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Compiling 
circular  attribute 
grammars 
into  Prolog 

by Bijan  Arbab 

This  paper  describes  an  algorithm  for  compiling 
attribute  grammars  into  Prolog.  The  attribute 
grammars  may  include  inherited  and 
synthesized  attributes  and  contain  recursive 
(circular)  definitions.  The  semantics  of  the 
recursive  definitions  is  defined  in  terms of a 
fixed-point  finding  function.  The  generated 
Prolog  code  stands  in  direct  relation  to  its 
attribute  grammar,  where  logical  variables  play 
the  role of synthesized or inherited  attributes. 
Thus an  effective  method  for  the  execution of 
recursive  attribute  grammars  has  been  defined 
and  applied. 

1. Introduction 
Attribute  grammars, originally described by Knuth [ 1, 21, are 
a  mechanism  for assigning meaning  to strings of a  context- 
free language. To this end,  and because of their  intuitive 
nature,  attribute  grammars have  been used for semantic 
definitions of programming languages, such  as  SIMULA 67 
[3] and PL360 [4]; programming language design [5]; 
program  correctness  proofs [6]; program optimization [7]; 
program  translation [8]; question-answering systems [ 9 ] ;  
hierarchical and functional programming  [lo];  and 
compiler-generating system [ 1 1-1 31. Attribute grammars 

have  been  studied and  compared with other formal methods 
for the specification of semantics  and have been given a 
precise formulation  (including recursive definitions)  within 
the framework of initial algebra semantics [ 141. Prolog is 
also well suited  for  compiler  writing and  has been used for 
the  development of the DEC 10 Prolog  compiler [ 151. 

mechanisms  have  included table-driven tree-walk algorithms 
[ 161 as well as  compilation  into recursive procedures with 
parameters corresponding to  attributes [ 171. These 
algorithms, however, deal with absolutely noncircular 
definitions. Knuth also shows a method whereby an attribute 
grammar  can be converted into  an algorithm  for recognizing 
a language, but  only if the  equations exhibit no circularities 
[ 11. Knuth's algorithm first forms the parse tree and  then 
converts the  equations  into programs which are executed  in 
an  order guaranteed to define the  attributes  at all nodes. The 
attribute  grammars dealt  with in  this  paper, however, may 
contain recursive (circular)  definitions, and their meaning is 
defined in terms of  a fixed-point finding function. 

In this  paper, an algorithm  for  compiling synthesized-only 
attribute  grammars with recursion  (circularity) is presented, 
The language TINY [ 181 has been selected as  the working 
example. Note  that every inherited-and-synthesized attribute 
grammar  can be transformed into a  ourelv svnthesized-only 
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into  an equivalent synthesized-only attribute  grammar  and 
then apply the algorithm  presented  in  this paper  to compile 
the resulting synthesized-only attribute  grammar. 

Inherited-and-synthesized attribute  grammars, however, 
are  more intuitive than  their equivalent synthesized-only 
attribute  grammars, since the inherited attributes serve to 
reduce the functionality  of the  semantic  equations. We 
present a new algorithm for compiling  inherited-and- 
synthesized attribute  grammars  into Prolog. The language 
PAM [ 191 has  been selected as  the working  example. 

It is common practice to  make use of lambda  notation  in 
writing the  semantic  equations of a synthesized-only 
attribute  grammar. Following this practice, the semantics  of 
TINY is presented in  terms of lambda  notation. In Section 2 
we discuss the representation of lambda  notation in Prolog. 
An outline of an algorithm for compiling synthesized-only 
attribute  grammars  appears in  Section 3. At this  point, it is 
possible to  do  semantic  computation for  subject  programs; 
i.e., a lambda expression is constructed as a result of 
executing, via a Prolog interpreter/compiler, the Prolog 
clauses obtained  from  compilation of the synthesized-only 
attribute  grammar together with an abstract  syntax of a 
subject  program. Reduction of the generated lambda 
expression, with respect to  some  input, corresponds to  the 
execution  phase  of the subject programs. To accomplish  this, 
a detour is taken in  Section 4, where construction of a 
lambda  machine in Prolog is discussed for the purpose  of 
reducing (solving) lambda expressions. This  lambda  machine 
will have  proper facilities to deal with run-time semantics  of 
the fixed-point finding operator which was used during 
semantic evaluation  for recursive (circular) attribute 
grammars. Sample  compilation  and execution  of TINY 
programs are presented at  the  end of this  section. In Section 
5 an algorithm for compiling  inherited-and-synthesized 
attribute  grammars  into Prolog is presented and applied. 

After this work was completed, the  author became  aware 
of the work of Deransart and Maluszynski [20] on  the 
relation between attribute  grammars  and logic programming. 
The main thrust of  their work, however, is different from  the 
theme of this  paper.  Deransart and Maluszynski show a 
formal  correspondence between attribute  grammars  and 
logic programming  and proceed to  make use of the 
established result in  one of them, namely attribute 
grammars,  to establish some new results in the  other, namely 
logic programming. In their  conclusion  they  state that new 
evaluation methods for attribute  grammars based on  the 
procedural  semantics of logic programs are possible. This 
type of  application shows that  the expertise  in logic 
programming can also be applied to  the field of attribute 
grammars.  However,  this issue was not discussed in their 
paper  and was said to require further investigation. This 
paper, then,  demonstrates  one such  evaluation  mechanism 
for attribute  grammars based on Prolog’s procedural 
semantics of logic programs. 

IBM J .  RES. DEVELOP. VOL. 30 NO. 3 MAY 1986 

Syntax of lambda notation. 

Syntax of lambda notation in clause form 

2. Representing  lambda  notation  in  Prolog 
It is common practice to  make use of lambda  notation  in 
writing the  semantic  equations of synthesized-only attribute 
grammars. In order  to  manipulate these  equations, we must 
be able to represent them in Prolog. Here  then is one 
representation  of lambda  notation in Prolog. The syntax of 
the  lambda  notation we use is shown  in Figure 1. 

For example, the factorial function  can  be written as 

MU f.(L x.(eq(x. 0) - 1 ,  true - x * f(x-1))) 

The syntactic  representation of the above lambda  notation 
in Prolog form is shown  in Figure 2. 

For example, the previous factorial function  translated 
into Prolog form is 

rnu(F, abstract(X, cond(eq(X, 0)-1 .true-rnul(X. apply(F. sub(X. l))).nd))). 

The use of logical variables as variables of abstraction 
simplifies the substitution process; i.e., once X is bound to 
some structure, all its  occurrences throughout  the  lambda 
expression will be bound  to  that  same  structure through 
Prolog’s unification process. This, however, does  imply 
that  the  normal scoping  rules  of lambda  notation will 
not be obeyed! For example,  in the  lambda expression 
abstract()(,  apply(abstract(X, X),  X)), if the  outer X gets 
bound  to, say, a, all the X’s will be bound  to a’s, leading to 
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1 Syntax of the programming  language TINY. 

8 
9 
10. 
1 1  
12. 
13 

14 

= L  
= t  
= L  
= t  
= t  
= t  

= t  

I I 

the expression abstract(a,  apply(abstract(a,  a), a)). This is 
simply wrong, since the  inner X is really a different variable 
from the  outer X; Le., it will be necessary to carry out 
substitution properly. 

To overcome  this  problem,  a utility function called 
capture is used to rewrite lambda expressions  such that  no 
variable capturing, as above, can  occur.  For example, 
capture applied to  the above lambda expression will produce 
abstracto(,  apply(abstract(Y, Y),  X)), which avoids the 
problem while allowing us to use logical variables as 
variables of lambda expressions. The capture predicate is 
used by the  lambda  machine every time a  substitution is 
made  in  order  to  make sure that  the resulting expression will 
have no  captured variables. The Prolog code for the capture 
predicate is not complicated and  can be found  in Appendix 
A. 

3. Compiling  synthesized-only  attribute 
grammars 
The steps which are needed to compile synthesized-only 
attribute  grammars  are discussed, justified, and applied with 
respect to a  little programming language called TINY [ 181. 
The purpose  of TINY is to provide  a vehicle for illustrating 296 
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various  formal concepts in use. The syntax  of TINY,  in 
terms of  synthesized-only attribute  grammars, is  presented  in 
Figure 3. 

The  semantics of TINY  can be described by a synthesized- 
only attribute  grammar.  The state of execution  for  a TINY 
program can be taken to be a  triple composed of a memory 
map z, which is a function from identifiers to their values, 
and  an  input i and  an  output o from  some  domain of values. 
The semantics of commands  can  then be described in  terms 
of a function  that  transforms states into states and  the 
semantics of expressions as a function with signature 
State + Value x State, or in Curried  form, 
State + Value + State; Le., expressions  produce values as 
well as  change the state. The semantics  of the while 
command (4) is perhaps the most  interesting to consider 
because it contains a cycle. First, the expression is computed 
with respect to  the  input state s, which results in  the value 
v l  and  the new state s l  . If v l  is true  (note  that  no type 
checking is being performed), then we proceed by executing 
cornmandl with respect to s l  and  continue by passing the 
resulting state to r.command; i.e., re-enter the while loop 
with the state which has resulted  from the  computation of 
expression and cornmandl . The complete  semantics of 
TINY  appears  in Figure 4; note  that <, >, and , are used 
only to aid readability and  are  not  part of the syntax of the 
lambda expression  presented earlier. 

To compile the definitions  in  Figure 4, we must first build 
from the syntax an abstract  syntax for the language which is 
also representable  in Prolog form.  For example, the abstract 
syntax  for TINY can be represented as  in Figure 5.  

Now, for each production  in  the abstract  syntax of the 
language, write a Prolog clause  as follows: 

The  name of the head  clause is the  nonterminal 
appearing  on  the left of the  production rule. For example, 
for production rule one, this  would be command. 
The first argument of the head  clause is the  production 
on  the right-hand side, e.g., assign(<id>,  <expression>), 
but all nonterminals  are replaced by logical variables; 
thus  the first argument is assign(ld,  Expr). Note  that 
logical variables are represented by uppercase letters, 
possibly numbered, or just  an uppercase  letter  for the first 
character. 
The  remaining  arguments of the head  clause are  the 
synthesized attributes corresponding to  the  nonterminal 
on the left-hand  side  of the  production rules. Their 
corresponding values are constructed from  attribute 
grammar definitions as follows: 

Associate with each  occurrence of  an  attribute  and  the 
variables of the  lambda expression (of the  semantic 
definition) a new logical variable, and substitute them 
into  the  lambda expression. For example, the  lambda 
expression L s. (L v<z, i, o>.<z(v/ld),  i,  o>) 
(e.expression s) will become L S. (L V<Z, I ,  
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O>.<Z(V/ld), I, 0>) (Exprl S). After translation into 
Prolog, according to  the rules  presented  earlier, the 
lambda expression will become 

abstract(S, apply(abstract(V.(Z.l.O), 
((V\ld).Z).l.O), 

aPPlY(Expr1 I S))) 

These expressions form the  remaining  arguments of the 
head clause. Thus,  the head clause formed so far for 
production rule one is 

comrnand(assign(1d. Expr), abstract(S,  apply(abstract(V (Z.l.O), 
((V\ld).Z).l.O), 

apply(Exprll S))) 
) -  . . .  

4. Now we must build a  body for this  head clause. For every 
synthesized attribute used in the  semantic definition (e.g., 
e.expression), form a  clause whose name is the 
nonterminal corresponding to  that  attribute (e.g., 
expression) and whose first argument is a logical variable 
corresponding to  the  nonterminal  named by the  attribute 
(e.g., Expr); the  remaining  arguments  are those unique 
logical variables created  in the above  step ( e g ,  Exprl). 
Thus, for e.expression construct  the clause 
expression(Expr, Exprl). The body of the clause, then, is 
the  conjunction of all the above clauses: order is not 
important.  Thus,  the clause  formed for production rule 
one is 

command(assign(1d. Expr), abstract(S. apply(abstract(V.(Z.t.O), 
((V\ld).Z).l.O), 

apply(ExPr1 I S))) 
) +  

expression(Expr. Exprl). 

Let us now consider the while construct;  application of 
this  algorithm  would  produce the following Horn clause: 

comrnand(while(E. Cl). 
abstract@. 

apply(abstract(V1 .S1, 
cond((V1 -apply(Rc. 

aPPly(Rc1, 
S1)) 

) (true-Sl).nil)), 
aPply(E1 S))N 

) -  
command(C1, Rcl) 8 
expresslon(E,El) 8 
cornmand(while(E, Cl) .  Rc). 

Execution of this definition will never terminate,  due  to  the 
last call, i.e., command(while(E, Cl) ,  Rc). Note  that  the  order 
in which the clauses of  the body are formed is not 
important. 

This definition does represent the correct  semantics of the 
while construct. The only  problem is that it leads our Prolog 

program into  an infinite  recursion. To get around this 
problem, we use a function called MU, the fixed-point 
finding function, which is in effect a shorthand for the above 
infinite  definition. The  job of the MU operator is to unfold 
this  definition at  run  time  as  many  times  as necessary, 
possibly infinitely many. So the algorithm is modified to 
detect  this  type of infinite  recursion and  to use the MU 
operator instead. 

Following is the revised algorithm: 

1 .  For each production  rule in the abstract  syntax, build a 
Horn clause  such that 
a.  The  name of the head  clause is the  nonterminal 

appearing on  the left-hand side of the  production rule. 
b. The first argument of the head clause is the 

production on the right-hand side of the production 
rule. 

c. The  remaining  arguments of the head clause are 
constructed from  the  attribute  grammar definitions  as 
follows: 

i. Associate with each  occurrence of an  attribute  and 
the variables of the  lambda expression (of the 
semantic definition)  a new logical variable, and 
substitute these in the  lambda expression. 

ii. If the  attribute  appearing  on  the left-hand  side  of 
the  semantic definition also occurs on  the right- 
hand side, then form  a new lambda expression by 
simply placing a MU operator  around  the  lambda 
expression. The variable of the MU operator is the 
logical variable corresponding to  the  nonterminal 
on  the left-hand side of the  semantic definition. 

iii. Translate the resulting lambda expression into 
Prolog using the syntactic  rules  presented earlier. 

d. For every synthesized attribute used in the  semantic 
definition, form a  clause whose name is the 
nonterminal corresponding to  that  attribute, whose 
first argument is a logical variable corresponding to 
the  nonterminal  named by the  attribute,  and whose 
remaining arguments  are those unique logical 
variables created in  the above steps. The body  of the 
clause is the  conjunction of the clauses just formed; 
order does  not  make a difference. 



Application of this  algorithm to  the while command will 
now  produce 

command(while(E. C), 
mu(X. abstract(S, apply(abstract(V1 .S1, cond((V1-apply(X. 

apply(Rc1, 
SI)) 

) (true-Sl).nil)), 
apw(E1 SI))) 

command(C. Rc l )  8 
1-  

expression(E.El). 

Application  of the algorithm to  the remaining semantic 
equations of TINY produces the Prolog clauses listed in 
Appendix B, which together can be used to  do  semantic 
computation for TINY programs. For example,  application 
of the above Prolog clauses to  the  TINY program x:=read; 
output x produces the following lambda expression as  the 
semantic definition: 

abstract('0. 
apply(abstract('1, 

apply(abstract('2.'3.'4.'5, 
'3 '4.'2.'5). 

apply(abstract('6.'7.'8, 
apply(abstract('9. 

'9.'6.'7 *E), 
lookup('6. 

*1)))< 
X))). 

apply(abstract('l0. 
apply(abstract('l1 *12:13:14, 

(*l l\X.*12). 
*13:14), 

apply(abstract('l5 '16:17:18, 
*16.*15.*17.*18), 

'1 0))). 
'0))) 

where *N denotes distinct logical variables. 
The relationship among  the  attribute  grammar, Prolog 

code, lambda expression, and  lambda  machine is presented 
in Figure 6. 

It is interesting to  note  that  the inverse relation  for the 
produced Prolog code  holds as well;  Le.,  we can issue a 
Prolog goal with a  particular lambda expression and, if there 
is a well-formed TINY program that corresponds to  that 
lambda expression,  it will be produced. This corresponds, 
approximately, to execution of the inverse of the  attribute 
grammar. An algorithm  for computing  the inverse of an 
attribute  grammar is discussed by Yellin and Mueckstein 
[ 2  I]. A closer investigation into  this feature is required 
before any correspondence can be shown. 

4. Constructing a lambda machine  in  Prolog 
After the  semantic  computation of the subject programs, we 
are left with the  semantic definition  of the subject  programs 298 
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which are represented  in lambda  notation. These semantic 
definitions  can be executed via a lambda machine. Thus, a 
lambda  machine  interpreter  (named solve) is constructed  in 
Prolog to allow execution of semantic definitions. The 
interpreter solve has two  arguments: The first is the  lambda 
expression, and  the second is the value of that  lambda 
expression as computed by solve. 

lambda expressions are  not violated; then it calls solve1 , 
which is the actual  interpreter. So solve is defined as 

solve(M. R) + capture(M, M1) 8 solvel(M1, R) 

Solve first calls capture to ensure that  the scoping rules  of 

Solve1 , then, has  a clause for each of the primitive 
operations which are supposed to be known by this lambda 
machine, e.g., negate,  eq,  add,  sub, etc.; i.e., 

solvel(negate(E), X) + / 8 solvel(E. V1) 8 negate(V1, X). 

solvel(eq(E1,  E2), X) + / 8 solvel(E1, V1) 8 solvel(E2, V2) 8 eq(V1, V2. X). 

solvel(add(E1, E2), X) -/ 8 solvel(E1, V1) 8 solvel(E2. V2) 8 add(V1. V2. X) 

Note  that inside  each  clause  for  a  primitive operation, e.g., 
negate, a call is made  to a  procedure that  implements  the 
primitive operation, in  this case negate(V1,  X). The 
procedure negate()(, Y) can be defined in Prolog by asserting 
negate(t, 9 and negate(f,  t). 

The heart of the  lambda  machine is its  capability of 
dealing with cases where the  lambda expression currently 
under reduction is not  a  primitive  one. If the  lambda 
expression under reduction is an abstraction, then  no  more 
simplification is possible and  the result is the abstraction 
itself. Therefore, the last clause  of the interpreter is 
solvel(X, X). However, if the  lambda expression is not  an 
abstraction, then it is an application, and  the following 
possibilities exist: 

1. Application of two lambda expressions, the first of which 
is another application: In this case, reduce the  inner 
application and recursively call the  interpreter with its 
result, i.e., 

solvel(apply(apply(A. 6). C), R) - / 8 solvel(apply(A,  B), A l )  8 
solvel(apply(A1, C). R) 

2.  Application  of an abstraction to  another  lambda 
expression: Assuming  applicative  evaluation order (also 
called inside-out or call-by-value) for the  lambda 
expression, first find a value for the second lambda 
expression, and  then bind  this value to  the variable of 
abstraction and solve the substituted  body  of the 
abstraction, i.e., 

solvel(apply(abstract(V. B),  C). R) - / 8 solvel(C, V) 8 capture(B. 61) a 
solvel(B1. R). 

However, if normal evaluation order (also called outside- 
in or call-by-name) is assumed, then  the variable of 
abstraction is bound  to  the second lambda expression 
(unevaluated), and  the process is continued by solving the 
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body of the substituted  abstraction, i.e., 

solvel(apply(abstract(C, B). C). R) t / 8 capture(B. B1) 8 solvel(B1, R) 

Note that in both cases after the substitution  a call to 
capture is made  to ensure that  the resulting lambda 
expression has no captured variables. 
Application of a fixed point  function mu to  some  lambda 
expression: In this case, bind the variable of mu to a fresh 
copy  of the mu structure (itself) and simply continue by 
solving the application of the substituted body of mu to 
the second lambda expression, i.e., 

solvel(apply(mu(X. B). C). R) - / 8 fresh(mu(X. B), mu(Y. 61)) & 
X = mu(Y. B1) 8 solvel(apply(6. C). R). 

Note  that fresh will return  a structure identical to  the  one 
it was called with except that all the variables used in that 
structure  are new variables. This is necessary since, when 
substituting X in the body of mu, no variable capturing 
should  occur. 

Using the above  interpreter we can execute the definition 
of factorial, given earlier, to  compute  the factorial of 
numbers,  eg., 

will succeed with R bound  to 24. Semantic definitions 
produced by the  attribute  grammars together with the 
lambda  machine define a complete execution  model for a 
language. For example, with the  TINY program 

x = read, sum .= 0; 
whlle not  x = true d o  sum := sum + x;  x := read end; 
output sum 

as  input  to  the compiled attribute  grammar, a lambda 
expression will result as its semantic definition, which 
together with an  input stream (1.2.3.true.nil) to  the  lambda 
machine will produce  the final state as follows: 

((true\x).(6\sum).(3\~).(3\sum). 
(2\x) (l\sum).(O\sum).(l\x).n~l) Envlronment Component of the  State 
nll. Input component of the  State 
6.111 Output  component of the  State 

For a  complete listing of the above lambda  machine defined 
in Prolog, see Appendix A. 

5. Compiling  inherited-and-synthesized  attribute 
grammars 
Consider the  attribute  grammar  mapping PAM [ 191 into a 
simple  machine language. This  attribute  grammar uses both 
synthesized and inherited  attributes; the complete  definition 
of PAM’S syntax and semantics can be found in [ 191. 

Attribute grammar definition 
of a programming language 
(may have circles) 

Given to 

The algorithm presented 
in this section 

Will produce 

Subject program of 
of the programming language 4- programming language 
Prolog code  corresponding  to definition 

I Given to 

Prolog interpreter or  compiler 

I Lambda machine 

Will produce 

Output corresponding  to execution of 
subject program with respect to the input 

The first step in the  compilation, as before, is to build an 
abstract syntax for PAM that is representable  in clause form, 
and  then carry out  the following steps: 

1. For each production rule in the abstract  syntax,  build  a 
Horn clause such that 

The  name of the head  clause is the  nonterminal 
appearing  on  the left-hand side of the  production rule. 
The first argument of the head clause is the 
production  on  the right-hand  side  of the production 
rule. 
The remaining arguments of the head  clause are 
constructed  from the  attribute  grammar definitions as 
follows: 
i. Associate with each  inherited and synthesized 

attribute of this nonterminal a new logical variable. 
These variables form the rest of the  arguments of 
the head clause. 

The body of the head clause is a conjunction  of 
clauses formed  as follows: For every call made  to 
evaluate an  attribute, form  a clause whose name is the 
named  nonterminal  (in  the call) and  the  arguments of 
which are  the code  plus all the logical variables 
associated with the synthesized and inherited 
attributes of the called nonterminal.  The values of 
these arguments  are  further determined  from the 
assignment statements of the  attribute  grammar. 299 
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As an example,  consider the first production rule and its statement(S, Templ , Labinl , Laboutl , Codel) and 
semantics: series(Ss, Temp2, Labin2, Labout2, Code2). Now we must 

<program> ::= <series> 
take care of the assignments.  Since we know that 
Labout(<series>) + Labout(<statement>), we can conclude 

Ccde(<program>) t append(Code(<senes>), 'HALT') 
Temp(<series>) - 0 that Labout2 = Laboutl, and from the  other assignment 
Labin(<series>) t 0 statements we can conclude  that Templ = Temp, Labinl = 

Labin, Templ = Temp, and Labinl = Labin2. The . is again 
According to  the algorithm just presented, the head  clause used to represent the concat operator, and  the head clause is 
will be program(Series,  Code) c. The  attribute  grammar for modified according to Code(<series>) 
this production  contains only one call for attribute concat(Code(cstatement>), Code(<series>2))). Therefore, 
evaluation, ix., Code(<series>). Also note  that series has the final  clause  for <series> is 
two  inherited attributes (Temp, Labin) and two synthesized 
attributes (Code, Labout). Thus,  the body will  be 
series(Series,  Temp,  Labin, Labout, Code); however, since 
the  attribute  equations specify that Temp(<series>) and 
Labin(<series>) are set to zero, we must modify the body; 
hence, series(Series, 0,  0, Labout, Code). Since 
Code(<program>) + append(Code(<series>), 'HALT'), we 
must modify the head clause  as follows, noting  that  the . 
here plays the role of the  append function: program(Series, 
Code.s(halt,  nil)) t. So the  entire clause put together is 
program(Series,  Code.s(halt,nil) t series(Series, 0, 0, 
Labout, Code).. The  structure s(halt,  nil) is a  representation 
for the  machine language constructs, the first argument of s 
is the op-code, and  the second is the  argument for that op- 
code, if any. 

As a second example, let us look at  the series production 
rule and its associated attribute  grammar definition. 

<series> ::= <statement> , <series>2 
Code(<senes>) - concat(Code(<statement>), Code(<serles>2))) 
Labout(<series>) t Labout(<series>2) 
Ternp(<senes>P) - Temp(<series>) 
Labln(<serles>2) t Labout(<statement>) 
Temp(<statement>) - Temp(<senes>) 
Labln(<statement>) t Labm(<serles>) 

The head  clause for this production rule is series(S.Ss, 
Temp,  Labin, Labout, Code) +, since series has  two 
inherited attributes (Temp, Labin) and synthesized attributes 
(Labout, Code). There  are two clauses in the body of this 
head  clause  since there  are only  two calls made  to evaluate 
attributes, i.e., Code(<series>) and Code(<statement>). The 
nonterminal <statement> has four  attributes as well, two 
inherited (Temp, Labin) and two synthesized (Labout, Code). 
Thus,  the clauses for <statement> and <series> are 

series(S.Ss.  Temp,  Labin, Labout. Codel .Ccde2) - 
statement(S. Temp,  Labin. Laboutl,  Code?) 8 
serles(Ss.  Temp, Laboutl, Labout, Code2). 

Complete  compilation of PAM'S definition will produce 
the Prolog program listed in  Appendix  C;  sample semantic 
computations for some PAM programs are illustrated  in 
Appendix D. 

Conclusion 
It was demonstrated  that synthesized-only and inherited- 
and-synthesized attribute  grammars with recursive (circular) 
definitions  can be compiled into a set of Prolog clauses, thus 
providing an effective method of execution  for attribute 
grammars.  The  compilation algorithm was applied to two 
toy programming languages, TINY  and PAM, which were 
vehicles for the  demonstration  and justification of the 
concepts  involved. In the case of synthesized-only attribute 
grammars,  the  lambda  machine plays the role of a target 
machine for evaluation of semantic definitions. A lambda 
machine was built in Prolog for  reducing (solving) lambda 
expressions. Also, it has been shown (elsewhere) that 
denotational  semantic definitions  can be mapped  into 
synthesized-only attribute  grammars [ 141. Thus, this  model 
provides a means through which denotational  semantic 
definitions  can be executed. 

It was noted that  the inverse relation between the subject 
program and its semantic definition  holds  as well. This 
provides a  mechanism  for  execution of the inverse of the 
attribute  grammar.  This  point, however, needs further 
research. 
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Appendix A: Lambda  machine  in  Prolog 

/* solve(M, R )  reduces M to R where: M is a lambda  expression 

* /  
R will  be the  result o f  solving M 
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solve(M, R )  - 
capture(M, M1) & 
sol vel ( M 1 ,  R )  . 

/* Some  primitive  instructions  for  this  lambda  machine */  

solvel(negate(E), X )  + 

/ &  
solvel(E, V1) & 
negate(V1, X ) .  

/ &  
solve1 (El, V1) & 
solvel('E2, V2) & 
eq(V1, V2, X ) .  

/ &  
solvel(E1, V1) & 
solvel(E2, V2) 
add(V1, V2, X ) .  

/ ' &  
solvel(E1, V1) 
solvel(E2,  V2) & 
diff(V1, V2, X ) .  

solvel(mu1 (El, EZ), X )  
/ &  
solvel(E1, V1) & 
solvel(E2, V2) & 
prod(V1,  V2, X ) .  

/ &  
solvel(E1, V1) 
solvel(E2, V2) & 

solvel(eq(E1, E2), X )  - 

solvel(add(E1, EZ), X )  - 

solvel(sub(E1, EZ), X )  - 

solvel(div(E1, EZ), X )  + 

quot(V1,  v2, X ) .  

/ &  
lookup(Z, I ,  X ) .  

/ &  
cond(L, V) & 
solvel(V, X ) .  

solvel(lookup(Z, I), X )  - 
solvel(cond(L), X )  - 

/* Solving lambda expression in applicative  evaluation  order */  

solvel(apply(apply(A, B ) ,  C), R )  - 
I '  

solvel(apply(A, B), Al) & 
solvel(apply(A1, C ) ,  R ) .  

i &  
solvel(C, V) & 
capture(B, B1) & 
solvel(B1, R ) .  

solvel(apply(abstract(V, B),  C), R )  - 
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/* Fix point  finding  function  for  solving  recursive  definitions */  

solvel(apply(mu(X, B), C ) ,  R )  - 
/ &  
fresh(mu(X, B), mu(Y, B1)) & 
X = mu(Y, B1) & 
solvel(apply(B, C ) ,  R ) .  

/*  Can not  simplify it any  more */ 
solvelo(, X). 
/* fresh()(, Y) generates Y such  that it is  identical to X except  that 

all variables in X have been renamed.  For  example: 
fresh(f(*l,  g(*2, *l)), f(*3, g(*4, *3))). 

* I  

fresh()(, Y) - freshlo(, Y, nil, Z ) .  

freshl(X, Y ,  Asoc, Asoc) - var(X) & pres()(, Asoc, y) / 
freshl(X, Y, Asoc, (X-Y).Asoc) - var(X) 8 / .  
freshl(A, A, Asoc, Asoc) - atom(A) & / .  
freshl(1, I ,  Asoc, Asoc) - int(1) & / .  
freshl(X.Y, Xr.Yr, Asoc,  Asoc2) - 

freshl(X, Xr,  Asoc,  Asocl) & 
freshl(Y, Yr,  Asocl, Asoc~). 

freshlo(, Xr,  Asoc, Asoc1)- 
cons(Name.Arglist, X) & 
freshl(Arglist, Arglistr,  Asoc,  Asocl) & 
cons  (Name. Argl i s tr , Xr 1. 

/* pres (X, Asoc, Y 1 Y is bound to X in Asoc */ 
pres()(, (Xl-Yl).Asoc, Y1)- 

not(vneq(X, X1)) & 
/ .  
pres()(, Asoc, Y2). 

pres()(, (Xl-Yl).Asoc, Y2)- 

/* vneq(X, Y) true if both X and Y are  distinct  variables */ 
vneq(X, Y) - not(not(vneql(X, Y))). 

vneql(1, 2). 

/* capture(E, El 1 rewrites E to El such  that no possibil i ty  of  name 
capturing  can  occur. For example: 
capture(abstract("1, apply(abstract("1, * 1 ) ,  *1 I ) ,  

(abstract("1, apply(abstract(*Z, * 2 ) ,  *1)) 1.  
*/ 

capture()(, X) - var(X) & / .  
capture(apply(E1, EZ), apply(E3, E4) 1 - 

/ &  
capture(E1, E3) & 
capture(E2, E4). 
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capture(abstract(S, E), E21 - 
/ &  
capture(E, El ) & 
rename(abstract(S, El), S, € 2 ) .  

/ &  
capture(E, El) & 
rename(mu(X, El), X ,  E2). 

capture(mu(X, E), E2) - 
capture()(, X). 

/* rename(E, X ,  X1, El)  rename  variable X in E to X1, the  result is El */ 

rename(E, X ,  El) - 
var(X) & 
/ &  
renamel(E, X, X1, El). 

rename(E, H.T,  El) - 
/ &  
rename(E, H, E2) & 
rename(E2, T, El). 

renarnel(Y, X, XI, XI) - var(Y) & not(vneq(X, Y)) /. 
renamel(Y, X ,  XI, Y) var(Y) /. 
renamel(A, X, X1, A) - atom(A) & / .  
renamel(1, X ,  XI, I) 6 int(1) & / .  
renamel(H.T, X ,  X1,  H1.Tl) - 

/ &  
renamel(H, X, X1,  H1) & 
renamel(T, X, X1, Tl). 

cons(Name.Arglist, Y) & 
renamel(Arglist, X, X1, Arglistl) & 
cons(Name.Arg1 istl, Yl). 

renamel(Y, X, XI, Y1)- 

/* Definition  of  primitive  instructions  for  this  lambda  machine */ 

negate 

eq(V1, 
eq(V1, 

add (V1 

1 ookup 

negate(true, false) - /. 
(false, true). 

V2, true) - eq(V1, V2) & / .  
VZ, false). 

(nil,  Id,  unbound) - /. 
lookup((V\Id).Zs, Id, V) - /. 
lookup((Vl\Idl).Zs, Id, V) 4 lookup(Zs, Id, V). 

cond((true-C).Ls, C) - /. 
cond( (B-C)  .Ls,  C) - 

solvel(B, true) & 
/. 

cond( (B-Cl) . L s ,  C) + 

cond(Ls, C). 
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Appendix B: Compiled  semantics of TINY 

command(assign(Id, E), abstract(S, apply(abstract(V. ( Z .  I . O ) ,  
((V\Id) . Z ) .  I . O  

1, 
apply(E1, S )  

1 
) 

1 "  
expression(E, El). 

command(output(E), abstract(S,  apply(abstract(V. (Z. I . O ) ,  z. I. (V.0) 
) ,  

apply(E1, S )  
1 

1 
1 "  

expression(E, El). 

command ( 
if(E, C1, C2), 
abstract(S, 

apply(abstract(V1 .S1, 
cond((V1-apply(Rc1, Sl)).(true-apply(Rc2, Sl)).nil) 

\ 
J ,  

apply(E1, S )  
) 

) 
1 -  

expression(E, El) & 
command(C1,  Rcl) & 
command(C2, Rc2). 

command(while(E, C), 
mu(X, 

abstract(S, 
apply(abstract(V1 .S1, 

cond( (Vl-apply(X, 
apply(Rc1, 

S1) 
) 

).(true-Sl).nil 
) 

1, 
apply(E1 , S )  

) 
) 

1 
1 "  

command(C,  Rcl) & 
expression(E ,El). 
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command(C1, Rcl ) & 
command(C2, Rc2). 

expression(expr(O), abstract(S, 0 . S ) ) .  
expression(expr(l), abstract(S, 1.S)). 
expression(expr(true), abstract(S, true.S)). 
expression(expr(false), abstract(S, fa1se.S)). 
expression(expr(read), abstract(Z. (Hi .Ti 1 . O ,  H i .  (Z.Ti .O))). 
expression  (expr ( Id ) , 

abstract(Z. I .O, 
apply(abstract(Va1 ,Val. (Z. I .O) 1 , 

1 ookup( Z, Id 1 
) 

) 
) - -  

expression(expr(not(E)), 
atom(  Id). 

abstract(S, 
apply(abstract(Vl.Sl, 

apply(abstract(V2, 
v2. s1 

) ,  
negate(V1) 

) 
) ,  

apply(E1, S )  
1 

) 
) -  

expression(E, El). 

expr(Ea, eq, Eb), 
abstract(S, 

expression( 

apply(abstract(Vl.Sl, 
apply(abstract(V2.S2, 

apply(abstract(V3, 
V3. S2 

) ,  
eq(V1, V 2 )  

) 
1, 

apply(E2, S 1 )  
) 

1 ,  
apply(E1 , S )  

) 
) 

) - -  
expression(Ea, El) & 
expression(Eb, E 2 ) .  
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express i on ( 
expr(Ea, plus, Eb), 

abstract(S, 
apply(abstract(V1 .S1, 

apply(abstract(VZ.SZ, 
apply(abstract(V3, 

V3. S2 
) ,  

add(V1,  V2) 
) 

) ,  
apply(E2, S1) 

1 
1 ,  

apply(E1, S )  
1 

) 
) -  

expression(Ea,  El) & 
expression(Eb, E2). 

Appendix C: Compiled  semantics of PAM 

program(Series,  Scode.s(halt,  j).nil) - 
series(Series, 0, 0, L, Scode). 

series(S.Ss,  Temp, Li , Lo, Codel  .Codes) - 
statement(S,  Temp,  Li,  Lol,  Codel) & 
series ( S s ,  Temp, Lo1 , Lo,  Codes). 

series(S, Temp,  Li, Lo,  Code) - statement(S,  Temp,  Li, Lo,  Code). 

statement(read(Vs), Temp,  Li,  Li,  Code) - variables(Vs,  get, Code). 
variables(V.ni1, Opcode, s(Opcode, VI). 
variables(V.Vs,  Opcode, s(Opcode, V).Code) - variables(Vs, Opcode,  Code) 

statement(write(Vs), Temp, Li, Li, Code) - variables(Vs, put, Code) 
statement(assign(V, Expr), Temp,  Li,  Li, Ecode.s(sto, V)) - 
statement(if(Comp, Then, Else), 

express i on ( Expr , Temp,  Ecode ) , 

Temp Y 

Li , 
Lo , 
Ccode.Tcode.s(j, L2).s(L1, lab).Ecode.s(LZ, lab)) - 

sum(Li, 1, L1) & 
sum(Li, 2, L2) & 
comparison(Comp,  Temp, L1, Ccode) & 
series(Then, Temp, L2, Lol, Tcode) & 
series(Else,  Temp,  Lol, Lo,  Ecode). 

statement(dloop(Expr,  Series), 
Temp Y 

Li , 
Lo , 
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E c . s ( s t o ,   T I . ) . s ( L l ,   l a b ) . s ( s u b ,   l ) . s ( j n ,   L 2 ) . s ( s t o ,   T l ) . S c . s ( j ,   L l ) . s ( L 2 ,   l a b  
) 

) -  
sum(Temp, 1, T 1 )  & 
s u m ( L i ,  1, L 1 )  & 
s u m ( L i ,   2 ,   L 2 )  & 
e x p r e s s i o n ( E x p r ,   T 1 ,   E c )  & 
s e r i e s ( S e r i e s ,   T 1 ,   L 2 ,   L o ,   S c ) .  

s t a t e m e n t ( i l o o p ( C o m p ,   S e r i e s ) ,  
Temp 9 

L i  , 
Lo , 
s ( L 1 ,   l a b ) . C c o d e . S c o d e . s ( j ,   L l ) . s ( L 2 ,   l a b ) )  - 

s u m ( L i  , 1, L 1 )  & 
s u m ( L i ,   2 ,   L 2 )  & 
comparison(Comp,  Temp,L2,  Ccode) & 
s e r i e s ( S e r i e s ,  Temp, L2 ,   Lo ,   Scode) .  

c o m p a r i   s o n  (camp( E x p r l  , Re1 , E x p r 2 ) ,  
Temp 9 

L i  , 
E c o d e l . s ( s t o ,   T l ) . E c o d e 2 . s ( s u b ,   T l ) . s ( O p c o d e ,   L i ) )  - 

sum(Ternp, 1, T 1 )  & 
e x p r e s s i o n ( E x p r 1 ,   T 1 ,   E c o d e l )  & 
e x p r e s s i o n ( E x p r 2 ,   T 1 ,   E c o d e 2 )  & 
r e l a t i o n ( R e 1 ,   O p c o d e ) .  

e x p r e s s i o n ( e x p r ( T e r m ) ,  Temp, Code) - terrn(Term, Temp, C o d e ) .  
e x p r e s s i o n ( e x p r ( T e r m 1 ,  Wop, Te rm2) ,  

Temp 9 

T c l . s ( s t o ,   T l ) . T c 2 . s ( s t o ,   T 2 ) . s ( l o a d ,   T l ) . s ( O p c ,   T 2 ) )  - 
sum(Temp, 1, T 1 )  & 
sum(Temp,  2,   T2) & 
t e r m ( T e r m 1 ,  Temp, T c l )  & 
t e rm(Term2,   T2 ,   Tc2 )  & 
w e a k o p e r a t o r ( W o p ,   O p c ) .  

t e r m ( t e r m ( E l e m ) ,  Temp, Code) - e l e m e n t ( E l e m ,  Temp, Code) .  
t e rm( te rm(E lem1,   Sop ,   E lem2) ,  

Temp , 
E c l . s ( s t o ,   T l ) . E c 2 . s ( s t o ,   T 2 ) . s ( l o a d ,   T l ) . s ( O p c ,   T 2 ) )  - 

surn(Temp, 1, T 1 )  & 
sum(Temp,  2,   T2) & 
e le rnen t (E lem1,  Temp, E c l )  & 
e lemen t (E lem2,   T2 ,   Ec2 )  & 
s t r o n g o p e r a t o r   ( S o p ,   O p c )  . 

element(elem(constant(C)), Temp, s ( l o a d ,   n u m ( C ) ) ) .  
element(elem(variable(V)), Temp, s ( l o a d ,  V ) ) .  
e l e m e n t ( E x p r ,  Temp, Code) - e x p r e s s i o n ( E x p r ,  Temp, Code) .  
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The 
wi 1 

Pam p rog ram x := ( x  
1 p r o d u c e   t h e   f o l l o w  

l o a d  x .  
S t 0  1. 
l o a d  y .  
S t0  3.  
l o a d  z .  
s t 0  4 .  
l o a d  3 .  
mu1 4 .  
s t 0  2 .  
l o a d  1. 
add 2 .  
s t 0  1. 
l o a d  b .  
S t 0  3 .  
l o a d  c .  
s t 0  4 .  
l o a d  3 .  
mu1 4 .  
s t 0  2 .  
l o a d  1. 
add 2. 
s t 0  x .  
h a l t  j .  

The Pam p r o g r a m  
r e a d   k ;  
w h i l e  k > 0 

do 

end  
k : = k - l  

r e l a t i o n (   ' e q '  , j n p ) .  
r e l a t i o n (   ' l e ' ,   j n ) .  
r e l a t i o n (   ' g t '  , j n z ) .  
r e l a t i o n (   ' g e l ,   j p ) .  
r e l a t i o n (   ' n e ' ,   j z ) .  

w e a k o p e r a t o r ( p l u s ,   a d d ) .  
w e a k o p e r a t o r ( m i n u s ,   s u b ) .  

s t r o n g o p e r a t o r ( t i m e s ,  mu1 ) .  
s t r o n g o p e r a t o r ( d i v i d e ,   d i v ) .  

Appendix D: Sample  semantic  computation for 
PAM 

t y * z ) + b  * C  

i n g   c o d e :  

will p r o d u c e   t h e   f o l l o w i n g   c o d e :  

g e t   k .  

l o a d  k .  
s t 0  1. 
l o a d  n u m ( 0 ) .  

1 l a b .  
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sub  1. 
j n z  2. 
l o a d  k .  
s t 0  1. 
1 o a d  num( 1 ) . 
S t 0  2 .  
l o a d  1. 
s u b  2 .  
s t o   k .  
j 1. 

h a l t  j .  
2 1 ab .  

The ,Pam p r o g r a m  
r e a d  x ,y ;  
w h i l e  x < >  99 

do 
ans : =  ( x  + 1 )  
w r i t e   a n s ;  
r e a d  x , y  

will p r o d u c e   t h e   f o l l  
end  

g e t  x .  
g e t  Y -  

l o a d  x .  
s t 0  1. 
l o a d  num( 
s u b  1. 
j z  2. 
l o a d  x .  
S t 0  1. 

1 l a b .  

- ( y  /2); 

o w i n g   c o d e :  

9 9 ) .  

1 oad  num( 1 ) . 
s t 0  2 .  
l o a d  1. 
add 2 .  
s t 0  1. 
l o a d  y .  
s t 0  3.  
l o a d  n u m ( 2 ) .  
S t 0  4 .  
l o a d  3 .  
d i v  4 .  
s t 0  2 .  
l o a d  1. 
sub  2 .  
s t o  a n s .  
p u t  a n s .  
g e t  x .  
g e t  Y -  
j 1. 

h a l t  j .  
2 1 ab .  
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