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Symmetric
stochastic
Petr nets

by Lindsay A. Prisgrove
Gerald S. Shedier

The stochastic Petri net (SPN) model is well
suited to formal representation of concurrency,
synchronization, and communication. In this
paper we focus on discrete event simulation
methods for SPN models with special structure
and define a symmetric SPN. Exploiting
properties of a symmetric SPN and underlying
regenerative process structure, we establish
steady state estimation procedures based on
independent, nonidentically distributed blocks of
the marking process. We also establish
estimation procedures for passage times in the
symmetric SPN setting. These resuits lead to
efficient estimation procedures for
delay/throughput characteristics of ring
networks with identical ports.

1. Introduction

The stochastic Petri net (SPN) model is well suited to formal
representation of concurrency, synchronization, and
communication (cf. Ajmone Marsan, Conte, and Balbo [1],
Dugan [2], Molloy [3, 4], Natkin [5], and Symons [6]). Such
models have application in the performance evaluation of
distributed computer systems. In this paper we focus on
discrete event simulation methods for SPN models with
special structure.
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An SPN is specified by a finite set of places and a finite
number of transitions along with a normal input function, an
inhibitor input function, and an output function (each of
which associates a set of places with a transition). A marking
of an SPN is an assignment of zero or more tokens to the
places in the net. A transition is enabled whenever there is at
least one token in each of its normal input places and no
tokens in any of its inhibitor input places; otherwise, it is
disabled. A transition fires by removing one token (per
place) from a random subset of its normal input places and
depositing one token (per place) in a random subset of its
output places. Such “random inputs” and “random outputs”
are specified in terms of new marking probabilities as
defined below and are needed for representation of
distributed computer systems. The stochastic process
{X(1): t = 0}, where X(¢) is the marking of the SPN at time ¢,
is called the marking process.

Informally, an SPN is symmetric if there is a mapping of
places onto places and transitions onto transitions which
preserves sets of enabled transitions, new marking
probabilities, sets of new transitions, and clock setting
distributions. An important application of symmetric SPN
models is in the representation of ring networks with equally
spaced, identical ports; cf. Loucks, Hamacher, and Preiss [7].
Exploiting properties of a symmetric SPN and underlying
regenerative process structure, we establish steady state
estimation procedures based on independent, nonidentically
distributed blocks of the marking process. We also establish
estimation procedures for passage times in the symmetric
SPN setting. The symmetry property considered in this
paper is used to increase the statistical efficiency of SPN
simulation.

Although steady state estimation for an arbitrary SPN is a
very difficult problem, Haas and Shedler [8] have provided
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estimation procedures for SPN models with a marking
process that is a regenerative process in continuous time. To
establish the regenerative property for the marking process of
an SPN, it is necessary to show the existence of an infinite
sequence of random time points at which the process
probabilistically restarts. It is often clear that a marking
process probabilistically restarts when a particular transition
fires, leaving the system with a fixed marking. For specific
models, however, it is nontrivial to determine conditions
(distributional assumptions) under which this occurs
infinitely often with probability one. Using recurrence theory
(Haas and Shedler [9)]) for generalized semi-Markov
processes (Konig, Matthes, and Nawrotzki [10, 11], Matthes
[12], Whitt [13]), conditions are given in [8] which ensure
that the marking process of an SPN is a regenerative process
in continuous time with finite expected time between
regeneration points. This result leads to a steady state
estimation procedure which does not exploit the special
structure of a symmetric SPN.

Section 2 provides the formal definition of the marking
process of an SPN given in [8] along with the definition of a
symmetric SPN. Proposition 4 provides conditions which
ensure that the marking process of a symmetric SPN is a
regenerative process in continuous time and that the
expected time between regeneration points is finite. Using a
geometric trials recurrence criterion (Iglehart and Shedler
[14, 15]), Proposition 4 postulates the existence of a
transition, e*, and a marking, s;, such that transition e* fires
and the new marking is s, infinitely often with probability
one. Conditions on the old clocks ensure that the marking
process probabilistically restarts at these times. This result is
the basis for regenerative simulation in the symmetric SPN
setting.

Section 3 considers the steady state estimation problem
for symmetric SPN models. The key observation is that
under the assumptions of Proposition 4, regenerative cycles
of the marking process defined by the times at which
transition e* fires and the new marking is s; can be
decomposed into independent, nonidentically distributed
blocks. The result of Proposition 6 and the ratio formula of
Proposition 7 imply that in a symmetric SPN point
estimates and confidence intervals for characteristics of
symmetric functions of the limiting distribution can be based
on short (independent, nonidentically distributed) blocks,
rather than on long (independent, identically distributed)
regenerative cycles of the marking process.

In Section 4 we establish estimation procedures for
passage times in symmetric SPN models. Formal
specification of a sequence {P.: n = 1} of passage times in a
symmetric SPN with marking process { X(¢): ¢ = 0}, marking
set, S, and transition set, E, is in terms of four subsets
(4,, A, B, and B,) of S. The sets B, and B, define the
random times {7: j = 1} at which a passage time
terminates. (The sets 4, and A, define the random times at
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which a passage time starts.) Proposition 9 postulates the
existence of e* € E and s,, s; € S such that transition ¢*
fires and the marking changes from s, to s infinitely often
with probability one: These transition firing times
correspond to termination of a passage time with no other
passage times underway. Conditions on the “old clocks”
ensure that {(X(7), P.,,): n = 0} is a regenerative process in
discrete time and that the expected time between
regeneration points is finite,

Terminations of passage times that occur when no other
passage times are underway and when transition e* fires and
the marking changes from s, to s, define regenerative cycles
for the process {(X(T7), P,,,): n = 0}. The regenerative
structure guarantees that P/, = P as n — o« and the goal of
the simulation is the estimation of E{f{ P){, where f'is a real-
valued measurable function. Estimates for E{f{P)} can be
based on simulation of the underlying marking process of
the SPN in regenerative cycles. Alternatively, by exploiting
properties of a symmetric SPN, these regenerative cycles can
be decomposed into independent, nonidentically distributed
blocks, and estimates for E{ f{ P)} can be based on
measurement of the passage times {P/: n = 1} contained in
these blocks. This estimation procedure extracts more
passage time information from a simulation of fixed length
and provides estimates for E{f(P)} that are relatively more
accurate. In Section 5 we show that estimation based on
these blocks indeed leads to shorter confidence intervals.

2. Regenerative stochastic Petri nets

Heuristically, an SPN changes marking in accordance with
the firing of a transition enabled in the current marking. (We
assume throughout that no two transitions fire
simultaneously.) Each of the transitions enabled in a
marking competes to change the marking, and each of these
enabled transitions has its own stochastic mechanism for
determining the next marking. When a transition in the SPN
fires, new transitions may become enabled. For each of these
new enabled transitions, a clock indicating the time until the
transition fires is set according to an independent stochastic
mechanism. (There is no restriction to exponentially
distributed transition firing times.) If an enabled transition
does not trigger a marking change but is enabled in the next
marking, its clock continues to run; if such a transition is
not enabled in the next marking, its clock reading is
abandoned.

Following Haas and Shedler [8], formal definition of the
marking process of an SPN is in terms of a general state
space Markov chain (GSSMC) which describes the SPN at
successive epochs of transition firing. Let D = {d,, d,,- - -, d, }
be a finite set of places, and let E = {e,, e,, ---, e,,} be a
finite set of transitions. Denote by S the countable set of
markings and for s € § write s = (s,, 55, - - -, 5,), where s, 1s
the number of tokens in place d; € D. Denote the set of the

normal input places for transition e € E by I(e) C D, the set 279
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of the inhibitor input places by L(e) C D, and the set of the
output places by J(e) € D. We assume that L(e) N I(e) =&

foralle € E. Fors = (s, 55, ---, 5;) €S, set

E(s) ={e€ E: s,z 1 for d; € I(e) and
s5; =0 for d. € L(e)}

so that E(s) is the set of transitions that are enabled when
the marking of the SPN is 5. When the marking of the SPN
is s, the firing of an enabled transition ¢ € E(s) triggers a
marking change to s’. We denote by p(s’; s, e) the
probability that the new marking is s, given that transition e
fires when the marking is 5. For all s = (s, 5,5, - -+, 5,),

s" =(s], 83 -+, §;) €S, and e € E(s), we assume that

p(s’; s, e)> 0 only if

(i) s;=s,—1lors;foralld € I(e)n(D— J(e))

(i) s;=s;,—lors;ors; + 1foralld € l(e) N Je),
(iii) s;=s;or s, + 1 forall € J(e) N (D — I(¢)); and
(iv) s/ =s,foralld, € (D - J(e) — I(e)).

The actual enabled transition e which triggers a marking
change when the marking is s depends on clocks associated
with the enabled transitions and the speeds at which these
clocks run. Each such clock records the remaining time until
the transition fires. We denote by r; (=0) the deterministic
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rate at which the clock associated with transition ¢, runs
when the marking is s; for each s € S, r; = 0 if ¢, & E(s).
We assume that r, > 0 for some ¢, € E(s). (Typically in
applications, all speeds r; are equal to one. There are,
however, models in which speeds other than unity as well as
state-dependent speeds are convenient.)

For 5 € S define C(s) to be the set of possible clock
readings when the marking is s:

C(s) = {(c), -+, )¢, = 0and ¢; > 0 if and only if

e, € E(s); c,.r;.I # cjr;jl for i # j with c,¢rgr; > 0} (1)

The conditions in Equation (1) ensure that no two
transitions fire simultaneously, as defined below. The clock
with reading c; is said to be active when the marking is s if
transition ¢, is enabled [¢; € E(s)]. For s € S and ¢ € C(s),
let

*=1¥s,¢)= min {cr;} )
lize, € E(s))

where ¢,r;;' is taken to be +o when r,, = 0. Also set
ct=c¥s, ¢) = ¢, — %5, O, 3)
for e, € E(s) and

i* = (s, ¢) = i such that ¢, € E(s) and ¢¥*(s, ¢) = 0. 4)

Beginning with marking s and clock vector ¢, t*(s, ¢) is the
time to the next transition firing and i*(s, ¢) is the index of
the unique firing transition e* = e*(s, ¢) = €.,

At a marking change from s to s’ triggered by the firing of
transition ¢*, new clock times are generated for each event
e’ € N(s’; s, €¥) = E(s") — (E(s) — |e*}). The distribution
function of such a new clock time is denoted by
F(.; s, ¢, s, e¥), and we assume that F(0; s’, €, s, *) = 0.
For e’ € O(s’; 5, e*) = E(s’) N (E(s) — {e*}), the old clock
reading is kept after e* fires. For e’ € (E(s) — {e*}) — E(s'),
transition e’ (which was enabled before transition e* fired) is
disabled.

Next consider a GSSMC {(S,, C,): n = 0} having state
space
2= (Is} x C(s))

SES
and representing the marking (S, ) and vector (C,) of clock
readings at successive transition firing times. (The ith
coordinate of the vector C, is denoted by C, ,.) The
transition kernel of the Markov chain {(S,, C,): n = 0} is

P((s, ¢), A)

=p(s’;s,e®) [l Fla;s', e, s e ]l

GEN(s") €EO(s")

where N(s”) = N(s’; s, €¥), O(s’) = O(s’; s, e*), and

LoafeD, (5

A=1{s"} X {(c], -, C3y) € C(s’). ] < a, for e, € E(s")}.

The set A4 is the subset of T which corresponds to the SPN
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changing marking to s’ with the reading ¢/ on the clock
associated with transition e, € E(s’) set to a value in [0, a/].
[We suppose that the clock setting distributions are such that
P((s,c),Z)=1forall(s,c)E Z.]

Finally, the marking process of the SPN is a piecewise
constant continuous time process constructed from the
GSSMC {(S,, C,): n = 0} in the following manner. Set
$o=0and

n—1
g-,, = Z [*(Sk, Ck)v
k=0

n = 1. According to this definition, ¢, is the nth time at
which the marking process makes a state transition. [We
assume that

Plsup §, = 4+ | (S, Co}} = 1 as.

n=zl

for all initial states (S,, C,).] Then set

X(1) = SN(:)’ (6)
where
Ni) =maxfn=0: ¢, <1} )]

The marking process of the SPN is the process { X(¢): ¢ = 0}
defined by Equation (6). Henceforth we restrict attention to
SPN models in which all speeds r; are equal to 1.

For ring networks with N ports, reference to port index j is
to be interpreted as reference to index j — 1 (mod N) + 1. In
the graphical representation of an SPN, places are drawn as
circles and transitions as bars. Directed arcs connect
transitions to output places and input places to transitions.
Tokens are drawn as black dots.

Example 1 (token ring)

Consider a unidirectional ring network having a fixed
number of ports, labeled 1, 2, - - -, N in the direction of
signal propagation; see Figure 1. At each port message
packets arrive according to a random process. A single
control token (denoted by T in Figure 1) circulates around
the ring from one port to the next. The time for the ring
token to propagate from port j — | to port j is a positive
constant, R, ,j=1,2, ---, N. When a port observes the
ring token and there is a packet queued for transmission, the
port converts the token to a connector (C) and transmits a
packet followed by the token pattern; the token continues to
propagate if there is no packet queued for transmission. By
destroying the connector prefix, the port removes the
transmitted packet when it returns around the ring.

Assume that the time for port j to transmit a packet is a
positive random variable, L, with finite mean. Also assume
that packets arrive at individual ports randomly and
independently of each other: The time from end of
transmission by port j until the arrival of the next packet for
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, =arrival of packet for transmission by port j (Aj)

e,
Js
€, =end of transmission by port j (Lj)
e
I

=arrival of ring token by port j (Rj_])

3

SPN representation of two-port token ring.

transmission by port j is a positive random variable, 4,, with
finite mean. Note that there is at most one packet queued
for transmission at any time at any particular port.

Following [8], let D = {d, |, d,,, d,, d, 4 -+, dy,, dy>
dy 5, dy ,} be the set of places of the SPN and let £ =
{1, €5, € 5 <+, €y, €y, €y} be the set of transitions. See
Figure 2 for N = 2. (For clarity of exposition, we use double
subscripts in the SPN representation of the token ring model
to index places, transitions, and token counts.) Set

Lie,) = Lie,,) = L(e;3) = O, (8)
He,) = {d,}, I(e;;) = |d,, d;3}, Ie,;) = {d_, ), &)
and

He) =1d, ). Je) = ldjy, d ), Je)) = 1d 5 di), - (10)
j=12 - N

The transitions have the following interpretation: e, =
“arrival of packet for transmission by port j.” ¢;, = “end of
transmission by port j,” and ¢, = “observation of ring token
by port j,” j =1, 2, ..., N. The interpretation of the places is
as follows. Let ¢ = 0 and suppose that the marking of the
SPN at time £is s = {5, ,, §, 5 - - -, Sy,)- Then s, =1 ifand
only if at time ¢ port j is transmitting a packet or there is a
packet waiting for transmission by port j; 5,, = 1 if and only
if at time ¢ port j is not transmitting a packet and there is no
packet waiting for transmission by port J; 5, = 1 if and only
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if at time ¢ port j is transmitting a packet; and 5;, = 1 if and
only if at time ¢ the ring token is propagating to port j + 1,
J=1,2,---, N.(Otherwise 5;, = 0.)

Set

S ={(8, 1y $12 = > Sya): S5 -y 54 =0orlforl =j< N,

Syt S, F sy, =N+ 1L
Then the set, S, of markings is

S=1{(s> 812 ++ > Sys) €815, +5,,=1and

85283 =0for 1 =j= N} (1)

(It follows that | S| = 3N2""". In any marking there are
exactly N + 1 tokens. There is at most one token in each
place. Each of the disjoint sets of places {4, , d,,} contains
exactly one token indicating whether or not port j has a
packet queued for transmission. The set of places
{d 3 d 4 dy5 dyy, -+, dy s, dy,} contains exactly one token
indicating the position and status of the ring token. There
can never be tokens at places d,, and d,; simultaneously,
reflecting the fact that there can be no arrival of a packet for
transmission by port j during a transmission by port j.)

The new marking probabilities p(s’; s, ¢) are as follows. If
e = ¢, = “arrival of packet for transmission by port j,” then
p(s’; s, e) =1 when

§ =08 s S50 0, 1,0, 8,5, 5 Sy €S and
S =08 s S 1,0, 0, S0 S o Sy

If e=¢,, = “end of transmission by port j,” then
p(s’; s, e) = 1 when
§ = (s”, .

8 L0, 1,0, 8, -, Sy,) €S and

s = (Sl,p R Sj_1,49 07 15 0> l’ sj+1,1a R SN,4)‘

If e = ¢;, = “observation of ring token by port j,” then
p(s’; s, e) =1 when

s =S, 85,5 1L, 1,0,0,0,5,, , 5y, €Sand
s =(8 - 85,42 0,1,0, 1,0, Sjens Sna)

and when

s =(8p 5 8505 1,0,1,0,0,8,,,, .-+, sy,) € S and
S =8 5 8503 0,0, L0 L5 om0y S

All other new marking probabilities p(s’; s, €) are equal to
Zero.

Note that when transition e fires, a token is removed
from place d,_, , and a token is deposited either in place 4,
or in place de, depending upon whether (s, , 5, ,) equals
(1, 0) or (0, 1). All other transitions are input-deterministic
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(in that exactly one token is removed from each input place
when the transition fires) and output-deterministic (exactly
one token is deposited in each output place when the
transition fires).

The distribution functions of new clock times for
transitions ¢’ € N(s'; s, e*) are as follows. If e’ = ¢, =
“arrival of packet for transmission by port j,” then the
distribution function F(x; s’, ¢’, s, €*) = P{4; < x}. If e’ =
e,, = “end of transmission by port j,” then the distribution
function F(x; s', ', 5, e*) = P{L = x}. If e’ = ¢, =
“observation of ring token by port j,” then the distribution
function F(x;s’, e’, s, e*) = IIRI_I,,,))(x).

We now define a symmetric SPN. Informaily, an SPN is
symmetric if there is a mapping of places onto places and
transitions onto transitions which preserves the sets E(s) of
enabled transitions, the new marking probabilities p(s’; s, ),
the sets N(s’; s, e*) of new transitions, and the clock setting
distributions F(-; s/, €’, s, €*). Let {X(¢): t = 0} be the
marking process of an SPN with finite marking set, S, and
transition set, E. As before, we let D = {d,, d,, ---, d,} be
the set of places and E = {e,, e,, - - -, €,,] be the set of
transitions. We assume throughout this section that L = L, N
and M = M| N for some N = 2. (We also assume that all
clock setting distributions have finite mean.)

Let ¢ be a cyclic permutation of the set {1, 2, ..., N}. In
terms of this permutation define a mapping, ¢,,, of D onto
D:

¢D(d(j—-l)L1+k) = d(¢(j)—l)L,+k? (12)

j=12,...,Nandk=1,2, ..., L. Similarly, define a
mapping, ¢, of E onto E:

Do yp, k) = Cornm ko (13)

j=1,2,--.,Nandk=1,2, ..., M,. Also define a
mapping, ¢, of S onto S:

¢_§(Sl9 Sy o T SQ’D(L))‘ (14)

5 81) = (Sgpp Sopar *

For an arbitrary subset D’ of D we write ¢,(D’) =

{¢,(i): i € D’} and for an arbitrary subset E’ of E we write
o {E") = {¢.(e): e € E’}. This notation facilitates formal
definition of a symmetric SPN.

Definition 2

An SPN with marking process {X(¢): ¢ = 0} is said to be
symmetric if there exists a cyclic permutation, ¢, of the set
{1, 2, ---, N} such that

(1) op(L(e)) = L(gge)), op({(e)) = I(¢e)), and
p(J(e)) = J(¢ge)) forall e € E;

(1) p(s’;s, e) = plos'); dg(s), o(e)) for all e € F and
s, 8" € S;and

(i) F(-5 5", ', 5, ) = F(-; ¢(5'), d(e’), d5(s), d.(e)) for
alle’ € N(s’;s,e),e€ E and s, s’ € S.
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Condition (i) ensures that the induced mappings ¢, and ¢,
preserve the sets of normal input places, inhibitor input
places, and output places, and thus [using Equation (14)]

¢ L E(5)) = E(@(s)) for all s € S. Conditions (ii) and (iii)
ensure that the mappings ¢ and ¢, preserve the new
marking probabilities and the clock setting distributions.

Example 3

In the token ring model of Example 1, let N be the number
of ports so that L, = 4 and M, = 3. Suppose that (i) R, = R,
= ... = Ry; (ii) the random variables 4,, 4,, - - -, A, are
identically distributed; and (iii) the random variables L,, L,,
.-+, L, are identically distributed. Under these assumptions
the SPN is symmetric. For example, take ¢(j) =/ + 1,
j=1,2, ..., N. Then

d’n(d/‘k) = dv»(/).k’
D£(€.4) = €yjrs

and

d’s(su’ Si20 513 S 0 SNA)
= (82,00 $200 $23 Saa * 005 Swa Sips Si Sin Sp4)-

Checking condition (i) of Definition 2 for transition e, ,,
we have that

¢D(L(3|_1)) =0= L(ez_]) = L(¢E(el.l))’
¢[)(](e]_])) = ¢D({d121) = ‘dz,zl = I(ez.l) = 1(¢E(el'1))r

and
¢1)('](€|.1)) = ¢D({d1]}) = {dz‘]} = J(ez.l) = J(¢E(el.l))'

These equations imply that ¢.(E(5)) = E(¢(s)) for all
s € S. Forexample, let s=(0, 1,0, 1, 0,0, 0, 0). Then
#4(s) =(0,0,0,0,0, 1,0, 1) so that

E(¢5(5) = le,,, 3} = {ogle, ), ole, )] = o (E(s)).

To illustrate that condition (ii) is satisfied, let e = ¢, , =
“end of transmission by port 1,” s =(1,0, 1,0, 0, 0, 0, 0),
ands’ =(0, 1,0, 1,0,0,0,0). Then ¢.(¢) = e,, = “end of
transmission by port 2,” ¢4(s) =(0,0,0,0, 1,0, 1, 0), and
¢5(s')=1(0,0,0,0,0, 1,0, 1) so that

p(s’s s, ) = 1 = plog(s'); ds(s), ¢(e)).
Next, let e’ = ¢, | = N(s’; s, ), and recall that the random
variables 4, and A, are identically distributed so that
F(x;s', e, s, €)= PlA, = x|} = P{4, < x|

= F(x; ¢5(s"), og(€’), d5(s), ().

Conditions (1), (ii), and (iii) can be verified for all ¢ € E and
s, 8’ € S'in a similar manner.

Proposition 4 gives a set of conditions on the building
blocks of a symmetric SPN which ensure that the marking
process is a regenerative process in continuous time and that
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the expected time between regeneration points is finite. This
result is a direct consequence of Proposition 4.7 of [8].

Set d)'s(s) = ¢s) forall s € S and qS'E(e) = ¢, (e) for
e € E. Recall that {, is the nth time at which the marking
process makes a state transition, n = 0. Let {T:,: n= 0} be
an increasing sequence of stopping times that are finite
(TL < 0 a.s.) transition firing times such that for some
e*€ Eand $*C S, T, =0and

T! =inf{t> T._: at time ¢ transition ¢(e*) fires and the

marking is ¢(s*) for some s* € S*}, n= L.

Proposition 4
Suppose that there exists s, € S and § > 0 such that

PIX(TY) = ¢\ sOIX(TL_), -+, X(T)} = 6 as. (15)

Also suppose that there exists s € S such that for all s* € S*,

(i) the set O(s(; s*, e*) = E(s;) N (E(s*) — {e*}) =C;

(i) the set N(sg; s*, €¥) = E(sg) — (E(s*) — {e*}) =
N(sg; s, e*); and

(iii) the clock setting distribution F(-; s;, €', s*, e*) =
F(-; sy, e, 5, %) for all e’ € N(s; s, €¥).

Then {X(¢): t = 0} is a regenerative process in continuous
time. Moreover, if

E(T,, -T\i<c<w (16)

n+l

for all # = 0, then the expected time between regeneration
points is finite.

Equation (15) implies that transition ¢]E( e*) triggers a
marking change to <b's( so) infinitely often with probability
one. Furthermore, at such a time 7", the only clocks that are
active have just been set, since O(ths(s(’,); ¢'S(s*), d)lE(e*)) =g
for all s* € S*. The joint distribution of X(7".) and the
clocks set at time TL depends on the past history of {X(¢):
¢ = 0} only through ¢(s;), the previous marking ¢ 4(s*), and
the trigger transition d)'E( €*). Since the new transitions and
clock setting distributions are the same for all s*, the process
{X(1): 1t = 0} probabilistically restarts whenever { X( TL):

n = 1 hits ¢'s(s(’,). Note that the result of Proposition 4 also
holds if condition (i) is replaced by (i’): O(sg; s,, €*) # O,
and for any e’ € O(sy; s,, €*) the clock setting distribution
F(-;5', ¢, s, e) is exponential with mean which is
independent of s, s', and e. [Assumption (i’) ensures that no
matter when the clock for transition ¢’ € O(s[; s,, €*) was
set, the remaining time until transition ¢’ triggers a marking
change is exponentially distributed with the same mean.]

Under the conditions of Proposition 4, the basic limit
theorem for regenerative processes asserts that X(¢) = X as
t — o, The goal of the simulation is the estimation of 7( f) =
E{f(X)}, where fis a real-valued (measurable) function
having domain S. From 7 cycles the standard regenerative
method (Crane and Iglehart [16]) provides the strongly
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consistent point estimate

R (0)

r(n) = ) (17)
and asymptotic 100(1 — 2v)% confidence interval

« z_s(n) . z,_,5(n)

i =+ S a9

for #(f). In Equation (17)

Yimy=n"% Y, (f)
and
n)y=n" 2_ T

where 7, is the length of the mth cycle and Y, ( /) is the
integral of f(X(.)) over the mth cycle. The quantity

z,_, = &7'(1 — v), where & is the distribution function of a
standardized normal random variable, M(0, 1), and s°(n) is a
strongly consistent point estimate for

a(f) = var(Y(f) — r(f)r).

Asymptotic confidence intervals are based on the central
limit theorem (c.1.t.)

n'"*{1(n) = n( N}
o( f)/Elr,}

as n— o,

= N0, 1)

3. Steady state estimation for symmetric
stochastic Petri nets

In this section we consider estimation of #( /) = E{f{X)} for
symmetric SPN models under the assumption that the
function f'is symmetric in the sense that

f(s) = flgi(s) (19)

foralls€ Sandall/=1,2, ..., N.[We set gb's(s) = ¢4($)
and

dds) = bslds (5))

foralls€ Sand /= 2, ..., N. Similarly, we set ¢'E(e) =
¢.(e)and

o) = ¢(b5 (€)

forall e € E\]

The key observation is that, under the assumptions of
Proposition 4, regenerative cycles defined by the times at
which transition ¢L-( e*) fires and the marking changes to
¢;(s(’)) can be decomposed into independent, nonidentically
distributed blocks. These blocks are determined by the
successive times 7, at which transition ¢ (e*) fires and the
marking changes from ¢[S(s*) to ¢[S(s(’)) for some s* € S$* and
some /,/=1,2, ..., N. Estimates for #( /) can be based on
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observation of these blocks. Proposition 5 provides
conditions which ensure that (for each /) transition d);(e*)
fires and the marking changes to qb's(s(’]) infinitely often with
probability one.

Let {Ti: n = 0} be an increasing sequence of stopping
times that are finite (Tfl < o a.s.) transition firing times such
that for some ¢* € E and $* C S, Tf) =0 and

T! =inf{t > T' _: at time ¢ transition b e*) fires

and the marking is ¢;(s*) for some s* € S*},
n=1land/=1,2,---, N.Denote by {T,: n = 1} the times
T), T, -, T, Ty --- in increasing order.
Proposition 5
Suppose there exists § > 0 such that
PUX(TL) = oy(s)1X(TL_), -+, X(T)} = 6 as. (20)
Then P{X(T,) = ¢4(sy)iof = 1forall/=1,2, ---, N.

Proof By Lemma 4 of [8] it suffices to show that

PIX(T,) = ¢(sPIX(T,_), -, X(T)} = 8 as. P2}
Let e* denote the transition that fires at time {,, n = 0. The
definition of a symmetric SPN implies that for all

Xp Xy ooy X, ESand e, .-, ¢ EE,

PLX(E,) = ¢5(x,), €F = ¢p(e,), -+, X(§) = og(x),

et = dile;), X(§o) = olxo)

= PIX(S,) = ¢4(x,), €8 = dle,), -+, X(5) = os(x)),
eF = ¢le,), X(5o) = (), (22)
I=1,2, ..., N. Denote by lyf,: n = 0} the indices of the
successive times {{,: » = 0} at which transition ¢L-(e*) fires
when the marking is ¢g(s*) for some s* € S*. Equation (22)
implies that for all x, - .., x, € Sand s}, - -, s¥ € §*,
PIX(S,) = d(x,), €= ¢p(e), X(§,,_) = ¢5(s¥), -+,
X(5) = b(x,), eF = o(e%), X(1) = ¢(sD)
= PIX(5,) = d(x,), ef = d(e), X(§,1_) = ds(s%),
L X(6,) = S5(x) e = dp(e®), X(5) = 8o

(23)
/=1,2, ..., N. Using the definition of{Tf,: n = 0},
Equation (23) implies that for all x,, - - -, x, € S,
PIX(TY) = ¢y(x,), -, X(T)) = dg(x)}

= PLX(T)=¢5x,), - -, X(T") = b(x))}, (24)

/=1,?2, .-, N. Applying Equation (24), it follows that for
allx, ---,x,_, €S,
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PIX(T)) = ¢(sOIX(Th_) = do(X,_))s -+, X(T}) = ¢3(x)}

_ PIX(T,) = 059 X(T,)) = 6x,), - X(T') = o)
PIX(T, ) = ¢5(x,) -+, X(T1) = 6(x))

_ PIX( Th) = ¢4(s0), X(Th_)) = ¢4(x,_), - X(T') = ¢s(x)}
PIX(T,_) = ¢5(X,_) -+, X(T}) = ¢'s(x)}

= PIX(T,) = ¢/ (SO X(T,_)) = $4(X,)), - X(T}) = d(x,)},

I=1,2, ---, N. The result follows from Equation (20). O

To obtain estimates for r( f), carry out the simulation of
the marking process {X(7): ¢ = 0} in random blocks defined
by the successive random times {7, : k = 0f, where

T, =inf{T, > T, : X(T\) = ¢(s})
forsome/ /=1,2, ..., N}, (25)

k=z1;8,=0and Tf,0 = (). [Note that the random times
{T,: k = 0} do not form a sequence of regeneration points
for the process {X(¢): 1 = 0}.] Setr, =T, — T, and

Yk(f)=J; J(X(s)yds,

fork = 1.

Proposition 6
The sequence {(Y,(f), 7,): k = 1} consists of independent
and identically distributed pairs of random variables.

Proof The sequence {8,: k = 1} comprises indices of the
successive stopping times {7,: n = 1} at which transition
¢2(e*) fires and the marking changes from qb’s(s*) to ¢>;(s(;)
for some s* € S* and some [, /=1, 2, -. ., N. Thus, by the
definition of a symmetric SPN, each of the clocks running at
time T, + was set or can be viewed as having been
probabilistically reset at time T, . Therefore {X(¢): 1= T}, )
determines the distribution of 7, ,, = T, — 7, and the
finite dimensional distributions of { f(X()): 1 = T, }. Observe
that the joint distribution of X{( T,)= ¢>'S( o), and the clocks
set or reset at time T, depend on the past history of the
marking process only through the new marking ¢;(s(’)), the
previous marking ¢’S(so), and the trigger transition ¢[5( e*);
this implies that the cycle length r,,, and {f(X(¢)): 1 = Tﬁk}
are independent of {(Y,(f), 7)): j < k{. It follows that the
pairs of random variables {( Y,( /), 7,): kK = 1} are mutually
independent.

Next observe that

yi—!

Y(NH= 2 SAXCE S = Sals (26)

"=y

where {, =T, k=0.Seté, =y, — v k=1 According
to this definition, 8, is the number of transitions that fire in

the kth block. It is sufficient to show that for all
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zZ, o2, 20,x, -
Pio, = n+ 1, IX(,) = f(x,), ¢, < z,,
SXE D =S ) Gy S 2,00 G = 2
= Ps, = n+ LX) =) 8, 4 < 2,
SXC ) = S, Syanct S Zyamers 755 Cyar < 2
27

wx,€S8,andn =1,

k = 1. Here P,{-} denotes the conditional probability
associated with starting the SPN with marking ¢'s( s¢) and all
active clocks reset at time ¢ = 0 according to the
distributions

P{C,, < ¢} = F(c; d's(5)), €5, $'(5e), ¢'x(€)) (28)

for ¢ = 0, e, € E(¢'(s})). Recall that C,, is the clock reading
associated with transition e, at time 0. Denoting by P,{-} the
corresponding conditional probability when the initial
marking is ¢[S( 54), the definition of a symmetric SPN implies
that, forall z,, ---, 2,20, x, - -+, x, € S, and

€., -, ¢ € Ewithp(s 5y, €,) >0,

it

PUX(E,) = 6'(X,) €, < 2,0 €8 = ¢'ule), X(5,.) = 63X,

ot Sz, €6, = dle, ) o, b= ¢'(e))
= PIX(5,) = ¢4(x,), §, < z,, €5 = ¢(e,),
X(g‘n_l) = d’{g(xn—l)’ fn—l = Z"*l’
e = o, ) oo el = o el
[=1,2, ..., N.Hence, by Equation (19),
Pio, =n+ 1, fAX() =f(x), ¢, =z,
f(X(g-n_l)) =f(xn_1)’ g‘ -1 = Zy_1s " s §'l =< Zli

=P, = n+ 1, X)) = f(x,). §, = z,, [(X(§,)
=S ) G S 20 s i S 2 29
forallz,.--,z,20,x, - -, x,€S,and n = 1. But by the
independence argument of the first part of the proof
Py = 1+ 1 X ) = SX), §yn < 20
S o) = S Syt S Zpps 755
G < 20 X(E,) = D59
= Plo, = n+ 1, fIX(E,) = (X)) §, = 2,
SXE ) =X, §osy S Zupy -0
G o< Z)PUXG,) = osols (30)
forallz,, ---,2,20,x, -+, X, €S, and n = 1. Applying

Equation (30) and then Equation (29), it follows that, for all
z, -z, z0andx,, ---, x, €S,
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P1‘6k+1 =n + 15 f(X({a,k-f.n)) =f(xn)’ g‘:y,(-{-n S Zn’
f(X(C,kJ,,,_l)) =f(xn—1)» Sh“fk*’"_' = Z"_l, ST

et = z,}

= 2 P,{él =n+ l,f(X(g‘,,)) =f(xn)9 g‘n = Zps
=1

f(X(ﬂ',,_,)) =f(xn—|)s f -1 = Z,,_p A ]
6= Z}PUX(E,) = ds(sol

N
=3 Pfs, =n+ 1, f(X(¢,) =f(x,) &, <z,
I=1

S ) = f ), Sy S 2y o os
f = 2)PAXG,) = o5l

= P, = n+ 1, fIXE) = fix,), ¢, < 2,
SXCue) = fXn)s $ut S Zpes -

i g‘] = Zl}a

so that [using Equation (26)] the pairs of random variables
{(Y L)), 70): k = 1} are identically distributed. O
Standard arguments establish a ratio formula for r( f).

Proposition 7
Provided that E{r,} < @ and E{|f(X)]} < o,

o < B
E {71}
With these results Equations (17) and (18) provide point
estimates and confidence intervals for r( /). Propositions 6
and 7 assert that there are “independent, identically
distributed pairs” and an appropriate “ratio formula” in the
setting of independent, nonidentically distributed blocks.
These results are sufficient to establish the validity of the
confidence interval obtained in regenerative simulation
theory.

Example 8

In the token ring model of Example 3, set S’ =
{s€S8:5,,=1forsomej,j=1,2, .., N} and consider the
function f defined by

S(s) = Lig(s)

for s € S. According to this definition, r( /) is the steady
state throughput of the token ring. Note that the function f°
satisfies Equation (19) since (for each /)

Sggns = 1ifand only if 5,5 = 1,

j=1,2,..-,N.

Sete*=e ., 5,=(1,0,10,1,0,0,0,---,1,0,0,0), and
S*={(5p, 810 > Sy) ES Sy =1}

so that T", is the nth time that port 1 observes the ring
token. Arguments given in [8] show that the conditions of
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Proposition 4 hold provided that the packet interarrival time
random variables, 4,, have “new better than used” (NBU)
distributions and satisfy a positivity condition:
P{4,<R}>0,j=1,2, -, N.Since ¢(¢*) = ¢,; and
¢’S(s6) is the marking in which there is a packet queued for
transmission at each of the ports and the ring token is
propagating to port /, it follows that TL is the nth time that
port / observes the ring token. We carry out the simulation
of the marking process in blocks defined by the random
times 7, at which for some / there is a packet queued for
transmission at ports 1,2, ..., /—1,/+ 1, ..., Nand port /
starts transmission of a packet.

4. Passage times in stochastic Petri nets
Formal specification of passage times in a symmetric SPN is
by means of four subsets (4,, 4,, B,, and B,) of the marking
set, S. The sets A,, 4,, B,, and B, in effect determine when
1o start and stop the clock measuring a particular passage
time; cf. Iglehart and Shedler [17].

Denoting the jump times of the process {X(¢): ¢ = 0} by
{$,: n =0}, for k, n = 1, we require that the sets 4,, 4,, B,,
and B, satisfy the conditions

if X(5,-,) € A, X(§,) € Ay, X(§,_,,,) € A, and
X(§i) € Ay,

then X(¢, ) € B, and X({,

n+m

) E B,

—l+m

forsome 0 < m < k;
and

if X(¢,_,) € B,, X(§,) € By, X({,_,,,) € B,, and
X(5p0i) € By,

then X(¢, ) € A, and X(¢,,,) € 4,

—l+m

for some 0 < m < k.

These conditions ensure that the start and termination times
for the specified passage time strictly alternate.

In terms of the sets 4,, A,, B,, and B,, define A, =
{65(s): s € A}, Ay = {$'(5): s € 4,), B, = {p(s): s € B},
and B, = {¢'(s): € B,},[=1,2, - -, N. [Recall that for
SE S, p(s) = ¢(s) and px(s) = $(¢5 '(s), = 1,2, -, N.
Also recall that for e € E, qS'E(e) = ¢.(e) and ¢L~(e) =
¢ E(¢IE_'(e)).] Then define two sequences of random times
{S)(0):j = 0t and {T({): j = 1}: S;_,(/) is the start time for
the jth passage time (corresponding to the sets A'l, A’z, B'l,
and B'z) and T(/) is the termination time of this jth passage
time. Set

Soly =0,
S(I) = inf{s, = T(): X(¢,) € 4, X(§,_,) € 4,},
and

T(l) = inf{g, > S,_(]: X(5,) € By, X(§,_,) € B},
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Jj = 1. Note that since the SPN is symmetric, the sets A'l, A;,
BI,, and B; satisfy the conditions which ensure that the start
and termination times for the passage times P; =T()~-
S,_,(!) strictly alternate. Denote the successive passage times
PP PY, P}, P%, ... enumerated in termination
order by {P}: j = 1}. Set T = 0 and let T} be the termination
time for P/, j = 1.

Proposition 9 gives conditions which ensure that
{(X(T.), P.,,): n = 0} is a regenerative process in discrete
time and that the expected time between regeneration points
is finite. The regenerative structure guarantees (Miller [18])
that P, = P as n — . The goal of the simulation is the
estimation of K f) = E{ f(P)}, where fis a real-valued
(measurable) function and P is the limiting passage time.

We postulate the existence of a transition ¢* and markings
s, € B, and s, € B, such that a passage time terminates
when transition e* fires and the marking changes from s, to
o In addition, we assume that no passage times are
underway when the marking of the SPN is s;. Formally, let
L(t) be the last marking of the SPN before changing to X(¢)
and set

(1) = (L(0), X(1)).

Denote by G the state space of {V{¢): ¢ = 0}. Set A=
A\ x A% and B'= B\ x B, [=1,2, --., N. Now set

H'l ={s€S(s,5)€ B’ — A for some s € S,

so that H 'l is the set of all possible markings when a passage
time P! terminates. Also set

H ={s €8 (s5)€G—(BUA), (s, )% (s s), and
(s, 57) £ (sy, s5) for all s € S and some
(s, ) € B’ (s, 57) € A"},
so that A ; is the set of all possible markings when a passage
time P is not underway. For (s, s'), (3, §') € G we write

A . .
(s, §") ~ (3, §") if there exists a finite sequence &, s, €], 55,
-, 51, e, of transitions and markings such that

p(syy ', eQp(sy; sy, e)) -« - p(3; s, e,)>0

and (s”, 5}), (s, 3), (s, s, ) €A, j=1,2,--.,n— 1. We
assume that

B,=B,NH UHYN ... N(H UH})#*Q

and that s; € B;.

As in Section 2, let {T:: n = 0} be an increasing sequence
of stopping times that are finite (TL < o0 a.8.) transition
firing times, such that for some e* € Eand S*C S, T f] =0
and

T! = inf {t > T._,: at time ¢ transition $(e*) fires
and the marking is d)’s(s*) for some s* € S*},

nzland/=1,2,.--,N.
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Proposition 9

Suppose that there exist e* € E, s, € B,, and s; € B} such
that p(s;; sp, €*) > 0 and either (i) O(sg; sy, €%) = E(s5) N
(E(sy) — (X)) = @ or (ii) O(sg; S,, €*) # & and for any

e’ € O(sy; sy €*) the clock setting distribution F(-; s*, €', 5, €)
is exponential, independent of s, s’, and e. Set

v:) = (d);(so), d)ls(s(’,)) and suppose there exists 6 > 0 such that

PIVAT ) = o | V(T ). -+, V(T)} = 6 ass. 31)

Then {(X(T.), P,,,): n = 0} is a regenerative process in

n

discrete time. Moreover, if

E(T', - Tlsc<w
for all # = 1, then the expected time between regeneration

points is finite.

Proof Since T\ < as.and P{V(T,) =vo| V(T,_), - - -
V(T))} = 6 >0, Lemma 4 of [8] ensures that transition

d);;( e*) fires and the marking of the SPN changes from d);(so)
to ¢4(s;) infinitely often with probability one: P{¥(T,) = v,
i.0.} = 1. Denote by tﬂ,l(: k = 1} the indices of the successive
passage times {P.: n = 1} which terminate when transition
qle( e*) fires and the marking changes from qS'S(sO) to ¢Is(s(;).
Let T} = 8, = 0. We must show that

(i) | ﬁ,'(: k = 0} is a renewal process in discrete time,
and that forany i, <i,< --- <i,(m=1)and k 20,

(i) {X( T;;}(+i1)’ Pﬁgil(+i‘+l’ ey X( Té}wm)’ P;;},+i,,,+l} and
{X( T, Piuy ooy X(T} ), P, , ] have the same

distribution, and {X(T3,,), Poyonps o 0s

X(T,, ) Py, i is independent of {(X(T)), P,,,):

0<n<gy.

At time T, a passage time has just terminated with no other
passage times underway. Now observe that each of the clocks
running at time 7,1+ was set or can be viewed as having
been probabilistically reset at time 7. [Assumption (ii)
ensures that, no matter when the clock for transition
= O(qsls(s(;); ¢'S(s0), ¢'E(e*)) was set, the remaining time
until transition e’ fires is exponentially distributed with the
same parameter.] Therefore, {X(¢): ¢ = T} } determines the
finite dimensional distributions of X(T, ), Py, .., fori=0
and the distribution of 8,,, — 8,. The joint distribution of
X(T}) and the clocks set or reset at time T7) depends on the
past history of the SPN only through ¢'S(s(’,), the previous
marking ¢»'S( 5,), and the trigger transition ¢'E(e"‘). This
distribution is the same for all ﬁ,'( and therefore (1) and (ii)
hold.

Proposition 4.3 of [8] implies that {X(¢):t = 0} isa
regenerative process in continuous time and that

E{(Tj,, — Tyt < oo It follows, since the state space of the
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marking process is finite and the clock setting distributions
have finite mean, that E{8,,, — 8}} <. O

Proposition 10 provides sufficient conditions which ensure
that Equation (31) holds. We postulate the existence of a
distinguished random time T;_l in the interval [T,l,_l, TL)
and a set {': k € K(v])} of distinguished transitions
determined by the marking, v, at time 7,_,. We make the
following sample path assumption: V( T;) = v(l) when each of
the distinguished transitions occurs prior to some time
T , + R, (v}). Proposition 10 asserts that the geometric
trials recurrence criterion [Equation (34)] is satisfied if the
clock setting distributions associated with the distinguished
transitions are NBU and satisfy a “positivity” condition
[condition (iii)] which guarantees the existence of > 0 as in
Equation (34). [A positive random variable 4 is NBU if

PlA>x+ylAd>yl = Pld> X

for all x, y = 0. Note that every increasing failure rate (IFR)
distribution is NBU. Also, if 4 and B are independent
random variables with NBU distributions, then the
distributions of 4 + B, min(4, B), and max(A, B) are
NBU.]

Recall that G is the state space of the process {¥(¢): ¢ = 0}.
Let {7, _,: n = 0} be a sequence of transition firing times and
denote the state space of { V(T _): n = 0 by G*. Set
H(T_))={(S,, C): 0 = < N(T;_)}, where N(-) is given
by Equation (7). Let ¢, ¢, ..., &™ € E and for
v =", x")EG", set E(v") = E(x") and

K@) = {k e® € E(h)).

When W(T,,_) = v", for k € K(v") we denote by S, ,(v") the
latest time less than or equal to 7',_, at which the clock
associated with transition e’ was set and by A, (v") the
setting on the clock at time S, ,(v").

Proposition 10
Lete”, ¢?, ..., ¢"™ € F and let {7, _:n=0lbea
sequence of transition firing times. For v* € G*, let

(R, (v"): k € K(v")} be identically distributed collections of
random variables, independent of {4, (V(T,_)):

ke K(W(T, )} and H(T,_,). Assume that

(i) T, ,=<7"  as. andforuy,v, - v, €Gand

n-1 — n

v e Gt

PIV(TY) = v, V(T ) =v", U(T, )=, -

V(T}) = v}
2 PIS, (v') + 4,,(7) = T\, + R, (v"), k € K(v");
T ) =v" V(T ) = v,y - V(T = )5
(32)

(i) for all & the clock setting distribution F(-; s’, ¢

= F(-; ¢*) and is NBU; and
(iii) there exists & > 0 such that for v* € G*

, 5, €)
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3(v") = Pl (v") = R, (v"), k€ K(v")} = 5, (33)

where the random variable 4,(v") has distribution
F(-; ¢”) and {4,(v"): j € K(v")} are mutually
independent and independent of {R, (v"):j € K(v")}.

Then

PIV(TY) = vy | (T, ), -+, (T} = 6 as., (34)

so that P{ V( T:,) = v(l) 10 =1

Proposition 10 follows directly from Proposition 2.16 of
[91 since the process {V(¢): ¢ = 0} is a generalized semi-
Markov process with state space, G, and event set, E.

Example 11

In the token ring model of Example 3, take ¢(j) =j + 1,
j=1,2,--,N.Sets,=(1,0,0,0,.--,1,0,0,0,1,0,0, 1)
and s, =(1,0,1,0,1,0,0,0, ---, 1,0,0,0). Take

e* = ¢ ;and

S* = {(sl,l’ St SN,A) S Sna = 1

[where S is given in Equation (11)] so that T'" is the nth time
at which port 2 observes the ring token, # = 1. [Note that
X(T)) = ¢(s}) if there is a packet queued for transmission
at each of the other ports and port 2 starts transmission of a
packet at time T:,. The SPN with marking process {X(¢):

1 = 0} changes marking 1o ¢(s;) when transition ¢(e*) fires
and the current marking is ¢(s,).] Observe that 7", < o a.s.
since

E{T, - T,_} < NR, + NE{L,} <

forall n = 1. Take ¢’ = e, (m = N). Let T,_, be the first
time after 7° :;—1 at which the ring token leaves port 1
[transition ¢(¢*) becomes enabled]. Take R, (v") = R, for
allv™ € G*. Since the SPN has marking ¢'S(s(’,) at time TL, if
each transition ¢, enabled at time T7_, fires before ¢(e,)
fires, condition (i) of Proposition 10 is satisfied. Assume that
forj=1,2, .., M (i) the distribution of 4, is NBU and (it)
5= P{4, < R} > 0 so that

N
dvH= I 8=16=06>0.
JEK(EYY j=t

Then P{V(T)) = v, i.0.] = L.

The definition of a symmetric SPN implies for the process
{(X(T,), P., ) n= 0} that regenerative cycles defined by the
times at which the transition ¢'E( e*) fires and the marking
changes from ¢1S( Sp) to ¢IS( $g) can be decomposed into
independent, nonidentically distributed blocks. These blocks
are defined by the successive times 7, at which transition
¢/E( e*) fires and the marking changes from ¢§(s*) to ¢Is(s(’,)
for some s* € S* and some /, /=1, 2, .- -, N. Estimates for
characteristics of limiting passage times can be based on
measurement of passage times contained in these blocks.
Denote the state space of the process { V( T:): n =0} by G
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and set

vg = (D5 So)s S(50), (35)
=1,2,-.-, N. Denote by {T,: n = 1} the times Ti, Tzl,

e, T’lv, T'2 , -+ - in increasing order.

Proposition 12

Suppose there exists § > 0 such that

PIV(T,) = vo | U(T,_,), -+, (T} = 6 as. (36)

Then P{W(T,) = vyi.0.} = 1forall/=1,2, .-, N.
Arguments analogous to those given in Section 3 establish
Proposition 12. Using symmetry of the SPN, the idea is to
show that

PUV(TY) = vy | V(T_) = b5(v,_), -+, V(T}) = ¢(vp}
= P{V(T,) = vol V(T'._)) = /v, ). -
V(T)) = dlv,))

forall vy, v, ---, v, | € G". [Forv = (s, 5') € G", we write

d(v) = (d5(5), ds(s')).]
Carry out the simulation of {¥(¢): ¢ = 0} in random blocks
defined by the successive random times {77 k = 0}, where

(37

;o ! ;. N
T, =inf{T, > T, _: V(Th) = v,

forsome/, /=12, ..., N}, (38)
k=1;8,=0and 7; = 0. Each epoch T, corresponds to
the termination of a passage time with no other passage
times underway. [Note that the random times {775 k = 0}
do not form a sequence of regeneration points for the
process {(X(T7), P,.,): n=0}.]

Set o, = B, — B,_,, k = 1. According to this definition «, is
the number of passage times in the kth block. Also set

()= 3 /P

and denote the analogous quantity in the kth block by
Y() k=1

Proposition 13
The sequence of pairs of random variables {(Y,(f), )
k = 1} are independent and identically distributed.

Proof As in the proof of Proposition 9, observe that at
time T, defined by Equation (38) a passage time has just
terminated with no passage times underway and each of the
clocks running at time 77 + was set or can be viewed as
having been probabilistically reset at time 77, . Therefore
{X(¢): t = T}, | determines the distribution of ¢, ,, =
Br+1 — B, and the finite dimensional distributions of P, ,,,
for i = 0. The joint distribution of the clocks set or reset at
time T, depends on the past history of the marking process

only through X(773) = ¢'S(s(’)), the previous marking d)’s(so),
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and the trigger transition ¢[E( e*). It follows that the pairs of
random variables {( Y,(f), «,): kK = 1} are mutually
independent.

Recall that ¢, is the time of the nth transition firing and
denote by ¢ the transition that fires at time {,, n = 0. Also
recall that C, is the vector of clock readings at time ¢, and
that C, ; is the ith coordinate of the vector C, for ¢; € E(S,).
Letz, ---,2z,20,x, ---,x,€ES, and €5 s e,."EEwith
p(x; Xy, €,) > 0. It follows from the definition of a
symmetric SPN that

PUX(S,) = 0(x,), 6, < 2, €5 = ¢i(e,), X(5,_)) = b,
Samt = Zppy €5y = ¢IE(ei,,_l)’ e, er= ¢’IE(eil):

= PAX(5,) = és(x,). §, < z,, €5 = dyle,),

X(§,-) = ¢;(anl)’ St = 2,y

= ol ) oo €= g(e) (39)

forall/=1,2, -.., N. [Here P,{-} denotes the conditional
probability associated with starting the SPN with marking
d)'s( 5¢) and all active clocks reset at time ¢ = 0 according to
the distributions

PLC,, = c} = F(c; o4Sp), €, d5(S,), d1(€*))

for c 2 0, ¢, € E(¢(s{)): P,{-} denotes the corresponding

conditional probability when the initial marking is ¢;(s(’)).]
Next suppose that X(0) = s/ and that all active clocks are

reset at time ¢ = 0 according to the distributions

F(c; 85, €, 5y, €%), €, € E(s7). Set X' = d)é(X(I)) and

X'(1) = 6 X(1)), i = 0. Observe that for each sample path of

{X(1):t=0}and all n =0,

X'(5,) € AT = {7(s): s € A,} and

X'(5,) € AT = {¢7(s): s € 4}

for some 1, if and only if X(¢, ) € 47" and X'(¢,) € 47" for
some m,. Similarly,

X'(5,_) € BY = {¢2'(s): s € B,} and
X'(5,) € BY" = {¢3'(s): 5 € By}

for some m, if and only if X'(¢, ) € B/ and X'¢,) € B
for some m,. Since

S(m) = inff¢, = T(m). X(5,) € A}, X(5,_) € A7)
and
T(m) = infl§, > S,_(m): X(5,) € BY, X(5,_,) € B}'}

for all m, Equation (39) implies that

Plao,y=n+ 1, P <y P.<y, -, P, =y}
=Ple,=n+1L,P, <y, P sy. - P =yl

(40)

forall {=1,2,---, N, ¥, vy, -+, V., = 0,and n = 0. By 289

LINDSAY A. PRISGROVE AND GERALD S. SHEDLER




290

the independence argument in the first part of the proof, it
follows that

Plog, =n+ 1L, Py <y Py <V, - P <w,
X(T}) = ¢(so)}
=Pley=n+ L P, <y,,.Pr<y, - Pl =yl
X P{X(T}) = os(so)) (41)

foralln=0and/=1,2, .-, N. Using Equation (40), this
implies

’
+1 = yn+1’ Pﬂk,l—l = yn’ MR

N
X Play,, =n+ I»Pék
=1
X Py =y, X(T)) = o5(s)
=Y Play=n+ 1P, =y, ,Psy, -
I=1
. P = pPIX(T}) = ¢(so))
=Y Play=n+ 1P, <y, P=y, - -
=1
P} = pPAX(T,) = 5(sphs
so that

—_— ’ 7 ’
Plog, =n+1, Pﬂm = Vasrr P/sk+,—1 EVw s P,s,(+15y1}

=Pl{al=n+I’Prlx+lsyn+l’P;lsyn’ “"P;Syl}a

and the pairs of random variables {(Y,(f), a,): k = 1} are
identically distributed. O
Standard arguments establish a ratio formula for r(f) =

E{f(P)}.

Proposition 14
Provided that E{r,} < oo, P{P € D(f)} = 0 and
E{ A(P) |} <o,

E{Y())

E{f(P)} = Ela]

With these results, based on n blocks (cf. Crane and Iglehart
[16]) a strongly consistent point estimate for r( /) is

. Y(n)
Hn = o5 (42)
and an asymptotic 100(! — 2v)% confidence interval is

. z,_s(n) z,_ys(n)]

rny———m"5, + 43
[ ) a(nyn'? i a(nyn'”? “3)

where sz(n) is a strongly consistent point estimate for az( f)
= var (Y,(f) ~ r(f)e,). Asymptotic confidence intervals are
based on the c.l.t.
n"?{i(n) = ()}
o( /) Ele}

as n— oo,

= N, 1) (44)
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Example 15

In Example 3, consider port access times measured from the
arrival of a packet for transmission by some port until the
start of transmission by the port. This sequence of passage
times is specified by the four subsets of S:

A] = {(Sl,l, Y SN,4) € S: Sl,l = sl,J = 0}’

Ay =18 -, Sy )ES:s = land s ; =0},
B ={(s, -, Sy E S 5,;,=0and 5., =1},
and

B,={(s;,, -+, 5y ES:5,;=land 5., =0},

The set of all possible markings when a passage time Pf
terminates or is not underway is H' = (5100 S12 775 Sya)

€ 8. 5,5, =1ors,=1}. Then B; # @ and
5=1(1,0,1,0,0,1,0,0,---,0,1,0,0) € B;. The

random times { Ty: k = 0} correspond to terminations of
port access times which occur when there is no packet
queued for transmission at any of the ports. Propositions 13
and 14 hold provided that the packet interarrival time
random variables are exponentially distributed. [The random
time 7", is the nth time at which port / + 1 observes the ring
token, # = 0. Note that { V'( Tf,): n = 0§ is an irreducible,
finite state discrete time Markov chain so that P{}'( T’") =
vbi.0.) = 1. It follows that P{¥V(T,) = vy i.0.} = 1 for all
I=1,2,---,N]

5. Statistical efficiency

Section 4 provides two estimation procedures for passage
times in a symmetric SPN. Each procedure rests on the
assumption that there exist e* € E, 5, € B,, and 5, € B,
satisfying the conditions of Proposition 9. The regenerative
structure guarantees that P, = P as n — o and the goal of
the simulation is the estimation of r(f) = E{f(P)}, where fis
a real-valued measurable function. [We assume that the
function f'is such that Ef| f(P)|} < » and P{P € D(f)} =0
so that ratio formulas for r(f") hold.]

Estimates for r(f) can be based on measurement of
passage times {P:: n = 1} and simulation of the underlying
marking process of the SPN in regenerative cycles defined by
the times 77 at which V(T") = v, Alternatively, exploiting
properties of a symmetric SPN, estimates can be based on
measurement of passage times {P,: n = 1} and simulation of
the underlying marking process in independent,
nonidentically distributed blocks defined by the times T, at
which V(T)) € {v:,, cee, vg}. This estimation procedure
extracts more passage time information from a simulation of
fixed length and should provide estimates for r( /) that are
relatively more accurate. In this section we verify that this is
indeed the case by showing that the resulting confidence
intervals are shorter.

For r = 0 let m'(¢) be the number of passage times IPL:

n = 1} completed in (0, ¢] and denote by EBL: k = 1} the
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indices of the successive termination times {7: n = 1} at
which V(T?) = vy, Set

1 i 1
o= m'(Ty) = m'(T),
m'(Tg1)

Yufy= 3

J=miTH O+l
k—~1

P,

k = 1. Also set

(') = var (Y1(f) = r())a).
Then by Lemma 4.1 of Iglehart and Shedler [17],

m'()

[ ( l(t D f(P)—r(f)>
(EtriD"6'(f)Ela )

as { — » provided that E{(,)’} < o and E{(Y(| f])))} < .
Here T,\ = T’ T",‘.‘ Since the numerator in this ¢.l.t. and
the limit [N(O 1)] is mdependent of the transition ¢ ﬁ(e*)
and the markings ¢S(s0) and d)s(so) which define the cycles,
so is the denominator; this is a consequence of the
convergence of types theorem (Billingsley [19], Theorem

14.2). Thus, the quantity
e'(f) = (Etr,))""e"(f)/Ete)

is an appropriate measure of the statistical efficiency of the
estimation procedure based on cycles.

Now let m(7) be the number of passage times {P): n = 1}
completed in (0, ¢]. Set

= N(0, 1) (45)

o, = m(Ty) — m(Ty ).
m(T41)

YiNH= 3

=m(Ty1 )+1
/ =

J(P)),

and
(o(f) = var (Y (f) = r()a,).
Again using Lemma 4.1 of [17],

i m(t)
<m ,Zu JP)) - r(f))

N, 1) (46)

(Etr\)"a(f)/Ela,}

as { — oo provided that E{(a,)’} < ® and E{(Y,(| f]))’} < .
Now observe that the numerator and the limit in this c.L.t.
are independent of whether the passage times {P,: n = [} are
measured in regenerative cycles [defined by transition ¢IE( e*)
and markings ¢ls(so) and d)}g(s(’))] or in blocks defined by
d)'E(e*), ¢/5(s0), and d)’s(s(;) forall /=1, 2, ..., N. Therefore,

e(f) = (Elr) ol /) Ela}
is an appropriate measure of statistical efficiency of the
estimation procedure based on blocks.

Note that when the passage times lP:,: n = 1} are used to
construct point and interval estimates for r( f), the half-
length of the confidence interval is proportional to e'( /),
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and when the passage times {P,: n = 1} are used (with the
same constant of proportionality), the half-length of the
confidence interval is proportional to e( /). Proposition 16
asserts that under mild regularity conditions on the function

felf) = e'(f).

Proposition 16
For all functions f'such that E{| f{P}|} < « and P{P € D(/)}
=0, e(f) = e'()).

Proof 1t is sufficient to show that

(@) = N/ (47)
and

Efa,} = NE{a}}. (48)

To establish Equation (47), for t = 0 set

m{t)

W)= X [(P)) = r(/Im(1).

Now observe that { X(#): ¢ = 0} is a regenerative process by
Proposition 4 and that, with respect to this process, { W(¢):
t = 0} is a cumulative process in the sense of Smith [20] with

E{W(T,) — W(Ty ) = E{Y()) — A = 0.
Thus, by Theorem 8 of [20],

_ e
E{TI]} )

var ( (1))

lim

1—oc

(49)

Next recall that { P/: n = 1} is the sequence of passage times
P\, P}, .-, P\, P}, P}, - enumerated in termination
order and therefore

m(1)

N (mho)
T AP) = Hym(1) = ¥ { T AP) - r(f)m’(z)},
J=1 =1

j=

where m’(t) is the number of passage times {Pﬁ,: n= 1
completed in (0, ¢]. Now set

m(r)

Wity =3 f(P) = rf)m)
so that
W) = 3 W)

i=1

and by the Cauchy-Schwarz inequality

N

var (W(t)) < 2 var(W(1)) + 3 {var(W/(t))var(W'()}"

=l

N 2
= [2 ;var<w'(,)>;'/2] .
I=1
Equation (47) follows, since

(' ()

i Yar( w)) _ 1
E§71}

(o0 t

291

LINDSAY A. PRISGROVE AND GERALD §. SHEDLER




292

for/=1,2, ..., N. To see this, fix / and let {Bi: k= 1}be
the indices of the successive termination times {77: n = 1} at
which V(T") = v, Observe that { W/(1): 1 = 0} is a
cumulative process, so that by Theorem 8 of [20],

var (Wi(1)) _ (')’

lim —,
= ! E‘Tz}
where 7, = Ty — T and

('(/) = var (Yy(f) = r(f)as).
with o, = m'(T}) — m(T};_) and
. m(Thi)
Yin= I AP
J=mi(Ta )+t

The definition of a symmetric SPN implies that £ {7'2} =

Efry} and ('(/))" = var(Yy(f) = r(f)a3).
To establish Equation (48) set

m(t) = ¥ m'(t)
=1

and observe that {m’(t): t = 0} and {m(r): t = 0} are
cumulative processes with respect to {X(¢): t = 0}. Moreover,

. E{m(t)} Ela}}
lim ———= —
= l E{71}
and

; {
fjm £} _ Elea
= t E{Tzl

Again, since the SPN is symmetric, E{r’l} = E{T'z} and E{alz}
= E{a;} so that

Etm'(0)} _ Eley}

lim T,
Efr}

e 14

/=12 .--.,N. O
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