294

Compiling
circular attribute
grammars

into Prolog

by Bijan Arbab

This paper describes an algorithm for compiling
attribute grammars into Prolog. The attribute
grammars may include inherited and
synthesized attributes and contain recursive
(circular) definitions. The semantics of the
recursive definitions is defined in terms of a
fixed-point finding function. The generated
Prolog code stands in direct relation to its
attribute grammar, where logical variables play
the role of synthesized or inherited attributes.
Thus an effective method for the execution of
recursive attribute grammars has been defined
and applied.

1. Introduction

Attribute grammars, originally described by Knuth [1, 2], are
a mechanism for assigning meaning to strings of a context-
free language. To this end, and because of their intuitive
nature, attribute grammars have been used for semantic
definitions of programming languages, such as SIMULA 67
[3] and PL360 [4]; programming language design [5];
program correctness proofs [6]; program optimization [7];
program translation [8]; question-answering systems [9];
hierarchical and functional programming [10]; and
compiler-generating system [11-13]. Attribute grammars
©Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other

information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

BIJAN ARBAB

have been studied and compared with other formal methods
for the specification of semantics and have been given a
precise formulation (including recursive definitions) within
the framework of initial algebra semantics {14). Prolog is
also well suited for compiler writing and has been used for
the development of the DEC 10 Prolog compiler {15].

Previous efforts to develop attribute evaluation
mechanisms have included table-driven tree-walk algorithms
[16] as well as compilation into recursive procedures with
parameters corresponding to attributes [17]. These
algorithms, however, deal with absolutely noncircular
definitions. Knuth also shows a method whereby an attribute
grammar can be converted into an algorithm for recognizing
a language, but only if the equations exhibit no circularities
[1]. Knuth’s algorithm first forms the parse tree and then
converts the equations into programs which are executed in
an order guaranteed to define the attributes at all nodes. The
attribute grammars dealt with in this paper, however, may
contain recursive (circular) definitions, and their meaning is
defined in terms of a fixed-point finding function.

In this paper, an algorithm for compiling synthesized-only
attribute grammars with recursion (circularity) is presented.
The language TINY [18] has been selected as the working
example. Note that every inherited-and-synthesized attribute
grammar can be transformed into a purely synthesized-only
attribute grammar with the same underlying context-free
grammar as the original attribute grammar [14]. Therefore,
in principle the algorithm for compiling synthesized-only
attribute grammars can be used to compile inherited-and-
synthesized attribute grammars as well. To accomplish this,
one can use the technique of Chirica and Martin [14] to
transform the inherited-and-synthesized attribute grammar

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986




into an equivalent synthesized-only attribute grammar and
then apply the algorithm presented in this paper to compile
the resulting synthesized-only attribute grammar.

Inherited-and-synthesized attribute grammars, however,
are more intuitive than their equivalent synthesized-only
attribute grammars, since the inherited attributes serve to
reduce the functionality of the semantic equations. We
present a new algorithm for compiling inherited-and-
synthesized attribute grammars into Prolog. The language
PAM [19] has been selected as the working example.

It is common practice to make use of lambda notation in
writing the semantic equations of a synthesized-only
attribute grammar. Following this practice, the semantics of
TINY is presented in terms of lambda notation. In Section 2
we discuss the representation of lambda notation in Prolog.
An outline of an algorithm for compiling synthesized-only
attribute grammars appears in Section 3. At this point, it is
possible to do semantic computation for subject programs;
i.€., a lambda expression is constructed as a result of
executing, via a Prolog interpreter/compiler, the Prolog
clauses obtained from compilation of the synthesized-only
attribute grammar together with an abstract syntax of a
subject program. Reduction of the generated lambda
expression, with respect to some input, corresponds to the
execution phase of the subject programs. To accomplish this,
a detour is taken in Section 4, where construction of a
lambda machine in Prolog is discussed for the purpose of
reducing (solving) lambda expressions. This lambda machine
will have proper facilities to deal with run-time semantics of
the fixed-point finding operator which was used during
semantic evaluation for recursive (circular) attribute
grammars. Sample compilation and execution of TINY
programs are presented at the end of this section. In Section
S an algorithm for compiling inherited-and-synthesized
attribute grammars into Prolog is presented and applied.

After this work was completed, the author became aware
of the work of Deransart and Maluszynski [20] on the
relation between attribute grammars and logic programming,.
The main thrust of their work, however, is different from the
theme of this paper. Deransart and Maluszynski show a
formal correspondence between attribute grammars and
logic programming and proceed to make use of the
established result in one of them, namely attribute
grammars, to establish some new results in the other, namely
logic programming. In their conclusion they state that new
evaluation methods for attribute grammars based on the
procedural semantics of logic programs are possible. This
type of application shows that the expertise in logic
programming can also be applied to the field of attribute
grammars. However, this issue was not discussed in their
paper and was said to require further investigation. This
paper, then, demonstrates one such evaluation mechanism
for attribute grammars based on Prolog’s procedural
semantics of logic programs.

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

<exper> ;= <exper> <exper>
L <ids>. <exper> % Abstraction

MU <id>. <exper> % Least fixed-point finding operator
<conditional> | <id> | <op> [ <number> | <pred>

% Application

<conditional> ::= <exper> —» <exper>, <conditional> | true — <exper>

<ids» ::= <id> <ids> | <id>
<pred> ::= eq{<exper>, <exper>) % Equality test
i % Null test

| null{<exper>
ete.

<op> ::= add{<exper>, <exper>) | sub{<exper>, <exper>) |
mul{<exper>, <exper>) | div{<exper>, <exper>) | etc.

Syntax of lambda notation.

<exper> ::= apply(<exper>, <exper>) % Application
abstract(<ids>, <exper>) % Abstraction

mu{<id>, <exper>) % Least fixed-point finding operator
i <conditional> { <id> | <op> | <number> | <pred>

<conditional> ::= cond{<clist>)

<clist> ::= <exper>-<exper>,<ciist> | true-<exper>.nil

<ids» 1= <id> <ids> | <id>

<id> ::= Logical Variables (as in Prolog)

<pred> ::= eq(<exper>, <exper>) % Equality test
I null(<exper> % Null test
etc.

<op> ::= add{<exper>, <exper>) | sub(<exper>, <exper>} |
mul(<exper>, <exper>) | div(<exper>, <exper-} | etc.

Syntax of lambda notation in clause form.

2. Representing lambda notation in Prolog
It is common practice to make use of lambda notation in
writing the semantic equations of synthesized-only attribute
grammars. In order to manipulate these equations, we must
be able to represent them in Prolog. Here then is one
representation of lambda notation in Prolog. The syntax of
the lambda notation we use is shown in Figure 1.

For example, the factorial function can be written as

MU f.(L x.(eq(x, 0) — 1, true — x * f(x—1)).

The syntactic representation of the above lambda notation
in Prolog form is shown in Figure 2.

For example, the previous factorial function translated
into Prolog form is

mu(F, abstract(X, cond(eq(X, 0)-1.true-mul(X, apply(F, sub(X, 1))).nil)).

The use of logical variables as variables of abstraction
simplifies the substitution process; i.e., once X is bound to
some structure, all its occurrences throughout the lambda
expression will be bound to that same structure through
Prolog’s unification process. This, however, does imply
that the normal scoping rules of lambda notation will

not be obeyed! For example, in the lambda expression
abstract(X, apply(abstract(X, X), X)), if the outer X gets
bound to, say, a, all the X’s will be bound to a’s, leading to

BIJAN ARBAB

295




296

<command> ::= <id> := <expression>

output <expression>

if <expression> then <commandl> else <command2>
while <expression> do <commandl>

<commandl> 3 <command2>

<expression> :i= 0

1

true

false

read

<id>

not <expressionl>
<expressionl> = <expression?>
<expressionl> + <expression2>

wae aswm

=

Syntax of the programming language TINY.

Nonterminal Synthesized attribute

<command> r: State — State

<expression>

e: State — Values — State

1. r.command = L s. ({L v<z,i,0>.<z{v/Id), i, 0>) {e.expression §}}
2. r.command = L s. ({L v<z, i, 0>.<z, i, v.0>) {e.expression s))
3. r.command = L s. {{L vlsl.{vl -» (r.commandl sl),
true — (r.command2 s1)}
) (e.expression s))
4. vc.command = L s. {{L visl.(vl - (r.command {r.commandl si}},
true = sl
} {e.expression s))
. r.command = L s. (r.command2 (r.commandl 5))

L 0,8
l,s

5
6. e.expression = L s
7. e.expression = L s. 1,
8 e.expression = L s. t,s
9. e.expression = L s. f,s
10, e.expression = L <z, 1, 0>. hd(i),<z, ti{i}), o>
11, e.expression = L <z, i, 0>, z{Id),<z, i, 0>
12. e.expression = L 5. ({L vlsl. not{v1},s1) (e, expressionl s}}
13. e.expression = L s, ({L visl. ({L v2s2. vi=v2,s2)
(e.expression2 s1))

) (e.expressionl s)
14, e.expression = L s. ({L vlsl. {{L v2s2. v1+v2,52) {e.expression2 s1))

) {e.expressionl s))

Semantics of the programming language TINY.

the expression abstract(a, apply(abstract(a, a), a)). This is
simply wrong, since the inner X is really a different variable
from the outer X; i.e., it will be necessary to carry out
substitution properly.

To overcome this problem, a utility function called
capture is used to rewrite lambda expressions such that no
variable capturing, as above, can occur. For example,
capture applied to the above lambda expression will produce
abstract(X, apply(abstract(Y, Y), X)), which avoids the
problem while allowing us to use logical variables as
variables of lambda expressions. The capture predicate is
used by the lambda machine every time a substitution is
made in order to make sure that the resulting expression will
have no captured variables. The Prolog code for the capture
predicate is not complicated and can be found in Appendix
A.

3. Compiling synthesized-only attribute
grammars

The steps which are needed to compile synthesized-only
attribute grammars are discussed, justified, and applied with
respect to a little programming language called TINY [18].
The purpose of TINY is to provide a vehicle for illustrating

BIJAN ARBAB

various formal concepts in use. The syntax of TINY, in
terms of synthesized-only attribute grammars, is presented in
Figure 3.

The semantics of TINY can be described by a synthesized-
only attribute grammar. The state of execution for a TINY
program can be taken to be a triple composed of a memory
map z, which is a function from identifiers to their values,
and an input i and an output o from some domain of values.
The semantics of commands can then be described in terms
of a function that transforms states into states and the
semantics of expressions as a function with signature
State — Value X State, or in Curried form,

State — Value — State; i.c., expressions produce values as
well as change the state. The semantics of the while
command (4) is perhaps the most interesting to consider
because it contains a cycle. First, the expression is computed
with respect to the input state s, which results in the value
v1 and the new state s1. If v1 is true (note that no type
checking is being performed), then we proceed by executing
command? with respect to s1 and continue by passing the
resulting state to r.command; i.e., re-enter the while loop
with the state which has resulted from the computation of
expression and command1. The complete semantics of
TINY appears in Figure 4; note that <, >, and , are used
only to aid readability and are not part of the syntax of the
lambda expression presented earlier.

To compile the definitions in Figure 4, we must first build
from the syntax an abstract syntax for the language which is
also representable in Prolog form. For example, the abstract
syntax for TINY can be represented as in Figure 5.

Now, for each production in the abstract syntax of the
language, write a Prolog clause as follows:

1. The name of the head clause is the nonterminal
appearing on the left of the production rule. For example,
for production rule one, this would be command.

2. The first argument of the head clause is the production
on the right-hand side, e.g., assign(<id>, <expression>),
but all nonterminals are replaced by logical variables;
thus the first argument is assign(ld, Expr). Note that
logical variables are represented by uppercase letters,
possibly numbered, or just an uppercase letter for the first
character.

3. The remaining arguments of the head clause are the
synthesized attributes corresponding to the nonterminal
on the left-hand side of the production rules. Their
corresponding values are constructed from attribute
grammar definitions as follows:

& Associate with each occurrence of an attribute and the
variables of the lambda expression (of the semantic
definition) a new logical variable, and substitute them
into the lambda expression. For example, the lambda
expression L s. (L v<z, i, 0>.<z(v/Id), i, 0>)
(e.expression s) will become L S. (L V<Z, |,

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986




O>.<Z(V/id), I, O>) (Expr1 S). After translation into N
Prolog, according to the rules presented earlier, the §:
lambda expression will become 5

<commands ::= assign{<id>, <expression>)
output(<expression>)

if(<expression>, <commandi>, <commandZ>)
while(<expression>, <commandl>

| <command]>.<command2>

<expression> ::= expr{0) | expr(1} | expritrue) | expr(false)
)

1

1l | expr(id)>
} exprEnot(<expressicnl>))
| (

abstract(S, apply(abstract(V.(Z.1.0), 12.
((V\Id).2).1.0), 1
apply{Expr1, S))

expr

<expressionl>, eq, <expression2>)

These expressions form the remaining arguments of the
head clause. Thus, the head clause formed so far for
production rule one is

2

Abstract syntax for the programming language TINY.

command(assign(id, Expr), abstract(S, apply(abstract(V.(Z.1.0),

(V\Id).2)..0), . . . . .
apply(Exprl, S)) program into an infinite recursion. To get around this

Y ... problem, we use a function called MU, the fixed-point
finding function, which is in effect a shorthand for the above
infinite definition. The job of the MU operator is to unfold
this definition at run time as many times as necessary,
possibly infinitely many. So the algorithm is modified to

4. Now we must build a body for this head clause. For every
synthesized attribute used in the semantic definition (e.g.,
e.expression), form a clause whose name is the

nonterminal corresponding to that attribute (e.g., detect this type of infinite recursion and to use the MU
expression) and whose first argument is a logical variable ~ OPErator instead.
corresponding to the nonterminal named by the attribute Following is the revised algorithm:

(e.g., Expr); the remaining arguments are those unique

logical variables created in the above step (e.g., Expr1). 1. For each production rule in the abstract syntax, build a

Thus, for e.expression construct the clause Horn clause such that

expression(Expr, Expr1). The body of the clause, then, is a. The name of the head clause is the nonterminal

the conjunction of all the above clauses; order is not appearing on the left-hand side of the production rule.

important. Thus, the clause formed for production rule b. The first argument of the head clause is the

one is production on the right-hand side of the production

rule.

command(assign(id, Expr), abstrac(S, apply(abstract(V.(Z.1.0}, ¢. The remaining arguments of the head clause are

((W10).2).1.0), constructed from the attribute grammar definitions as
apply(Expr1, S)) follows:

)~

expression(Expr, Expr1). i. Associate with each occurrence of an attribute and

the variables of the lambda expression (of the
semantic definition) a new logical variable, and
substitute these in the lambda expression.

ii. If the attribute appearing on the left-hand side of
the semantic definition also occurs on the right-

Let us now consider the while construct; application of
this algorithm would produce the following Horn clause:

command(while(E, C1),

abstract(S. hand side, then form a new lambda expression by
apply(abstract(V1.S1, simply placing a MU operator around the lambda
cond((V1-apply(Rc, expression. The variable of the MU operator is the
apply(z:;)’ logical variable corresponding to the nonterminal
)(true-S1).nil)), on the left-hand side of the semantic definition.
apply(E1, S)) iii. Translate the resulting Jambda expression into
comm)a‘r;j(C 1.Ren) & Prolog using the syntactic rules presented earlier.
expression(E,E1) & d. For every synthesized attribute used in the semantic
command(while(E, C1), Rc). definition, form a clause whose name is the
nonterminal corresponding to that attribute, whose
Execution of this definition will never terminate, due to the first argument is a logical variable corresponding to
last call, i.e., command(while(E, C1), Rc). Note that the order the nonterminal named by the attribute, and whose
in which the clauses of the body are formed is not remaining arguments are those unique logical
important. variables created in the above steps. The body of the
This definition does represent the correct semantics of the clause is the conjunction of the clauses just formed;
while construct. The only problem is that it leads our Prolog order does not make a difference. 297

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986 BIJAN ARBAB




298

Application of this algorithm to the while command will
now produce

command{white(E, C),
mu(X, abstract(S, apply(abstract(V1.51, cond((V1-apply(X,

apply(Re1,

$1))
}.(true-S1).nil)),
apply(E1, S))
) —
command(C, Rc1) &
expression(E,E1).

Application of the algorithm to the remaining semantic
equations of TINY produces the Prolog clauses listed in
Appendix B, which together can be used to do semantic
computation for TINY programs. For example, application
of the above Prolog clauses to the TINY program x:=read;
output x produces the following lambda expression as the
semantic definition:

abstract(*0,
apply(abstract(*1,
apply(abstract(*2.73."4.*5,
*3.74.72.*5),
apply(abstract(*6.*7.*8,
apply(abstract(*9,
*9.°6.77.8),
lookup(*6,
X))
).
apply(abstract(*10,
apply(abstract(*11.*12.713.* 14,
(*11\x."12).
*13.714),
apply(abstract(*15.716.*17.*18,
*16.715.17.18),
“10),
o))

where *N denotes distinct logical variables.

The relationship among the attribute grammar, Prolog
code, lambda expression, and lambda machine is presented
in Figure 6.

It is interesting to note that the inverse relation for the
produced Prolog code holds as well; i.e., we can issue a
Prolog goal with a particular lambda expression and, if there
is a well-formed TINY program that corresponds to that
lambda expression, it will be produced. This corresponds,
approximately, to execution of the inverse of the attribute
grammar. An algorithm for computing the inverse of an
attribute grammar is discussed by Yellin and Mueckstein
[21]. A closer investigation into this feature is required
before any correspondence can be shown.

4. Constructing a lambda machine in Prolog
After the semantic computation of the subject programs, we
are left with the semantic definition of the subject programs

BIJAN ARBAB

which are represented in lambda notation. These semantic
definitions can be executed via a lambda machine. Thus, a
lambda machine interpreter (named solve) is constructed in
Prolog to allow execution of semantic definitions. The
interpreter solve has two arguments: The first is the lambda
expression, and the second is the value of that lambda
expression as computed by solve.

Solve first calls capture to ensure that the scoping rules of
lambda expressions are not violated; then it calls solve1,
which is the actual interpreter. So solve is defined as

solve(M, R) — capture(M, M1) & solve1(M1, R).

Solve1, then, has a clause for each of the primitive
operations which are supposed to be known by this lambda
machine, e.g., negate, eq, add, sub, etc.; i.e.,

solvel{negate(E), X} — / & solve1{E, V1) & negate(V1, X).
solvel(eq(E1, E2), X) — / & solve1(E1, V1) & solve1(E2, V2) & eq(V1, V2, X).
solvel(add(E1l, E2), X) </ & solve1(E1, V1) & solve1(E2, V2) & add(V1, V2, X).

Note that inside each clause for a primitive operation, e.g.,
negate, a call is made to a procedure that implements the
primitive operation, in this case negate(V1, X). The
procedure negate(X, Y) can be defined in Prolog by asserting
negate(t, f) and negate(f, t).

The heart of the lambda machine is its capability of
dealing with cases where the lambda expression currently
under reduction is not a primitive one. If the lambda
expression under reduction is an abstraction, then no more
simplification is possible and the result is the abstraction
itself. Therefore, the last clause of the interpreter is
solve1(X, X). However, if the lambda expression is not an
abstraction, then it is an application, and the following
possibilities exist:

1. Application of two lambda expressions, the first of which
is another application: In this case, reduce the inner
application and recursively call the interpreter with its
result, 1.e.,

solvel1(apply(apply(A, B), C), R) « / & solvel(apply(A, B), A1) &
solve1(apply(A1, C), R).

2. Application of an abstraction to another lambda
expression: Assuming applicative evaluation order (also
called inside-out or call-by-value) for the lambda
expression, first find a value for the second lambda
expression, and then bind this value to the variable of
abstraction and solve the substituted body of the
abstraction, i.e.,

solvel(apply(abstract(V, B), C), R) — / & solve1(C, V) & capture(B, B1) &
solve1(B1, R).

However, if normal evaluation order (also called outside-
in or call-by-name) is assumed, then the variable of
abstraction is bound to the second lambda expression
(unevaluated), and the process is continued by solving the

iBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986




body of the substituted abstraction, i.e.,
solve1(apply(abstract(C, B}, C), R) — / & capture(B, B1) & solve1(B1, R).

Note that in both cases after the substitution a call to
capture is made to ensure that the resulting lambda
expression has no captured variables.

3. Application of a fixed point function mu to some lambda
expression: In this case, bind the variable of mu to a fresh
copy of the mu structure (itself) and simply continue by
solving the application of the substituted body of mu to
the second lambda expression, i.e.,

solvet(apply(mu{X, B), C), R) «- / & freshimu(X, B), mu(Y, B1)) &
X = mu(Y, B1) & solvel(apply(B, C), R).

Note that fresh will return a structure identical to the one
it was called with except that all the variables used in that
structure are new variables. This is necessary since, when
substituting X in the body of mu, no variable capturing
should occur.

Using the above interpreter we can execute the definition
of factorial, given earlier, to compute the factorial of
numbers, e.g.,

solve(
apply(mu(F,
abstract(X,
cond{(eq(X, 0)-1).(true-mui(X, apply(F, sub(X, 1)})).nil}),
4),
R).

will succeed with R bound to 24. Semantic definitions
produced by the attribute grammars together with the
lambda machine define a complete execution model for a
language. For example, with the TINY program

x := read; sum ;= Q;
while not x = true do sum := sum + x, x := read end;
output sum

as input to the compiled attribute grammar, a lambda
expression will result as its semantic definition, which
together with an input stream (1.2.3.true.nil) to the lambda
machine will produce the final state as follows:

((true\x).(6\sum).(3\x).(3\sum).

(2\x).(1\sum).(0\sum).(1\x).nil). Environment component of the State
nil. Input component of the State

6.nil Output component of the State

For a complete listing of the above lambda machine defined
in Prolog, see Appendix A.

5. Compiling inherited-and-synthesized attribute
grammars

Consider the attribute grammar mapping PAM [19] into a
simple machine language. This attribute grammar uses both
synthesized and inherited attributes; the complete definition
of PAM’s syntax and semantics can be found in [19].

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

Attribute grammar definition
of a programming language
(may have circles)

Given to
The algorithm presented
in this section
Will produce
Subject program of Prolog code corresponding to definition
programming language + of the programming language
L Given to
Prolog interpreter or compiler l
Will produce
Sample input for - - 3
subject program + | Object code in form of lambda expression I
L Given to
Y
| Lambda machine J
Will produce

Output corresponding to execution of
subject program with respect to the input

Relationship among AG, Prolog, and lambda expression.

The first step in the compilation, as before, is to build an
abstract syntax for PAM that is representable in clause form,
and then carry out the following steps:

1. For each production rule in the abstract syntax, build a

Horn clause such that

a. The name of the head clause is the nonterminal
appearing on the left-hand side of the production rule.

b. The first argument of the head clause is the
production on the right-hand side of the production
rule.

¢. The remaining arguments of the head clause are
constructed from the attribute grammar definitions as
follows:

i. Associate with each inherited and synthesized
attribute of this nonterminal a new logical variable.
These variables form the rest of the arguments of
the head clause.

d. The body of the head clause is a conjunction of
clauses formed as follows: For every call made to
evaluate an attribute, form a clause whose name is the
named nonterminal (in the call) and the arguments of
which are the code plus all the logical variables
associated with the synthesized and inherited
attributes of the called nonterminal. The values of
these arguments are further determined from the
assignment statements of the attribute grammar.

BIJAN ARBAB

299




As an example, consider the first production rule and its
semantics:

<program> ::= <series>
Code(<program>) «— append(Code(<series>), '"HALT")
Temp(<series>) «— 0
Labin(<series>) « 0

According to the algorithm just presented, the head clause
will be program(Series, Code) «. The attribute grammar for
this production contains only one call for attribute
evaluation, i.e., Code(<series>). Also note that series has
two inherited attributes (Temp, Labin) and two synthesized
attributes (Code, Labout). Thus, the body will be
series(Series, Temp, Labin, Labout, Code); however, since
the attribute equations specify that Temp(<series>) and
Labin(<series>) are set to zero, we must modify the body;
hence, series(Series, 0, 0, Labout, Code). Since
Code(<program>) « append(Code(<series>), 'HALT'), we
must modify the head clause as follows, noting that the .
here plays the role of the append function: program(Series,
Code.s(halt, nil)) <. So the entire clause put together is
program(Series, Code.s(halt,nil) < series(Series, 0, 0,
Labout, Code).. The structure s(halt, nil} is a representation
for the machine language constructs, the first argument of s
is the op-code, and the second is the argument for that op-
code, if any.

As a second example, let us look at the series production
rule and its associated attribute grammar definition.

<series> ;= <statement> ; <series>2
Code(<series>>) « concat{(Code({<statement=), Code(<series=>2)))
Labout(<series>) «— Labout(<series>2)
Temp(<series>2) « Temp(<series>)
Labin(<series>2) «— Labout{<statement>)
Temp(<statement>) — Temp(<series>)
Labin(<statement>) «— Labin(<series>>)

The head clause for this production rule is series(S.Ss,
Temp, Labin, Labout, Code) <, since series has two
inherited attributes (Temp, Labin) and synthesized attributes
(Labout, Code). There are two clauses in the body of this
head clause since there are only two calls made to evaluate
attributes, i.e., Code(<series>) and Code(<statement>). The
nonterminal <statement> has four attributes as well, two
inherited (Temp, Labin) and two synthesized (Labout, Code).
Thus, the clauses for <statement> and <series> are

Appendix A: Lambda machine in Prolog
/* solve(M, R) reduces M to R where:
*/

200 op('\', r1, 250).

BIJAN ARBAB

M s
R will be the result of solving M

statement(S, Temp1, Labin1, Labout1, Code1) and
series(Ss, Temp2, Labin2, Labout2, Code2). Now we must
take care of the assignments. Since we know that
Labout(<series>) « Labout(<statement>), we can conclude
that Labout2 = Labout1, and from the other assignment
staternents we can conclude that Temp1 = Temp, Labin1 =
Labin, Temp1 = Temp, and Labin1 = Labin2. The . is again
used to represent the concat operator, and the head clause is
modified according to Code(<series>) «—
concat(Code(<statement>), Code(<series>2))). Therefore,
the final clause for <series> is

series(S.Ss, Temp, Labin, Labout, Code1.Code2) «—
statement(S, Temp, Labin, Labout1, Codet) &
series(Ss, Temp, Labout1, Labout, Code?2).

Complete compilation of PAM’s definition will produce
the Prolog program listed in Appendix C; sample semantic
computations for some PAM programs are illustrated in
Appendix D.

Conclusion

It was demonstrated that synthesized-only and inherited-
and-synthesized attribute grammars with recursive (circular)
definitions can be compiled into a set of Prolog clauses, thus
providing an effective method of execution for attribute
grammars. The compilation algorithm was applied to two
toy programming languages, TINY and PAM, which were
vehicles for the demonstration and justification of the
concepts involved. In the case of synthesized-only attribute
grammars, the lambda machine plays the role of a target
machine for evaluation of semantic definitions. A lambda
machine was built in Prolog for reducing (solving) lambda
expressions. Also, it has been shown (elsewhere) that
denotational semantic definitions can be mapped into
synthesized-only attribute grammars [14]. Thus, this model
provides a means through which denotational semantic
definitions can be executed.

It was noted that the inverse relation between the subject
program and its semantic definition holds as well. This
provides a mechanism for execution of the inverse of the
attribute grammar. This point, however, needs further
research.

Acknowledgments
The author is grateful to David Martin and Stott Parker for
their discussions and comments on this work.

a lambda expression

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986




solve(M, R) =
capture(M, M1) &
solvel(M1, R).

/* Some primitive instructions for this lambda machine */

solvel (negate(E), X) =
/&
solvel(E, V1) &
negate(Vl, X).
solvel(eq(El, E2), X) =
/ &
solvel(El, V1) &
solvel(E2, V2) &
eq(Vl, V2, X).
solvel(add{El, E2), X) =
/&
solvel(El, V1) &
solvel(E2, V2) &
add{(Vvl, V2, X).
solvel(sub(El, E2), X) =
/&
solvel(E1l, V1) &
solvel(E2, V2) &
diff(vi, vz, X).
solvel{(mul(El, E2), X) =
/ &
solvel(E1l, V1) &
solvel (E2, V2) &
prod(Vl, V2, X).
solvel(div(El, E2), X) =
/ &
solvel(El, V1) &
solvel(E2, V2) &
quot(Vvl, v2, X).
solvel (lookup(Z, 1), X) =
/&
lookup(Z, 1, X).
solvel(cond(L), X) =
/ &
cond(L, V) &
solvel(V, X).

/* Solving lambda expression in applicative evaluation order */
solvel(apply(apply(A, B), C), R) =
r &

solvel(apply(A, B), Al) &
solvel(apply(Al, C), R).
solvel(apply(abstract(V, B), C), R) =
/&
solvel(C, V) &
capture(B, Bl) &
SO]Vel(Bl, R). 301

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986 BIJAN ARBAB




/* Fix point finding function for solving recursive definitions */

solvel{apply(mu(X, B), C), R) =
/ &
fresh(mu(X, B), mu(Y, B1)) &
X = mu(Y, Bl) &
solvel(apply(B, C), R).

/* Can not simplify it any more */
solvel (X, X).

/* fresh(X, Y) generates Y such that it is identical to X except that
all variables in X have been renamed. For example:
fresh(f(*1, g(*2, *1)), f(*3, g(*4, *3))).

*/

fresh(X, Y) = freshl(X, Y, nil, 7).

freshl(X, Y, Asoc, Asoc) = var(X) & pres(X, Asoc, Y) & /.
freshl(X, Y, Asoc, (X-Y).Asoc) = var(X) & /.
freshl(A, A, Asoc, Asoc) = atom(A) & /.
fresh1(I, I, Asoc, Asoc) = int(I) & /.
freshl(X.Y, Xr.Yr, Asoc, Asoc2) =
freshl(X, Xr, Asoc, Asocl) &
freshl(Y, Yr, Asocl, Asoc2).
freshl(X, Xr, Asoc, Asocl) -
cons(Name.Arglist, X) &
freshl(Arglist, Arglistr, Asoc, Asocl) &
cons(Name.Arglistr, Xr).

/* pres(X, Asoc, Y) Y is bound to X in Asoc */

pres(X, (X1-Y1).Asoc, Y1) =
not(vneq(X, X1)) &

/.
pres(X, (X1-Y1).Asoc, Y2) =
pres(X, Asoc, Y2).

/* vneq(X, Y) true if both X and Y are distinct variables */

vneq(X, Y) = not(not(vnegl(X, Y))).

vneql(1l, 2).

/* capture(E, E1) rewrites E to E1 such that no possibility of name
capturing can occur. For example:
capture(abstract(*1, apply(abstract(*1, *1), *1)),

i (abstract(*1, apply(abstract(*2, *2), *1))).

/

capture(X, X) = var(X) & /.
capture(apply(El, E2), apply(E3, E4)) =
/ &

capture(El, E3) &

302 capture(E2, E4).

BIJAN ARBAB IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986




capture(abstract(S, E), E2) -

/ &

capture(E, E1) &

rename(abstract(S, E1), S, E2).
capture(mu(X, E), E2) -

/ &

capture(E, E1) &

rename(mu(X, E1), X, E2).
capture(X, X).

/* rename(E, X, X1, E1) rename variable X in E to X1, the result is El */

rename(E, X, E1) =
var(X) &
/ &
renamel (E, X, X1, E1).
rename(E, H.T, E1) =
/&
rename(E, H, E2) &
rename(E2, T, E1).

renamel(Y, X, X1, X1) = var(Y) & not(vneq(X, Y)) & /.
renamel (Y, X, X1, Y) = var(Y) & /.
renamel (A, X, X1, A) = atom(A) & /.
renamel(I, X, X1, I) = int(I) & /.
renamel (H.T, X, X1, H1.T1) -

/ &

renamel (H, X, X1, H1) &

renamel (T, X, X1, T1).
renamel (Y, X, X1, Y1)~

cons(Name.Arglist, Y) &

renamel (Arglist, X, X1, Arglistl) &

cons(Name.Arglistl, Y1).

/* Definition of primitive instructions for this lambda machine */

negate(true, false) = /.
negate(false, true).

eq(Vl, V2, true) - eq(Vl, V2) & /.
eq(Vvl, v2, false).

add(Vvl, V2, V3) < sum(Vl, V2, V3).
Tookup(nil, Id, unbound) = /.
Tookup((V\Id).Zs, Id, V) = /.
Tookup((VINIdl).Zs, Id, V) = lookup(Zs, Id, V).
cond((true-C).Ls, C) = /.
cond((B-C).Ls, C) =

solvel (B, true) &

/.
cond((B-C1).Ls, C) =
cond(Ls, C).

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986 BIJAN ARBAB

303




Appendix B: Compiled semantics of TINY

command(assign(Id, E), abstract(S, apply(abstract(V.(Z.1.0),
((VW\Id).Z).1.0
),
apply(E1, S)
)

) -

expression(E, E1).

command(output(E), abstract(S, apply(abstract(V.(Z.1.0)
Z.1.(v.0)
),
apply(El, S)
)

b

) -

expression(E, E1).

command (
if(E, C1, C2),
abstract(S,
apply(abstract
cond

V1.S51,
(Vl-apply(Rcl, S1)).(true-apply(Rc2, S1)).nil)

3

N

o S~

)app]y(E
)

} -
expression(E, E1) &
command(C1, Rcl) &
command(C2, Rc2).

command(while(E, C),

mu(X,
abstract(S,
apply(abstract(V1.S1,
cond{(Vl-apply(X,
apply(Rcl,
S1)
)
). (true-S1).nil
)
),
apply(El, S)
)
)
)
) -

command(C, Rcl) &

expression(E,E1).
304

BIJAN ARBAB IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986




command(C1.C2, abstract(S,
apply(Rc2, apply(Rcl, S))
)

) -
command(Cl, Rcl) &
command(C2, Rc2).

expression(expr(0), abstract(S, 0.S)).
expression(expr(1), abstract(S, 1.S)).
expression(expr(true), abstract(S, true.S)).
expression(expr(false), abstract(S, false.S)).
expression(expr{read), abstract(Z.(Hi.Ti).0, Hi.(Z.Ti.0))).
expression(expr(Id),
abstract(2.1.0,
apply(abstract(val,val.(Z.1.0)),
Tookup(Z, Id)
)

) -

atom(1d).
expression(expr(not(E)),
abstract(sS,
apply(abstract(V1.S1,
apply(abstract(V2,
Ve.S1
),
negate(V1)
)
),
apply(E1, S)
)
)

) -

expression(E, E1).
expression(
expr(Ea, eq, Eb),
abstract(sS,
apply(abstract(Vv1.S1,
apply(abstract(Vv2.52,
apply(abstract(V3,
V3.S52
)5
eq(Vvl, v2)

)
),
)app]y(EZ, S1)

),
apply(El, S)
)

)
) -
expression(Ea, E1) &

expression(Eb, E2). 305

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986 BUUAN ARBAB




expression(
expr(Ea, plus, Eb),
abstract(s,
apply(abstract(Vl.S1,
apply(abstract(Vv2.S2,
apply(abstract(V3,
V3.S2
),
add(v1, v2)
)
),
apply(E2, S1)
)

apply(El, S)
)
)

) -
expression(Ea, E1) &
expression(Eb, E2).

Appendix C: Compiled semantics of PAM

program(Series, Scode.s(halt, j).nil) =
series(Series, 0, 0, L, Scode).

series(S.Ss, Temp, Li, Lo, Codel.Codes) =
statement(S, Temp, Li, Lol, Codel) &
series(Ss, Temp, Lol, Lo, Codes).
series(S, Temp, Li, Lo, Code) =« statement(S, Temp, Li, Lo, Code).

statement(read(Vs), Temp, Li, Li, Code) = variables(Vs, get, Code).

variables(V.nil, Opcode, s(Opcode, V)).
variables(V.Vs, Opcode, s(Opcode, V).Code) = variables(Vs, Opcode, Code).

statement(write(Vs), Temp, Li, Li, Code) = variables(Vs, put, Code).
statement(assign(V, Expr), Temp, Li, Li, Ecode.s(sto, V)) =
expression(Expr, Temp, Ecode).
statement(if(Comp, Then, Else),
Temp,
Li,
Lo,
Ccode.Tcode.s(j, L2).s(L1, lab).Ecode.s(L2, lab)) =
sum(Li, 1, L1) &
sum(Li, 2, L2) &
comparison(Comp, Temp, L1, Ccode) &
series(Then, Temp, L2, Lol, Tcode) &
series(Else, Temp, Lol, Lo, Ecode).

statement(dloop(Expr, Series),
Temp,
Li,
306 Lo,

BIUAN ARBAB IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986




Ec.s(sto, T1).s(L1l, lab).s(sub, 1).s(jn, L2).s{(sto, T1).Sc.s(j, L1).s(L2, lab
)
) -

sum(Temp, 1, T1) &

sum(Li, 1, L1) &

sum(Li, 2, L2) &

expression(Expr, T1, Ec) &

series(Series, T1, L2, Lo, Sc).

statement(iloop(Comp, Series),
Temp,
Li,
Lo,
s(L1, lab).Ccode.Scode.s(j, L1).s(L2, lab)) =
sum(Li, 1, L1) &
sum(Li, 2, L2) &
comparison(Comp, Temp,L2, Ccode) &
series(Series, Temp, L2, Lo, Scode).

comparison(comp(Exprl, Rel, Expr2),
Temp,
Li,
Ecodel.s(sto, T1).Ecode2.s(sub, T1).s(Opcode, Li)) =
sum(Temp, 1, T1) &
expression(Exprl, T1, Ecodel) &
expression(Expr2, T1, Ecode?) &
relation(Rel, Opcode).

expression(expr(Term), Temp, Code) = term(Term, Temp, Code).
expression(expr(Terml, Wop, Term2),
Temp,
Tcl.s(sto, T1).Tc2.s(sto, T2).s(load, T1).s(Opc, T2)) =
sum(Temp, 1, T1) &
sum(Temp, 2, T2) &
term(Terml, Temp, Tcl) &
term(Term2, T2, Tc2) &
weakoperator(Wop, Opc).

term(term(Elem), Temp, Code) = element(Elem, Temp, Code).
term(term(Eleml, Sop, Elem?2),
Temp,
Ecl.s(sto, T1).Ec2.s(sto, T2).s(load, T1).s(Opc, T2)) =
sum(Temp, 1, T1) &
sum(Temp, 2, T2) &
element(Eleml, Temp, Ecl) &
element(Elem2, T2, Ec2) &
strongoperator(Sop, Opc).

element(elem(constant(C)), Temp, s(load, num(C))).
element(elem(variable(V)), Temp, s(load, V)).

element(Expr, Temp, Code) = expression(Expr, Temp, Code). 207

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986 BIJAN ARBAB




relation('eq', jnp). sub 1.
relation('le', jn). jnz 2.
relation('gt', jnz). load k.
relation('ge', jp). sto 1.
relation('ne', jz). load num(1).
sto 2.
weakoperator{plus, add). lJoad 1.
weakoperator(minus, sub). sub 2.
sto k.
strongoperator(times, mul). i 1.
strongoperator(divide, div). lab.
halt j.
Appendix D: Sample se tic co tation f
Pzﬁn ample semanti mputation for The ,Pgm program
read x,y;
The Pam program x := (x + y *z)+b *c¢ while x <> 99
will produce the following code: do
ans := (x + 1) - (y /2);
ligd lx' write ans;
load . end read x,y
?ggd 32 will produce the following code:
sto 4.
load 3. get  x.
get y-
mul 4. 1 lab
sto 2. 1 ad.
load 1. oa X
add 2. sto 1.
sto 1. load  num(99).
load b. e b
sto 3. J .
load c. load  x.
sto 4. sto 1.
load 3. Toad 2num(l).
mul 4. sto .
sto 2. load 1.
load 1. add 2.
add 2. sto 1.
sto X, load y.
halt j. sto 3.
load  num(2).
The Pam program sto 4.
read k; load 3.
while k > 0 div 4.
do sto 2.
k := k -1 load 1.
end sub 2.
will produce the following code: sto  ans.
put  ans.
g$t k. get  x.
1 ab. get y.
load k. j 1.
sto 1. 2 lab.
Toad  num(0). halt j.

308

BIJAN ARBAB IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986




References

L.

2.

3.

D. E. Knuth, “Semantics of Context-Free Languages,” Math.
Syst. Theory 2, 127-145 (1968).

D. E. Knuth, “Semantics of Context-Free Languages:
Correction,” Math Syst. Theory 5, 95-96 (1971).

W. T. Wilner, “Declarative Semantic Definition,” Report No.
STAN-CS-233-71, Department of Computer Science, Stanford
University, CA, 1971.

. T. A. Dreisbach, “A Declarative Semantics Definition of

PL360,” Report No. UCLA-ENG-7289, Computer Science
Department, University of Califorma, Los Angeles, 1972.

. D. M. Berry, “On the Design and Specification of the

Programming Language OREGANO,” Report No. UCLA-ENG-
7388, Computer Science Department, University of California,
Los Angeles, 1974.

. S. Gerhart, “Correctness Preserving Program Transformation,”

Proceedings of the Second ACM Symposium on Principles of
Programming Languages, Palo Alto, CA, 1975, pp. 54-66.

. D. Neel and M. Amirchahy, “Semantic Attributes and

Improvement of Generated Code,” Proceedings of the ACM
National Conference, San Diego, CA, 1974, pp. 1-10.

. P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns, “Attribute

Translations,” J. Computer & Syst. Sci. 9, 279-307 (1974).

. S. R. Petrick, “Semantic Interpretation in the REQUEST

System,” Research Report RC-4457, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 1973.

. T. Katayama, “HFP: A Hierarchical and Functional

Programming Based on Attribute Grammar,” Conference
Record of the Fifth International Conference on Software
Engineering, San Diego, CA, 1981, pp. 343-352.

. H. Ganzinger, K. Ripken, and R. Wilhelm, “MUG1—An

Incremental Compiler-Compiler,” Proceedings of the ACM
Annual Conference, Houston, TX, 1976, pp. 415-418.

. U. Kastens and E. Zimmerman, “GAC—A Generator Based on

Attribute Grammars,” Institut fir Informatik II, Universitat
Karlsruhe, Karlsruhe, West Germany.

. K. J. Raiha, M. Saarinen, E. Soisalon-Soininen, and M. Tienari,

“The Compiler Writing System HLP,” Report No. A-1978-2,
Department of Computer Science, University of Helsinki,
Finland, 1978.

. L. M. Chirica and D. F. Martin, “An Order-Algebraic Definition

of Knuthian Semantics,” Math. Syst. Theory 13, 1-27 (1979).

. D. Warren, “Logic Programming for Compiler Writing,”

Software Pract. & Exper. 10, 97-125 (1979).

. K. Kennedy and S. K. Warren, “Automatic Generation of

Efficient Evaluators for Attribute Grammars,” Proceedings of the
Third ACM Symposium on Principles of Programming
Languages, Atlanta, GA, 1976, pp. 32-49.

. T. Katayama, “Translation of Attribute Grammars into

Procedures,” ACM Trans. Prog. Lang. & Syst. 6, 345-369
(1984).

. M. Gordon, Denotational Description of Programming

Languages: An Introduction, Springer-Verlag New York, 1979.

. F. Pagan. Formal Specification of Programming Languages: A

Panoramic Primer, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1981.

. P. Deransart and J. Maluszynski, “Relating Logic Programs and

Attribute Grammars,” Logic Program. 2, No. 2, 119-155
(1985).

. D. Yellin and E. M. Mueckstein, “The Automatic Inversion of

Attribute Grammars,” Research Report RC-10957-49159, IBM
Thomas J. Watson Research Center, Yorktown Heights, NY,
1985.

Received October 28, 1985, accepted for publication January
6, 1986

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY [986

Bijan Arbab 1BM Scientific Center, 11601 Wilshire Boulevard,
Los Angeles, California 90025. Mr. Arbab is a member of the
Scientific Center staff working on the robotics project on problems
regarding machine learning, planning, and logic programming. He
worked for Teledyne Microelectronics on the automation of data

acquisition and reduction from 1980 to 1983. Joining IBM in 1983,

he worked part time on the robotics project; he began working full
time on the project in July 1985. Mr. Arbab received his B.S. in
mathematics in 1982 from Loyola Marymount University, Los
Angeles, and his M.S. in computer science in 1984 from UCLA; he
is currently a Ph.D. candidate in computer science at UCLA. Mr.
Arbab is a co-author of papers in the area of expert systems and
semantics of logic programs.

BIJAN ARBAB

309




