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Least-squares
storage-channel
identification

by J. M. Cioffi

Pulse (dibit) and step (transition) responses for
magnetic-storage channels are important for
detection-circuitry design and for comparison of
various media, heads, and other channel
components. This paper presents a least-
squares procedure that can be used to identify
the dibit and transition responses from
measurements of the read-head response to any
known data sequence written on the medium.
The method yields significantly higher-quality
estimates for the dibit and step shapes than
does determining these same characteristics by
measuring the average response to isolated
transition or by performing a Discrete Fourier
Transform (DFT) on the response to a
pseudorandom data pattern. The new method
can be implemented off line but also can be
made sufficiently efficient to be implemented
with a microprocessor for use in self-optimizing
(adaptive) channel detection circuitry.

1. Introduction

Storage-channel identification is the measurement and/or
computation of the characteristics of the read-back channel
in a data storage device, such as a magnetic disk, magnetic
tape, or optical disk. The identified characteristics are most
often the channel’s response to a step input (the “transition”
response) or to a pulse (the “dibit” response). These
characteristics are important for many purposes, such as the
design of the detection circuitry (especially for equalizers and
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for maximum-likelihood detectors), for determining the
maximum data density of the device, and for comparing
various media, heads, and other channel components.

This paper presents a least-squares procedure for
identification of the linear time-invariant filter that most
closely approximates the destred step or pulse responses. The
storage device is excited with a known data sequence, and,
later, the read-head response to the known sequence is
measured (or digitized) at regular intervals. The resulting
measurements are then processed via the least-squares
procedure to determine the step and/or pulse responses.

The resultant estimates of these responses are of
significantly higher resolution (higher quality) than those
produced by previous procedures, such as measuring the
average response to isolated transitions (or isolated dibits) or
computing the Discrete Fourier Transform (DFT) of the
response to some known (usually pseudorandom) data
pattern. Furthermore, the new method, although based on a
linear model of the channel as presented here, can indicate
the average accuracy of the linear model over any data
pattern, thus indicating the presence of potential
nonlinearities in the responses, unlike the aforementioned
methods. The degree of agreement between the linear model
and measurements can be useful in determining the data
rates at which various data detection methods do and do not
apply.

Section 2 defines in more detail the quantities used in
channel identification and the least-squares procedure, and it
compares the quality of estimates of the new and previous
procedures. Section 3 studies some details of the solution
and displays the results of the new procedure for several
measurements taken from actual storage devices, including
magnetic disks with thin-film heads, tape systems with
magnetoresistive heads, and optical disks. Section 4 is a brief
conclusion. Appendix A extends the channel identification
procedure to apply at any digitizer sampling rate (an integer
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ratio of the sampling to data rates is assumed in the main
body of the paper). Appendix B discusses streamlining of the
least-squares procedure for possible use with adaptive
detection methods, while Appendix C discusses the detection
of nonlinearities.

2. Storage-channel identification methods
This section mathematically defines and analyzes the
quantities and procedures used in storage-channel
identification. Figures 1(a) and 1(b) summarize the
definitions used throughout this section.

o Variable definitions

The read-back channel and associated identification
parameters are illustrated in Figures 1(a) and 1(b). The
continuous read-head output signal, d(¢), can be modeled in
one of two ways [1]:

d()y =Y x, (it — kT) + u(1), (la)
k

() =Y s,h(t = kT) + u(1), (1b)
k

where A(t) and A (¢) are the unknown linear time-invariant
pulse and step responses, respectively, and u(¢) denotes an
uncorrelated, additive, zero-mean noise,! x, takes on the
values =1 (or +1 and 0 for some optical storage systems),
corresponding to 1’s and 0’s, respectively, in the stored data
sequence at time k7, 1/T is the data rate, and k is an integer.
In Equation (1b), s, can take on the values £2 or 0 (%1 or 0
for optical) according to the relation

S =X T X (2)
Likewise, one determines for a linear channel
h(t) = hx(t) - h:(t - 7). 3)

It is a property of the method presented that the estimates
also obey Equation (3); however, it is sometimes informative
to separately identify A(¢) and A (), rather than identify only
one and compute the other from it. It is assumed that d(¢) is
digitized at some rate T, such that

T,4 =, 4)

where p is an integer (=1) oversampling factor. This
restriction is relaxed to a rational fraction in Appendix A.
The sampled read-head output is then, with 1 = mT,in (1),

dmT,) = Y x,WMmT, — kT) + w(mT,)
k

= ¥ x.hl(m = kp)T,] + w(mT,) (52)
k

+ Even though the assumption that the noise is additive may not be completely true in
practice, our objective is to find the values for the parameters in such a model that
most closely approximate the measured responses, and deviations from such a model
appear in the final results of the method in this paper.
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or

dmT)) = ¥ sh(mT, — kT) + u(mT,)
k

=3 s.hl(m — kp)T,] + u(mT)). (5b)
k

The channel is estimated by

dimT,) & ¥ xw(mT, — kT), ©6)
k

where w(¢) is a linear filter response whose sampled values at

times mT, are to be computed via the channel identification

procedure [ideally w(¢) = A(t)]. Likewise, for the step
response, the estimate is

d(mT) &Y sw(mT, — kpT,). (7
k

We also define an error signal
e(mT,) & d(mT,) — d(mT). ®)

As an example, note that, if x, or s, is a sequence
corresponding to an isolated pulse or transition input, (5a)
and (5b) reduce to

dimT,) = (mT,) + u(mT ) (9a)
or
d(mT,) = h(mT,)) + u(mT)), (9b)

respectively, the desired pulse shapes in noise. Then, w(mT )

+ The reader may note that (5a) and (5b) are equivalent to p subchannels, each at
spacing T this observation is exploited to reduce computation in the new procedure
in Section 3.
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and w(mT,) can be estimated by the averages

w(mT,) = ’—11 > d(mT k), (10a)
k=1

w(mT,) =% Y d(mT k), (10b)
k=1

where the index k denotes the kth experiment. That is, one
measures the response # times and averages, which is the
basis for the aforementioned isolated step and dibit
identification methods. Some deficiencies of the estimates
identified via such isolated step or pulse methods are
discussed later. Equations (9) and (10) were given only to
verify the utility of the definitions in (1)-(8). We now
proceed with a discussion of the least-squares channel-
identification procedure.

e The application of least squares
In the least-squares identification procedure, a known data
pattern is written on the storage device. The w(mT,) are
chosen to minimize

!

g =Y o(mT,), (11)

m=1

where ¢(mT,) is given in (8). If we denote W,,, by the M X 1
column vector

w(0)
W, & |: . ], (12)
wi(M — DHT,]

then the solution to (11) is conveniently written [2]

I —1 I
Wy = (2 XyuXim) (T Xy, d(mT)), (13)

m=]

where ’ denotes transpose, and

KXo
Xyt [ : ] (14)
xm—M+l

for p = 1. There are p — 1 zeros between entries in (14) if
p > 1. We have further assumed that M is large enough to
span the nonzero extent of the pulse (step) response in
intervals of sampling periods or MT, = NT data periods
containing p samples each, M = Np. Equation (13) can be
rewritten

>

Wy = RipiPasy (15)
where
1 !
RM,I é _I 2 XM‘mXI’\/I,m ’
m=1
1 I
PM./éj ¥ Xy md(mT). (16)
m=1

A similar expression holds for the step response, with x’s
replaced by s’s and w’s replaced by w’s in the solution. Note
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that M X M matrix inversion is explicit in (13); however,
because of the special structure in this problem, no matrix
need ever be inverted directly. For more details, see Section
3 and especially [2].

e A performance measure
The mean of W,,, can be easily determined as
h(0)

EW, l=H, = > (17)

Al(M — 1T
the desired solution, when the above least-squares method is
used. The Norm Tap Deviation is a mean-square measure of
statistically how far the estimated W, ,is from H,,, and is

also easily computed, if u(¢) is white (spectrally flat over the
frequency range of interest), as

1

bps = EN Wy, = Hy 171 = 7 trace (Ry)on s (18)
where
> A E[u(KT,)). (19)

We show in the next few sections that both the isolated
transition (or dibit) and DFT methods are special cases of
the general least-squares method with very special
restrictions on the input sequence and on M and /. Thus, we
are able to use (18) as a performance indicator for those
methods as well.

e Isolated transition example and analysis of resolution
As an example, once again consider an isolated dibit; then
X, has only one nonnegative entry per column and (13)
reduces to (using generalized inverses, see [3])

d(MT,)
Wy, = . . (20a)
dT)

A string of n “isolated” (far enough apart) dibits occurring
within a large data record (length /) has a least-squares
solution,

| [ d(kMT, + T,) ]
Ww=-2X ,

= . (20b)
d(kMT, + MT,)

N0

that is exactly the same as the isolated pulse solution in
(10a). The least-squares identification procedure is more
general in that the input need not be an isolated transition or
dibit.

Equation (18) allows us to compare the quality of the
least-squares estimates of H,,, (W), ) for different input
sequences. Note that, for a string of n isolated (M7, apart,
so [ = Mn) inputs, one determines for white zero-mean u

u

M
E\W,, - H,, I’ = 702 } 2n
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Pseudorandom sequences are generally desirable {4, 5] for
channel inputs because of their broadband spectral response.
An identity for R, , can easily be determined, if / = length of
the pseudorandom sequence,$ as (see [6-8])

1
Ry, = 710+ DI, = 1,13 (220)
where 1,,is an M X | vector of M ones. One can also easily

show that

- L _ v
Rii=17 l<1M+ T 1M1M>. (22b)

Thus, (18) becomes, for a pseudorandom sequence of length
M repeated » times,

_ 1l =M +2M| , 1,
BM,/—,,MH{(,,_I)MH}U 7, - (23)

—
u u
n

For n = 1, there is an improvement of (M + 1)/2 with
respect to (21). As n increases to a large value, there is an
improvement by a factor of M in estimate quality, or
equivalently, M more digitized outputs from isolated dibits
must be processed in the isolated dibit identification schemes
to get the same resolution estimates as those produced by
least squares with a pseudorandom length-M input. For
oversampling ( p > 1), the comparison favors the
pseudorandom input by the same amount. Heuristically,
when using pseudorandom or “scrambled” data in channel
identification, the input is more spectrally “rich” and all
frequencies are more equally weighted than when a single
pulse is used. The resulting flat nature of the spectrum
results in the inverse autocorrelation matrix being close to an
identity which makes 6,,, in (18) smaller (better). When x,
has a flat spectrum, s, does not have a flat spectrum, but a
similar slightly more complex argument can be given to
justify the least-squares improvements.

In practice, it may not be difficult to average the extra data
for the isolated input method. However, there is another
very practical advantage of using more random data, as was
first noted by C. M. Melas [9]. This is that in the isolated
transition or isolated dibit methods, the AGC (Automatic
Gain Control) must be removed from the channel to prevent
the sudden change in energy associated with the isolated
input from suddenly varying the gain parameter of the AGC.
Then, the identified pulse characteristics will not include the
effect of the AGC. This effect can commonly be more than a
simple gain factor and is determined by the bandwidth and
tracking rate of the AGC.

& Comparison with frequency-domain methods
Another more recent method used in storage-channel
identification is [4, 5, 10] to compute the DFT of the

§ Even when the output is oversampled, we show later that the only autocorrelation
matrix of interest is at the data rate; thus all of the analysis here is also valid for p > 1.
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response to some prescribed pattern written on the media. In
order to invert the DFT to get a time-domain estimate of the
pulse response, one must first divide the measured DFT by
the DFT, including phase, of the input before the inverse
DFT, which [10] also observes. Using this last restriction,
one can also generalize the methods of [4, 5, 10] to estimate
the channel response for any inputs, including the +2, 0
normally associated with identification of the step
(transition) response.

Nevertheless, with the division by input spectra, the
frequency-domain method is the same as the time-domain
least-squares method of this paper if M = /, and as we shall
see, the case M =/ gives very poor estimate quality. In the
case that u(mT,) is white and Gaussian, the least-squares
method (see [11]) achieves the famed Cramer-Rao bound for
a fixed / and M; that is, no other estimator has higher
resolution for the given data. If the assumption on u(¢) is
just white (not also necessarily Gaussian), then the least-
squares estimator is a Best Linear Unbiased Estimator
(BLUE) [3].

Theoretically, the difference between the DFT technique
and the time-domain least-squares method can be quantified
via the following analysis. It is usually wise to pick M < [ so
as to introduce more noise averaging, or equivalently, to
make the Cramer-Rao bound lower for fewer parameters.
Generally speaking, in any estimation scheme, we desire
I > M to get good quality estimates. Nevertheless, picking M
too small can introduce extraneous harmonic distortion in
the estimated step response. The time-domain least-squares
method can be rewritten as that W, , that minimizes [2]

v = E,M,IEM,I = ”5M,I"2’ (24)
where
Emi = 41,/ = XiWars (25)
and
Ad(kT,) X,
= : > X = : , (26a)
di(k-1+ 1T, Ki—r+1

where p — 1 zeros can be inserted between nonzero entries in
X, and

s Xipoare) (26b)

The DFT-based method is a special case of a linear M X /
transformation on ¢,, , that is, let

Xorw = X Xy -

Eyi= €m0 - 27

where ¢ is an M X [ (possibly complex) matrix representing
the linear transformation. Then

EXN B = 574,14’*4’51‘4,/ > (28)

where * denotes conjugate transpose. If ¢ is a unitary
transformation (¢*¢ = I), then

J. M. CIOFFI
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Magnitude (dB)

Frequency (units of 1/ T)

Comparison of DFT and least squares for (a) 8-bit and (b) 16-bit
periods.

NE s I” = NI, (29)

and the minimized ¢,,, is obtained by
Ens = $*E (30)

In the DFT methods of [4, 5], the matrix ¢ is chosen, under
the very special assumptions that M = [ and the input is
periodic ( pseudorandom) of length | = M, as

1 1

1 1 et e (M-DT
g=dy=—t | e. ' e ‘ ’ 31
\/M 1 e—/wM_lT B e_j“’M—l(M—l)T
where
2
w,=lﬁ i=0,""M_l' (32)

¢,, can easily be shown to be unitary [12], so the relation in
(29) holds, apparently yielding the time-domain least-squares
solution. ¢*, is the inverse DFT in this case. However, in the
time-domain method of this paper, M is much less than

1o average the effects of noise and other nonideal effects.

3. M. CIOFFI

Using our performance measure in (18) and 23)(n =1,
| = M) again, one determines the estimate quality as

o, (33)
while the general formula for a pseudorandom sequence of
length / with M parameters is

- M+ M -M
M- M+ )

(34)

Substitution of / = 10M, a good practical rule of thumb, into
(34) yields the advantage
011 _ 2[(091 + 1) _

0,, 0097 +02] 20

0.9/ + 1)
09/ +2)°

(35)

Even for / = 1000, another reasonable number, the
improvement in (35) is close to its limiting value of 20. This
large improvement is typically evident when comparing the
spectra of a pulse produced by the time-domain least squares
and by the DFT method, as we have illustrated in Figures
2(a) and 2(b). Note from the level of “frequency ripple” in
the DFT plot that the time-domain least squares is at least
an order of magnitude improvement. Also note the lower
“noise level” at higher frequencies with the least-squares
identification procedure. It is also important to note that

/= M =2 = 1 (i a positive integer) for a pseudorandom
input, which, at least, requires special attention for efficient
DFT implementation [12-14]. The reason for the two
different lengths (A’s) in Figures 3(a) and 3(b) is discussed
later.

o An averaged DFT identification scheme

Here, we propose an averaged DFT method for the special
case that / = nM, where n is an integer greater than 1, and
the input sequence is periodic with period M. [The case of
oversampling (p > 1) is identical for each of the subchannels
(see Section 3).] There is a very special set of circumstances
when the inverted matrix in (13) is Toeplitz and DFTs can
be used. Generally, (13) is not Toeplitz and DFTs are not
appropriate. This method is equivalent to least squares, as
can be seen from the following. Define ¢, by

¢, 0 - 0
ga |00 L (36)
00 ¢,

Muitiplication by ¢ is equivalent to n M-point DFTs
performed on the # groups of M inputs. Note that ¢, is
unitary,

o9 =1 (37)

The least-squares estimates in the frequency domain are
given for each frequency bin by
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8k, Nx*(k)

x(k)x*(k)

2 ¥k, i)

1.5
n x(k)

v(k) ="+

b 5| L DT =

i

k=0,...,M-1, (38

where »(k) and x(k) are the M-point DFTs of W, and

X1 40 TESDECtIVELY. 8(K, 1) 1s the M-point DFT of the time
series d, in the ith of the n groups. Equation (38) is really the
average of »n uses of the original DFT method, when a
period-M input is recycled to fill / time periods. Then, some
averaging will be introduced, in the optimal least-squares
sense, into the DFT identification scheme. The method of
(36) and (38), because of (37), is equivalent to an /-point
least-squares time-domain procedure. Of course, an inverse
DFT on the quantities in (38) must be performed to obtain
the desired time-domain parameters, W,, . This method
requires the unnecessary imposition of an integer ratio
restriction on / and m, which is not required in the more
general and straightforward time-domain least-squares
solution (13).

e A note on maximume-likelihood detection schemes

The identified responses can be used in Maximum-
Likelihood Sequence Detection (MLSD) [15, 16]. In this
case, the Mean Square Error (MSE) is a more useful estimate
of performance than (18). It is shown in [17] that (given a
certain input sequence)

MSE = E[£(mT)) = a-vp, » (39)
where v,,, is given by
Y =17 XI:ri,/R;II.IXM.I (40)

and ’ denotes transpose. One also can show (see [17]) that

0=v,,=1

41

thus, the worst (because the desired value is ai) MSE after M
measurements is

MSE,

worst

=0, (42)

which is exactly the value given by a length-M
pseudorandom sequence. In fact, it is shown in [8] that
choices for x, other than length-M pseudorandom sequences
can yield MSE between 0 and ai after M data points, while
still maintaining good (low) E[|| W,,, — HM_,||2]. Thus the
length-M pseudorandom sequence may not be the best
training sequence if MLSD is used. Some data with statistics
equivalent to what is expected in actual use would be the
best choice for MLSD and other similar sampling detection
schemes.

o Signal-to-noise ratio estimation
The SNR for the read-head response can be estimated (when
M« )by

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

(= N) | Wandll®

SNR =
P&y

, (43)

where | W,,, I*/p is the signal power for the binary input to
the pulse response, and £,,,// — N is the noise power.
However, one must ensure that data measured at the read-
head output have NOT BEEN AVERAGED before
digitizing to ensure a meaningful estimate in (43). Also, as
Howell [4] has noted, that distortion in the measuring
devices, particularly the nonlinearities in the CRT sweep rate
if a storage scope is used, can add appreciable noise not
inherent in the actual storage channel. Of course, such
contamination would leave (37) as a measure of the mean-
square distortion in the measuring procedure, rather than
the desired channel noise + media noise + modeling mean-
square errors. Even if measurements are carefully taken, (43)
is usually more indicative of the levels of nonlinear
mismatch to the model and can therefore be very useful in
evaluating the potential success or failure of advanced
detection schemes.

o Determination of M

We have previously assumed that the order A/ (number of
identified parameters) was overestimated or known a priori.
However, the best quality estimate for / data points is given
by the so-called “Minimum Description Length” principle of
[18], which jointly estimates M and the corresponding W,,,
for [-points. The improvement in the general storage-channel
identification problem is negligible if / = 10M. It is
interesting to understand just what happens if M is chosen
too small. Suppose H(kT,) # 0 for k <0, k > M. Then
u(kT,) can be modeled as the sum of white noise and the
distortion caused by the neglected terms in /. This second
distortion term is just a linear filter acting on the
pseudorandom pattern. When oversampled, the output of
such a filter is the product of its transfer function and the
transform of the oversampled pseudorandom pattern. The
response of the oversampled pseudorandom pattern can
easily be shown to be maximum at multiples of 1/7, thus
explaining why choosing M larger in Figure 2(b) than in
Figure 2(a) caused the “harmonics” to disappear. Of course,
picking M too large as in the DFT methods has a far more
distorting effect on the output because of the lack of noise
averaging. Generally speaking, conservative values for M and
[ are 15 bit periods and / = 10M, respectively.

o Summary

In this section, we have introduced the least-squares channel-
identification procedure, compared its performance with
other commonly used procedures, and found the least-
squares method superior in the quality of estimates that it
produces. We now turn to implementation/programming of

this new procedure. 315
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Pulse responses at 27 Mb/s for (a) thin-tilm medium and thin-film
head and (b) particulate medium and thin-film head.

3. Efficient implementation of the off-line least-
squares identification procedure

The time-domain least-squares solution is described using a
matrix inverse in (13). This matrix can be large, requiring
large storage and long processing time in an off-line
computer program implementing the inversion. However,
matrix inversion can be avoided to simplify the
determination of W, . This section describes several special
features of the least-squares procedure that can be used to
reduce considerably the computation and storage in an off-
line implementation. Such simplifications could also become
important if the characteristics of each particular storage
device, and possibly at several different radii on each, were
to be computed during the manufacturing process either for
identifying defective devices or for optimization of the
channel-detection circuitry for each particular unit. An
efficient on-line procedure, similar to that of [8], is suggested
in Appendix B.

o Subchannels

In most cases of practical interest, the oversampling factor p
is greater than one. Then, one writes mT, = nT + iT,, where

J. M. CIOFF1

-1 (2)

where | denotes the “greatest integer less than,” and i takes
the values 0, - - -, p — 1. Equation (5a) is rewritten [(5b) can
be similarly rewritten]

dnT + iT)) = Y x.hl(n — k)T + iT,] + u(nT + iT). (45)
k

The index i has no effect upon the convolution operation,
and the p phases of d(m7T,) per sample period, T = pT,, are
described by

‘d, =3 x'h,_,~u i=0,-..,p—1, (46)
k

n

where the ‘i, are i independent “subchannels.” With minor
algebra, one can reduce the least-squares identification
procedure to p subprocedures that can all be solved
separately. The p solutions can be interspersed to obtain
W= Wiy, where N = M/p (we assume that p divides M
or that M is picked slightly larger so that it does). Then, only
one N X N matrix need be inverted (it is the same for all
subchannels), rather than one M X M matrix, a considerable
computational and storage saving. This matrix is the
autocorrelation matrix of the input data alluded to in an
earlier footnote (§). However, much greater savings are also
available.

o Use of fast algorithms

The most efficient solution to the general least-squares
identification problem appears in [2]. The DFT cannot be
used in the general least-squares filtering problem because a
Toeplitz structure must be imposed on (13) for its use. This
solution requires about

<’%> IN + 45N* + pN* 47)

multiplications, divisions, and additions in comparison to
O(N) for straightforward matrix inversion. [O(x) is a
number that asymptotically rises no faster than in direct
proportion to x.] The term (IN/p) + 4.5N? is the fixed cost
of the equivalent of inverting the matrix R, (fixed because
it is the same for each subchannel); the remaining term

pN2 + [N is the additional cost, at N+ IN/p per subchannel,
for computing the equivalent of the product R;,",/p ‘P, o=
"WN‘ s» for each of the p subchannels. The storage
requirements are about 6 N + 2/ locations for the algorithm
in [2]). The cost reductions accrue to the shifted nature of
X, with respect to X, ,_,, or equivalently, that R, can be
rewritten as a product of Toeplitz matrices,

Ruip = XvapaXnpa » (48)
where X, is defined in (26b). For more details, see [2].

o Choice of the input sequence
Further computational and storage reductions are possible if
the length-/ sequence x, , is chosen beforehand for all storage
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channels to be identified. A currently popular choice is a 63-
bit pseudorandom sequence. When the input data sequence
is known beforehand, many of the quantities in the Fast
(BFTF) algorithm of {2] can be precomputed and stored
once, reducing computation to

pN° + IN (49)

multiplications and additions (no divides) and storage
(random access) to about

2N+ (50)

locations. Neither these counts nor the counts in (47) and
(49) can be matched by the DFT or other methods of
comparable estimate quality for reasonable N (20 or less).
Asymptotically, because of the N log, N computation in FFT
implementations of the DFT, these FFT methods may have
an advantage in terms of computational requirements, but N
is never chosen that large in practice.

& Experimental results

To demonstrate the robustness of the new least-squares
identification method, several channel pulse shapes are
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(a) Pulse response of optical medium at [ Mb/s (dc removed) and
(b) Fourier transform of pulse response.

plotted in Figures 3(a) and 3(b), while the corresponding
steps are plotted in Figures 4(a) and 4(b). These responses
were obtained using the new procedure for a 63-bit
pseudorandom sequence on digitized measurements of a
thin-film disk/thin-film head channel [Figures 3(a) and 4(a)],
and on a particulate disk/thin-film head channel [Figures
3(b) and 4(b)]. The measurements were taken at several
different diameters on each device. The diameters for Figures
3(a) and 4(a) were 105, 120, 135, 150, and 165 mm, while
those for 3(b) and 4(b) were 103, 136, and 172 mm. Figures
5(a) and 5(b) show the pulse response and its spectrum,
respectively, for an optical storage device. In Figures 6(a)
and 6(b), we have plotted pulse and step responses for a
magnetoresistive head in a magnetic-tape system; this time a
62-bit pattern corresponding to NRZI coding of two cycles
of a 31-bit pseudorandom data pattern was used [10]. In
Figure 7, the delay for the magnetoresistive head is plotted
to illustrate the ability of the new least-squares identification
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procedure to capture that quantity as well, The dc level was
removed from the desired signal for the optical device to
facilitate inspection of the plots; the true optical channel is a
baseband channel. The plots in Figures 3, 4, and 5
demonstrate the robust utility of the least-squares procedure.

4, Conclusions

In this paper, we have introduced a new least-squares
storage-channel identification procedure. We have analyzed
the procedure thoroughly and demonstrated via experiment
its utility and its improvements over existing methods.
Several methods for reducing the implementational cost of
the procedure were also discussed. The procedure can
become a uniform standard for identifying and comparing
the channel characteristics of various storage media.
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Appendix A: Arbitrary sampling rates
In this appendix, the sampling interval 7, is permitted to
take the values

q
=T (A1)

where g and p are relatively prime positive integers such that
g < p. Any arbitrary ratio of sampling to data rates can be as
closely approximated as desired by the relation in (A1), as
long as it is known, which implies some synchronization
between digitizer and write clock. We also define a smaller
time interval 7 by

T, T

rT=—== (A2)
q 14

or

gpr = pT,=4qT. (A3)

The samples at rate 7, can be organized into successive
disjoint sets of p members and of duration p7T, = pgr. Then
any sampling instant T, can be rewritten as

mT, = npqr + iqr = (np + T,
j=03...’p—1, (A4)
The equivalent of (37) becomes

dlnpgr + iqr] = ¥ h(npgr — kpr + igr)x,
k

+ u(npqr + iqr). (AS)

Note that, if p and q are relatively prime, as was assumed
earlier, then A will be specified at intervals of 7 in (AS), or
equivalently at all time instants that are integer multiples of
r. At sample / within each group of p samples, only the
values h(kpt + iqt), where k is any integer, contribute 10
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d(npgr + igr). Thus, d has p phases per group of p samples
that can be independently modeled as

d, = % Xhg = Uy =0, p— 1, (A6)
where, again,

'h, = h(nT + iT,) (A7)
and

‘d = d(nT,+ iT,); ‘'u,=unT +iT,) (A8)

fori=0, ..., p— 1. Each of the subchannels can be
identified independently and the resultant responses overlaid
(with delays of 7 with respect to one another). The overall
response can then be used directly or decimated to pr (the
data rate), g (the sampling rate), or any other integer divisor
of the rate 1/7. An important point to note is that there is a
loss in resolution of a factor of approximately g for any fixed
data length / with respect to the case where T, = T/p. This
last fact makes the alternative of resampling the data or
phase-locking the ADC used to acquire the data (set g = 1)
very attractive from a performance viewpoint.

Appendix B: On-line efficiency
It is possible to implement the least-squares storage-channel
identification method in a sample-recursive manner. The
procedure becomes a special case of the one considered
previously by this author for echo cancelers in data
transmission in [8]. The storage identification procedure
could be performed on line, for example, to initialize, and
possibly update (see [15, 16], a Maximum-Likelihood
Sequence Detection Circuit.

A brief summary of the procedure is, where & is the
recursive time index,

Wir = Wysot + Cfm © Cyps (B1)
and where
E:I.k =dk) = Wy Xars - (B2)

C,,« 1s an M X 1 function of the input (presumably known
or “training™) data sequence and is given by

k
-1
Cux = ( ) XM‘kX;/I.k) Xt s (B3)

m=0
and is presumably precomputed and stored prior to use. For
more details on this procedure, and for an efficient recursive
computation of C,,  when there is no prespecified training
sequence, see [2, 8, 17, 19]. A final note is that, if the signal
written just prior to the start of training is an erasure, then
the prewindowed exact-initialization method of [8, 17]
applies, rendering extremely low computational
requirements; (B1) and (B3) simplify dramatically in that
case.
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Appendix C: Methods for nonlinear identification
The study of nonlinear identification of a data channel is an
entire subject area in itself. For instance, one can refer to
[20] and [21] for methods based on simplification of
Volterra series under the constraints of a binary input. Here,
a simple method suffices to verify the presence/absence of
appreciable nonlinearities and to roughly quantify their
magnitudes relative to the linear component of the channel
response.

SNR measurement

Estimation of the SNR was discussed earlier. The minimized
sum of squared errors, £,,,, contains a component due to
modeling error. If M is sufficiently large, most of this
modeling error is due to nonlinearities. The size of the SNR
is indicative of the level of nonlinearities. Generally
speaking, SNRs well below those expected can be indicative
of large modeling errors due to nonlinearities. Thus, one can
use the size of the SNR as an indicator of nonlinearities,
given that he has some prior experience with the particular
media and head and knows what to expect in terms of a
nominal SNR value. This type of procedure requires a very
accurate phase-lock to the underlying data rate to ensure
that nonlinearities are not artificially inserted by sampling-
phase errors in the measurement process.
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