The Dm cannot be 
head  and  (b)  particulate  medium and thin-film head. used in the general least-squares filtering problem because a 

Toeplitz structure  must be imposed on ( 13) for  its use. This 
solution  requires about 

3. Efficient  implementation  of  the  off-line  least- 
squares  identification  procedure 
The  time-domain least-squares solution is described using a 
matrix  inverse in ( I  3). This matrix can be large, requiring 
large storage and long processing time in an off-line 
computer program implementing  the inversion.  However, 
matrix  inversion can be avoided to simplify the 
determination of WM,/. This section describes several special 
features of the least-squares procedure that  can be used to 
reduce  considerably the  computation  and storage in an off- 
line  implementation.  Such simplifications  could also become 
important if the characteristics  of  each  particular storage 
device, and possibly at several different radii on each, were 
to be computed  during  the  manufacturing process either for 
identifying defective devices or for optimization of the 
channel-detection  circuitry  for  each  particular  unit. An 
efficient on-line  procedure,  similar to  that of [8], is suggested 
in Appendix B. 

?+) IN + 4.5N2 + pN2  (47) 

multiplications, divisions, and  additions  in  comparison  to 
O ( N 3 )  for  straightforward  matrix  inversion. [O(x) is a 
number  that asymptotically rises no faster than  in direct 
proportion  to x.] The  term ( l N / p )  + 4.5 N2 is the fixed cost 
of the  equivalent of  inverting the  matrix R , ,  (fixed because 
it is the  same for  each  subchannel); the  remaining  term 
pN2 + IN is the  additional cost, at N 2  + INJp per subchannel, 
for computing  the equivalent of the  product R,$p ‘P,,llp = 

’ W,,llp for each of the p subchannels. The storage 
requirements  are  about 6 N  + 21 locations  for the algorithm 
in  [2]. The cost reductions accrue  to  the shifted nature of 
X,,k with respect to X,,k-l, or equivalently, that R,./lp can be 
rewritten as a product of  Toeplitz  matrices, 

R,,, = ~ ~ , / l P , l ~ , l l P , l  (48) 

where X,,,, is defined in (26b). For more details, see [2]. 

Subchannels Choice of the input sequence 
In most cases of practical  interest, the oversampling  factor p Further  computational  and storage reductions are possible if 
is greater than one. Then,  one writes mT, = nT + iT,, where the length-1 sequence is chosen  beforehand  for all storage 316 
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channels  to be identified. A currently popular choice is a 63- 
bit pseudorandom sequence. When  the  input  data sequence 
is known beforehand, many of the  quantities in the Fast 
(BFTF)  algorithm  of [2]  can be precomputed  and stored 
once, reducing computation  to 

pN2 + IN (49) 

multiplications and  additions  (no divides) and storage 
(random access) to  about 

2 N +  I (50) 

locations.  Neither  these counts  nor  the  counts  in (47) and 
(49) can be matched by the DIT or other  methods of 
comparable  estimate quality  for  reasonable N (20 or less). 
Asymptotically, because of the N log, N computation in FFT 
implementations of the DFT, these FFT methods may have 
an advantage in  terms of computational requirements, but N 
is never  chosen that large in practice. 

Experimental results 
To demonstrate  the robustness of the new least-squares 
identification method, several channel pulse shapes are 

I- Optical pulse at 1 Mb/s (dc removed) 

Time (ps) 

Optical pulse spectrum (dc removed) (b) 

I- Y 
0 0  

0  2  4  6  8 

Frequency (MHz) 

(b) Fourier transform of pulse  response. 

plotted in Figures 3(a) and 3(b), while the corresponding 
steps are plotted in Figures 4(a) and 4(b). These responses 
were obtained using the new procedure  for  a  63-bit 
pseudorandom sequence on digitized measurements of a 
thin-film disk/thin-film head  channel  [Figures 3(a) and 4(a)], 
and  on a  particulate disk/thin-film head channel [Figures 
3(b) and 4(b)]. The  measurements were taken at several 
different diameters  on each device. The  diameters for Figures 
3(a) and 4(a) were 105, 120, 135, 150, and 165 mm, while 
those for 3(b) and 4(b) were 103, 136, and 172 mm. Figures 
5(a) and 5(b) show the pulse response and its spectrum, 
respectively, for an optical storage device. In Figures 6(a) 
and 6(b), we have  plotted pulse and step responses for a 
magnetoresistive head in  a  magnetic-tape  system;  this time a 
62-bit pattern corresponding to NRZI coding  of  two cycles 
of a 31-bit pseudorandom  data  pattern was used [IO]. In 
Figure 7, the delay for the magnetoresistive head is plotted 
to illustrate the ability of the new least-squares identification 317 
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(a) Appendix A: Arbitrary  sampling rates 
In this appendix,  the sampling  interval Td is permitted to 
take the values 

T, = - T, 4 
P 

uo:"---,/ j r ,  

where q and p are relatively prime positive integers such that 
q < p .  Any arbitrary  ratio  of  sampling to  data rates can be as 
closely approximated as  desired by the relation  in (A l),  as 
long  as it is known, which implies some synchronization 
between digitizer and write clock. We also define  a  smaller 
time interval 7 by 

-0.1 
- 
5 - 

0.05 - 
- The samples at rate Td can be organized into successive 

0 -  
disjoint sets of p members  and of duration pTd = ~ 4 7 .  Then 
any sampling instant mTd can be rewritten  as 

-0.05 - mT, = np47 + iq7 = (np  + i)T,  

I I I I I 
0 40 80 I20 I60 

i = 0, . . ., p - 1. (A4) 

The equivalent  of (37) becomes 
Time iterations 

(a) Pulse response and (b) step response of magnetoresistive head 

procedure to  capture  that  quantity as well. The  dc level was 
removed  from the desired signal for the optical  device to 
facilitate inspection  of the plots; the  true optical  channel is a 
baseband channel.  The plots in Figures 3,  4, and 5 
demonstrate  the robust utility of the least-squares procedure. 

4. Conclusions 
In  this paper, we have  introduced  a new least-squares 
storage-channel  identification  procedure. We have  analyzed 
the procedure  thoroughly and  demonstrated via experiment 
its utility and its improvements over existing methods. 
Several methods for  reducing the  implementational cost of 
the procedure were also discussed. The procedure can 
become  a uniform  standard for  identifying and  comparing 
the  channel characteristics  of  various storage media. 

~ 

Note that, if p and q are relatively prime,  as was assumed 
earlier, then h will  be specified at intervals of 7 in (A5), or 
equivalently at all time  instants  that  are integer multiples of 
7. At sample i within  each group of p samples, only the 
values h( kp7 + i q ~ ) ,  where k is any integer, contribute  to 

500 r 
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d( npqT + i q T ) .  Thus, d hasp phases per group of p samples 
that  can be independently modeled  as 

where, again, 

and 

for i = 0, . . . , p - I .  Each of the subchannels  can be 
identified independently and  the resultant responses overlaid 
(with  delays  of T with respect to  one  another).  The overall 
response can  then be used directly or decimated to p~ (the 
data rate), q7 (the sampling rate), or any  other integer  divisor 
of the rate 1 / ~ .  An important  point  to  note is that  there is a 
loss in resolution  of  a  factor  of  approximately q for any fixed 
data length I with respect to  the case where Td = T/p. This 
last fact makes the alternative of resampling the  data or 
phase-locking the  ADC used to  acquire  the  data (set q = I )  
very attractive from a  performance viewpoint. 

Appendix B: On-line  efficiency 
It is possible to  implement  the least-squares storage-channel 
identification method in  a  sample-recursive manner.  The 
procedure  becomes  a special case of the  one considered 
previously by this author for echo cancelers  in data 
transmission  in  [8]. The storage  identification  procedure 
could be performed on line, for  example, to initialize, and 
possibly update (see [ 15, 161, a  Maximum-Likelihood 
Sequence  Detection  Circuit. 

A brief summary of the procedure is, where k is the 
recursive time index, 

CM,k is an M X 1 function of the  input (presumably  known 
or “training”) data sequence and is given by 

and is presumably precomputed  and stored  prior to use. For 
more details on this  procedure, and for an efficient recursive 
computation of CM,k when there is no prespecified training 
sequence, see [ 2 ,  8, 17, 191. A final note is that, if the signal 
written just prior to  the start of training is an erasure, then 
the prewindowed  exact-initialization  method of [8, 171 
applies,  rendering  extremely low computational 
requirements; ( B I )  and (B3) simplify dramatically  in that 
case. 
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Appendix C: Methods for  nonlinear  identification 
The study of nonlinear identification of a data channel is an 
entire subject area in itself. For instance, one  can refer to 
[20] and [21] for methods based on simplification of 
Volterra series under  the constraints of a  binary input. Here, 
a  simple method suffices to verify the presence/absence of 
appreciable  nonlinearities and  to roughly quantify their 
magnitudes relative to  the linear component of the  channel 
response. 

SNR measurement 
Estimation  of the  SNR was discussed earlier. The minimized 
sum of squared  errors, [,w,,,  contains a component  due  to 
modeling  error. If M is sufficiently large, most of this 
modeling error is due to nonlinearities. The size of the  SNR 
is indicative  of the level of  nonlinearities.  Generally 
speaking, SNRs well below those expected can be indicative 
of large modeling errors  due  to nonlinearities. Thus,  one  can 
use the size of the  SNR as an  indicator of nonlinearities, 
given that he  has some prior  experience with the particular 
media and head and knows  what to expect  in terms of  a 
nominal  SNR value. This  type of  procedure requires a very 
accurate phase-lock to  the underlying data rate to ensure 
that nonlinearities are  not artificially inserted by sampling- 
phase errors in the  measurement process. 

References 
1 .  D. G. Messerschmitt, “A Study of Sampling  Detectors for 

Magnetic Recording,” University of California at Berkeley, 
private communication. 

2. J. M. Cioffi, “The Block-Processing FTF Adaptive  Algorithm,” 
IEEE Trans.  Acoust.,  Speech. & Signal Proc. ASSP-34, No. 1. 
77-90 (February 1986). 

3. C. L. Lawson and  R.  J.  Hanson, Solving Least-Squares 
Problems, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974. 

4. T. D. Howell, IBM Research Division, San Jose,  CA, private 
communication. 

5. G. Ungerboeck, IBM Research Division, Zurich, Switzerland, 

6.  J. Salz, “On  the  Start-up Problem in Digital Echo Cancellers,” 
private communication. 

Bel/ Syst. Tech. J. 6,  No. 2,  Part I ,  1353-1364 (July-August 
1983). 

7. M. L. Honig, “Echo  Cancellation of Voiceband Data Signals 
Using RLS  and  Stochastic-Gradient Algorithms,” IEEE Trans 
C‘ommzm. COM-33, No. I ,  65-73 (January 1985). 

8. J. M.  Cioffi and T. Kailath. “An Efficient, RLS, Data-Driven 
Echo Canceller for Fast Initialization of Full-Duplex Data 
Transmission,” IEEE Trans. Commun. COM-33, No. 7. 601- 
61 I (July 1985). See also Proceedings qfICC’85, June 1985, 
Chicago. 

9.  C. M. Melas, IBM Research Division. San Jose, CA, private 
communication. 

IO. M. K. Haynes, “Experimental  Determination of the Loss and 
Phase Transfer  Functions of a Magnetic Recording Channel,” 
IEEE Trans. Mugn:nrrrcs MAG-13, No. 5, 1284-1286 
(September 1977). 

I I .  G. C. Goodwin  and R. L. Payne, Dynamic  System 
Identf/ication, Academic Press, Inc.. New York, 1977. 

12. D. F. Elliot and  K.  Ramamohan  Rao, Fast Transforms: 
Algorirhms,  Analvses,  Applications, Academic Press, Inc., New 
York, 1982. 

Addison-Wesley Publishing Co.. Reading, MA, 1985. 
13. R. E. Blahut, Fast Algorithms,for Digital Signal Processing, 

J M. ClOFFl 



14. H.  J.  Nussbaumer, Fast Fourier Transforms and Convoluiion 
Algorithms, Springer-Verlag, Berlin, 198 1. 

15. G. Ungerboeck, “Adaptive  Maximum-Likelihood Receiver for 
Camer-Modulated  Data-Transmission Systems,” IEEE Trans. 
Commun. COM-22, No. 5,624-636  (May 1974). 

16. F.  R. Magee and J. G. Proakis,  “Adaptive  Maximum-Likelihood 
Sequence  Estimation for Digital Signaling in  the Presence of 
Intersymbol  Interference,” IEEE Trans. Info. Theory IT-19, No. 
1, 120-124 (January 1973). 

Transversal Filters for  Adaptive Filtering,” IEEE Trans. Acousi., 
Speech, & Signal Proc. ASP-34,  No. 2. 304-337 (April 1984). 

18. J. Rissanen, “Modeling by Shortest  Data  Description,” 
Automatica 14, 465-471 (1978). 

19. J. M. Cioffi and  T.  Kailath,  “Windowed FTF Adaptive 
Algorithms with Normalization,” IEEE Trans. Acoust., Speech, 
& Signal Proc. ASP-33,  No. 3, 607-625 (June 1985). 

20. 0. Agazzi, D. G. Messerschmitt, and  D.  A Hodges, “Nonlinear 
Echo  Cancellation  of  Data Signals,” IEEE Trans. Commun. 
COM-30, No. 1 I ,  242 1-2433 (November 1982). 

Nonlinearities for Data  Transmission,” Proceedings of ICC‘84, 
Amsterdam, May 1984, pp. 1239-1242. 

17. J. M. Cioffi and  T.  Kailath,  “Fast, Recursive-Least-Squares, 

2 1. A. Gersho  and E. Biglieri, “Adaptive  Cancellation of Channel 

Received  September 28, 1985; accepted for publication 
December I O ,  I985 

320 

1. M. ClOFFl 

John M. Cioffi Stanford University, Department of Electrical 
Englneering, Sanford, California 94305. Dr. Cioffi received the B.S. 
degree in electrical engineering from  the University of Illinois, 
Urbana, in 1978 and  the M S .  and  Ph.D. degrees in electrical 
engineering from Stanford University in 1979 and 1984, 
respectively. From 1979 to 1981, he worked in  the Advanced Data 
Communications  Department of  Bell Laboratories  in  Holmdel, New 
Jersey, and from 1984 to 1986 in the signal processing and  coding 
theory group of the IBM Research Division in  San  Jose,  California. 
He is currently  an  assistant professor of electrical engineering at 
Stanford University. Dr. Cioffi is a  member of Eta  Kappa  Nu, Phi 
Eta Sigma, Phi Kappa  Phi, Sigma Xi,  Tau Beta Pi, and  the  Institute 
of Electrical and Electronics Engineers. He is the associate editor for 
adaptive filtering of  the IEEE Transactions on Acoustics, Speech, 
and Slgnal Processing. 

IBM J .  RES.  DEVELOP.  VOL 30 NO. 3 MAY 1986 


