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The  stochastic  Petri  net  (SPN)  model  is  well 
suited  to  formal  representation  of  concurrency, 
synchronization,  and  communication.  In  this 
paper  we  focus  on  discrete  event  simulation 
methods  for  SPN  models  with  special  structure 
and  define  a  symmetric  SPN.  Exploiting 
properties of a symmetric  SPN  and  underlying 
regenerative  process structure,  we  establish 
steady  state  estimation  procedures  based  on 
independent,  nonidentically  distributed  blocks of 
the  marking  process.  We  also  establish 
estimation  procedures  for  passage  times  in  the 
symmetric  SPN  setting.  These  results lead to 
efficient  estimation  procedures for 
delay/throughput  characteristics  of  ring 
networks  with  identical  ports. 

1. Introduction 
The stochastic  Petri  net  (SPN)  model is  well suited to formal 
representation of concurrency,  synchronization, and 
communication (cf. Ajmone  Marsan,  Conte,  and Balbo [I] ,  
Dugan [ 2 ] ,  Molloy [3, 41, Natkin [ 5 ] ,  and  Symons [6]). Such 
models have application in  the performance  evaluation  of 
distributed computer systems. In this  paper we focus on 
discrete  event  simulation methods for SPN models with 
special structure. 
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An SPN is specified by a finite set of places and a finite 
number of transitions  along with a normal input function, an 
inhibitor  inputfunction, and  an output function (each of 
which associates a set of places with a transition). A marking 
of an  SPN is an assignment  of  zero or  more tokens to  the 
places in the net. A transition is enabled whenever there is at 
least one token  in each of  its normal  input places and  no 
tokens  in any of  its inhibitor  input places; otherwise, it  is 
disabled. A transitionfires by removing one token  (per 
place) from a random subset of  its normal  input places and 
depositing one token (per place) in a random subset of its 
output places. Such “random  inputs”  and  “random  outputs” 
are specified in  terms of new marking probabilities as 
defined below and  are needed for  representation  of 
distributed computer systems. The stochastic process 
{X( t): t 2 0), where X( t) is the  marking of the  SPN  at  time t, 
is called the  marking process. 

Informally, an  SPN is symmetric if there is a mapping of 
places onto places and  transitions  onto transitions which 
preserves sets of  enabled  transitions, new marking 
probabilities, sets of new transitions, and clock setting 
distributions. An important application  of  symmetric SPN 
models is in the representation  of ring networks with equally 
spaced,  identical  ports; cf. Loucks, Hamacher,  and Preiss [7]. 
Exploiting  properties of a symmetric  SPN  and underlying 
regenerative process structure, we establish steady state 
estimation procedures based on  independent, nonidentically 
distributed  blocks of the  marking process. We also establish 
estimation  procedures  for passage times in the symmetric 
SPN setting. The  symmetry property  considered  in this 
paper  is used to increase the statistical efficiency of SPN 
simulation. 

Although steady state estimation for an  arbitrary  SPN is a 
very difficult problem, Haas and Shedler [8] have  provided 
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estimation  procedures for SPN models with a marking 
process that is a regenerative process  in continuous  time.  To 
establish the regenerative property  for the  marking process of 
an  SPN, it is necessary to show the existence of an infinite 
sequence of random  time  points  at which the process 
probabilistically restarts. It is  often  clear that a marking 
process probabilistically restarts  when  a  particular  transition 
fires, leaving the system with a fixed marking. For specific 
models, however, it is nontrivial to  determine  conditions 
(distributional  assumptions) under which this occurs 
infinitely often with probability one. Using  recurrence  theory 
(Haas  and Shedler [9]) for generalized semi-Markov 
processes (Konig, Matthes, and Nawrotzki [ I O ,  1 I], Matthes 
[12], Whitt [ 13]), conditions  are given in [8] which ensure 
that  the  marking process of an  SPN is a regenerative process 
in  continuous  time with finite expected time between 
regeneration  points. This result  leads to a  steady state 
estimation  procedure which does  not exploit the special 
structure of a symmetric  SPN. 

Section 2 provides the formal  definition of the marking 
process of an  SPN given in [8] along with the definition  of a 
symmetric  SPN. Proposition 4 provides conditions which 
ensure  that  the  marking process of  a  symmetric SPN is a 
regenerative process in continuous  time  and  that  the 
expected time between regeneration points is finite. Using a 
geometric  trials  recurrence  criterion  (Iglehart and Shedler 
[ 14, I5]), Proposition 4 postulates the existence of  a 
transition, e*, and a marking, si, such that transition e* fires 
and  the new marking is si infinitely often with probability 
one.  Conditions  on  the old clocks ensure  that  the  marking 
process probabilistically restarts at these  times. This result is 
the basis for regenerative simulation in the  symmetric  SPN 
setting. 

Section 3 considers the steady state  estimation  problem 
for symmetric  SPN models. The key observation is that 
under  the  assumptions of Proposition 4, regenerative cycles 
of the marking process defined by the  times  at which 
transition e* fires and  the new marking is si can  be 
decomposed into independent,  nonidentically  distributed 
blocks. The result of Proposition 6 and  the  ratio  formula of 
Proposition 7 imply that in  a symmetric  SPN point 
estimates and confidence  intervals  for  characteristics of 
symmetric functions of the limiting  distribution can be based 
on  short  (independent, nonidentically  distributed) blocks, 
rather  than  on long (independent, identically distributed) 
regenerative cycles of the  marking process. 

In Section 4 we establish estimation  procedures  for 
passage times in symmetric  SPN models. Formal 
specification of  a  sequence {PA: n 2 I ]  of passage times  in  a 
symmetric SPN with marking process { X (  t): t 2 01, marking 
set, S, and transition  set, E, is in terms of four subsets 
( A , ,   A , ,  B,,  and B2)  of S. The sets B ,  and B, define the 
random  times { TI‘: j 2 1 ) at which a passage time 
terminates. (The sets A ,  and A ,  define the  random times at 

IBM J .  RES. DEVELOP. VOL. 30 NO. 3 MAY 1986 

which a passage time starts.)  Proposition 9 postulates the 
existence of e* E E and so, s; E S such that transition e* 
fires and  the  marking changes  from so to SA infinitely often 
with probability one: These  transition firing times 
correspond to  termination of  a passage time with no other 
passage times underway. Conditions  on  the “old clocks” 
ensure  that [ ( X (  TL), Pi+,):  n 2 O] is a regenerative process in 
discrete time  and  that  the expected time between 
regeneration  points is finite. 

Terminations of passage times  that occur  when no  other 
passage times  are underway and when transition e* fires and 
the marking  changes  from so to SA define regenerative cycles 
for the process ( ( X (  TL), Pi+,): n 2 01. The regenerative 
structure guarantees that PL =+ P as n + and  the goal of 
the simulation is the estimation  of E{j (P)I ,  wherefis a real- 
valued measurable function. Estimates  for E ( f ( P ) ]  can be 
based on  simulation of the underlying marking process of 
the SPN  in regenerative cycles. Alternatively, by exploiting 
properties of a  symmetric SPN, these regenerative cycles can 
be decomposed into  independent, nonidentically  distributed 
blocks, and estimates  for E{, f (P)]  can be based on 
measurement of the passage times {PA: n z I ]  contained  in 
these blocks. This estimation  procedure  extracts more 
passage time  information from  a  simulation of fixed length 
and provides  estimates  for E j f ( P ) )  that  are relatively more 
accurate. In Section 5 we show that estimation based on 
these blocks indeed leads to  shorter confidence intervals. 

2. Regenerative  stochastic  Petri  nets 
Heuristically, an  SPN changes  marking  in  accordance with 
the firing of a  transition  enabled  in the  current marking.  (We 
assume throughout  that  no two transitions fire 
simultaneously.) Each of the transitions  enabled  in  a 
marking  competes to change the marking, and each of these 
enabled  transitions  has  its own stochastic  mechanism for 
determining  the next marking.  When  a  transition in the SPN 
fires,  new transitions  may  become  enabled. For each of these 
new enabled  transitions,  a clock indicating the  time until the 
transition fires is set according to  an  independent stochastic 
mechanism. (There is no restriction to exponentially 
distributed  transition firing times.) If an enabled  transition 
does not trigger a  marking  change but is enabled  in the next 
marking,  its clock continues  to  run; if such  a  transition is 
not enabled  in the next marking, its clock reading is 
abandoned. 

Following Haas  and Shedler [8], formal  definition of the 
marking process of an  SPN is in terms of a general state 
space Markov  chain (GSSMC) which describes the  SPN  at 
successive epochs of transition firing. Let D = jd,, d,, . . ., d,] 
be a finite set ofplaces,  and let E = (e,, e,, . . ., eM) be a 
finite set of transitions. Denote by S the  countable set of 
markings and for s E S write s = (s,, s,, . . . , sL), where sl is 
the  number of tokens  in place dl E D. Denote  the set of  the 
rzorrnal input places for  transition e E E by I ( e )  _C D, the set 
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of the inhibitor  input  places by L( e )  C D,  and  the set of the 
output places by J(e) E D. We  assume  that L( e) n I ( e )  = 0 
f o r a l l e E E . F o r s = ( s , , s , ,  . . . ,  s,)ES,set 

E(s)  = {e E E: s, 2 I for d, E I ( e )  and 

s, = 0 for a’, E L(e ) )  

so that E(s)  is the set of transitions that  are enabled  when 
the  marking of the  SPN is s. When  the marking  of the  SPN 
is s, the firing of an enabled  transition e E E($)  triggers a 
marking change to s’. We denote by p(s’; s, e )  the 
probability that  the new marking is s’, given that transition e 
fires when the  marking is s. For all s = (sir s2, . . . , s,), 
s’ = (si, x;, . . ., s;) E S, and e E E($), we assume that 
p(s’; s, e )  > 0 only if 

(i) si = s, - 1 or sj for all d, E I(  e) n (D - J( e));  
(ii) s i  = s, - I or s, or s, + 1 for all d, E I ( e )  n J(e); 
(iii) s,‘ = sj or s, + 1 for all dj E J(e) n ( D  - I(e));  and 
(iv) s i  = s, for  all d, E (D - J(e)  - I(e)). 

The  actual enabled transition e which triggers a marking 
change  when the  marking is s depends  on clocks associated 
with the enabled  transitions and  the speeds at which these 
clocks run. Each  such clock records the  remaining  time  until 
the transition fires. We denote by r,, (20)  the deterministic 

rate  at which the clock associated with transition e, runs 
when the  marking is s; for  each s E S, rSi = 0 if ei E(s). 
We assume  that rs, > 0 for some e, E E(s). (Typically in 
applications, all speeds rs, are  equal  to  one.  There are, 
however, models  in which speeds other  than unity  as well as 
state-dependent  speeds are  convenient.) 

readings when the  marking is s: 

C(s) = {(cl, . . ., cM): ci 2 0 and ci > 0 if and only if 

For s E S define C(s) to be the set of possible clock 

e, E E(s); q r i ’  # c,ri’ for i # j with cicjrs,rsJ > 0). ( I )  

The  conditions  in  Equation ( I )  ensure  that  no two 
transitions fire simultaneously, as defined below. The clock 
with reading c, is said to be active  when the  marking is s if 
transition e, is enabled [e, E E($)].  For s E S and c E C(s), 
let 

t* = t*(s, c) = min  {c,ri’), (2) 

where c,ril is taken to be +m when rs, = 0. Also set 

cf = cf(s, c) = c, - t*(s, c)r,, , (3) 

for e, E E(s )  and 

i* = i*(s, c) = i such that e, E E(s) and cf(s, c) = 0. (4) 

Beginning with marking s and clock vector c, t*(s, c) is the 
time  to  the next  transition firing and i*(s, c) is the index  of 
the  unique firing transition e* = e*(s, c) = 

transition e*, new clock times  are generated  for each event 
e‘ E N(s’; s, e*) = E(s’) - (E($ )  - {e*)). The distribution 
function of such a new clock time is denoted by 
F( .; s’, e’, s, e*), and we assume  that F(0; s’, e‘, s, e*) = 0. 
For  e‘ E U(s‘; s, e*) = E($’) n (E( s )  - {e*)), the old clock 
reading  is  kept  after e* fires. For e‘ E ( E ( s )  - {e*))  - E(s’), 
transition e’ (which was enabled before transition e* fired) is 
disabled. 

lf:e,e€(s)l 

At a marking change from s to s’ triggered by the firing of 

Next  consider a GSSMC { (Sn,  C,): n 2 0) having state 
space 

2 = u ( ($1  x C(s)) 
.YES 

and representing the  marking (S , )  and vector (C,) of clock 
readings at successive transition firing times. (The  ith 
coordinate of the vector C, is denoted by C,,,.) The 
transition  kernel  of the  Markov chain ((S,,, C,): n 2 0 )  is 

P((s, c), A )  

= P  (s’; s, e*) II F ( q ;  s’, e,, s, e*) II I~o,o,l(cf), ( 5 )  
C,EN(S‘) e,EMs’) 

where N(s‘) = N(s’;  s, e*), O(s’) = U(s’; s, e*), and 

A = Is’) X {(ci, . . ., c t )  E C(s’): c,! 5 a, for e, E E(s’)). 

The set A is the subset  of X which corresponds  to  the  SPN 
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changing marking to s’ with the reading c,‘on the clock 
associated with transition e, E E(s’) set to a value in [0, a,]. 
[We  suppose that  the clock setting  distributions are such that 
P((s,  c), Z) = 1 for all (s, c) E 2.1 

constant  continuous  time process constructed  from the 
GSSMC {(Sn, Cn): n 2 0) in the following manner. Set 
{o = 0 and 

Finally, the marking process of the SPN is a piecewise 

“-1 

ln = c t*cs,> CJ, 
k=n 

n 2 1. According to this  definition, {, is the  nth  time  at 
which the  marking process makes  a  state  transition. [We 
assume  that 

P(sup {, = +m I (So, C,)) = 1 as .  
“Z I 

for all initial  states (So, C,).] Then set 

where 

N ( t )  = max{n 2 0: {” 5 t ) .  (7 )  

The marking process of the  SPN is the process ( X ( t ) :  t 2 0) 
defined by Equation (6). Henceforth we restrict attention to 
SPN models  in which all speeds r5, are equal to 1. 

For ring networks with N ports, reference to port index j is 
to be interpreted  as reference to index; - 1 (mod N )  + 1. In 
the graphical representation of an  SPN, places are  drawn as 
circles and transitions  as bars. Directed arcs  connect 
transitions to  output places and  input places to transitions. 
Tokens  are  drawn as black dots. 

Example 1 (token  ring) 
Consider  a  unidirectional  ring network having  a fixed 
number of ports, labeled I ,  2, . . ., N in the direction of 
signal propagation; see Figure 1. At each port message 
packets arrive  according to a random process. A single 
control token (denoted by T i n  Figure 1) circulates around 
the ring from one port to  the next. The  time for the ring 
token to propagate from port; - 1 to port; is a positive 
constant, RJ-l,J = I ,  2, . . ., N .  When  a  port observes the 
ring token and  there is a packet queued for transmission, the 
port  converts the token to a connector ( C )  and  transmits a 
packet followed by the token pattern;  the token continues to 
propagate if there is no packet queued for transmission. By 
destroying the  connector prefix, the port  removes the 
transmitted packet when it returns  around  the ring. 

Assume that  the  time for  port; to transmit a packet is a 
positive random variable, L,, with finite mean. Also assume 
that packets arrive at individual  ports  randomly and 
independently of each other: The  time from end of 
transmission by port;  until the arrival of the next packet for 

e.  =arrival of packet for transmission by port j (A ) 

e.  =end of transmission  by port; ( L )  
1.2 

e. =arrival of ring token by port; (R,- ,) 

I .  I 

1.3  

t SPN representation of  two-port tokcn ring. 
. . . . . - . “I 

transmission by port; is a positive random variable, A,, with 
finite mean. Note that  there is at most one packet queued 
for  transmission at  any  time  at  any particular  port. 

d,,,, d,,4) be the set of places of the  SPN  and let E = 
(e,,l ,   el,2r e,,3, . . ., e,,,, e,,?, eN,3) be the set of transitions. See 
Figure 2 for N = 2. (For clarity of  exposition, we  use double 
subscripts  in the  SPN representation  of the token  ring  model 
to index places, transitions, and token  counts.) Set 

Following P I ,  let D = dl,,,  dl,,, d l #  . . ., dh:,, dh..2, 

L(e,,J = Ue,,,) = L(t;.3) = 0, (8) 

4e1.1) = Id,,*l, ‘(e,,J = I d , , , ,  d,,,), I(e,,3) = I d , - , . J >  (9 )  

and 

4 g . J  = (4,IL J(e,.*) = Id,.?. 4.41, J(e,.3) = v . . >  J 3 d 1.4 1 3  ( I o )  

J = I ,  2, . . ., N .  
The transitions have the following interpretation: e,,l = 

“arrival of packet for  transmission by port j,” e,,? = “end of 
transmission by  port;,” and e,,3 = “observation of ring token 
by port j , ” j  = I ,  2, . . . , N .  The interpretation of the places is 
as follows. Let t 2 0 and suppose that  the marking of the 
SPN  at  time t is s = ( s ~ . ~ ,  s , , ~ ,  . . . , s ~ , ~ ) .  Then sJ,, = 1 if and 
only if at  time t port; is transmitting a packet or there is a 
packet waiting for transmission by port;; s,,~ = I if and only 
if at  time t port j is not  transmitting a  packet and there is no 
packet waiting for transmission by port;; s,,~ = 1 if and only 281 
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if at time t port j is transmitting a packet; and s,,, = 1 if and (in  that exactly one token is removed from each input place 
only if at time t the ring token is propagating to port j + 1, when the transition fires) and output-deterministic (exactly 
j = 1, 2, . . ., N. (Otherwise sJ,k = 0.) one token is deposited in each output place  when the 

Set transition fires). 

S’={(s,,,, s , , ~ ,  . . ., s ~ , ~ ) :  s,,,, . . ., s,,, = Oor 1 for 1 s j s N; The distribution functions of  new clock times for 
transitions e‘ E N(s‘; s, e*) are as  follows.  If e‘ = ej,, = 

distribution function F(x; s’, e‘ ,  s, e*) = P(Aj I x). If e‘ = 
Then  the set, S, of markings is e,,2 = “end of transmission by port j ,” then the distribution 

s,,~ + + . . . + sN,, = N + 1) .  “amval of packet  for transmission by port j,” then the 

S = {(s,,,, s , , ~ ,  . . . , sN,,) E S’: sJ,, + sJ,2 = 1 and 

s,,,~,,~ = 0 for 1 I j I N). (1  1) 

(It follows that I SI = 3N2N-1. In any marking there are 
exactly N + 1 tokens. There is at most one token in each 
place.  Each  of the disjoint sets of places {d,,, d,,,) contains 
exactly one token indicating whether or not port j has a 
packet queued for transmission. The set of places 
(dl,3,  d,,,,  d2,3,  d2,4, . . ., dN,3,  dN,,) contains exactly one token 
indicating the position and status of the ring token. There 
can never be tokens at places d/,, and d/,3 simultaneously, 
reflecting the fact that there can be no arrival of a packet  for 
transmission by port j during a transmission by port j.) 

The new marking probabilities p(s’; s, e )  are as follows.  If 
e = e,,, = “amval of packet for transmission by port j,” then 
p(s’; s, e )  = 1 when 

function F(x;  s’, e‘, s, e*) = P(L, 5 x). If e’ = = 

“observation of  ring token by port j,” then  the distribution 
function F(x;  s’, e’ ,  s, e*) = lLR,_I,m)(x). 

We  now  define a symmetric SPN. Informally, an SPN is 
symmetric if there is a mapping of  places onto places and 
transitions onto transitions which  preserves the sets E(s)  of 
enabled transitions, the new marking probabilities p(  s’; s, e ) ,  
the sets N( s’; s, e*) of  new transitions, and  the clock setting 
distributions F( .; s’, e‘, s, e*). Let ( X ( t ) :  t 2 0 )  be the 
marking process of an SPN with  finite marking set, S, and 
transition set, E. As before, we let D = {d l ,   d2 ,  . . . , d,} be 
the set  of places and E = { e , ,  e,, . ., e,) be the set  of 
transitions. We assume throughout this section that L = L,  N 
and M = M I  N for some N 2 2. (We also assume that all 
clock setting distributions have  finite mean.) 

Let @ be a cyclic permutation of the set { 1,  2 ,  . . . , N). In 
terms of this permutation define a mapping, @,, of D onto 

If e = e/,, = “end of transmission by port j,” then 
p(s’; s, e )  = 1 when 

j = 1, 2 ,  . . . , Nand k = 1, 2, . . ., L , .  Similarly, define a 
mapping, @€, of E onto E: 

If e = eJZ = “observation of ring token by port j,” then @S(S,, s,, . . . )  s,) = (slD(I)l  S+,(2)3 . ‘ .> SO&)). (14) 
p(s’; s, e )  = 1 when 

s = (SI , , ,  . . ., sj-l,33 1, 1, 0,  0,  0, SJ+,,,, . . ., sN,,) E s and (@,( i ) :  i E D’) and for an arbitrary subset E’ of E we write 
For an arbitrary subset D’ of D we write &,(D’) = 

@.JE’) = ( @ J  e): e E E’ 1. This notation facilitates formal 
= ‘ ’  ‘ 9  s ~ - l , 3 3  O 3  O, 1, O, s ~ + I , 1 3  ‘ ’ ’ >  sN,4) definition of a symmetric SPN. 

and when Definition 2 

symmetric if there exists a cyclic permutation, 4, of the set 
= . . ., 1, 0, 1, 0, 0, s,+,,l, . . ., sN,4) E s and An SPN with marking process M t ) :  t 2 01 is  said to be 

= ( s ] , 1 9  ’ ’  ‘ 9  s~-l,3> O 3  O, 1 ,  O, I ,  s ~ + 1 , 1 3  ’ ’  .> sN,4). (1,2, . . ., N) such that 

All other new marking probabilities p(s’; s, e )  are equal to (i) @,(L(e)) = L(@Je)),  @,(Z(e)) = Z(@,=je)), and 
zero. @,(J(e)) = J(&,( e ) )  for  all e E E; 

Note that when transition fires, a token is removed (ii) p(s’; s, e )  = p(4J.s’); @s(s), &€(e)) for  all e E E and 
from place &,,, and a token is deposited either in  place d , 3  s, s’ E S and 
or in  place d,,4, depending upon whether (s,,,, s , , ~ )  equals (iii) F ( . ;  s’, e’ ,  s, e )  = F ( . ;  bS(s’), @€(e’), &(SI, @ d e ) )  for 

282 ( I ,  0 )  or (0, 1). All other transitions are input-deterministic all e‘ E N(s‘; s, e) ,  e E E, and s, s’ E S. 
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Condition (i) ensures that  the induced  mappings @D and @E 

preserve the sets of  normal input places, inhibitor  input 
places, and  output places, and  thus [using Equation  (14)] 
@,.(E(s)) = E(@,(s)) for all s E S. Conditions (ii) and (iii) 
ensure  that  the mappings 6, and @ E  preserve the new 
marking probabilities and  the clock setting  distributions. 

Example 3 
In the token ring model of Example I ,  let N be the  number 
of ports so that L ,  = 4 and MI = 3. Suppose that (i) R, = R, 
- - . . .  = R,; (ii) the  random variables A , ,  A, ,  . . ., A N  are 
identically distributed: and (iii) the  random variables L,. L,, 
. . . , L, are identically distributed. Under these assumptions 
the  SPN is symmetric. For example, take @(j )  = J + 1, 
j =  I ,  2, . . ., N .  Then 

@Il (< .k )  = d+(Jj,h 1 

@,de,.h) = e+(~).k, 

and 

@.”(’,.I9 ’1.27  ’1.37 ’1.4, ‘ ’ . ?  ’N.4)  

- 
-(S2.1r ’2.23 ’2.3r ’2.47 ’N.43 ’1.1, s1.23 ’1.3> ’1.4). 

Checking condition (i) of Definition 2 for  transition e , , , ,  
we have that 

@D(Uel.l)) = 0 = Ue,J = U@E(el,l)), 

@,,Me,,,)) = @D(ldl.21) = Id2J = 1(e2,,) = 4@,(el,,)), 

and 

@ D ( J ( e l , l ) )  = @ D ( { d I , l I )  = {d2,11 = J(e2,1) = J(@E(eI,l)). 

These equations imply  that  @,(E(s)) = E(@,(s)) for all 
s E S. For example, let s = (0, 1, 0, I ,  0, 0, 0, 0). Then 
@s(s) = (0,  0, 0, 0, 0, 1, 0, 1 )  so that 

E(@,(.?)) = k 2 . 1 ,  e1.J = {@E(e,.l)> @E(e*.J = @,(E(s)). 

To illustrate that condition (ii) is satisfied, let e = e,,2 = 

“end of  transmission by port I ,”  s = ( I ,  0, I ,  0,  0, 0, 0, 0), 
and s’ = (0, I ,  0, 1, 0, 0, 0, 0). Then @,(e) = = “end of 
transmission by port 2,” @,(s) = (0,  0, 0, 0, I ,  0, I ,  0), and 
@,(s’) = (0, 0,  0,  0,  0, 1, 0, 1) so that 

P(.Y’; .$, e )  = 1 = ~(&(s’ ) ;  @Js), GJe)). 

Next, let e’ = e , , ,  = N(s’; s, e),  and recall that  the  random 
variables A ,  and A ,  are identically distributed so that 

F(x;  s’, e’, s, e) = P { A ,  5 x] = P{A,  I x) 

= F(x;  @,(s’X @€(e’), @.”(s), @€(e)). 

Conditions  (i), (ii), and (iii) can be verified for all e E E and 
s, s’ E S in a  similar manner. 

Proposition  4 gives a set of conditions  on  the building 
blocks of a  symmetric  SPN which ensure  that  the marking 
process is a regenerative process in continuous  time  and  that 

IBM J RES.  DEVELOP.  VOL 30 NO. 3 MAY 1986 

the expected time between regeneration points is finite. This 
result is a  direct  consequence of Proposition 4.7 of [8]. 

Set @:(s) = @,(s) for all s E S and @k( e) = @,(e) for 
e E E. Recall that tn is the  nth  time  at which the marking 
process makes  a  state  transition, n 2 0. Let { T i :  n 2 0) be 
an increasing sequence of stopping  times that  are finite 
( T i  < UJ as.) transition firing times such that for some 
e * E E a n d S * C S ,   T A = O a n d  

T i  = inf { t  > Ti-l: at  time t transition @;(e*) fires and  the 

marking is @:( x*) for some s* E S*), n 2 1. 

(i) the set O( SA; s*, e*) = E(sA) n (E(s*) - {e*) )  = 0; 
(ii) the set N(sA; s*, e*) = E(sA) - (E(s*) - {e*]) = 

(iii) the clock setting  distribution F( .; si, e’, s*, e*) = 
N( SA; s, e*); and 

9 .  ; sb, t?’, s, e*) for all e’ E N( SA: s, e*). 

Then { X (  t ) :  t 2 0) is a regenerative process in continuous 
time. Moreover, if 

E{T:+, - T i )  I c < UJ (16) 

for all n z 0, then  the expected time between regeneration 
points is finite. 

Equation (1 5) implies that transition @;( e*) triggers a 
marking  change to @k( SA) infinitely often with probability 
one. Furthermore,  at such  a time TL, the only clocks that are 
active  have just been  set, since O(@k(sA); @:(x*), @;(e*)) = 0 
for all s* E S*. The  joint distribution of X (  T i )  and  the 
clocks set at  time T i  depends  on  the past history of { X (  t):  
t 2 0) only  through @;(sh), the previous marking @$(s*), and 
the trigger transition @f( e*). Since the new transitions and 
clock setting distributions  are  the  same for all s*, the process 
{ X ( t ) :  t z O] probabilistically restarts  whenever {X( TL): 
n 2 I ]  hits @;(SA). Note that the result of Proposition 4 also 
holds if condition (i) is replaced by (i’): O(sb; so, e*) # 0, 
and for any e’ E O(sh: so, e*) the clock setting  distribution 
F( . ; s’, e‘ ,  s, e) is exponential with mean which is 
independent of s, s’, and e. [Assumption  (i’)  ensures that  no 
matter when the clock for  transition e’ E O(s& so, e*) was 
set, the  remaining  time until  transition e’ triggers a  marking 
change is exponentially  distributed with the  same mean.] 

Under  the  conditions of  Proposition  4, the basic limit 
theorem  for regenerative processes asserts that X( t )  * X as 
t ”+ UJ. The goal of the simulation is the estimation of r( f) = 

E { f ( X ) ) ,  wherefis a real-valued (measurable)  function 
having domain S. From n cycles the  standard regenerative 
method (Crane  and Iglehart [ 161) provides the strongly 

LINDSAY  A.  PRISGROVE  AND  GERALD S SHEDLER 



consistent point  estimate 

and asymptotic 100( 1 - 2y)% confidence  interval 

for r( f ) .  In Equation ( 17) 

F(n) = n-l 2 Y J ~ )  

and 

.(n) = n-I T,, 

where 7, is the length of the  mth cycle and Y,( f )  is the 
integral of f ( X (  .)) over the  rnth cycle. The  quantity 
z , - ~  = a"( I - y), where 9 is the distribution function of a 
standardized normal  random variable, N(0, I) ,  and s2(n) is a 
strongly  consistent point  estimate for 

n 

*=I 

n 

In=, 

Asymptotic  confidence  intervals are based on the central 
limit theorem (c.1.t.) 

3. Steady state estimation for symmetric 
stochastic Petri nets 
In this section we consider  estimation of r( f )  = E { f ( X ) )  for 
symmetric  SPN models under  the  assumption  that  the 
functionfis  symmetric  in  the sense that 

A s )  = f(@&)) (19)  

for all s E S and all I = 1, 2, . . . , N .  [We set @$(s) = 4Js) 
and 

for all s E S and I = 2, . . . , N. Similarly, we set @:(e) = 

@,(e) and 

for all e E E.] 
The key observation is that,  under  the  assumptions of 

Proposition 4, regenerative cycles defined by the  times  at 
which transition c$;( e*) fires and  the  marking changes to 
4i(s;) can be decomposed into  independent, nonidentically 
distributed blocks. These  blocks are  determined by the 
successive times T, at which transition @;( e*) fires and  the 
marking changes from @$(s*) to @$(SA) for some s* E S* and 
some I ,  I = 1, 2 ,  . . . , N. Estimates  for r( f )  can be based on 
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I = I ,  2, . . ., N .  The result follows from Equation (20). 0 
To obtain  estimates for r( f ) ,  carry out  the simulation of 

the  marking process { X (  t ) :  t 2 0) in random blocks defined 
by the successive random  times {Tal: k 2 01, where 

TB, = inf { Tf, > Tal_,: X (  TL) = $:(SA) 
for some I, 1 = I ,  2, . . ., N ) ,  ( 2 5 )  

k 2 1 ; po = 0 and Too = 0. [Note  that  the  random times 
{ To*: k 2 O} do not form a  sequence of regeneration  points 
for the process { X ( t ) :  t 2 01.1 Set 7,  = TOk - Tal_, and 

fork 2 1 

Proposition 6 
The sequence {( Y,( , f) ,  7,J: k 2 1 I consists of independent 
and identically distributed  pairs  of random variables. 

Proqf The sequence {p,: k 2 1 1  comprises  indices of the 
successive stopping  times { T,: n 2 I 1 at which transition 
@:(e*) fires and  the marking  changes  from $i(s*) to @f,(s@ 
for some s* E S* and  some 1, I = I ,  2, . . . , N .  Thus, by the 
definition of a symmetric  SPN, each of the clocks running  at 
time To,+ was set or can be viewed as having been 
probabilistically reset at  time TB,. Therefore { X ( t ) :  t 2 TaJ 
determines  the distribution of 7k+ l  = Tal+, - Tal and  the 
finite dimensional  distributions of { f ( X ( t ) ) :  t 2 Toll. Observe 
that  the  joint distribution  of X( Tot) = 4i(  SA), and  the clocks 
set or reset at  time TBk depend on  the past history of the 
marking process only through the new marking $k(sh), the 
previous marking @:(so), and  the trigger transition @k( e*); 
this  implies that  the cycle length T,+, and { f ( X ( t ) ) :  t 2 To*} 
are  independent of {( q(,f), 7,): j 5 k). It follows that  the 
pairs  of random variables {( Y,( f ) ,  7,): k 2 1 1 are mutually 
independent. 

Next  observe that 

where CTk = To*, k 2 0. Set 6, = y k  - k 2 1. According 
to this  definition, 6, is the number of  transitions that fire in 
the  kth block. It is sufficient to show that  for all 
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so that [using Equation (26)] the pairs of random variables 
I (  Y k ( f ) ,  7*): k 2 1) are identically distributed. 0 

Standard arguments establish a ratio formula for r( f ) .  

Proposition 7 
Provided that ,?IT,) < m and E( I f ( -  1 )  < m, 

With these results Equations (1 7) and ( 18) provide point 
estimates and confidence intervals for r( f ) .  Propositions 6 
and 7 assert that there are “independent, identically 
distributed pairs” and  an appropriate “ratio formula” in the 
setting of independent, nonidentically distributed blocks. 
These results are sufficient to establish the validity of the 
confidence interval obtained in regenerative simulation 
theory. 

Example 8 
In the token ring model of Example 3, set S‘ = 

(s E X sj,, = 1 for some;, j = 1, 2, . . . , N) and consider the 
function f defined by 

f ( s )  = I,&) 

for s E S. According to this definition, r( f )  is the steady 
state throughput of the token ring. Note that the functionf 
satisfies Equation (19) since (for each I )  

SJ(~),, = 1 if and only if s,+/,, = I ,  

j =  1,2,  ..., N. 
Sete*=e,,, ,s;=(l,O, l , O , I , O , O , O , . . . ,  I,O,O,O),and 

= l ( s l , l >  ’ ’ .) sN,4) E X sN,4 = l )  

so that TL is the  nth  time  that port 1 observes the ring 
token. Arguments given in [8] show that the conditions of 

Proposition 4 hold provided that the packet interamval time 
random variables, A,, have “new better than used” (NBU) 
distributions and satisfy a positivity condition: 
P(A, 5 RN) > 0, j = 1, 2, . . . , N. Since @;(e*) = el,, and 
@$(SA) is the marking in which there is a packet queued for 
transmission at each  of the ports and  the ring token is 
propagating to port I ,  it  follows that Tf, is the nth time  that 
port I observes the ring token. We carry out  the simulation 
of the marking process in blocks  defined by the random 
times T, at which  for some I there is a packet queued for 
transmission at ports I ,  2, . . ., I - I ,  I + 1, . . ., Nand port I 
starts transmission of a packet. 

4. Passage  times in  stochastic  Petri  nets 
Formal specification  of  passage times in a symmetric SPN is 
by means of four subsets ( A , ,  A,, B,,  and B,) of the marking 
set, S. The sets A , ,  A,, B,, and  B, in effect determine when 
to start and stop  the clock measuring a particular passage 
time; cf.  Iglehart and Shedler [ 171. 

Denoting the jump times of the process ( X (  t ) :  t 2 0) by 
ICn: n 2 0), for k, n 2 1, we require that the sets A , ,  A,, B,, 
and B, satisfy the conditions 

if X(i-n-l) E A , ,  XK,J E A,, E A , ,  and 

X ( L + k )  E ’429 

then X(.L+,,,) E B,  and X(L+,,,) E B, 

for some 0 < m 5 k; 

and 

ifXUn-J E B,, E B,, X(Cn-l+k) E B,, and 

X ( L + k )  E B,, 

then XK-,+,,,) E A ,  and X(L+,J E A ,  

for some 0 5 m < k. 

These conditions ensure that  the start and termination times 
for the specified  passage time strictly alternate. 

(@$(s): s E A , ) ,  A :  = (@k(s): s E A , ) ,  B: = {@i(s): s E B,) ,  
and B: = (@k(s): s E B,), I = I ,  2, . . . , N. [Recall that for 
s E S, 4;(s) = @As) and @i(s) = @(@gI(s)), I = I ,  2, . . ., N. 
Also  recall that for e E E, @;(e) = @ J  e )  and @;( e )  = 
@,(@:I( e)).] Then define two sequences of random times 
{S , ( I ) : j  2 0) and { ? ( I ) : ;  2 1): q-,(I) is the start time for 
thejth passage time (corresponding to the sets A : ,  A:,  B:, 
and B:)  and ?( I )  is the termination time of this j th  passage 
time. Set 

In terms of the sets A , ,  A,, B,, and B,,  define A :  = 

So(/) = 0, 

S I ( / )  = infll;, 2 ?.(I): X({,) E A:, x(c~-,) E A : ) ,  

and 

= inflr,, > S,-,(I): x(<,,) E B:, x(s,-,) E & I ,  
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j z 1. Note  that since the  SPN is symmetric, the sets A’,,  A:, 
B: ,  and B: satisfy the  conditions which ensure  that  the  start 
and  termination  times for the passage times P: = T,( I )  - 
S,-,(l) strictly alternate.  Denote  the successive passage times 
PI,, P:, . . ., pf: Pi, P:, . . . enumerated  in  termination 
order by (Pi: J 2 1 ). Set TA = 0 and let T: be  the  termination 
time for P,‘, j 2 1. 

{(X(Ti) ,  PA+,): n 2 0) is a regenerative process in  discrete 
time  and  that  the expected time between regeneration points 
is finite. The regenerative structure guarantees (Miller [ 181) 
that PA P as n 4 01. The goal of the  simulation is the 
estimation of r( f )  = E {  f(P)], where f is a real-valued 
(measurable) function  and P is the limiting passage time. 

so E B ,  and $6 E B, such that a passage time  terminates 
when  transition e* fires and  the marking  changes from so to 

Proposition 9 gives conditions which ensure  that 

We postulate the existence of a transition e* and markings 

Proposition 9 
Suppose that  there exist e* E E, so E B,, and SA E BS such 
that p(s;; so, e*) > 0 and either (i) O(s& so, e*) = E(si) n 
(E(so) - {e*)) = 0 or (ii) U(sh; so, e*) # 0 and for any 
e‘ E O(s;; so, e*) the clock setting distribution F( .; s’, e‘, s, e)  
is exponential, independent of s, s‘, and e. Set 

= (@!-(so), @k( SA)) and suppose there exists 6 > 0 such that 

P{ V( T’,,) = I V( T:-,), . . . , V( T : ) )  z 6 a.s. (31) 

Then ( (X(  T;), PA+,): n 2 0 )  is a regenerative process in 
discrete time. Moreover, if 

E{ Tk+, - T i ]  5 c < m 

for all n 2 1, then  the expected time between regeneration 
points is finite. 

si. In addition, we assume  that  no passage times  are 
underway  when the  marking of the  SPN is s& Formally, let 
L( t )  be the last marking of the  SPN before changing to X( t )  
and set 

Proof Since Ti  < QI a.s. and PI V( T i )  = 1 V( Ti-,),  . . . , 
V( Ti)}  2 6 > 0, Lemma 4 of [8]  ensures that transition 
@:( e*) fires and  the  marking of the SPN  changes  from 4:( so) 
to @:( SA) infinitely often with probability one: P{ V( T i )  = 

~~ 

V ( t )  = (L ( t ) ,  X ( N .  i.0.) = 1. Denote by [&: k 2 I }  the indices of the successive 
passage times {Pi:  n 2 1 )  which terminate when  transition 

Denote by G the state space of { V( t ) :  t 2 0).  Set A‘ = @k( e*) fires and  the  marking changes from @:( so) to @:(SA). 
A: X A$ and B’= B: X B:, I =  1,2, . . ., N. Now set Let T; = = 0. We must show that 

H‘, = 1s’ E s: (s, s f )  E B‘ - A‘ for some s E SI, 

so that H‘, is the set of all possible markings  when a passage 
time Pf, terminates. Also set and  that for any i ,  < i, < . . . c i,,, ( m  2 1 )  and k 2 0, 

(i) I&: k z 0) is a renewal process in discrete time, 

H: = (s’ E S: (s,  s’) E G - (B‘ U A‘),  (si, si) A,‘ (s, s’), and 

(s, s’) 6 (sl, sr) for all s E S and  some 

(si, s;) E B‘, (s;, SI) E A ‘ } ,  

so that H i  is the set of all possible markings when a passage 
time P!, is not underway. For (s, s’), ($  3 ’ )  E G we write 
(s, s f )  ( 3 ,  S ’ )  if there exists a finite sequence e;, si, e;,  s S ,  
. . . , S A ,  e; of transitions  and markings such  that 

p(s;;  s’, e@p(s;; s;, e ; )  . . . p(S; S A ,  e; )  > 0 

and (s’, si), (SA,  S), (3)’. s1’+,) ff A‘,; = 1, 2 ,  . . ., n - 1. We 
assume  that 

B; = B~ n ( H I ,  u H’J n . . . n ( H ;  u H:) # 0 

and  that si E B;. 
As in  Section 2 ,  let { Tf,: n 2 0) be an increasing sequence 

of  stopping times  that  are finite ( T/ ,  < 01 as.) transition 
firing times,  such that for some e* E E and S* C S, TA = 0 
and 

TI, = inf { t  > TI,-,: at  time t transition @;(e*) fires 

and  the marking  is @L(s*) for some s* E S*}, 

nz 1 a n d l =   1 , 2 ,  ..., N .  

(ii) IX(T;;+J Pj;+),+,, . . ., XCTj;,,,), f‘;~+,~+,l and 
{ X (  T,’l), P ,’,+ ,, . . . , X (  TIL), P,L+ , ) have the  same 
distribution,  and { X (  Tj;+J Pi:+,,+,, . . .  , 
X( P;;+,_+,} is independent of l (X(T;) ,  PA+,): 
o 5 n < &. 

At time T;;, a passage time has just  terminated with no  other 
passage times underway.  Now observe that each  of the clocks 
running  at  time Tj;+ was set or can be viewed as having 
been probabilistically reset at  time Ti; [Assumption (ii) 
ensures that,  no  matter when the clock for  transition 
e’ E U(~$(S; ) ;  $$(so), @:(e*)) was set, the  remaining  time 
until transition e’ fires is exponentially  distributed with the 
same parameter.]  Therefore, { X (  t ) :  t z Thk} determines  the 
finite dimensional  distributions of X( Ti;+,), Pi:+,+, for i z 0 
and the distribution of pL+, - a:. The  joint distribution of 
X( Ti;) and  the clocks set or reset at  time T;; depends  on  the 
past history of the  SPN only through 4:( SA), the previous 
marking @;(so), and  the trigger transition @;(e*). This 
distribution  is the  same for  all 8: and therefore (i) and (ii) 
hold. 

Proposition 4.3 of [8] implies that ( X ( t ) :  t 2 0 )  is a 
regenerative process in continuous  time  and  that 
E( Ti;+, - T;;) -= 03. It follows, since the  state space  of the 287 
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marking process is finite and  the clock setting distributions 
have finite mean,  that E(&+, - &) < CQ. 0 

that  Equation (3 1) holds. We postulate the existence of a 
distinguished random  time e-, in  the interval [T i - , ,   T i )  
and a set {e(? k E K( u:))  of  distinguished  transitions 
determined by the marking, u:, at  time e-,. We make  the 
following sample path assumption: V( T : )  = u i  when  each  of 
the distinguished transitions occurs  prior to  some  time 

+ Rn.,(u:). Proposition I O  asserts that  the geometric 
trials  recurrence  criterion [Equation (34)J is satisfied if the 
clock setting distributions associated with the distinguished 
transitions are  NBU  and satisfy a "positivity" condition 
[condition (iii)] which guarantees the existence of 6 > 0 as in 
Equation (34). [A positive random variahle A is NBU if 

Proposition I O  provides sufficient conditions which ensure 

P('4 > x  + y l A  > y )  c P ( A  > x )  

for all x, y 2 0. Note  that every increasing  failure rate (IFR) 
distribution is NBU. Also, if A and B are  independent 
random variables with NBU  distributions, then  the 
distributions of A + B, min(A, 5), and  max(A, 5) are 
NBU.] 

Recall that G is the state  space  of the process ( V( t ) :  t 2 0) .  
Let { e-,: n 2 O} be a sequence  of  transition firing times  and 
denote  the  state space  of ( V( n 2 0) by G'. Set 
J( e-,) = ((S/, C)): 0 e I < N( c-,)), where N (  .) is given 
by Equation (7). Let e( ' ) ,  e'2), . . . , d m '  E E and for 
V' = (l+, x+) E G', set E(u+) = E(x+) and 

K(V+) = {k: e(,) E ~(u ' )} .  

When V( e-,) = u+, for k E K(v+) we denote by S,,,(u') the 
latest time less than or equal  to T:-, at which the clock 
associated with transition e(,) was set and by An,,( v') the 
setting on  the clock at  time S,,,(u'). 

Proposition 10 
Let e"), e'2), . . ., e'"" E E and let ( e-,: n 2 0) be a 
sequence of transition firing times. For V +  E G+, let 
( Rn,,Ju'): k E K(v')J be identically  distributed  collections of 
random variables, independent of { A J  V( C-J): 
k E K( V( and J( T:-,). Assume that 

(i) Tk-l c E-, as .   and for uo, u, ,  . ., u,-, E G and 
V' E G+, 

PiV(Ti )  = V i ,  V(T, - , )  = u+, V(T;-,) = Vn-,, . ' ., 

= no1 

2 P(Sn,k(u') + An,,(u+) 5 c-, + Rn,,(u+), k E K(u+); 

V( T:-,) = v+,  V(Ti- , )  = vn-,, . . ., V ( T : )  = ~ 0 1 ;  

(32) 

(ii) for all e(,) the clock setting  distribution F( . ; s', e',), s, e )  

(iii) there exists 6 > 0 such that for u+ E G' 
= F( . ; e(k)) and is NBU; and 
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6(u+)  = P(A,(u+)  5 Rn,,(u+), k E K(v+) )  E 6, (33) 

where the  random variable AJ(u') has  distribution 
F( . ; e"') and (AJ( v+) :  j E K( v + ) )  are mutually 
independent  and  independent of (R,,J(u'):j E &ut ) ) .  

Then 

P( V( TL) = ub I V( Ti-l) ,  . . ., V( T : ) )  2 6 a.s., (34) 

so that PI V( T i )  = u; i.0.) = 1. 

[9] since the process ( V(t):  t 2 O} is a generalized semi- 
Markov process with state  space, G, and event set, E. 

Example I I 
In the  token ring model  of  Example 3, take @ ( j )  = j + I ,  
j =  l , 2 ,  ..., N.Se t so=( l ,O ,O,O,~ . . , l ,O ,O ,O, l ,O ,O, l )  
ands~=(1,0,1,0,1,0,0,0,~~~,1,0,0,O).Take 
e* = e,,, and 

Proposition I O  follows directly from Proposition 2.16 of 

'* = ((sl,l> s1.2' . ' ' 3  sN,4) E s,&r,4 = ' 1  
[where S is given in Equation (1 I)] so that T :  is the  nth  time 
at which port 2 observes the ring token, n 5 1 .  [Note  that 
X( T : )  = @;(si) if there is a packet queued for  transmission 
at each of  the  other ports and  port 2 starts transmission  of a 
packet at  time TL. The  SPN with marking process (X( t): 
t 2 0 )  changes marking  to @:(si) when transition @;( e*) fires 
and  the  current  marking is @$so).] Observe that T :  < 00 a.s. 
since 

E{T:  - T:- ,J  5 NR, + NE(L,J < 00 

for all n 2 1. Take e"' = eJ,,(m = N). Let e-, be the first 
time after TA-, at which the ring  token leaves port I 
[transition @:(e*) becomes  enabled]. Take Rn,,(u+) = R, for 
all u+ E G'. Since the  SPN has marking 43s;) at  time T i ,  if 
each  transition e,,, enabled at  time c-, fires before @;(e,) 
fires, condition (i) of Proposition 10 is satisfied. Assume that 
for j = 1 ,  2, . . . , M. (i) the  distribution of A, is NBU and (ii) 
6, = P(A, I R,} > 0 so that 

N 

6 ( V + )  = n 6, 2 n = 6 > 0. 
, € N u ) + )  J = I  

Then P( V( 7':) = V :  Lo.) = I .  
The  definition of a symmetric  SPN implies  for the process 

( ( X (  TA), P;+J: n 2 0 )  that regenerative cycles defined by the 
times  at which the transition @;(e*) fires and  the marking 
changes from @:(so) to 43s;) can be decomposed into 
independent, nonidentically  distributed blocks. These  blocks 
are defined by the successive times T, at which transition 
@;(e*) fires and  the marking  changes  from @:(s*) to @:(si) 
for some s* E S* and  some I, I = I ,  2, . . . , N.  Estimates  for 
characteristics  of  limiting passage times  can be based on 
measurement of passage times  contained in  these blocks. 
Denote  the  state space of the process { V( TL): n 2 0)  by G' 
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and set .:, = (@$(so), &s;)), (35) 

I = I ,  2, . . ., N. Denote by { T,,: n 2 1) the  times T:,  T;, 
. . . , rf: T i ,  . . . in increasing order. 

Proposition 12 
Suppose there exists 6 > 0 such that 

P{ V( TL) = U: I V( TL-,), . . . , V( Ti))  2 6 a.s. (36) 

Then P{ V( T,) = u; i.o.1 = 1 for all I = 1, 2, . . ., N. 
Arguments analogous to those given in Section 3 establish 
Proposition 12. Using symmetry of the  SPN,  the idea is to 
show that 

P{ V(T:)  = I V(TL-,) = @;(un-I), . . . )  V ( T : )  = @$(uO)l 

= P{ V( T:) = u; I V U - , )  = @$(un-l) ,  . ' ', 

w : )  = @ku,)l (37) 

for all u0, u I ,  . . . , v , - ~  E GN. [For u = (s, s') E GN, we write 
@X.) = (@S(S), @s(S')).l 

Carry out  the simulation of ( V(t ) :  t z 0) in random blocks 
defined by the successive random  times ( Tik: k 2 01, where 

Ti, = inf { T', > V( T n )  = uo / I  

for some I, 1 = I ,  2, . . . , N ) ,  (38) 

k 2 I ;  Po = 0 and Tk = 0. Each epoch Tik corresponds to 
the  termination of a passage time with no  other passage 
times underway. [Note  that  the  random  times { Ti,: k z 0) 
do not form  a  sequence of regeneration  points  for the 
process { ( X (  TA), PA+l): n 2 01.1 

the  number of passage times in the  kth block. Also set 
Set ak = Pk - / 3 k - l ,  k 2 1. According to this  definition CY, is 

Y , ( f )  = c f(PJ') 
el 

I=' 

and  denote  the analogous quantity in the  kth block by 
Y,(f)> k 1. 

Proposition I3 
The sequence of pairs  of random variables {( Y,(f) ,  a,): 
k 2 1 1 are  independent  and identically  distributed. 

Proof As in the proof of Proposition 9, observe that  at 
time Ti, defined by Equation (38) a passage time has just 
terminated with no passage times underway and each of the 
clocks running  at  time Tik+ was set or can be viewed as 
having been probabilistically reset at  time Ti,. Therefore 
( X (  t ) :  t 2 Tik] determines  the  distribution of ak+, = 

Pk+, - P, and  the finite dimensional distributions  of Pi,,,,, 
for i z 0. The  joint  distribution of the clocks set or reset at 
time Tik depends  on  the past history of the  marking process 
only through X (  Ti> = @$( s;), the previous marking @:(so), 
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and  the trigger transition I$;( e*). It follows that  the pairs of 
random variables {( Y k ( f ) ,  a&: k 2 1 ] are mutually 
independent. 

Recall that S,, is the  time of the  nth transition firing and 
denote by e: the transition that fires at  time {,,, n z 0. Also 
recall that C, is the vector of clock readings at  time <,, and 
that C,,, is the  ith  coordinate of the vector C, for e, E E(S,). 
Letz,, ..., z,,>O,xI, ..., ~ , , E S , a n d e , ~ ,   . . . , e , n E E w i t h  
p(x,; x,-,, e,,) > 0. It follows from  the definition  of  a 
symmetric  SPN  that 

P ~ { x ( s , , )  = @\(xn), s,, 5 z,, e: = x(L-,) = @k-,), 

5 zn-,, e;-, = &k(e,,_,), . . ., e: = 

= P,{x(s,,) = @$(x,), C, 5 z,,, e: = @;(e,n), 

= @ ; ( L J 3  Sn-I 5 q - 1 3  

e:-, = @ k e , ~  . ., e: = (39) 

for all I = I ,  2, . . . , N. [Here PI  { .  ) denotes  the conditional 
probability associated with starting the  SPN with marking 
@!J SA) and all active clocks reset at  time t = 0 according to 
the distributions 

P{c,,, 5 c~ = R C ;  &s@, e,. &.F,), @:(e*)) 

for c z 0, e, E E(@,:(s@); Pi{. ) denotes  the corresponding 
conditional  probability when the initial marking is &:(SA).] 

reset at  time t = 0 according to  the  distributions 
F(c; SA, e,, so, e*), e, E E(sd). Set X I ( [ )  = @,:(X([))  and 
X / (  t )  = @:(X( t ) ) ,  i 2 0. Observe that for each sample  path of 
{ X ( [ ) :  t 2 0) and all n 2 0, 

X'({n-l) E A:' = {@:'(.r): s E . A ! )  and 

Next suppose that X ( 0 )  = .Y; and  that all active clocks are 

X'(Sn)  E '4;1 = {@:l(S): s E >42) 

for some m, if and only  ifX'(Sn-,) E A? and E A T  for 
some m,. Similarly, 

E BY' = [@;'(.s): s E B,{  and 

E BY' = (&:'(s): s E B,) 

for some m, if and only if E BY and X'(Sn) E B;1/ 
for some m,. Since 

S,(m) = W < , ,  2 TJm): X(<J E A;, X(<,.. J E ,4:1 

and 

q ( m )  = W S ,  > S'-,(m): X(SJ E B;, E B y )  

for all m, Equation (39) implies that 

PI{,, = + 1, P:,+, 5 yn,~,, P,: 5 .vn, ' ", P; 5 y , ]  
- 
- P/bI = n + 1, 5 y,lA', P:, 5 yn. ' '  ., P ;  5 y,] 

(40) 
f o r a l l I = I , 2 , . . . , N , L . , , t i ,  ...,y,+, 1 0 , a n d n r O . B y  
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the  independence  argument in the first part of the proof, it Example I5 
follows that In Example 3, consider port access times measured from  the 

arrival  of a packet  for  transmission by some  port  until  the 

times is specified by the  four subsets  of S 
pI(ak+l = ‘7  yn+I> ‘;,+,-I yn, ’ ’ .’ ‘A,+! yl, start  oftransmission by the port. This sequence ofpassage 

W ; J  = &6)1 
= P/(a l  = n + 1, Pi+, 5 y,,,, PA 5 y,,, . . ., Pi 5 y , )  A ,  = { ( X I , ! ?  ‘ ” )  s,V,d,) E s: = s1,3 = OI, 

x P,(X(T;J  = (41) A ,  = ( ( S I , , ,  . ‘ ’, $N,4) E SI,, = 1 and s1.3 = 01, 
B, = ((s,,,, . . ., sN,J E X s,.) = 0 and sN,4 = 11, 

for all n 2 0 and I = 1, 2, . . . , N. Using Equation (40), this  and 
implies B, = {(s,,,, . . ., sN,4) E S = 1 and s,,,~ = 0) .  

= P/((Y, = n + 1, PA+, 5 y,,,, P:, 5 y,, . . ’ )  

/= 1 

N p ;  5 Y , l P , ( x ( ~ ; , )  = &;)I 

p ;  5 Y,)p , Ix (T; )  = &@I> 

P,(ak+, = n + 1, pi,,, 5 Y,,,, p;k+l-, 5 Y,, ’ ‘ ’ >  q , + ,  5 Y l l  

= P,(cu, = n + 1, Pi+, 5 y,,,, P:, 5 y,, . . ., P; 5 y , ) ,  

= P,(a ,  = n + 1, PA+, 5 y,,,, P:, 5 yn, ’ .  ‘ )  

I= I 

so that 

and  the pairs of random variables (( Y k ( f ) ,  ak): k 2 1) are 
identically distributed. 0 

Standard  arguments establish a ratio  formula for r ( f )  = 

E ( f ( P ) l .  

Proposition 14 
Provided that E( T ,  ) < m, P( P E D ( f ) )  = 0 and 
E(  If(P) I1 < 03, 

With these results, based on n blocks (cf. Crane  and Iglehart 
[ 161) a strongly consistent point  estimate for r ( f )  is 

and  an  asymptotic 100( 1 - 27)% confidence  interval is 

(43) 

where s2( n )  is a strongly consistent point  estimate for u 2 ( f )  

= var ( Y l ( f )  - r ( f ) a , ) .  Asymptotic  confidence  intervals are 
based on  the c.1.t. 

290 as n + m. 

(44) 

The set of all possible markings  when a passage time P: 
terminates  or is not underway is H‘ = ((s,,,, . . ., s ~ , ~ )  
E S: = 1 or = 1). Then B; # 0 and 
s;=(l,O, 1 , 0 , 0 , 1 , 0 , 0 ,  ..., O,l ,O,O)EB;.The 
random  times ( T;,: k 2 0) correspond to  terminations of 
port access times which occur when there is no packet 
queued for  transmission at  any of the ports.  Propositions 13 
and 14 hold  provided that  the packet  interarrival time 
random variables are exponentially  distributed. [The  random 
time T i  is the  nth  time  at which port I + 1 observes the ring 
token, n 2 0. Note  that ( V( T:): n 2 0 )  is an irreducible, 
finite state discrete time  Markov chain so that PI V( TL) = 
U ;  i.0.) = I .  It follows that P( V( T,) = u; i.0.) = 1 for all 
I =  1, 2, . . ., N.]  

5. Statistical efficiency 
Section 4 provides  two estimation procedures for passage 
times  in a symmetric SPN. Each  procedure rests on  the 
assumption  that  there exist e* E E, so E B,, and 3; E B; 
satisfying the  conditions of  Proposition 9. The regenerative 
structure guarantees that PA P as n + and  the goal of 
the  simulation is the  estimation of r ( f )  = E ( f ( P ) ) ,  wherefis 
a real-valued measurable  function.  [We assume  that  the 
functionfis such that E (  I f ( P )  I ) < 01 and PIP E D(f)) = 0 
so that  ratio  formulas for r ( f )  hold.] 

passage times (PL: n 2 1 ) and  simulation of the underlying 
marking process of the  SPN  in regenerative cycles defined by 
the  times T:, at which V( T;) = uf. Alternatively, exploiting 
properties of a symmetric SPN, estimates can be based on 
measurement of passage times (PA: n 2 I )  and simulation  of 
the underlying marking process in independent, 
nonidentically  distributed  blocks  defined by the  times TA at 
which V( T;)  E (u:,  . . . , u,”}. This  estimation procedure 
extracts more passage time  information  from a simulation of 
fixed length and should  provide  estimates  for r ( f )  that  are 
relatively more accurate. In  this section we verify that  this is 
indeed the case by showing that  the resulting confidence 
intervals are shorter. 

n 2 1) completed  in (0, t ]  and  denote by I&: k 2 1) the 

Estimates  for r ( f )  can be based on  measurement of 

For t 2 0 let m ’ ( t )  be the  number of passage times (PL: 

LINDSAY  A. PRISGROVE AND  GERALD S .  SHEDLER IBM J RES. DEVELOP. VOL. 30 NO. 3 MAY 1986 



indices of the successive termination times { TA: n 2 1 } at 
which V( TA) = uf. Set 

a: = m'( 7,;;) - ml( Gi-,), 

as t + m provided that E { ( a : ) 2 }  < and E{( Y: ( l f l ) )*}  < m. 

Here 7: = TA; - Ti;_,. Since the  numerator in  this c.1.t. and 
the limit [N(O, I)] is independent of the transition @;.( e*) 
and  the markings @!J so) and @!J s i )  which define the cycles, 
so is the  denominator; this is a  consequence  of the 
convergence of  types  theorem (Billingsley [ 191, Theorem 
14.2). Thus,  the  quantity 

e l ( f )  = 0 ( ~ ) / E I ~ : I  
I 1/2 I 

is an  appropriate measure of the statistical efficiency of the 
estimation  procedure based on cycles. 

completed in (0, f]. Set 
Now let m ( t )  be the  number of passage times {PA: n 2 I }  

ah = m( Tki) - m( 
m( Ti;)  

Y , ( f )  = c f(PJ')> 
J = m ( 7 ' I  )+I 81- I 

and 

(.(/I)' = var ( y , ( f )  - r(f)al). 

Again using Lemma 4. I of [ 171, 

as f "+ m provided that E{(a , )*}  < m and E{(  Y , ( l f / ) ) * }  < m. 

Now observe that  the  numerator  and  the limit  in  this c.1.t. 
are  independent of  whether the passage times {PA: n 2 1 } are 
measured in regenerative cycles [defined by transition @:.(e*) 
and markings @:(so) and @,\(SA)] or in blocks defined by 
@;.(e*), @:.(so), and @:.(sJ for all I = I ,  2, . . ., N .  Therefore, 

4f) = (El.:l)'/'.(f)/El.,l 
is an  appropriate measure  of statistical efficiency of the 
estimation  procedure based on blocks. 

construct  point and interval  estimates for r ( f ) ,  the half- 
length of the confidence  interval is proportional to e ' ( f ) ,  

Note that when the passage times ( P i :  n 2 1 )  are used to 

and when the passage times {PA: n 2 1 } are used (with the 
same  constant of proportionality),  the half-length of the 
confidence interval is proportional to e( f ) .  Proposition 16 
asserts that  under mild regularity conditions  on  the function 
f; e ( f )  5 e ' ( f ) .  

Proposition 16 
For all functionsfsuch  that E{  I f (P)  I }  < m and P{ P E Q f ) }  
= 0, e ( f )  5 e ' ( f ) .  

P r m f  It  is sufficient to show that 

5 N2(.'(f)f 

and 

E{a ,J  = NE{a:} .  

To establish Equation (47), for t 2 0  set 

m ( 0  

W ( t )  = f(PJ') - r ( f )m( t ) .  

Now observe that (X( t ) :  f 2 0 )  is a regenerative process by 
Proposition 4 and  that, with respect to this process, { W( t ) :  
t 2 O }  is a cumulative process in the sense of Smith [20] with 

/=I 

E (  W( T k h )  - W( T i h - l ) }  = E{  y/,(f) - r ( f ) a h !  = O. 

Thus, by Theorem 8 of [20], 

(49) 

Equation (47) follows, since 
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for I = I ,  2, . . . , N. To see this, fix 1 and let {p : :  k s 1 } be 4. M.  K. Molloy, “Performance Analysis Using Stochastic Petri 
the indices of  the successive termination  times { T;: n 2 1 1 at Nets,” IEEE Trans. Computers c-3139 13-917 (1982). 

which V( T:) = u;. Observe that { W‘( t ) :  t 2 0) is a 
cumulative process, so that by Theorem 8  of [20], 6. F. J.  W. Symons,  “The  Description  and Definition of Queueing 

lim 

5. S. Natkin, “Les Reseaux de Petri Stochastiques,”  Thtse  de 
Docteur  Ingenieur,  CNAM, Paris, 1980. 

Systems by Numerical Petri Nets,” Austral. Telecommun.  Res. 
var ( w‘(t)) - -- ( U W  13, 20-3 I (1980). 

I-m t E141 ’ 7. W.  M. Loucks, V. C.  Hamacher,  and B. Preiss, “Performance of 
Short Packet Local Area Rings,” Technical Report, Departments 
of Electrical Engineering and  Computer Science, University of 
Toronto,  Canada, 1982. 

8.  P. J. Haas  and G. S. Shedler, “Regenerative  Simulation of 
Stochastic Petri Nets,” Proceedings ofthe International 
Workshop on Timed Petri Nets, Torino, Italy, 1985, pp. 14-23; 
published by IEEE (Catalogue  Number 85CH2187-3). 

9. Peter J. Haas  and  Gerald S. Shedler, “Regenerative  Simulation 
Methods  for Local Area Computer Networks,” IBM J. Res. 
Develop. 29, 194-205 ( 1  985). 

IO. D. Konig, K. Matthes,  and  K. Nawrotzki, Verallgemeinerungen 
der Erlanaschen 2nd Enpsetschen Formeln, Akademie-Verlag, 

I 

The definition of a  symmetric SPN implies that E { T ~ )  = Berlin, 1967. 
E { T ~ )  and ( ~ ‘ ( f ) ?  = var( Y i ( f )  - r ( f ) a i ) .  

1 I .  D. Konig, K. Matthes,  and K. Nawrotzki, 
“Unemufindlichkeitseiaenschaften von Bedienunnsprozessen,” 

To establish Equation (48) set 

N 

m( t )  = ml(t) 
I= I 

Appendix to B.  V. Gnedenko  and I. N. Kovalenkoi Introductron 
to Queueing Theory, German  edition, 1974. 

Transactions qf the 3rd Prague Conference on Information 
Theory and Statistical Decision Functions, Prague, 
Czechoslovakia. 1962. 

12. K.  Matthes, “Zur Theorie  der Bedienungsprozesse,” 

and observe that { m‘( t ) :  t 2 O} and { m( t ) :  t s O} are 
cumulative processes with respect to {x( t ) :  t 2 01. Moreover, 14. D. L. Iglehart and  G. S. Shedler, “Simulation  Output Analysis 

13. W.  Whitt,  “Continuity of Generalized Semi-Markov Processes,” 
Math Oper. Res. 5, 494-50 1 (1980). 

for Local Area Computer Networks,” Acta Injbrm. 21, 321-338 

and 

(1984). 

Markovian Systems,” IBM J. Res. Develop. 27,472-480  (1983). 

Systems: 111, Regenerative Processes and Discrete Event 
Simulation,” Oper. Res. 23, 33-45 ( 1  975). 

Regenerative Simulation  Methods for Networks of Queues,” 
4 d v .  ~ 4 ~ ~ 1 .  Prob. 15, 183-197 (1983). 

15. Donald L. Iglehart and  Gerald S. Shedler, “Simulation of Non- 

16. M. A. Crane  and  D. L. Iglehart, “Simulating Stable Stochastic 

17. D. L. Iglehart and  G. S. Shedler, “Statistical Efficiency  of 

~ ~ ~ i ~ ,  since the SPN is , q T ; }  = , q T : }  and 18. D. Miller, “Existence of Limits  in Regenerative Processes,”Ann. 

= E{  a i}  so that Math.  Statist. 43, 1275-1282 (1972). 
19. P. Billingsley, Probability and Measure, John Wiley & Sons, 

Inc., New York, 1979. 

Statisr. Soc. B 20, 243-302 (1958). 
20. W. L. Smith,  “Renewal  Theory  and Its Ramifications,” .I. Roy 
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