
On-the-fly by Arvind M. Patel

decoder for
multiple byte
errors

Multiple-error-forrecting Reed-Solomon or BCH
codes in GF(2) can be used for correction of
multiple burst errors in binary data. However, the
relatively long time required for decoding
multiple errors has been among the main
objections to applying these schemes to high-
performance computer products. In this paper, a
decoding procedure is developed for on-the-fly
correction of multiple symbol (byte) errors in
Reed-Solomon or BCH codes. A new decoder
architecture expands the concept of Chien
search of error locations into computation of
error values as well, and creates a synchronous
procedure for complete on-the-fly error
correction of multiple byte errors. Forney's
expression for error values is further simplified,
which results in substantial economies in
hardware and decoding time. All division
operations are eliminated from the computation
of the error-locator equation, and only one
division operation is required in the computation
of error values. The special cases of fewer
errors are processed automatically, using the
corresponding smaller set of syndromes through
a single set of hardware. The resultant decoder
implementation is well suited for LSI chip design
with pipelined data flow. The implementation is
illustrated with an example.

Topyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J RES. DEVELOP. VOL. 30 NO. 3 M A Y 1986

1. Introduction
Many tape and disk storage products in modern computers
make use of error-correction coding to obtain a cost-effective
design for high reliability and data integrity. In most of these
applications, decoding for the error-correction code is a
direct add-on penalty to the access time specification for a
particular data-storage product. For this reason, an on-the-fly
decoder with pipelined data flow is highly desirable.

Future storage products will be required to provide
improved reliability and availability in spite of their greater
packing densities and delivery rates. A relatively greater
number of soft errors, including multiple burst errors, will
need on-the-fly correction. Reed-Solomon [11 or BCH [2, 31
codes in Galois field GF(2h) can be used [4] for correction of
burst errors by interleaving codewords. In these codes, each
symbol is represented by a binary byte, and an error is a byte
error. These codes are very efficient in terms of redundancy
for correction of multiple errors; however, the relatively long
time required for decoding multiple errors has been among
the main objections to applying these schemes to high-
performance computer products.

Since the appearance of the original works of Reed and
Solomon [11, Bose and Chaudhuri [2], and Hocquenghem
[3], the decoding problem has been studied by many.
Peterson [5] and Gorenstein and Zierler [6] provided the
basic key to the solution of the decoding problem through
the concept of the error-locator polynomial. The coefficients
of the error-locator polynomial are computed by solving a
set of linear equations. Berlekamp [7] and Massey [8]
provided an iterative method for computing the coefficients
of the error-locator polynomial.

The roots of the error-locator polynomial represent the
locations of the symbol in error. Chien [9] suggested a
simple mechanized method for searching these roots, using a

ARVlND M. PATEL

cyclic trial-and-error procedure. Forney [I O] provided
further simplifications in computations of the error values in
the case of codes with nonbinary symbols. The iterative
method [I I] of Berlekamp and Massey provided yet another
way of computing the error values. There are also direct
decoding methods [12, 131 which avoid computing the
coefficients of the error-locator polynomial. These methods,
however, require more computations.

In this paper, we present decoder equations and
architecture in which the location and value of each error
are computed in a cyclic order without explicit information
regarding the locations of other errors which are yet to be
determined. This method expands the "Chien search"
function (which normally finds only the error locations in a
cyclic manner) into a complete mechanization of the error-
correcting procedure. As a result, we can begin delivery of
the decoded data symbols, one at a time, in synchrony with
each cycle of the Chien search. Thus, access time is not
impacted by the time required for the computation of the
locations and values of all errors.

In this method, the hardware is highly simplified. In
particular, the result of Chien search need not be stored, and
one set of hardware computes the locations and values of all
errors and corrects them at the appropriate cycle during the
Chien search.

This paper also presents other specific improvements in
the design and implementation of the on-the-fly decoder, as
listed below:

a. All division operations are eliminated from the
computations of the error-locator equation.

b. Lemmas 1, 2, and 3 provide a convenient closed-form
expression for error values. This new expression requires
a smaller total number of operations and only one
division operation in on-the-fly computation of the error
values.

c. The special cases of fewer errors are processed through a
single set of hardware as a routine procedure.

d. The decoding equations, as well as the decoder design,
possess a nested form of architecture which allows
processing of fewer syndromes for fewer errors. Thus, the
same hardware (LSI chip or chips) can be used in various
applications with varying reductions in redundancy.

These improvements, with the new on-the-fly error-
correction architecture, make the decoder implementation
highly structured and well suited for LSI chip design with
pipelined data flow. The decoder design is illustrated with
details of this implementation for the case of three byte
errors.

2. Error syndromes
In a general Reed-Solomon or BCH code, the codeword
consists of n symbols in the Galois field GF(q) which include 260

P

r check symbols corresponding to the roots aa, aa+', a'+',
, a of the generator polynomial, where a is an . . . u+,- I

element of GF(q). For convenience, the integer a is taken to
be zero [141. The r coding relations, then, can be written as
n- I

a " ~ , = O f o r j = 0, I , 2, . . ., (r - I) ,
,=o

where Bo, B , , B,, . . . , Bn-l are the n symbols of the
codeword. The corresponding syndromes S, can be
computed from the received codeword as

S, = d B , f o r j = O, I , 2, . . ., (r - I) , (1)

where B, represents the received symbol corresponding to B, .
Let u denote the actual number of symbols in error in a

given codeword. The error values are E, = (B, - B,), where i
represents an error-location value from a set of different
error locations given by (I] = { i, , I,, . . . , i,]. The
relationships between the syndromes and the errors are then
given by

S, = a"E, f o r j = 0, 1, 2, ..., (r - 1). (2)

Any nonzero value of a syndrome indicates the presence

n- I

t-0

=Ill

of errors. The decoder processes these syndromes to
determine the locations and values of the errors. Let t denote
the maximum number of errors that can be decoded without
ambiguity. A set of r = 2t consecutive syndromes is sufficient
to determine the locations o f t errors. If the locations are
already known, then a set of only t consecutive syndromes is
sufficient to determine the values o f t erasures (errors with
known locations).

3. Equation for error locations
Consider the polynomial with roots at a', where i E I f) . This
is called the error-locator polynomial and is defined as

I n (1 - a"x) = umxm = umxm. (3)
!€Ill m=O m=O

In the case of erasures, the coefficient a" in each factor of
the locator polynomial is known. Thus, the coefficients urn

can easily be computed. In the case of errors, the coefficients
urn can be determined from the syndromes. For a given
received word, the decoder will proceed to determine urn as if
there were t roots in the locator polynomial. If the actual
number of errors u is less than t, this will result in um being
zero for all rn > U.

Substituting x = a' in Equation (3), we get
I

urnam' = O for i E { I) . (4)
m=O

By using Equations (2) and (4), it is easy to verify that the
syndromes S, and the coefficients um of the error-locator
polynomial satisfy the following set of relationships:

iRVlND M. PATEL IBM J . RES DEVELOP, VOL 30 NO 3 M A Y 1986

I

U , J , ~ + ~ = 0 for k = 0, I , . . ., (t - I) . (5)
,=(I

The set of equations (5) can be rewritten in matrix notation
as

Let M denote the t-by-(t + 1) syndrome matrix on the left
side of Equation (6). Let MI denote the square matrix
obtained by eliminating the last column in matrix M. If MI
is nonsingular, then the above set of equations can be solved,
using Cramer's rule, to obtain

where All is the nonzero determinant of matrix M I , and A,,
denotes the determinant of the matrix obtained by replacing
the mth column in the matrix MI with the negative of the
last column of the matrix M for each m = 0, I , . . . , (t - I) .

If matrix M , is singular, that is, A,, is zero, then the set of
equations (5) is a dependent set. It can be shown that in the
case of fewer than t errors, A,, = Arm = 0 for all m.
Conversely, simultaneous occurrence of AI, = 0 and Alm # 0
indicates more than t errors. Thus, when A,, is zero we
assume fewer than t errors (and check for AI, = 0 for all m).
In that case, U, is zero. We can delete uI and the last row and
the last column of the syndrome matrix in Equation (6). The
resulting matrix equation corresponds to that for t - I
errors. This process is repeated, if necessary, so that the final
matrix equation corresponds to that for u errors and Mu is
nonsingular. Then we need the set of determinants A",,,
where m = 0, I , . . ., U.

It can easily be seen that A", for u = f - 1 is a cofactor of
A,, corresponding to column m - 1 and row t in matrix M I .
We can express A,, in terms of these cofactors:

I- I

To accommodate the special cases of all fewer errors, we
replace Equation (7) with a more convenient general form:

- - _ 6, A,

@,, A"
- for m = 0, I , 2, . . ., t , (9)

where u is determined from the fact that Amm = 0 for all
m > u and A,,,, # 0 for m = u . Then Am is defined with the
new notation as

Since u0 = I , we can determine U, for all values of m,
using Equation (9). However, we will see that the coefficients
U, are not needed in the entire decoding process. To this
end, we obtain a modified error-locator equation from
Equations (4) and (9) as given by

A,,N = 0 for i E { I } . In,
m=n

The error-location values i E { I] are the set of u unique
values of i which satisfy Equation (1 1).

4. Expression for error values
The error-locator polynomial, as defined by Equation (4),
has u roots corresponding to u error-location values. Now
consider a polynomial which has all roots of the error-
locator polynomial except one corresponding to the location
value i = J. This polynomial is defined as

Y- I I- I n (1 - a"x) = c uJ,mXm = c U,,mXm
,€Ill m=O m=O
'fi

When the actual number of error locations u is less than t ,
the coefficients u , , ~ are zero for m = u, . . . , (t - I) . This is
done to allow processing of any value of u through the same
set of hardware.

Substituting x = 01' in Equation (12), we get
I- I

u l , m ~ ' n ' = O for i E { I } , i z J. (13)
m=O

Now, taking a hint from Equation (5) , we examine a similar
expression involving the syndromes and the coefficients u , , ~

of the new polynomial. Using Equation (2) , we substitute for
the syndrome S, and get

,n=o

Thus, the values A", for u = t - 1 need not require separate
computations. They are available as byproducts of the
computation for A,,. In fact, A",,, for subsequent smaller
values of u are all available as byproducts of the computation
for A,, through the hierarchial relationships of lower-order
cofactors.

Thus, in the case of fewer errors, the decoder finds A,, = 0
and automatically backtracks through prior computations to
the correct value of U, and uses the previously computed
cofactors An,n. This is illustrated later through hardware
implementation of the case t = 3.

I- I I- I

Interchanging the order of summing parameters m and i in
Equation (14). we get
I- I I- I

c .,.,,s, = c E, c o,.,nO1 '

m,

,n-(1 E l l l m=O

Now, using Equations (I 3) and (I 5) , we obtain

(16)
26 1

I R M J RES DFVELOP VOL. 30 NO 3 M A Y IYXh ARVIND M. PATEL

Thus, we have an expression for the error values
I- I

u,.mSm

c ,JJ,,m"mJ
m=O

This expression for error values is well known [10, 151.
Notice that with a known error-locator polynomial and the
error-location value j , explicit values of other error locations
are not required in computing the coefficients u ~ , ~ . Thus, we
can eliminate uJ,m and reduce (1 7) further to obtain a more
convenient form for on-the-fly processing. To this end, we
prove Lemmas 1, 2, and 3 which follow.

In Lemma I , we obtain a relation which expresses the
coefficients uJ,m in terms of the known coefficients uk of the
error-locator polynomial.

Lemma 1
m

ukakJ = uJ,ma for o 5 m < t. mJ

k=O

Proof From the definition of polynomials in Equations (3)
and (12), we have

I I- I c umxm = (I - a'x) fJJ,mxm.
m=O m=O

Comparing the coefficients of each term in the polynomials
on the two sides of Equation (19), we obtain

= { uJ,m - uJ,m-l a-J for o < m < t ,

'j.m for m = 0. (20)

Using Equation (20), we can substitute for uk and obtain
m m

c upk' = uJ.O + [ciJ~,akJ - uJ,k-l a(k- l)J] . (21)
k=O k= I

On eliminating the canceling terms from Equation (21), we
get
m

ukakJ = uJ,ma for o I m < t.

This completes the proof of Lemma 1.

Equation (1 7), using the result of Lemma 1.

mJ (22)
k=O

Next, we rewrite the denominator of the expression in

Lemma 2
I- I 1

uJ,,amJ = 1 -kukakJ.
m=O k=O

Proof Using Lemma I , we first obtain
I- I 1-1 m

uJ,mamJ = u,akJ.
m=O m=O k=O 262

P

Collecting all terms with the same values of k in Equation
(24), we then get
I- I I- I

1 uJ,mamJ = (t - k)ukakJ.

Using Equation (4), we can rewrite Equation (25) as

m=O k=O

I - I I- I

uJ~mamJ = -tulalJ + -kukakJ, (26)

which is the same as Equation (23). This completes the proof
of Lemma 2.

We again use the result of Lemma 1 and obtain a more
convenient expression for the numerator in Equation (17) in
the following lemma.

m=O k=O

Lemma 3
I- I I- I

c UJ.,S, = c [,a 1

-mJ

m=O m=O

where
I - I -m

tm = c ,J,S,+,.
,=O

Proof Using Lemma 1, we can express u ~ , ~ in terms of uk,

obtaining
I- I I - I m c UJ,,S, = e Sma-" akak'.
m=O m=O k=O

Substituting (m - h) for k on the right-hand side of
Equation (29), we get
I - I 1-1 m

u~.msm = sm um-ha . - hJ
m-0 m=O h=O

Now, interchanging the order of summing parameters m and
h in Equation (30) gives
I- I I- I I- I

= a-hJ (Tm-hsm.
m=O h=O m=h

Substituting (k + h) for rn in Equation (31), we have
I- I I- I 1-I-h

u~,msm = a-hJ o k S k + h .
m=O h=O k=O

This completes the proof of Lemma 3.
The computation of tm for m = 0 to (t - 1) in Equation

(28) of Lemma 3 requires t (t + 1)/2 multiplications of the
type urSm+, . The number of multiplications can be reduced
in case of tm for m < (t - 1)/2 by using Equation (3 , which
yields the following alternate expression:

tm = c -u,sm+,. (33)
,=I-m

Equation (28) requires the syndromes So, SI, . . . , and
Equation (33) requires the syndromes SI, SI+, , . . . , S,,-, .
When we use Equation (28) for m 2 (t - 1)/2 and Equation

iRVlND M. PATEL IBM J . RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

(33) for rn < (t - 1)/2, the number of multiplications
required is the minimum and is equal to the integer closest
to (t + 1?/4.

Note that Equation (28) does not satisfy the requirement
that the same hardware process the case of fewer errors with
fewer syndromes, since the high-order terms do not vanish
automatically. Furthermore, Equation (33) cannot be used if
the decoder is designed for t erasures where the syndromes
SI, SI+, , . . . , S,,-, may not be available. The following
corollary of Lemma 3 provides an alternate equivalent
expression which removes the difficulty mentioned above.

Corollary
I- I I- I

c UJ,,S, = pm(Yrn',
m=O m=O

where 0 5 p < t and the coefficients p, are given by
m

ukSk-m+F for m I p,
k=O

P, =

(34)

Proof Using the result from Equation (4), we can rewrite
the terms with m > p in the right-hand side of Equation (29)
as follows:
I- I L m

UJ,,S, = sm(Y-mJ c upk'
m=O m=O k=O

I - I I

+ Sma""' 1 -ukakJ. (36)
m=c+ I k=m+ I

The proof of the corollary, then, follows steps similar to
those in Equations (30)-(32) of Lemma 3. First, substitute
(m - h) for k, and rewrite the right-hand side of (36) with m
and h as summing parameters. Then, interchange the order
of summing parameters m and h. Next, substitute (k + h) for
rn, and rewrite the right-hand side with h and k as summing
parameters. Finally, substitute (p - r n) for h. This completes
the proof of the corollary.

The important feature of the expression in the corollary is
that the high-order terms vanish automatically in the case of
fewer errors, and the resultant computation involves a
reduced set of syndromes So, SI, . . . , where v is the
actual number of errors or erasures, and p < v I t.

The number of multiplications in computing 8, of
Equation (35) depends on the choice of p. The minimum
number of multiplications is, again, the integer closest to
(t + 1)2/4 when p = E, where E is the largest integer under
(t - 1)/2.

smaller set of available syndromes So, SI, . . . , SI.-] and up
to t' errors or erasures, provided that p < t' I t. From this
point of view, a lower value of p is desirable. The choice of

The same hardware can also be used in applications with a

p = 0 offers the maximum flexibility in terms of the
applicability of the same hardware for processing fewer
errors with fewer syndromes. The number of multiplications
required in computing 0, in Equation (35) with p = 0 is
(t ' - t + 2)/2, which is not the lowest value possible but is
still lower than the maximum value required in Lemma 3.

In view of the above observations, we use the expression
in the corollary of Lemma 3 for decoder implementation.
For large values of t , it is advisable to use p = for greatest
economy in hardware. In the case of small values of t , p = 0
provides greater flexibility in adapting other smaller values of
t later without modifying the already fabricated hardware.

Now we can rewrite Equation (I7), using the results of
Lemma 2 and the corollary of Lemma 3. As a result, any
error value E, can be expressed as

' m

c ukSk-m+p for m I p,
k=O

P m = ' I

C -ukSk-m+p for m > P.
, k=m+l

In view of Equation (9), the coefficients um can be
eliminated to obtain error values in terms of A,:

I- I

c m,

E, = a""
m=0

l

-mAmam'
m=0

where

(37)

(39)

In the case of the binary base field, the denominator of
Equation (39) simplifies further since the terms with even
values of m (m = 0 mod 2) vanish. The resultant expression
for E, for the binary base field is

263

ARVIND M. PATEL IBM J . RES. DEVELOP VOL. 30 NO. 3 MAY 1986

Incoming word +Logic delay- Outgoing word
(n cycles) (small) (n cycles)

73 EX-ORs
64 ANDs

A33

A32

'30

for m 5 p,
k=O

Note that the computation for the denominator in Equation
(41) is already available as the sum of all odd (or even) terms
in the computations of Equation (1 1). For each value of i,
the numerator can be computed and multiplied by the
inverse of the denominator in synchrony with the search for
error locations. The resultant E, is used for correcting the
outgoing ith symbol B , whenever the error-locator equation
(1 1) is satisfied.

5. Decoder implementation
Figure 1 is a block diagram of the on-the-fly decoder. The
decoding process is continuous in an uninterrupted stream
of data arriving in the form of a chain of n-symbol
codewords. The decoder computes syndromes for the
incoming codeword as it decodes and corrects errors in the
(previously received) outgoing codeword.

Each clock cycle corresponds to an input of one data
symbol of the incoming codeword concurrent with an
output of one corrected data symbol of the outgoing
codeword. A buffer holds at least n symbols of the
uncorrected data between the incoming and outgoing
symbols.

We use the three-error-correcting Reed-Solomon code in
GF(2') as an example of special interest for application in
computer products. Six check symbols correspond to the six
roots (YO, CY', a2, cy3, CY,, a5 of the generator polynomial. The
corresponding syndromes are denoted by So, SI , S,, S3 , S,,
and S,, respectively.

the conventional manner in accordance with Equation (1).
The implementation for this step is well known, using EX-
OR circuits and shift registers. Here, we present the
hardware implementation for the remaining steps of the
decoding procedure, using the equations developed in the
previous sections.

Computation of coeficients
For the three-error case, the matrix equation (6) for the
coefficients um of the error-locator polynomial can be written
as

These syndromes are computed from the received word in

(43)

The corresponding determinants A33, A32, A3, , A30 of
Equation (7) are given by the following expressions, where @
denotes the modulo-2 vector sum of &bit bytes:

ARVIND M. PATEL IBM J . RES. DEVELOP. VOL. 30 NO, 3 MAY 1986

These four expressions can be implemented through
combinational logic circuits as shown in Figure 2. These
circuits require 24 product operations and 14 sum
operations in GF(28). A typical product operation in GF(2')
requires, at the most, 73 EX-OR gates and 64 AND gates, as
shown in Appendix A. A sum operation in GF(28) is a
modulo-2 vector sum which requires 8 EX-OR gates. The
hardware of Figure 2 can be further reduced, if desired, by
time-sharing some of the repetitive functions.

The determinants AI,, A , , , and for the two-error case
are cofactors in the expression (44) for A,,, as was expressed
in Equation (8) for the general case oft errors. These
cofactors are

Azo = S,S, @ S,Sz. (50)

In Figure 2, the computations for A,,, A * , , and Azo are
shown as the interim by-products within the computations
for A3,. Similarly, A , , and A,,, which are readily available
syndromes, are cofactors in the expression (48) for Az2:

4 , = So, (51)

A,, = SI. (52)

Figure 3 shows the hardware implementation of Equation
(I O) , where the decoder identifies the correct number (u) of
errors and selects appropriate values for A,,,. When A,, is
nonzero, the parameters A,, A, , A, , and A, take the values
A,,, A.32, A,,, and A,,, respectively. When A,, is zero, then
A,, A , , and A, take the values Az2, A?, , and A,,,,
respectively, which corresponds to the syndrome equations
for two symbol errors. Similarly, if Az2 is also zero, then A,
and A, take the values A , , and A,,, respectively, which
corresponds to the syndrome equations for one symbol
error. Thus, Figure 3 produces the appropriate values of the
coefficients A,, A,, A, , and A, for the error-locator equation
(1 I) , rewritten for the case o f t = 3 as

IBM J . RES. DEVELOP. VOL. 30 NO. 3 MAY 1936

8 ANDs

Figure 4 provides a check for consistency of the
coefficients in the case of fewer than three errors. In
particular, when = 0, we must have A,, = A,, = = 0.
Also, when = A,, = 0 we must have A,, = A,, = 0, and
when A,, = Az2 = A, , = 0 we must have A,,, = 0. Violation
of any of these conditions implies the presence of more than
three errors, resulting in an uncorrectable-error (UE) signal
at the output of the circuit in Figure 4. With some additional
hardware (not shown in Figure 4), we can obtain u as a two-
digit binary number alao. This number is the largest value of
rn for which A,,,,,, # 0 (I 5 rn 5 3), and is given by the
following logic functions:

ARVIND M. PATEL

1 Coefficients for the error-value cxpression

8-bit shift register

A3 Count = o NOT

@,T Clock i

. . I .__.I.-. "" "_
- when a is nonzero (see [141).

266

P

This value of u will be used by the decoder in Figures 6 and
7. shown later.

Next, we show the hardware implementation for obtaining
the values of coefficients am in the numerator of the error-
value equation (41). For the case of three errors, Equation
(42) with p = 0 can be rewritten for a0, aI, and @, as
follows.

@, = A,S, @ A,S,, (55)

Figure 5 shows the implementation of Equations (54),
(55), and (56), which requires four product operations and
one sum operation in GF(2'). The error-value equation (41),
for the case of three errors, can be rewritten as

@,CY2' @ @,CY' @ a.
E, =

A,a3' 69 A l a '
(57)

On-the-fly error correction
Figure 6 shows the mechanized shift-register circuits for
determining error locations and error values in accordance
with Equations (53) and (57), respectively. The computed
values of the coefficients A,, A,, A , , A, and a,, a, , 9, are
entered into appropriate shift registers at clock zero. Each
clock cycle generates a shifting operation of these registers. A
shifting operation multiplies the contents of each register by
a specific constant, namely CY,, a2, and LY in the case of the
registers for A,, A,, and A , , respectively; and CY' and (Y in the
case of the registers for 9, and a,, respectively.
Multiplication by a constant requires a small number of EX-
OR gates, as explained in Appendix A.

At the ith clock cycle (0 5 i < n), the upper set of
summing circuits in Figure 6 at the output of the shift
registers are presented with all the terms of Equation (53). If
the sum is zero, then Equation (53) is satisfied and we have
captured the error location. Similarly, at the ith clock cycle,
the lower set of summing circuits at the output of the shift
registers are presented with all the terms of the numerator in
Equation (57). The denominator for (57) is already available
from the upper set of summing circuits.

Subsequent networks for an inverse operation and then a
product operation compute the error value E, for each i in
accordance with Equation (57). The algebraic inverse in
GF(2') can be obtained through combinational logic, which
maps each 8-digit binary sequence into its inverse-a specific
%digit binary sequence, as shown in Appendix B. This
requires, at the most, 304 AND gates and 494 OR gates.

When the error location is captured, the outgoing word
symbol B , is modified by E, through the output sum
network. For all other values of i, the computed value of E,
is ignored. When all bytes Bo through Bn-, of the codeword
are delivered (at the final clock cycle n - I) , if u error
locations were not captured, then the errors exceed the
correction capability of the decoder. This condition is

rRVlND M. PATEL IBM 1. RES I 3EVELOP. VOL. 30 NO 3 MAY 1986

detected by means of a counter which counts down from a
preset value V . If the count does not reach zero at the final
clock cycle, then the decoder has not corrected the errors
properly. The decoder indicates this condition by giving an
uncorrectable-error (UE) signal.

Delivery order of corrected bytes
The corrected bytes in the decoder of Figure 6 are delivered
in the order B,,, B , , B,, . . . , B,-I . This is the reverse order
compared to that in the encoding operation, since the check
bytes correspond to the low-order positions. The reversal can
easily be removed by introducing a reversal relationship
between clock-cycle count j and byte-location number i. We
substitute n - J for i in the decoding equations (53) and (57)
and rewrite them as

(A,a’“)a”’ CB (A,c~*“)a-~’ CB (A,an)a-’ CB A,, = 0, (5 8)

In these equations, j represents the clock-cycle count, where
j = 1 to n, successively, correspond to the byte-position
values i = (n - 1) to 0. This provides delivery of bytes in the
order Bn-l, . . . , B, , B,, , which is the same order as that in
the encoding process.

To accomplish the modifications mentioned above, the
following changes are made in the decoder hardware of
Figure 6: (1) The shift-register multipliers a3, a*, and a are
replaced by a-2, and CY-’, respectively; (2) The
coefficients A3, A,, and A, are premultiplied by a3n, a’“, and
an, respectively, and the coefficients a2 and a, are
premultiplied by and a“, respectively.

In the case of shortened code, the premultiplication
circuits depend on the value of n, and each circuit requires a
small number of EX-OR gates. In the case of full-length
code, amn is unity for all values of m; hence these
premultiplication circuits are not needed. The decoder, with
the two modifications discussed above, appears in Figure 7.

6. Conclusions
A decoding procedure is developed for on-the-fly correction
of multisymbol errors in Reed-Solomon or BCH codes in
nonbinary or extended binary fields. In particular, the
decoding equations are formulated in a manner which
expands the concept of Chien search of error locations into a
search for error values as well, and creates a synchronous
procedure for complete on-the-fly correction of multisymbol
errors.

Lemmas 1, 2, and 3 and the corollary are new results that
provide a more convenient form of the error-value
expression for on-the-fly decoding. This expression is key to
substantial economies in hardware and decoding time. All
division operations are eliminated from the computation of
the error-locator equation, and only one division operation
is required in the computation of error values.

IBM J . RES. DEVELOP VOL. 30 NO. 3 MAY 1986

-20 EX-ORs
8-bit shift register

Clock i / 8 EX-ORs NOT ,Count=O

f Product function.

Further, the decoding equations are organized such that
the computations for the special cases of fewer errors than
the maximum are realized as byproducts of the main
computations. Also, the same decoding hardware can be
used for search and correction of errors in all cases of fewer
errors, including applications where correspondingly fewer
syndromes are available. The details of the decoding
hardware are given for the case of the three-byte-correcting
Reed-Solomon code.

Appendix A-Product function in GF(2’)
Figure 8 represents the estimated hardware for implementing
the product function in GF(2’). A , B, and Care elements of
GF(28) and are represented by 8-bit binary vectors, where
C = A x B :

ARVlNV M. PATEL

A -1 304 AND gates
B=A“

494 OR gates

A = [a,, a6’ a,, a4, a,, a,, a , , aol,
B = [b,, b,, b,, b,, b3, b,, b, , bo],

[‘7> ‘ 6 , ‘ 5 , ‘4, ‘3, ‘2, ‘ I > ‘01.

The product A X B is obtained through a two-step process.
First, we compute the coefficientsf; of the product
polynomial F, where F = A X B modulo 2. Computation of
the coefficientsf;(i = 0, . . ., 14) requires 64 AND gates and
49 EX-OR gates:

f , = Qobo,
f ; = sob, @a,bo ,
f, = aob,@a,b, @a,bo,
f 3 = aob, @ a,b2 @ a,b, @ a3bo,

f , = aob7 @ a,b, @ a,b, @ . . . @ a,b, @ a7bo,
fs = a,b7@a2b,@a3b,@ . . . @ a 7 b , ,

f ; 3 = a6b7@a,b,,
A, = 0 7 .

Next, we reduce the polynomial F modulo p(x), where
p (x) is a primitive binary polynomial of degree 8. We use
p(x) = x’ + x4 + x3 + x2 + 1. The reduction off; modulo
p (x) requires, at the most, 24 EX-OR gates:

The logic for the entire product function requires one level
of AND circuits and five levels of EX-OR circuits, which in
turn require 64 AND gates and a maximum of 73 EX-OR
gates. Note that when one of the multiplicands, say A , is a
known constant, then the expression for each component C,

ARVIND M. PATEL

of C will reduce to EX-OR of selected components of the
second multiplicand, namely B. The resultant product
function requires no AND gates and only a small number of
EX-OR gates (maximum 25), depending on the constant A .

Appendix 6-Inverse function in GF(2’)
Figure 9 represents the estimated hardware for the inverse
function in GF(2’). A and B are elements of GF(2’) and are
represented by 8-bit binary vectors, where B = A-I.

Figure 10 lists 255 nonzero elements of GF(28), each with
the corresponding inverse element. These elements were
generated by the following primitive polynomial:

p (x) = x X + x 4 + x 3 + x 2 + 1.

The elements are represented by 8-digit binary vectors
which, in polynomial notation, have the coefficient for the
high-order term on the left. The inverse function of this table
can be implemented through combinational logic, using the
conventional 8-bit encode-decode function. This requires
three levels of AND circuits and seven levels of OR circuits,
which in turn require a maximum of 304 AND gates and
494 OR gates.

References and note
1. I . S. Reed and G. Solomon, “Polynomial Codes Over Certain

Finite Fields,” J. SOC. Indust. Appl. Math. 8, 300-304 (1960).
2. R. C. Bose and D. K. Ray-Chaudhuri, “On a Class of Error-

Correcting Binary Group Codes,” Info. Control 3, 68-79 (1960).
3. A. Hocquenghem, “Codes Correcteurs d‘Erreurs,” Chlffres

(Paris) 2, 147-156 (1959).
4. A. M. Patel, “Error-Recovery Scheme for the IBM 3850 Mass

Storage System,” IBM J. Res. Develop. 24, 32-42 (1980).
5. W. W. Peterson, “Encoding and Error-Correction Procedures for

the Bose-Chaudhuri Codes,” IEEE Trans. Info. Theory ITB,
459-470 (1960).

6. D. C. Gorenstein and N. Zierler, “A Class of Error-Correcting
Codes in pm Symbols,” J. SOC. Indust. Appl. Math. 9,207-2 14
(1961).

Hocquenghem Codes,” IEEE Trans. Info. Theory IT-11, 577-
579 (1965).

8. J. L. Massey, “Step-by-step Decoding of the Bose-Chaudhuri-
Hocquenghem Codes,” IEEE Trans. Info. Theory IT-11, 580-
585 (1965).

Chaudhuri-Hocquenghem Codes,’’ IEEE Trans. Info. Theory

IO. G. D. Forney, Jr., “On Decoding BCH Codes,” IEEE Trans.

I 1. E. R. Berlekamp, Algebraic Coding Theory, Maraw-Hill Book

12. Richard E. Blahut, “A Universal Reed-Solomon Decoder,” IEM

13. T. Horiguchi and Y. Sato, “A Decoding Method for Reed-

7. E. R. Berlekamp, “On Decoding Binary Bose-Chaudhuri-

9. R. T. Chien, “Cyclic Decoding Procedure for the Bose-

IT-10, 357-363 (1964).

Info. Theory IT-11, 549-557 (1965).

Co., Inc., New York, 1968.

J. Res. Develop. 28, 150-1 58 (1984).

(1983).
Solomon Codes Over GF(2”),” Trans. IECE (Jpn.), pp. 97-98

14. A scale-up factor a‘l in all the roots of the generator polynomial
results in a corresponding scale-up factor a“ attached to each
error value E,. [See Equation (2).] The effect of this on the
syndrome decoder is that each term of the numerator in the
expression for error values [such as Equation (57)] will have a
scale-down factor a-“.

15. W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes
(2nd ed.), MIT Press, Cambridge, MA, 1972.

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

S I s"
00110100 10100100
00110101 11000011
00110110 01000000
00110111 01011110
00111000 01010000

00111010 11001111
00111001 00100010

00111011 10101001
00111100 10101011
00111101 00001100
00111110 00010101
00111111 11100001
01000000 00110110
01000001 01011111
01000010 11111000
01000011 11010101
01000100 10010010
01000101 01001110
01000110 10100110
01000111 00000100
01001000 00110000

01001010 00101011
01001001 10001000

01001011 00011110
01001100 00010110
01001 101 01 1001 11
01001110 01000101
01001111 10010011
01010000 00111000
01010001 00100011
01010010 01101000
01010011 10001100
01010100 10000001
01010101 00011010
01010110 00100101
01010111 01100001
01011000 00010011
01011001 11000001
01011010 11001011
01011011 01100011
01011100 10010111
01011101 00001110
01011110 00110111

01100000 00100100
01011111 01000001

01100001 01010111
01100010 11001010
01100011 01011011
01100100 10111001
01100101 11000100
01100110 00010111

s I S" s I S"

00000001 00000001
00000010 10001110
00000011 11110100
00000100 01000111
00000101 10100111
00000110 01111010
00000111 10111010
00001000 10101101
00001001 10011101
00001010 11011101
00001011 10011000
00001100 00111101
00001101 10101010
00001110 01011101
00001111 10010110

00010001 01110010
00010000 11011000

00010010 11000000
00010011 01011000
00010100 11100000
00010101 00111110
00010110 01001100
00010111 01100110
00011000 10010000
00011001 11011110
00011010 01010101
00011011 10000000
00011100 10100000
00011101 10000011
00011110 01001011
00011111 00101010
00100000 01101100
00100001 11101101
00100010 00111001
00100011 01010001
00100100 01100000
00100101 01010110
00100110 00101100
00100111 10001010
00101000 01110000
00101001 11010000
00101010 00011111
00101011 01001010

00101101 10001011
00101100 00100110

00101110 00110011
00101111 01101110
00110000 01001000
00110001 10001001
00110010 01101111
00110011 00101110

01100111 01001101
01101000 01010010
01101001 10001101
01101010 11101111
01101011 10110011

01101101 11101100
01101!00 00100000

01101110 00101111
01101111 00110010

01110001 11010001
01110000 00101000

01110010 00010001
01110011 11011001
01110100 11101001
01110101 11111011
01110110 11011010
01110111 01111001
01111000 11011011
01111001 01110111
01111010 00000110
01111011 10111011

01111101 11001101
01111100 10000100

01111110 11111110
01111111 11111100
10000000 00011011
10000001 01010100
10000010 10100001
10000011 00011101
10000100 01111100
10000101 11001100
10000110 11100100

10001000 01001001
10000111 10110000

10001001 00110001
10001010 00100111
10001011 00101101
10001100 01010011

10001110 00000010
10001101 01101001

10001111 11110101
10010000 00011000
10010001 11011111
10010010 01000100
10010011 01001111
10010100 10011011
10010101 10111100
10010110 00001111
10010111 01011100
10011000 00001011
10011001 11011100

10011010 10111101
10011011 10010100
10011100 10101100
10011101 00001001
10011110 11000111

10100000 00011100
10011111 10100010

10100001 10000010
10100010 10011111
10100011 11000110
10100100 00110100

10100110 01000110
10100101 11000010

10100111 00000101
10101000 11001110
10101001 00111011
10101oio ooool iol
10101011 00111100
10101100 10011100
10101101 00001000
10101110 10111110
10101111 10110111
10110000 10000111
10110001 11100101
10110010 11101110
10110011 01101011
10110100 11101011

10110110 10111111
10110101 11110010

10110111 10101111
10111000 11000101
10111001 01100100
10111010 00000111
10111011 01111011
10111100 10010101
10111101 10011010
10111110 10101110
10111111 10110110
11000000 00010010
11000001 01011001
11000010 10100101
11000011 00110101
11000100 01100101

11000110 10100011
11000101 10111000

11000111 10011110
11001000 11010010

11001010 01100010
11001001 11110111

11001011 01011010
11001100 10000101

11001110 10101000
11001101 01111101

11001111 00111010
11010000 00101001
11010001 01110001
11010010 11001000

I 11010011 11110110
11010100 11111001
11010101 01000011
I I O I O I I O llOln111
11010111 11010110

11011001 01110011
11011000 00010000

11011011 01111000
11011010 01110110

11011100 10011001
11011101 00001010
11011110 00011001
11011111 10010001
11100000 00010100
111000oi o o i l l l l t
11100010 11100110
11100011 11110000
11100100 10000110
11100101 10110001
~ ~ 1 0 0 1 i o 1iloOolo
11100111 11110001
11101000 11111010
11101001 01110100
11101010 11110011
11101011 10110100
11101100 01101101
11101101 00100001
11101110 10110010
11101111 01101010
11110000 11100011
11110001 11100111
11110010 10110101
11110011 11101010
11110100 00000011
11110101 10001111
11110110 11010011
11110111 11001001
11111000 01000010
11111001 11010100
11111010 11101000
11111011 01110101
11111100 01111111
11111101 11111111
11111110 01111110
11111111 11111101

8 Inverse of field elements in GF(ZX). S i \ an elcment ofGF(ZX). S as a polynomial has the high-order term on the lelt and is defined by a residue
class. modulo ['(x), where p(.x-) =.? + t 4 +.t-' +.t2 + I .

Received May 22, 1985; accepted for publication November
25, 1985

Arvind M. Patel IBM General Products Division. 5600 Code
Road, San Jose, Cul$ornia 95193. Dr. Patel is a senior technical staff
member in the Magnetic Recording Institute, a GPD/Research
organization at San Jose. He is currently involved with the
development of computer storage products using magnetic recording
technology. He received his B.E. from Sardar Vallabh-Bhai
Vidyapeeth, India, in 1959, his MS. from the University of Illinois,
Urbana, in 196 I , and his Ph.D. from the University of Colorado at
Boulder in 1969, all in electrical engineering. Dr. Patel joined ISM
at the Poughkeepsie, New York, laboratory in 1962. Since then he
has worked on various aspects of magnetic recording technology and

product development projects in the Poughkeepsie, Boulder, and San
Jose laboratories. His main theoretical interest has been in exploring
the area of information theory and coding for computer applications.
His work on data encoding and error-correcting codes has won him
four Outstanding Invention Awards from IBM in 1972, 1973, 1983,
and 1985, and an Outstanding Technical Paper Award from the
American Federation of Information Processing Societies in 1970.
Dr. Patel has been elected a Fellow of the Institute of Electrical and
Electronics Engineers, with the citation: "For contributions to data
encoding/decoding and error correction and their application to
magnetic storage devices."

269

ARVlND M PATEL

