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decoder  for 
multiple byte 
errors 

Multiple-error-forrecting Reed-Solomon  or BCH 
codes in GF(2 ) can be used  for  correction of 
multiple  burst  errors in binary  data.  However,  the 
relatively  long  time  required  for  decoding 
multiple  errors  has  been  among  the  main 
objections to applying  these  schemes  to  high- 
performance  computer  products.  In this paper, a 
decoding  procedure is developed  for  on-the-fly 
correction of multiple  symbol  (byte)  errors in 
Reed-Solomon  or BCH codes. A new  decoder 
architecture  expands  the  concept of  Chien 
search of error  locations into computation of 
error  values  as  well,  and  creates  a  synchronous 
procedure  for  complete  on-the-fly  error 
correction  of  multiple byte errors.  Forney's 
expression  for  error  values is further  simplified, 
which  results in substantial  economies in 
hardware  and  decoding  time. All division 
operations  are  eliminated  from  the  computation 
of  the  error-locator  equation,  and  only  one 
division operation is required in the  computation 
of error  values.  The  special  cases  of  fewer 
errors  are  processed  automatically,  using  the 
corresponding  smaller  set  of  syndromes  through 
a single  set  of  hardware.  The  resultant  decoder 
implementation is well  suited  for LSI chip  design 
with  pipelined  data  flow. The implementation is 
illustrated with  an  example. 
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1. Introduction 
Many  tape  and disk storage products in modern  computers 
make use of error-correction  coding to  obtain a cost-effective 
design for high reliability and  data integrity. In most of these 
applications,  decoding for the error-correction  code is a 
direct  add-on  penalty to  the access time specification for a 
particular  data-storage  product. For this  reason, an on-the-fly 
decoder with pipelined data flow is highly desirable. 

Future storage products will  be required to provide 
improved reliability and availability in  spite of their  greater 
packing densities and delivery rates. A relatively greater 
number of soft errors,  including  multiple  burst  errors, will 
need on-the-fly correction.  Reed-Solomon [ 11 or BCH [2, 31 
codes in  Galois field GF(2h) can be used [4] for correction of 
burst errors by interleaving codewords. In these codes, each 
symbol is represented by a  binary byte, and  an  error is a byte 
error. These  codes are very efficient in terms of  redundancy 
for  correction  of  multiple  errors; however, the relatively long 
time required  for  decoding  multiple  errors  has been among 
the main  objections to applying  these  schemes to high- 
performance computer products. 

Since the  appearance of the original works of Reed and 
Solomon [ 11, Bose and  Chaudhuri [2], and  Hocquenghem 
[3], the decoding  problem  has  been  studied by many. 
Peterson [ 5 ]  and  Gorenstein  and Zierler [6] provided the 
basic key to  the solution of the decoding  problem  through 
the concept of the error-locator  polynomial. The coefficients 
of the error-locator  polynomial are  computed by solving a 
set of linear  equations.  Berlekamp [7] and Massey [8] 
provided an iterative method for computing  the coefficients 
of the error-locator  polynomial. 

The  roots of the error-locator  polynomial  represent the 
locations of the symbol in  error. Chien [9] suggested a 
simple  mechanized method for  searching  these  roots, using a 
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cyclic trial-and-error  procedure.  Forney [ I O ]  provided 
further simplifications  in computations of the  error values in 
the case of codes with nonbinary symbols. The iterative 
method [ I  I] of Berlekamp and Massey provided yet another 
way of computing  the  error values. There  are also direct 
decoding methods [ 12, 131 which avoid computing  the 
coefficients of the error-locator  polynomial.  These  methods, 
however, require more  computations. 

In this  paper, we present  decoder equations  and 
architecture  in which the location and value of each error 
are  computed  in a cyclic order without explicit information 
regarding the locations of other  errors which are yet to be 
determined.  This  method  expands  the "Chien search" 
function (which normally  finds  only the  error locations  in  a 
cyclic manner)  into a  complete  mechanization of the error- 
correcting  procedure. As a result, we can begin delivery of 
the decoded data symbols, one  at a  time, in synchrony with 
each cycle of the Chien  search. Thus, access time is not 
impacted by the  time required  for the  computation of the 
locations and values of all errors. 

In this method,  the hardware is highly simplified. In 
particular, the result of Chien search need not be stored, and 
one set of  hardware computes  the locations and values of all 
errors  and corrects them  at  the  appropriate cycle during the 
Chien  search. 

This paper also presents other specific improvements in 
the design and  implementation of the on-the-fly decoder,  as 
listed below: 

a. All division operations  are eliminated  from the 
computations of the error-locator equation. 

b. Lemmas 1, 2, and 3 provide  a convenient closed-form 
expression for error values. This new expression requires 
a  smaller  total number of operations  and only one 
division operation in on-the-fly computation of the error 
values. 

c. The special cases of fewer errors  are processed through  a 
single set of  hardware  as  a routine procedure. 

d.  The decoding equations,  as well as  the decoder design, 
possess a nested form of architecture which allows 
processing of fewer syndromes for fewer errors. Thus,  the 
same hardware (LSI chip or chips)  can be used in various 
applications with varying reductions in redundancy. 

These  improvements, with the new on-the-fly error- 
correction  architecture, make  the decoder implementation 
highly structured and well suited for LSI chip design with 
pipelined data flow. The decoder design is illustrated with 
details of this implementation for the case of  three byte 
errors. 

2. Error  syndromes 
In a general Reed-Solomon or BCH code, the codeword 
consists of n symbols in the Galois field GF(q) which include 260 

P 

r check symbols  corresponding to  the roots aa,  aa+', a'+', 
, a of the generator  polynomial, where a is an . . .  u+,- I 

element of GF(q). For convenience, the integer a is taken to 
be zero [ 141. The r coding relations, then, can be written as 
n- I 

a " ~ ,  = O f o r j  = 0, I ,  2, . . ., ( r  - I ) ,  
,=o 

where Bo, B , ,  B,, . . . , Bn-l are  the n symbols of the 
codeword. The corresponding  syndromes S, can be 
computed from the received codeword as 

S, = d B ,  f o r j  = O, I ,  2, . . ., ( r  - I ) ,  (1) 

where B, represents the received symbol corresponding to B, . 
Let u denote  the actual number of symbols  in error  in a 

given codeword. The  error values are E, = (B, - B,), where i 
represents an error-location value from  a set of different 
error locations given by (I] = { i, , I,, . . . , i,]. The 
relationships between the syndromes and  the  errors  are  then 
given by 

S, = a"E, f o r j  = 0, 1, 2, ..., ( r  - 1). ( 2 )  

Any nonzero value of a syndrome indicates the presence 

n- I 

t-0 

=Ill 

of errors. The decoder processes these syndromes to 
determine  the locations and values of the errors. Let t denote 
the  maximum  number of errors  that  can be decoded  without 
ambiguity. A set of r = 2t consecutive syndromes is sufficient 
to  determine  the locations o f t  errors. If the locations are 
already  known, then a set of only t consecutive  syndromes is 
sufficient to  determine  the values o f t  erasures  (errors with 
known  locations). 

3. Equation for  error  locations 
Consider the polynomial with roots at a', where i E I f ) .  This 
is called the error-locator  polynomial and is defined as 

I n ( 1  - a"x) = umxm = umxm. (3) 
!€Ill m=O m=O 

In the case of erasures, the coefficient a" in each  factor of 
the locator  polynomial is known. Thus,  the coefficients urn 

can easily be computed. In the case of  errors, the coefficients 
urn can be determined from the syndromes. For a given 
received word, the decoder will proceed to  determine urn as if 
there were t  roots in the locator  polynomial. If the actual 
number of errors u is less than t, this will result in um being 
zero for all rn > U. 

Substituting x = a' in Equation (3), we  get 
I 

urnam' = O for i E { I ) .  (4) 
m=O 

By using Equations (2) and (4), it is easy to verify that  the 
syndromes S, and  the coefficients um of the error-locator 
polynomial satisfy the following set of relationships: 
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I 

U , J , ~ + ~  = 0 for k = 0, I ,  . . ., ( t  - I ) .  ( 5 )  
,=(I 

The set of equations ( 5 )  can be rewritten in  matrix notation 
as 

Let M denote  the t-by-(t + 1) syndrome matrix on the left 
side of  Equation (6). Let MI denote  the square  matrix 
obtained by eliminating the last column  in matrix M. If MI 
is nonsingular, then  the above set of equations  can be solved, 
using Cramer's rule, to obtain 

where All is the  nonzero  determinant of matrix M I ,  and A,, 
denotes  the  determinant of the matrix  obtained by replacing 
the  mth  column in the matrix MI with the negative of the 
last column of the matrix M for  each m = 0, I ,  . . . , ( t  - I ) .  

If matrix M ,  is singular, that is, A,, is zero, then  the set of 
equations ( 5 )  is a dependent set. It can be shown that in the 
case of fewer than t errors, A,, = Arm = 0 for all m. 
Conversely, simultaneous occurrence of AI, = 0 and Alm # 0 
indicates more  than t errors. Thus, when A,, is zero we 
assume fewer than t errors  (and check for AI, = 0 for all m). 
In that case, U, is zero. We can delete uI and  the last row and 
the last column of the  syndrome matrix in Equation (6). The 
resulting matrix equation corresponds to  that for t - I 
errors. This process is repeated, if necessary, so that  the final 
matrix equation corresponds to  that for u errors  and Mu is 
nonsingular. Then we need the set of determinants A",,, 
where m = 0, I ,  . . ., U. 

It can easily be seen that A", for u = f - 1 is a  cofactor of 
A,, corresponding to  column m - 1 and row t in matrix M I .  
We can express A,, in terms of these cofactors: 

I- I 

To  accommodate  the special cases of all fewer errors, we 
replace Equation (7) with a more  convenient general form: 

- - _  6, A, 

@,, A" 
- for m = 0, I ,  2, . . ., t ,  (9) 

where u is determined from the fact that Amm = 0 for all 
m > u and A,,,, # 0 for m = u .  Then Am is defined with the 
new notation as 

Since u0 = I ,  we can determine U, for all values of m, 
using Equation (9). However, we  will  see that  the coefficients 
U, are  not needed in the  entire decoding process. To this 
end, we obtain a modified error-locator equation from 
Equations (4) and (9) as given by 

A,,N = 0 for i E { I } .  In, 
m=n 

The error-location values i E { I ]  are the set of u unique 
values of i which satisfy Equation ( 1  1). 

4. Expression for  error values 
The error-locator  polynomial, as defined by Equation (4), 
has u roots  corresponding to u error-location values. Now 
consider  a  polynomial which has all roots of the error- 
locator  polynomial  except one corresponding to  the location 
value i = J. This polynomial is defined as 

Y-  I I- I n ( 1  - a"x) = c uJ,mXm = c U,,mXm 
,€Ill m=O m=O 
'fi 

When the actual number of error locations u is less than t ,  
the coefficients u , , ~  are zero for m = u,  . . . , ( t  - I) .  This is 
done  to allow processing of any value of u through the  same 
set of hardware. 

Substituting x = 01' in Equation (12), we get 
I- I 

u l , m ~ ' n '  = O for i E { I } ,  i z J. (13) 
m=O 

Now,  taking  a hint from Equation ( 5 ) ,  we examine  a  similar 
expression involving the  syndromes  and  the coefficients u , , ~  

of the new polynomial. Using Equation (2 ) ,  we substitute for 
the  syndrome S, and get 

,n=o 

Thus,  the values A", for u = t - 1 need not require  separate 
computations. They are available as  byproducts of the 
computation for A,,. In fact, A",,, for subsequent  smaller 
values of u are all available as byproducts of the  computation 
for A,, through the hierarchial  relationships of lower-order 
cofactors. 

Thus, in the case of fewer errors, the decoder finds A,, = 0 
and automatically  backtracks  through  prior computations  to 
the correct value of U, and uses the previously computed 
cofactors An,n. This is illustrated  later  through  hardware 
implementation of the case t = 3. 

I- I I- I 

Interchanging the  order of summing parameters m and i in 
Equation (14). we get 
I- I I- I 

c .,.,,s, = c E, c o,.,nO1 ' 

m, 

,n-(1 E l l l  m=O 

Now, using Equations ( I  3) and ( I  5 ) ,  we obtain 

(16) 
26 1 
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Thus, we have an expression for the  error values 
I- I 

u,.mSm 

c ,JJ,,m"mJ 
m=O 

This expression for error values is well known [ 10, 151. 
Notice that with a  known  error-locator  polynomial and  the 
error-location value j ,  explicit values of other  error locations 
are  not required  in computing  the coefficients u ~ , ~ .  Thus, we 
can eliminate uJ,m and reduce (1 7) further  to  obtain a more 
convenient form for on-the-fly processing. To this end, we 
prove Lemmas 1, 2, and 3 which follow. 

In  Lemma I ,  we obtain a  relation which expresses the 
coefficients uJ,m in terms of the  known coefficients uk of the 
error-locator  polynomial. 

Lemma 1 
m 

ukakJ = uJ,ma for o 5 m < t.  mJ 

k=O 

Proof From  the definition of polynomials  in Equations (3) 
and ( 12), we have 

I I- I c umxm = ( I  - a'x) fJJ,mxm. 
m=O m=O 

Comparing  the coefficients of  each term  in  the polynomials 
on  the two sides of Equation (19), we obtain 

= { uJ,m - uJ,m-l a-J for o < m < t ,  

'j.m for m = 0. (20) 

Using Equation (20), we can substitute  for uk and  obtain 
m m 

c upk' = uJ.O + [ciJ~,akJ - uJ,k-l a(k- l )J] .  (21) 
k=O k= I 

On eliminating the canceling terms  from  Equation (21), we 
get 
m 

ukakJ = uJ,ma for o I m < t. 

This completes the proof  of Lemma 1. 

Equation ( 1  7), using the result of Lemma 1. 

mJ (22) 
k=O 

Next, we rewrite the  denominator of the expression in 

Lemma 2 
I- I 1 

uJ,,amJ = 1 -kukakJ. 
m=O k=O 

Proof Using Lemma I ,  we first obtain 
I- I 1-1 m 

uJ,mamJ = u,akJ. 
m=O m=O k=O 262 
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Collecting all terms with the  same values of k in Equation 
(24), we then get 
I- I I- I 

1 uJ,mamJ = (t - k)ukakJ. 

Using Equation (4), we can rewrite Equation (25) as 

m=O k=O 

I -  I I- I 

uJ~mamJ = -tulalJ + -kukakJ, (26) 

which is the  same as Equation (23). This completes the proof 
of Lemma 2.  

We again use the result of Lemma 1 and  obtain a more 
convenient expression for the  numerator in Equation ( 17) in 
the following lemma. 

m=O k=O 

Lemma 3 
I- I I- I 

c UJ.,S, = c [,a 1 

-mJ 

m=O  m=O 

where 
I -  I -m 

tm = c ,J,S,+,. 
,=O 

Proof Using Lemma 1, we can express u ~ , ~  in  terms of uk, 

obtaining 
I- I I -  I m c UJ,,S, = e Sma-" akak'. 
m=O  m=O k=O 

Substituting ( m  - h )  for k on  the right-hand side of 
Equation (29), we  get 
I -  I 1-1 m 

u~.msm = sm um-ha . - hJ 
m-0 m=O h=O 

Now, interchanging the  order of summing parameters m and 
h in Equation (30) gives 
I- I I- I I- I 

= a-hJ (Tm-hsm.  
m=O h=O m=h 

Substituting (k  + h)  for rn in Equation (31), we have 
I- I I- I 1-I-h 

u~,msm = a-hJ o k S k + h .  
m=O h=O k=O 

This completes the proof  of Lemma 3. 
The  computation of tm for m = 0 to ( t  - 1) in  Equation 

(28) of Lemma 3  requires t ( t  + 1)/2 multiplications of the 
type urSm+, . The  number of  multiplications can be reduced 
in case of tm for m < ( t  - 1)/2 by using Equation ( 3 ,  which 
yields the following alternate expression: 

tm = c -u,sm+,. (33) 
,=I-m 

Equation (28)  requires the syndromes So, SI, . . . , and 
Equation  (33) requires the syndromes SI, SI+, , . . . , S,,-, . 
When we use Equation (28 )  for m 2 ( t  - 1)/2 and  Equation 
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(33)  for rn < ( t  - 1)/2, the  number of multiplications 
required is the  minimum  and is equal  to  the integer closest 
to ( t  + 1?/4. 

Note  that  Equation (28) does  not satisfy the  requirement 
that  the  same hardware process the case of fewer errors with 
fewer syndromes,  since the high-order terms do  not vanish 
automatically. Furthermore,  Equation (33) cannot be used if 
the decoder is designed for t erasures where the syndromes 
SI, SI+, , . . . , S,,-, may  not be available. The following 
corollary  of Lemma 3  provides an  alternate equivalent 
expression which removes the difficulty mentioned above. 

Corollary 
I- I I- I 

c UJ,,S, = pm(Yrn', 
m=O  m=O 

where 0 5 p < t and  the coefficients p, are given by 
m 

ukSk-m+F for m I p, 
k=O 

P, = 

(34) 

Proof Using the result from  Equation (4), we can rewrite 
the  terms with m > p in  the right-hand  side of Equation (29) 
as follows: 
I- I L m 

UJ,,S, = sm(Y-mJ c upk'  
m=O m=O k=O 

I -  I I 

+ Sma""' 1 -ukakJ. (36) 
m=c+ I k=m+ I 

The proof  of the corollary, then, follows steps  similar to 
those  in Equations (30)-(32) of Lemma 3. First, substitute 
( m  - h )  for k, and rewrite the right-hand  side of (36) with m 
and h as  summing parameters. Then, interchange the  order 
of summing  parameters m and h. Next,  substitute ( k  + h )  for 
rn, and rewrite the right-hand  side with h and k as summing 
parameters. Finally, substitute ( p  - r n )  for h. This completes 
the proof of the corollary. 

The  important feature of the expression in the corollary is 
that  the high-order terms vanish  automatically  in the case of 
fewer errors, and  the resultant computation involves a 
reduced set of syndromes So, SI, . . . , where v is the 
actual number of errors  or erasures, and p < v I t. 

The  number of  multiplications  in computing 8, of 
Equation (35) depends  on  the choice  of p. The  minimum 
number of multiplications is, again, the integer closest to 
( t  + 1)2/4 when p = E, where E is the largest integer under 
( t  - 1)/2. 

smaller set of  available  syndromes So, SI, . . . , SI.-] and  up 
to t' errors  or erasures, provided that p < t' I t. From this 
point  of view, a lower value of p is desirable. The choice of 

The  same hardware can also be used in applications with a 

p = 0 offers the  maximum flexibility in terms of the 
applicability of the  same hardware for processing fewer 
errors with fewer syndromes. The  number of multiplications 
required  in computing 0, in  Equation (35) with p = 0 is 
(t '  - t + 2)/2, which is not  the lowest value possible but is 
still lower than  the  maximum value required  in Lemma 3. 

In view of the above  observations, we use the expression 
in the corollary  of Lemma 3  for  decoder implementation. 
For large values of t ,  it is advisable to use p = for greatest 
economy  in hardware. In the case of small values of t ,  p = 0 
provides greater flexibility in adapting  other smaller values of 
t later  without  modifying the already fabricated  hardware. 

Now we can rewrite Equation ( I7), using the results of 
Lemma 2 and  the corollary of Lemma 3. As a result, any 
error value E, can be expressed as 

' m  

c ukSk-m+p for m I p, 
k=O 

P m = '  I 

C -ukSk-m+p for m > P. 
, k=m+l 

In view of Equation (9), the coefficients um can be 
eliminated to  obtain  error values in terms of A,: 

I- I 

c m, 

E, = a"" 
m=0 

l 

-mAmam' 
m=0 

where 

(37) 

(39) 

In the case of the binary base field, the  denominator of 
Equation (39) simplifies further since the  terms with even 
values of m ( m  = 0 mod 2 )  vanish. The resultant expression 
for E, for the binary base field is 

263 
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Incoming word +Logic delay- Outgoing word 
(n cycles)  (small) (n cycles) 

73 EX-ORs 
64 ANDs 

A33 

A32 

'30 

for m 5 p, 
k=O 

Note that  the  computation for the  denominator in Equation 
(41) is already  available as  the  sum of all odd  (or even) terms 
in  the  computations of Equation ( 1  1). For each value of i, 
the  numerator  can be computed  and multiplied by the 
inverse of the  denominator in  synchrony with the search for 
error locations. The resultant E, is used for  correcting the 
outgoing ith symbol B ,  whenever the error-locator equation 
( 1  1) is satisfied. 

5. Decoder implementation 
Figure 1 is a block diagram  of the on-the-fly decoder. The 
decoding process is continuous in an  uninterrupted  stream 
of  data arriving  in the  form of a chain of n-symbol 
codewords. The decoder computes  syndromes for the 
incoming codeword  as it decodes and corrects  errors in  the 
(previously received) outgoing  codeword. 

Each clock cycle corresponds to  an  input of one  data 
symbol of the  incoming codeword concurrent with an 
output of one corrected data symbol of the outgoing 
codeword. A buffer holds at least n symbols  of the 
uncorrected data between the  incoming  and outgoing 
symbols. 

We use the three-error-correcting  Reed-Solomon  code  in 
GF(2') as an example of special interest  for  application  in 
computer products. Six check symbols  correspond to  the six 
roots (YO, CY', a2, cy3, CY,, a5 of the generator  polynomial. The 
corresponding syndromes  are  denoted by So, SI , S,, S3 , S,, 
and S,, respectively. 

the conventional manner in  accordance with Equation (1). 
The  implementation for this step is well known, using EX- 
OR circuits and shift registers. Here, we present the 
hardware implementation for the  remaining steps of the 
decoding  procedure, using the  equations developed in the 
previous sections. 

Computation of coeficients 
For the three-error case, the matrix equation (6) for the 
coefficients um of the error-locator  polynomial can be written 
as 

These syndromes  are  computed from the received word in 

(43) 

The corresponding determinants A33, A32,   A3, ,  A30 of 
Equation (7) are given by the following expressions, where @ 
denotes  the modulo-2 vector sum of &bit bytes: 
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These four expressions can be implemented through 
combinational logic circuits as shown  in Figure 2. These 
circuits  require 24 product operations  and 14 sum 
operations  in GF(28). A typical product  operation in GF(2') 
requires, at  the most, 73 EX-OR gates and  64  AND gates, as 
shown  in  Appendix A. A sum  operation in GF(28) is a 
modulo-2 vector sum which requires 8 EX-OR gates. The 
hardware  of Figure 2 can be further reduced, if desired, by 
time-sharing some of the repetitive  functions. 

The  determinants AI,, A , , ,  and for the two-error case 
are  cofactors  in the expression (44)  for A,,, as was expressed 
in Equation (8) for the general case oft errors. These 
cofactors are 

Azo = S,S,  @ S,Sz. (50) 

In Figure 2, the  computations for A,,, A * , ,  and Azo are 
shown as the interim by-products  within the  computations 
for A3,. Similarly, A , ,  and A,,, which are readily available 
syndromes, are cofactors  in the expression (48) for Az2: 

4 ,  = So, (51) 

A,, = SI. (52) 

Figure 3 shows the hardware implementation of Equation 
( I O ) ,  where the decoder identifies the correct number ( u )  of 
errors  and selects appropriate values for A,,,. When A,, is 
nonzero, the parameters A,,   A, ,   A, ,  and A, take  the values 
A,,,  A.32,  A,,,  and A,,, respectively. When A,, is zero, then 
A,, A , ,  and A, take  the values Az2,  A?, , and A,,,, 
respectively, which corresponds to  the  syndrome  equations 
for two symbol errors. Similarly, if Az2 is also zero, then A,  
and A, take  the values A , ,  and A,,,  respectively, which 
corresponds to  the  syndrome  equations for one symbol 
error. Thus, Figure 3 produces the  appropriate values of the 
coefficients A,,  A,,  A, , and A, for the error-locator equation 
( 1  I ) ,  rewritten  for the case o f t  = 3 as 
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8 ANDs 

Figure 4 provides  a check for consistency of the 
coefficients in the case of fewer than  three errors. In 
particular, when = 0, we must have A,, = A,, = = 0. 
Also, when = A,, = 0 we must have A,, = A,, = 0, and 
when A,, = Az2 = A,  , = 0 we must have A,,, = 0. Violation 
of any of these conditions implies the presence of more  than 
three  errors, resulting in  an uncorrectable-error (UE) signal 
at  the  output of the circuit  in  Figure 4. With some additional 
hardware (not shown  in  Figure 4), we can  obtain u as  a two- 
digit binary number alao. This  number is the largest value of 
rn for which A,,,,,, # 0 ( I  5 rn 5 3), and is given by the 
following logic functions: 
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1 Coefficients for the error-value cxpression 

8-bit shift register 

A3 Count = o NOT 

@,T Clock i 

. . I .__.I.-. "" "_ 
- when a is nonzero (see [141). 
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This value of u will be used by the decoder in Figures 6 and 
7. shown  later. 

Next, we show the hardware implementation for obtaining 
the values of coefficients am in the  numerator of the  error- 
value equation (41). For  the case of three errors, Equation 
(42) with p = 0 can be rewritten for a0, aI, and @, as 
follows. 

@, = A,S, @ A,S,, (55) 

Figure 5 shows the  implementation of Equations (54), 
(55), and  (56), which requires four  product  operations  and 
one  sum  operation in GF(2'). The error-value equation (41), 
for the case of three errors, can be rewritten as 

@,CY2' @ @,CY' @ a. 
E, = 

A,a3' 69 A l a '  
(57) 

On-the-fly error correction 
Figure 6 shows the mechanized shift-register circuits for 
determining  error locations and  error values in  accordance 
with Equations (53) and (57), respectively. The  computed 
values of the coefficients A,,  A,, A , ,  A, and a,, a, , 9, are 
entered into  appropriate shift registers at clock zero. Each 
clock cycle generates  a  shifting  operation  of  these registers. A 
shifting  operation  multiplies the  contents of each register by 
a specific constant, namely CY,, a2, and LY in  the case of the 
registers for A,,  A,, and A , ,  respectively; and CY' and (Y in the 
case of the registers for 9, and a,, respectively. 
Multiplication by a constant requires  a  small number of  EX- 
OR gates, as  explained in Appendix A. 

At the  ith clock cycle (0 5 i < n), the  upper set of 
summing circuits  in  Figure 6 at  the  output of the shift 
registers are presented with all the  terms of Equation (53). If 
the  sum is zero, then  Equation (53) is satisfied and we have 
captured  the  error location. Similarly, at  the  ith clock cycle, 
the lower set of summing circuits at  the  output of the shift 
registers are presented with all the  terms of the  numerator in 
Equation (57). The  denominator for (57) is already  available 
from  the  upper set of summing circuits. 

Subsequent  networks  for an inverse operation and  then a 
product operation  compute  the  error value E, for each i in 
accordance with Equation (57). The algebraic inverse in 
GF(2') can be obtained  through  combinational logic, which 
maps each 8-digit binary  sequence into its inverse-a specific 
%digit binary  sequence, as shown  in  Appendix B. This 
requires, at  the most,  304 AND gates and 494 OR gates. 

When the  error location  is captured,  the outgoing  word 
symbol B ,  is modified by E, through  the  output  sum 
network. For all other values of i, the  computed value of E, 
is ignored. When all bytes Bo through Bn-, of the codeword 
are delivered (at the final clock cycle n - I ) ,  if u error 
locations were not  captured,  then  the  errors exceed the 
correction  capability of the decoder. This  condition is 
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detected by means of a counter which counts down from a 
preset value V .  If the  count does not reach zero at  the final 
clock cycle, then  the decoder  has not corrected the errors 
properly. The decoder  indicates  this condition by giving an 
uncorrectable-error (UE) signal. 

Delivery order of corrected bytes 
The corrected bytes in the decoder of Figure 6 are delivered 
in the  order B,,, B ,  , B,, . . . , B,-I . This is the reverse order 
compared  to  that in the encoding operation, since the check 
bytes correspond to  the low-order positions. The reversal can 
easily be removed by introducing  a reversal relationship 
between clock-cycle count j and byte-location number i. We 
substitute n - J  for i in  the  decoding equations (53) and (57)  
and rewrite them  as 

(A,a’“)a”’ CB (A,c~*“)a-~’  CB (A,an)a-’ CB A,, = 0, ( 5 8 )  

In these  equations, j represents the clock-cycle count, where 
j = 1 to n, successively, correspond to  the byte-position 
values i = ( n  - 1) to 0. This provides delivery of bytes in the 
order Bn-l,  . . . , B,  , B,, , which is the  same  order  as  that in 
the encoding process. 

To accomplish the modifications mentioned above, the 
following changes are made  in the decoder  hardware of 
Figure 6: (1)  The shift-register multipliers a3, a*, and a are 
replaced by a-2, and CY-’, respectively; (2) The 
coefficients A3, A,, and A,  are premultiplied by a3n, a’“, and 
an, respectively, and  the coefficients a2 and a, are 
premultiplied by and a“, respectively. 

In the case of shortened  code, the premultiplication 
circuits  depend on  the value of n, and each circuit requires a 
small number of EX-OR gates. In the case of full-length 
code, amn is unity for all values of m; hence these 
premultiplication  circuits  are not needed. The decoder, with 
the two  modifications discussed above,  appears  in Figure 7.  

6. Conclusions 
A decoding  procedure is developed for on-the-fly correction 
of multisymbol errors in  Reed-Solomon or BCH codes  in 
nonbinary or extended binary fields. In particular, the 
decoding equations  are formulated in a manner which 
expands the  concept  of  Chien search of error locations into a 
search for error values as well, and creates a synchronous 
procedure for complete on-the-fly correction of multisymbol 
errors. 

Lemmas 1, 2, and 3 and  the corollary are new results that 
provide  a  more  convenient form of the error-value 
expression for on-the-fly decoding. This expression is key to 
substantial  economies in hardware and decoding time. All 
division operations are eliminated from  the  computation of 
the error-locator equation,  and only one division operation 
is required in the  computation of error values. 
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Clock i / 8  EX-ORs NOT ,Count=O 

f Product  function. 

Further,  the decoding equations  are organized  such that 
the  computations for the special cases of fewer errors  than 
the  maximum  are realized as  byproducts of the main 
computations. Also, the  same decoding  hardware  can be 
used for search and correction of errors  in all cases of fewer 
errors,  including  applications where correspondingly fewer 
syndromes are available. The details of the decoding 
hardware are given for the case of  the three-byte-correcting 
Reed-Solomon  code. 

Appendix A-Product  function  in GF(2’) 
Figure 8 represents the estimated  hardware for implementing 
the product function in GF(2’). A ,  B, and  Care elements of 
GF(28)  and  are represented by 8-bit binary vectors, where 
C = A x B :  
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A -1 304 AND gates 
B=A“ 

494 OR gates 

A = [a,, a6’ a,, a4, a,, a,, a , ,  aol, 
B = [b,, b,, b,, b,, b3,  b,, b, ,   bo],  

[‘7> ‘ 6 ,  ‘ 5 ,  ‘4, ‘3, ‘2, ‘ I >  ‘01. 

The  product A X B is obtained  through a two-step process. 
First, we compute  the coefficientsf; of the  product 
polynomial F, where F = A X B modulo 2. Computation of 
the coefficientsf;(i = 0, . . ., 14) requires 64  AND gates and 
49  EX-OR gates: 

f ,  = Qobo, 
f ;  = sob, @a,bo ,  
f, = aob,@a,b, @a,bo, 
f 3  = aob, @ a,b2 @ a,b, @ a3bo, 

f ,  = aob7 @ a,b, @ a,b, @ . . . @ a,b, @ a7bo, 
fs = a,b7@a2b,@a3b,@ . . .  @ a 7 b , ,  

f ; 3  = a6b7@a,b,, 
A, = 0 7 .  

Next, we reduce the polynomial F modulo p(x),  where 
p ( x )  is a  primitive binary polynomial of degree 8. We use 
p(x)  = x’ + x4 + x3 + x2 + 1. The reduction off;  modulo 
p ( x )  requires, at  the  most,  24  EX-OR gates: 

The logic for the  entire  product  function requires one level 
of AND circuits and five levels of EX-OR circuits, which in 
turn require 64  AND gates and a maximum of 73 EX-OR 
gates. Note  that when one of the multiplicands, say A ,  is a 
known  constant,  then  the expression for each  component C, 
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of C will reduce to  EX-OR of selected components of the 
second  multiplicand,  namely B. The resultant product 
function  requires no  AND gates and  only a  small number of 
EX-OR gates (maximum 25), depending  on  the  constant A .  

Appendix  6-Inverse  function  in GF(2’) 
Figure 9 represents the estimated  hardware  for the inverse 
function in GF(2’). A and B are  elements of GF(2’) and  are 
represented by 8-bit binary vectors, where B = A-I. 

Figure 10 lists 255 nonzero  elements of  GF(28),  each with 
the corresponding  inverse  element.  These  elements were 
generated by the following primitive  polynomial: 

p ( x ) = x X + x 4 + x 3 + x 2 +  1. 

The  elements  are represented by 8-digit binary vectors 
which, in  polynomial notation, have the coefficient for the 
high-order term  on  the left. The inverse function of this  table 
can be implemented  through  combinational logic, using the 
conventional 8-bit  encode-decode function.  This requires 
three levels of AND circuits and seven levels of OR circuits, 
which in  turn require  a maximum of  304 AND gates and 
494 OR gates. 
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S I s" 
00110100 10100100 
00110101 11000011 
00110110 01000000 
00110111 01011110 
00111000 01010000 

00111010 11001111 
00111001 00100010 

00111011 10101001 
00111100 10101011 
00111101 00001100 
00111110 00010101 
00111111 11100001 
01000000 00110110 
01000001 01011111 
01000010 11111000 
01000011 11010101 
01000100 10010010 
01000101 01001110 
01000110 10100110 
01000111 00000100 
01001000 00110000 

01001010 00101011 
01001001 10001000 

01001011 00011110 
01001100 00010110 
01001 101 01 1001 11 
01001110 01000101 
01001111 10010011 
01010000 00111000 
01010001 00100011 
01010010 01101000 
01010011 10001100 
01010100 10000001 
01010101 00011010 
01010110 00100101 
01010111 01100001 
01011000 00010011 
01011001 11000001 
01011010 11001011 
01011011 01100011 
01011100 10010111 
01011101 00001110 
01011110 00110111 

01100000 00100100 
01011111 01000001 

01100001 01010111 
01100010 11001010 
01100011 01011011 
01100100 10111001 
01100101 11000100 
01100110 00010111 

s I S" s I S" 

00000001 00000001 
00000010 10001110 
00000011 11110100 
00000100 01000111 
00000101 10100111 
00000110 01111010 
00000111 10111010 
00001000 10101101 
00001001 10011101 
00001010 11011101 
00001011 10011000 
00001100 00111101 
00001101 10101010 
00001110 01011101 
00001111 10010110 

00010001 01110010 
00010000 11011000 

00010010 11000000 
00010011 01011000 
00010100 11100000 
00010101 00111110 
00010110 01001100 
00010111 01100110 
00011000 10010000 
00011001 11011110 
00011010 01010101 
00011011 10000000 
00011100 10100000 
00011101 10000011 
00011110 01001011 
00011111 00101010 
00100000 01101100 
00100001 11101101 
00100010 00111001 
00100011 01010001 
00100100 01100000 
00100101 01010110 
00100110 00101100 
00100111 10001010 
00101000 01110000 
00101001 11010000 
00101010 00011111 
00101011 01001010 

00101101 10001011 
00101100 00100110 

00101110 00110011 
00101111 01101110 
00110000 01001000 
00110001 10001001 
00110010 01101111 
00110011 00101110 

01100111 01001101 
01101000 01010010 
01101001 10001101 
01101010 11101111 
01101011 10110011 

01101101 11101100 
01101!00 00100000 

01101110 00101111 
01101111 00110010 

01110001 11010001 
01110000 00101000 

01110010 00010001 
01110011 11011001 
01110100 11101001 
01110101 11111011 
01110110 11011010 
01110111 01111001 
01111000 11011011 
01111001 01110111 
01111010 00000110 
01111011 10111011 

01111101 11001101 
01111100 10000100 

01111110 11111110 
01111111 11111100 
10000000 00011011 
10000001 01010100 
10000010 10100001 
10000011 00011101 
10000100 01111100 
10000101 11001100 
10000110 11100100 

10001000 01001001 
10000111 10110000 

10001001 00110001 
10001010 00100111 
10001011 00101101 
10001100 01010011 

10001110 00000010 
10001101 01101001 

10001111 11110101 
10010000 00011000 
10010001 11011111 
10010010 01000100 
10010011 01001111 
10010100 10011011 
10010101 10111100 
10010110 00001111 
10010111 01011100 
10011000 00001011 
10011001 11011100 

10011010 10111101 
10011011 10010100 
10011100 10101100 
10011101 00001001 
10011110 11000111 

10100000 00011100 
10011111 10100010 

10100001 10000010 
10100010 10011111 
10100011 11000110 
10100100 00110100 

10100110 01000110 
10100101 11000010 

10100111 00000101 
10101000 11001110 
10101001 00111011 
10101oio ooool iol  
10101011 00111100 
10101100 10011100 
10101101 00001000 
10101110 10111110 
10101111 10110111 
10110000 10000111 
10110001 11100101 
10110010 11101110 
10110011 01101011 
10110100 11101011 

10110110 10111111 
10110101 11110010 

10110111 10101111 
10111000 11000101 
10111001 01100100 
10111010 00000111 
10111011 01111011 
10111100 10010101 
10111101 10011010 
10111110 10101110 
10111111 10110110 
11000000 00010010 
11000001 01011001 
11000010 10100101 
11000011 00110101 
11000100 01100101 

11000110 10100011 
11000101 10111000 

11000111 10011110 
11001000 11010010 

11001010 01100010 
11001001 11110111 

11001011 01011010 
11001100 10000101 

11001110 10101000 
11001101 01111101 

11001111 00111010 
11010000 00101001 
11010001 01110001 
11010010 11001000 

I 11010011  11110110 
11010100 11111001 
11010101 01000011 
I I O I O I I O  llOln111 
11010111 11010110 

11011001 01110011 
11011000 00010000 

11011011 01111000 
11011010 01110110 

11011100 10011001 
11011101 00001010 
11011110 00011001 
11011111 10010001 
11100000 00010100 
111000oi o o i l l l l t  
11100010 11100110 
11100011 11110000 
11100100 10000110 
11100101 10110001 
~ ~ 1 0 0 1 i o  1iloOolo 
11100111 11110001 
11101000 11111010 
11101001 01110100 
11101010 11110011 
11101011 10110100 
11101100 01101101 
11101101 00100001 
11101110 10110010 
11101111 01101010 
11110000 11100011 
11110001 11100111 
11110010 10110101 
11110011 11101010 
11110100 00000011 
11110101 10001111 
11110110 11010011 
11110111 11001001 
11111000 01000010 
11111001 11010100 
11111010 11101000 
11111011 01110101 
11111100 01111111 
11111101 11111111 
11111110 01111110 
11111111 11111101 

8 Inverse of field elements in GF(ZX). S i \  an elcment ofGF(ZX). S as a polynomial has  the high-order term on the lelt and is defined by a residue 
class. modulo ['(x), where p(.x-) =.? + t 4  +.t-' +.t2 + I .  
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