On-the-fly
decoder for
multiple byte
errors

by Arvind M. Patel

Multiple-error-correcting Reed-Solomon or BCH
codes in GF (2") can be used for correction of
multiple burst errors in binary data. However, the
relatively long time required for decoding
multiple errors has been among the main
objections to applying these schemes to high-
performance computer products. In this paper, a
decoding procedure is developed for on-the-fly
correction of multiple symbol (byte) errors in
Reed-Solomon or BCH codes. A new decoder
architecture expands the concept of Chien
search of error locations into computation of
error values as well, and creates a synchronous
procedure for complete on-the-fly error
correction of multiple byte errors. Forney’s
expression for error values is further simplified,
which results in substantial economies in
hardware and decoding time. All division
operations are eliminated from the computation
of the error-locator equation, and only one
division operation is required in the computation
of error values. The special cases of fewer
errors are processed automatically, using the
corresponding smaller set of syndromes through
a single set of hardware. The resultant decoder
implementation is well suited for LSI chip design
with pipelined data flow. The implementation is
illustrated with an example.

©Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

1. Introduction

Many tape and disk storage products in modern computers
make use of error-correction coding to obtain a cost-effective
design for high reliability and data integrity. In most of these
applications, decoding for the error-correction code is a
direct add-on penalty to the access time specification for a
particular data-storage product. For this reason, an on-the-fly
decoder with pipelined data flow is highly desirable.

Future storage products will be required to provide
improved reliability and availability in spite of their greater
packing densities and delivery rates. A relatively greater
number of soft errors, including multiple burst errors, will
need on-the-fly correction. Reed-Solomon [1] or BCH [2, 3]
codes in Galois field GFi (2") can be used [4] for correction of
burst errors by interleaving codewords. In these codes, each
symbol is represented by a binary byte, and an error is a byte
error. These codes are very efficient in terms of redundancy
for correction of multiple errors; however, the relatively long
time required for decoding multiple errors has been among
the main objections to applying these schemes to high-
performance computer products.

Since the appearance of the original works of Reed and
Solomon [1], Bose and Chaudhuri [2], and Hocquenghem
[3], the decoding problem has been studied by many.
Peterson [5] and Gorenstein and Zierler [6] provided the
basic key to the solution of the decoding problem through
the concept of the error-locator polynomial. The coefficients
of the error-locator polynomial are computed by solving a
set of linear equations. Berlekamp [7] and Massey [8]
provided an iterative method for computing the coefficients
of the error-locator polynomial.

The roots of the error-locator polynomial represent the
locations of the symbol in error. Chien [9] suggested a

simple mechanized method for searching these roots, using a 259

ARVIND M. PATEL

260

cyclic trial-and-error procedure. Forney [10] provided
further simplifications in computations of the error values in
the case of codes with nonbinary symbols. The iterative
method [11] of Berlekamp and Massey provided yet another
way of computing the error values. There are also direct
decoding methods [12, 13] which avoid computing the
coeflicients of the error-locator polynomial. These methods,
however, require more computations.

In this paper, we present decoder equations and
architecture in which the location and value of each error
are computed in a cyclic order without explicit information
regarding the locations of other errors which are yet to be
determined. This method expands the “Chien search”
function (which normally finds only the error locations in a
cyclic manner) into a complete mechanization of the error-
correcting procedure. As a result, we can begin delivery of
the decoded data symbols, one at a time, in synchrony with
each cycle of the Chien search. Thus, access time is not
impacted by the time required for the computation of the
locations and values of all errors.

In this method, the hardware is highly simplified. In
particular, the result of Chien search need not be stored, and
one set of hardware computes the locations and values of all
errors and corrects them at the appropriate cycle during the
Chien search.

This paper also presents other specific improvements in
the design and implementation of the on-the-fly decoder, as
listed below:

a. All division operations are eliminated from the
computations of the error-locator equation.

b. Lemmas 1, 2, and 3 provide a convenient closed-form
expression for error values. This new expression requires
a smaller total number of operations and only one
division operation in on-the-fly computation of the error
values.

c. The special cases of fewer errors are processed through a
single set of hardware as a routine procedure.

d. The decoding equations, as well as the decoder design,
possess a nested form of architecture which allows
processing of fewer syndromes for fewer errors. Thus, the
same hardware (LSI chip or chips) can be used in various
applications with varying reductions in redundancy.

These improvements, with the new on-the-fly error-
correction architecture, make the decoder implementation
highly structured and well suited for LSI chip design with
pipelined data flow. The decoder design is illustrated with
details of this implementation for the case of three byte
errors.

2. Error syndromes

In a general Reed-Solomon or BCH code, the codeword
consists of # symbols in the Galois field GF(g) which include

ARVIND M. PATEL

a+2

r check symbols corresponding to the roots a”, ™', &™*?,
.-, """ of the generator polynomial, where « is an

element of GF(q). For convenience, the integer a is taken to

be zero [14]. The r coding relations, then, can be written as

n—1

> d'B, =0

i=0

where B,, B, B,, ---, B, _,

codeword. The corresponding syndromes .S; can be

computed from the received codeword as

forj=0,1,2, .-, (r=1),

are the # symbols of the

fOrj= Ow l’ 2v Tt (r_ 1)» (1)

where B,. represents the received symbol corresponding to B,.
Let v denote the actual number of symbols in error in a
given codeword. The error values are E; = (B,. — B,), where [

represents an error-location value from a set of different
error locations given by {1} = {i,, i,, --+, i }. The
relationships between the syndromes and the errors are then

given by
S= % «'E forj=01,2 -, (=1)
S

Any nonzero value of a syndrome indicates the presence
of errors. The decoder processes these syndromes to
determine the locations and values of the errors. Let r denote
the maximum number of errors that can be decoded without
ambiguity. A set of r = 2¢ consecutive syndromes is sufficient
to determine the locations of 7 errors. If the locations are
already known, then a set of only ¢ consecutive syndromes is
sufficient to determine the values of ¢ erasures {errors with
known locations).

3. Equation for error locations
Consider the polynomial with roots at ', where i € {I}. This
is called the error-locator polynomial and is defined as

v {
[[(d-ax)=3% 6 x"= 3 a,x". 3)
ietli =0 m=0
In the case of erasures, the coefficient &' in each factor of
the locator polynomial is known. Thus, the coefficients o,
can easily be computed. In the case of errors, the coefficients
a,, can be determined from the syndromes. For a given
received word, the decoder will proceed to determine o, as if
there were ¢ roots in the locator polynomial. If the actual
number of errors » is less than ¢, this will result in ¢, being
zero for all m> v,

Substituting x = «' in Equation (3), we get

for i € {1}. 4)
By using Equations (2) and (4), it is easy to verify that the

syndromes S, and the coefficients o, of the error-locator
polynomial satisfy the following set of relationships:

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

1

Z UrnSln+k = 0

m=0

fork=0,1,...,(t—1). (5)

The set of equations (5) can be rewritten in matrix notation
as

S S, S, T
S, S, S gy
. Lo = 0. (6)
S/—l S/ o S21—1 Ot
6’

Let M denote the t-by-(¢ + 1) syndrome matrix on the left
side of Equation (6). Let M, denote the square matrix
obtained by eliminating the last column in matrix M. If M,
is nonsingular, then the above set of equations can be solved,
using Cramer’s rule, to obtain

= form=0,1,.-.,(¢—1), (7

where A, is the nonzero determinant of matrix M,, and A,
denotes the determinant of the matrix obtained by replacing
the mth column in the matrix M, with the negative of the
last column of the matrix M foreach m =0, 1, ..., (1 — 1).

If matrix M, is singular, that is, A is zero, then the set of
equations (5) is a dependent set. It can be shown that in the
case of fewer than ¢ errors, A, = A, = 0 for all m.
Conversely, simultaneous occurrence of A, =0 and A, # 0
indicates more than ¢ errors. Thus, when A, is zero we
assume fewer than ¢ errors (and check for A, = 0 for all m).
In that case, ¢, is zero. We can delete ¢, and the last row and
the last column of the syndrome matrix in Equation (6). The
resulting matrix equation corresponds to that for ¢ — |
errors. This process is repeated, if necessary, so that the final
matrix equation corresponds to that for v errors and M, is
nonsingular. Then we need the set of determinants A,
where m=0, 1, ---, ».

It can easily be seen that A, for » = 1 — 1 is a cofactor of
A, corresponding to column m — | and row ¢ in matrix M,.
We can express A, in terms of these cofactors:

—1
A= T S amBum i ®)
m=0
Thus, the values A, for v = ¢ — 1 need not require separate
computations. They are available as byproducts of the
computation for A . In fact, A, for subsequent smaller
values of » are all available as byproducts of the computation
for A, through the hierarchial relationships of lower-order
cofactors.

Thus, in the case of fewer errors, the decoder finds A, = 0
and automatically backtracks through prior computations to
the correct value of », and uses the previously computed
cofactors A, This is illustrated later through hardware
implementation of the case t = 3.

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

To accommodate the special cases of all fewer errors, we
replace Equation (7) with a more convenient general form:

n Am
2= form=0,1,2,..-,¢ ®)
A

where v is determined from the fact that A, = 0 for all
m>vand A, #0form=yp Then A is defined with the
new notation as

5 =1a

for m > v,
for m < ».

(10)

vm

Since ¢, = 1, we can determine o, for all values of m,
using Equation (9). However, we will see that the coefficients
o,, are not needed in the entire decoding process. To this
end, we obtain a modified error-locator equation from
Equations (4) and (9) as given by

{

Y oa,a™=0 fori€{l (an
m=0
The error-location values / € {I} are the set of » unique

values of / which satisfy Equation (11).

4. Expression for error values
The error-locator polynomial, as defined by Equation (4),
has v roots corresponding to » error-location values. Now
consider a polynomial which has all roots of the error-
locator polynomial except one corresponding to the location
value / = j. This polynomial is defined as
v—1 =1
HUu-a'x)= % ¢,x" = X (12)
m=0

el
17

When the actual number of error locations » is less than 7,
the coefficients o, , are zero form=v, ---,(t—1). This is
done to allow processing of any value of » through the same
set of hardware.

Substituting x = «' in Equation (12), we get
-1

2 ”j‘mami - O

m=0

fori e {I}, i #j. (13)
Now, taking a hint from Equation (5), we examine a similar
expression involving the syndromes and the coefficients o,
of the new polynomial. Using Equation (2), we substitute for
the syndrome §,, and get

=1 —1

D a/.mSm = (14)
m=0

Interchanging the order of summing parameters » and / in
Equation (14), we get

—1 —1

E o-jJVISm: z E1 2 U].rnami'

m=0 el m=0

(15)

Now, using Equations (13) and (15), we obtain

-1 —1

Z d/‘mSm = Ej Z() aj.mam,' (16)

m=0 m=

261

ARVIND M. PATEL

262

Thus, we have an expression for the error values

I

¥y o6, S

Sm=m
m=0

E=———— amn

This expression for error values is well known [10, 15].
Notice that with a known error-locator polynomial and the
error-location value j, explicit values of other error locations
are not required in computing the coefficients 7, Thus, we
can eliminate o,,, and reduce (17) further to obtain a more
convenient form for on-the-fly processing. To this end, we
prove Lemmas 1, 2, and 3 which follow.

In Lemma 1, we obtain a relation which expresses the
coefficients ¢,,, in terms of the known coefficients o, of the
error-locator polynomial.

Lemma 1

Y oa’=q,a" forOsm<t (18)
k=0

Proof From the definition of polynomials in Equations (3)
and (12), we have

t =1

Yo x"=(—-a’x) ¥ g,x" (19)
m=0 m=0
Comparing the coefficients of each term in the polynomials
on the two sides of Equation (19), we obtain

=
o = gj,m Gj,m—l o
g

Jm

for0<m<t,
for m = 0. (20)

Using Equation (20), we can substitute for ¢, and obtain

m

m

k ki k=1
Y g = oo+ Y [o, Y — P "1 21)
k=0 k=1

On eliminating the canceling terms from Equation (21), we
get

m

2 ki _ mj
o =0, ,a

k=0

for0=m<t. (22)

This completes the proof of Lemma 1.
Next, we rewrite the denominator of the expression in
Equation (17), using the result of Lemma 1.

Lemma 2

—1) 1 .

> ajvmamj =y —kakakj. (23)
m=0 k=0

Proof Using Lemma 1, we first obtain

=1 =1 m

Y aj‘mosz= D akakj. (24)

m=0 m=0 k=0

ARVIND M. PATEL

Collecting all terms with the same values of k in Equation
(24), we then get

—1 —1

¥ aj‘mamj =Y (- k)akakj. (25)
m=0 k=0

Using Equation (4), we can rewrite Equation (25) as

=1 —1

¥ aj’mamj = —ta,ozlj + ¥ —kakakj, (26)
m=0 k=0

which is the same as Equation (23). This completes the proof
of Lemma 2.

We again use the result of Lemma 1 and obtain a more

convenient expression for the numerator in Equation (17) in
the following lemma.

Lemma 3
-1 —1
Y 0SSy = X £a ", (27
m=0 m=0
where
t—l-m
fm = 2 oiSmﬂ' (28)

Proof Using Lemma 1, we can express o;,, in terms of «,,

obtaining

=1 =1 oom

> TSy = > S,y akak}. 29)
m=0 m=0 k=0

Substituting (m — h) for k on the right-hand side of
Equation (29), we get

=1 — m
26,5, =YS, 3 a, (30)
m=0 m=0 h=0
Now, interchanging the order of summing parameters m and
in Equation (30) gives

-1

2 0,S, =

m=0

=1

a_hj E Um—hSm' (31)

0 m=h

>
1l

Substituting (k + 4) for m in Equation (31), we have

—1 -1 t—i—h

Y 0mSe=2a” T oS (32)
m=0 h=0 k=0

This completes the proof of Lemma 3.

The computation of ¢,, for m = 0 to (¢ — 1) in Equation
(28) of Lemma 3 requires (¢ + 1)/2 multiplications of the
type 6,S,,,;. The number of multiplications can be reduced
in case of £, for m < (¢ — 1)/2 by using Equation (5), which
yields the following alternate expression:

t

Em = Z _aiSm-H" (33)

i=t—-m

Equation (28) requires the syndromes S, S,, ---, S,_,, and

1>
Equation (33) requires the syndromes S,, S,,,, - -+, S,,_,.

When we use Equation (28) for m = (¢ — 1)/2 and Equation

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

(33) for m < (t — 1)/2, the number of multiplications
required is the minimum and is equal to the integer closest
to (1 + 1)/4.

Note that Equation (28) does not satisfy the requirement
that the same hardware process the case of fewer errors with
fewer syndromes, since the high-order terms do not vanish
automatically. Furthermore, Equation (33) cannot be used if
the decoder is designed for ¢ erasures where the syndromes
S, S,p1s -+ S, may not be available. The following
corollary of Lemma 3 provides an alternate equivalent
expression which removes the difficulty mentioned above.

Corollary
—1 . —1)
¥ aijm =a "y Bmam/, (34)
m=0 ’ m=0
where 0 < u < ¢ and the coefficients 3,, are given by
Y S for m < p,
k=0
B, = .
Y ~0Sime. fOrm>p (35)
k=m+1

Proof Using the result from Equation (4), we can rewrite
the terms with m > y in the right-hand side of Equation (29)
as follows:

—1 M m

- ,
2 6uSy= L S0 T g0’
m=0 m=0 k=0

=1 t
+ ¥ S, 3 —okak’.

k=m+1

(36)

m=u+1
The proof of the corollary, then, follows steps similar to
those in Equations (30)-(32) of Lemma 3. First, substitute
(m — h) for k, and rewrite the right-hand side of (36) with m
and s as summing parameters. Then, interchange the order
of summing parameters m and 4. Next, substitute (k + /) for
m, and rewrite the right-hand side with # and & as summing
parameters. Finally, substitute (« — m) for . This completes
the proof of the corollary.

The important feature of the expression in the corollary is
that the high-order terms vanish automatically in the case of
fewer errors, and the resultant computation involves a
reduced set of syndromes S, S,, - -+, S,_,, where v is the
actual number of errors or erasures, and u <v < ¢,

The number of multiplications in computing 3,, of
Equation (35) depends on the choice of x. The minimum
number of multiplications is, again, the integer closest to
(r+ 1)2/4 when p = u, where g is the largest integer under
(t— 1)/2.

The same hardware can also be used in applications with a
smaller set of available syndromes S, S|, ---, S,._, and up
to ¢’ errors or erasures, provided that 4 < ¢’ < t. From this
point of view, a lower value of u is desirable. The choice of

NO. 3 MAY 1986

IBM). RES. DEVELOP. VOL. 30

u = 0 offers the maximum flexibility in terms of the
applicability of the same hardware for processing fewer
errors with fewer syndromes. The number of multiplications
required in computing 8, in Equation (35) with u = 0 is
(t2 — ¢ + 2)/2, which is not the lowest value possible but is
still lower than the maximum value required in Lemma 3.
In view of the above observations, we use the expression
in the corollary of Lemma 3 for decoder implementation.
For large values of #, it is advisable to use u = g for greatest
economy in hardware. In the case of small values of t, u = 0
provides greater flexibility in adapting other smaller values of
t later without modifying the already fabricated hardware.
Now we can rewrite Equation (17), using the results of
Lemma 2 and the corollary of Lemma 3. As a result, any
error value E, can be expressed as

E 6mam'
—pi m=0
E=a - R (37)
> —ma, "
m=0
where
m
2 TS for m < g,
k=0
B, =1
2 =0 S, form>p (38)
k=m+1
In view of Equation (9), the coeflicients ¢,, can be
eliminated to obtain error values in terms of A,
-1
Z q)marm
i m=0
E=a - , (39)
S —ma, o™
m=0
where
m
) A St for m < p,
k=0
¢ =)
2 ~ASi e for m > p. (40)
k=m+1

In the case of the binary base field, the denominator of
Equation (39) simplifies further since the terms with even
values of m (m = 0 mod 2) vanish. The resultant expression
for E, for the binary base field is

Z q)maml
i m=0
E =a™— , (41)
2 Amamt
m=0
m odd
where 263

ARVIND M. PATEL

Buffer ¥ AS,

. for m < u,
n bytes k=0
5 4)
) [0] x Y ASiime. form>p (42)
Bi Sl Al k=m+1
Read data |Compute z;Cmupum 2 E;
k data bytes |syndromes 33’ A, A, Comected 1NOLE that the computation for the denominator in Equation
;ih,fj_krby tes £ > data (41) is already available as the sum of all odd (or even) terms
'55’ Computeﬂ Location i in the computations of Equation (11). For each value of i,
= O, g | Value £ the numerator can be computed and multiplied by the
et . - . .
[Clock Totoak inverse of the denominator in synchrony with the search for
oc oc . . .
Incoming word |e——Logic delay— | Outgoing word error l.ocatlons. The rgsultant E is used for correcting the
(n cycles) (small) (n cycles) outgoing ith symbol B, whenever the error-locator equation

(11) 1s satisfied.

5. Decoder implementation

Figure 1 is a block diagram of the on-the-fly decoder. The
decoding process is continuous in an uninterrupted stream
of data arriving in the form of a chain of n-symbol
codewords. The decoder computes syndromes for the
incoming codeword as it decodes and corrects errors in the

Decoder block diagram.

73 EX-ORs (previously received) outgoing codeword.

64 ANDs Each clock cycle corresponds to an input of one data
SO_1—L| 8 EX'SORS symbol of the incoming codeword concurrent with an
53 L_x_l + 4~B—¢<—D—_~ Ay output of one corrected data symbol of the outgoing
P 4, codeword. A buffer holds at least » symbols of the
S: Ss_’l_f_lL uncorrected data between the incoming and outgoing

symbols.

We use the three-error-correcting Reed-Solomon code in
GFl (28) as an example of special interest for application in
computer products. Six check symbols correspond to the six
roots a’, o', o, o a“, o’ of the generator polynomial. The
corresponding syndromes are denoted by .S;, S|, S,, S5, S,,
and S, respectively.

These syndromes are computed from the received word in
the conventional manner in accordance with Equation (1).
The implementation for this step is well known, using EX-
OR circuits and shift registers. Here, we present the
hardware implementation for the remaining steps of the
decoding procedure, using the equations developed in the
previous sections.

o Computation of coefficients
For the three-error case, the matrix equation (6) for the
coefficients ¢,, of the error-locator polynomial can be written

as
S S5 9 S,
S8 5 o, |=o| S |- (43)
S, S S, || o, AW

The corresponding determinants A,;, A,,, Ay, Ay, of
Equation (7) are given by the following expressions, where @
denotes the modulo-2 vector sum of 8-bit bytes:

¢ Coefficients of the error-locator polynomial.

264

ARVIND M. PATEL IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

Ay =S5,(5,5, 8 5,8,) ® S,(S,S, © 5, S,)

B S,(5,5,®S5,S,), (44
Ay = S4(5,5, D S,5,) ® S,(S,S, D S,S,)

@ S,(S,S,®5,5,), (45)
Ay, = Si(S,S, ® S,S,) @ S,(S,S, ® S,S;)

B 5,(5,5, 8 S,S,), (46)
Ay = S,(5,S, ® S,S,) ® S,(S,S, D S,S,)

B 5,(5,5,85,5,). (47)

These four expressions can be implemented through
combinational logic circuits as shown in Figure 2. These
circuits require 24 product operations and 14 sum
operations in GF(2%). A typical product operation in GF(2®)
requires, at the most, 73 EX-OR gates and 64 AND gates, as
shown in Appendix A. A sum operation in GF(2*) is a
modulo-2 vector sum which requires 8 EX-OR gates. The
hardware of Figure 2 can be further reduced, if desired, by
time-sharing some of the repetitive functions.

The determinants A,,, 4,,, and A, for the two-error case
are cofactors in the expression (44) for A,;, as was expressed
in Equation (8) for the general case of ¢ errors. These
cofactors are

Ay =55, 88,5, (48)
Ay = 5,8, ® S,S,, (49)
Ay = 5,5, @ S,S,. (50)

In Figure 2, the computations for A,,, A,,, and A,, are
shown as the interim by-products within the computations
for A,,. Similarly, A, and A, which are readily available
syndromes, are cofactors in the expression (48) for A, ,:

A =5, 5D

Ay,=S,. (52)

Figure 3 shows the hardware implementation of Equation
(10), where the decoder identifies the correct number (v) of
errors and selects appropriate values for A . When A, is
nonzero, the parameters A;, A,, A, and A take the values
Ass, Ay, A, and A, respectively. When A, is zero, then
A,, A, and A take the values A,,, A, , and 4,
respectively, which corresponds to the syndrome equations
for two symbol errors. Similarly, if A,, is also zero, then A,
and A, take the values A, and A, respectively, which
corresponds to the syndrome equations for one symbol
error. Thus, Figure 3 produces the appropriate values of the
coefficients A,, A,, A, and A for the error-locator equation
(11), rewritten for the case of = 3 as
for i € {I}.

Ay @ 8,0" B Aja' @ Ay =0 (53)

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

UE
{uncorrectable
error)

Check for consistency of coellicients.

Figure 4 provides a check for consistency of the
coeflicients in the case of fewer than three errors. In
particular, when A,; = 0, we must have A, = A, = A, =0.
Also, when A;; = A,, = 0 we must have A, = A, =0, and
when A,; = A,, = A, = 0 we must have A , = 0. Violation
of any of these conditions implies the presence of more than
three errors, resulting in an uncorrectable-error (UE) signal
at the output of the circuit in Figure 4. With some additional
hardware (not shown in Figure 4), we can obtain » as a two-
digit binary number a,a,. This number is the largest value of
m for which A # 0 (1 < m =< 3), and is given by the

following logic functions: 265

ARVIND M. PATEL

266

73 EX-ORs

64 ANDs
S, N o,
A,

AEX-ORs

Coefficients for the error-value cxpression.

8-bit shift register
(feedback)

A3 NOT
UE
A 1 | (uncorrectable
— error)
Clo
A e
- Inverse
Clock { function .
A 304 ANDs TR
2 494 ORs

73 EX-ORs
64 ANDs

% Cyclic decoder circuit. The shift register for &, (m=0, 1, 2) has the
: multiplier o ¢ when a is nonzero (see [14]).

a, = (A,;; # 0) OR (4,, # 0),

a, = (A,;; # 0) OR [(4,, = 0) AND (4, = 0)}.

This value of » will be used by the decoder in Figures 6 and
7, shown later,

ARVIND M. PATEL

Next, we show the hardware implementation for obtaining
the values of coefficients ®,, in the numerator of the error-
value equation (41). For the case of three errors, Equation
(42) with u = 0 can be rewritten for ¢, ¢, and &, as
follows-

By = 4,5, (54)
3, = A,S, ® A,S,, (55)
P, = 4,8, (56)

Figure 5 shows the implementation of Equations (54),
(55), and (56), which requires four product operations and
one sum operation in GF(2%). The error-value equation (41),
for the case of three errors, can be rewritten as

<I>2012i ® o0 @ D,

E=———F—"—. 57)
Aa” @ Ao

o On-the-fly error correction
Figure 6 shows the mechanized shift-register circuits for
determining error locations and error values in accordance
with Equations (53) and (57), respectively. The computed
values of the coefficients A;, A,, A, Ajand ®,, ®,, ®, are
entered into appropriate shift registers at clock zero. Each
clock cycle generates a shifting operation of these registers. A
shifting operation multiplies the contents of each register by
a specific constant, namely a3, az, and « in the case of the
registers for A,, A,, and A,, respectively; and «” and a in the
case of the registers for ®, and ®,, respectively.
Multiplication by a constant requires a small number of EX-
OR gates, as explained in Appendix A.

At the ith clock cycle (0 < i < n), the upper set of
summing circuits in Figure 6 at the output of the shift
registers are presented with all the terms of Equation (53). If
the sum is zero, then Equation (53) is satisfied and we have
captured the error location. Similarly, at the ith clock cycle,
the lower set of summing circuits at the output of the shift
registers are presented with all the terms of the numerator in
Equation (57). The denominator for (57) is already available
from the upper set of summing circuits.

Subsequent networks for an inverse operation and then a
product operation compute the error value E, for each i in
accordance with Equation (57). The algebraic inverse in
GF (23) can be obtained through combinational logic, which
maps each 8-digit binary sequence into its inverse—a specific
8-digit binary sequence, as shown in Appendix B. This
requires, at the most, 304 AND gates and 494 OR gates.

When the error location is captured, the outgoing word
symbol B,. is modified by E, through the output sum
network. For all other values of i, the computed value of E,
is ignored. When all bytes B, through B, _, of the codeword
are delivered (at the final clock cycle n — 1), if v error
locations were not captured, then the errors exceed the
correction capability of the decoder. This condition is

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

detected by means of a counter which counts down from a
preset value ». If the count does not reach zero at the final
clock cycle, then the decoder has not corrected the errors
properly. The decoder indicates this condition by giving an
uncorrectable-error (UE) signal.

o Delivery order of corrected bytes

The corrected bytes in the decoder of Figure 6 are delivered
in the order B,, B,, B,, ---, B,_,. This is the reverse order
compared to that in the encoding operation, since the check
bytes correspond to the low-order positions. The reversal can
easily be removed by introducing a reversal relationship
between clock-cycle count j and byte-location number /. We
substitute # — j for i in the decoding equations (53) and (57)
and rewrite them as

(8,6 B (8,6 @ (4,00 B A, = 0, (58)
(%, & (@,a"a” & B,
(8,00 ® (4, 0")a”

=) = (59)
In these equations, j represents the clock-cycle count, where
Jj = 11to n, successively, correspond to the byte-position
values i = (n — 1) to 0. This provides delivery of bytes in the
order B,_,, - - -, B,, B,, which is the same order as that in
the encoding process.

To accomplish the modifications mentioned above, the
following changes are made in the decoder hardware of
Figure 6: (1) The shift-register multipliers o, az, and « are
replaced by o™, o, and a ', respectively; (2) The
coefficients A,, A,, and A, are premultiplied by o', «
", respectively, and the coefficients &, and &, are
premultiplied by " and «”, respectively.

In the case of shortened code, the premultiplication
circuits depend on the value of n, and each circuit requires a
small number of EX-OR gates. In the case of full-length
code, o™ is unity for all values of m; hence these
premultiplication circuits are not needed. The decoder, with
the two modifications discussed above, appears in Figure 7.

2,
", and

6. Conclusions

A decoding procedure is developed for on-the-fly correction
of multisymbol errors in Reed-Solomon or BCH codes in
nonbinary or extended binary fields. In particular, the
decoding equations are formulated in a manner which
expands the concept of Chien search of error locations into a
search for error values as well, and creates a synchronous
procedure for complete on-the-fly correction of multisymbol
€rrors.

Lemmas 1, 2, and 3 and the corollary are new results that
provide a more convenient form of the error-value
expression for on-the-fly decoding. This expression is key to
substantial economies in hardware and decoding time. All
division operations are eliminated from the computation of
the error-locator equation, and only one division operation
is required in the computation of error values.

[BM J. RES. DEVELOP. VQOL. 30 NO. 3 MAY 1986

~20 EX-ORs

8-bit shift register
(feedback)

Count=0

UE
(uncorrectable

Inverse
function

304 ANDs
494 ORs

73 EX-ORs
64 ANDs

Clock j

Modified cyclic decoder circuit. The shift register for @, (m=0,
¢ 1,2) has the multiplier =" and a premultiplier o™~ when
a is nonzero (see [14]).

C=AXB
64 AND gates
73 EX-OR gates

% Product function.

Further, the decoding equations are organized such that
the computations for the special cases of fewer errors than
the maximum are realized as byproducts of the main
computations. Also, the same decoding hardware can be
used for search and correction of errors in all cases of fewer
errors, including applications where correspondingly fewer
syndromes are available. The details of the decoding
hardware are given for the case of the three-byte-correcting
Reed-Solomon code.

Appendix A—Product function in GF (2%

Figure 8 represents the estimated hardware for implementing
the product function in GF' (28). A, B, and C are elements of
GF (2" and are represented by 8-bit binary vectors, where
C=AXB:

ARVIND M. PATEL

267

268

B=A"'
304 AND gates
494 OR gates

A e———-.

i Inverse function.
4

A =la,, a,, a, a,, a,, a,, a,, 4],
B = [b7’ b65 b5, b4s b}s bza b]y b()]a

C=e;, ¢, s, €4, €3, Gy, €5 G-

The product 4 X B is obtained through a two-step process.
First, we compute the coefficients £ of the product
polynomial F, where F = A X B modulo 2. Computation of
the coefficients f(i = 0, - - -, 14) requires 64 AND gates and
49 EX-OR gates:

Jo = @by,

Sy = ab ®ab,,

L= ab,®a b ®ab,,

fi = a,b,®a,b,® a,b, ® a,b,,

fio= ab,®ab®a,bs® --- ®ab @ a,b,,
i = ab®a,b®ab® - ®ab,

fis = asb; ® ab,,
fis = a;b;.

Next, we reduce the polynomial F modulo p(x), where
p(x) is a primitive binary polynomial of degree 8. We use
p(x) =x* + x* + x> + x* + 1. The reduction of f, modulo
p(x) requires, at the most, 24 EX-OR gates:

Co=/Oh ©/,9/:9/
Ci=/0f ©/:9/
C:=Lh0f ©/09/,8 /s
C;=/0% ©f 0,9/,
Co=h®f 0% ©/,00 /s
C=f98% 0409/,
Co=r®/0®/: 9/
C=L&f, 1,8,

The logic for the entire product function requires one level
of AND circuits and five levels of EX-OR circuits, which in
turn require 64 AND gates and a maximum of 73 EX-OR
gates. Note that when one of the multiplicands, say A, is a
known constant, then the expression for each component C,

ARVIND M. PATEL

of C will reduce to EX-OR of selected components of the
second multiplicand, namely B. The resultant product
function requires no AND gates and only a small number of
EX-OR gates (maximum 25), depending on the constant A.

Appendix B—Inverse function in GF 2%
Figure 9 represents the estimated hardware for the inverse
function in GF(2*). 4 and B are elements of GF(2°%) and are
represented by 8-bit binary vectors, where B = 47"

Figure 10 lists 255 nonzero elements of GF (2%, each with
the corresponding inverse element. These elements were
generated by the following primitive polynomial:

p(x)=x8+x4+x3+x2+1.

The elements are represented by 8-digit binary vectors
which, in polynomial notation, have the coefficient for the
high-order term on the left. The inverse function of this table
can be implemented through combinational logic, using the
conventional 8-bit encode-decode function. This requires
three levels of AND circuits and seven levels of OR circuits,
which in turn require a maximum of 304 AND gates and
494 OR gates.

References and note

1. I. S. Reed and G. Solomon, “Polynomial Codes Over Certain
Finite Fields,” J. Soc. Indust. Appl. Math. 8, 300-304 (1960).

2. R. C. Bose and D. K. Ray-Chaudhuri, “On a Class of Error-
Correcting Binary Group Codes,” Info. Control 3, 68-79 (1960).

3. A. Hocquenghem, “Codes Correcteurs d’Erreurs,” Chiffres
(Paris) 2, 147-156 (1959).

4. A. M. Patel, “Error-Recovery Scheme for the IBM 3850 Mass
Storage System,” IBM J. Res. Develop. 24, 32-42 (1980).

5. W. W. Peterson, “Encoding and Error-Correction Procedures for
the Bose-Chaudhuri Codes,” IEEE Trans. Info. Theory IT-6,
459-470 (1960).

6. D. C. Gorenstein and N. Zierler, “A Class of Error-Correcting
Codes in p™ Symbols,” J. Soc. Indust. Appl. Math. 9, 207-214
(1961).

7. E. R. Berlekamp, “On Decoding Binary Bose-Chaudhuri-
Hocquenghem Codes,” IEEE Trans. Info. Theory IT-11, 577-
579 (1965).

8. J. L. Massey, “Step-by-Step Decoding of the Bose-Chaudhuri-
Hocquenghem Codes,” FEEE Trans. Info. Theory IT-11, 580-
585 (1965).

9. R. T. Chien, “Cyclic Decoding Procedure for the Bose-
Chaudhuri-Hocquenghem Codes,” IEEE Trans. Info. Theory
IT-10, 357-363 (1964).

10. G. D. Forney, Jr., “On Decoding BCH Codes,” IEEE Trans.
Info. Theory IT-11, 549-557 (1965).

11. E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill Book
Co., Inc., New York, 1968.

12. Richard E. Blahut, “A Universal Reed-Solomon Decoder,” IBM
J. Res. Develop. 28, 150-158 (1984).

13. T. Horiguchi and Y. Sato, “A Decoding Method for Reed-
Solomon Codes Over GF(2™),” Trans. IECE (Jpn.), pp. 97-98
(1983).

14. A scale-up factor o in all the roots of the generator polynomial
results in a corresponding scale-up factor o attached to each
error value E,. [See Equation (2).] The effect of this on the
syndrome decoder is that each term of the numerator in the
expression for error values [such as Equation (57)] will have a
scale-down factor o .

15. W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes
(2nd ed.), MIT Press, Cambridge, MA, 1972.

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

s | s s 5! s | s s 5~ s | s
00000001 00000001 | 00110100 10100100 | 01100111 01001101 | 10011010 10711107 | 11001101 01111101
00000010 10001110 | 00110101 11000011 | 01101000 01010010 | 10011011 10010100 | 11001110 10101000
00000011 11110100 | 00110110 01000000 | 01101001 10001101 | 10011700 10101100 | 11001111 00111010
00000100 01000111 | 00110111 01011110 | 01101010 11101111 | 10011101 00001001 | 11010000 00101001
00000101 10100111 | 00111000 01010000 | 01101011 10110011 | 10011110 11000111 | 11010001 01110001
00000110 01111010 | 00111001 00100010 | 01101100 00100000 | 10011111 10100010 | 11010010 11001000
00000111 10111010 | 00111010 11001111 | 01101101 11101100 | 10100000 00011100 | 11010011 11110110
00001000 10101101 | 00111011 10101001 | 01101110 00101113 | 10100001 10000010 | 11010700 11111001
00001001 10011101 | 00111100 10101011 | 01101111 00110010 | 10100010 10011111 | 11010101 01000011
00001010 11011101 | 00111101 00001100 | 01110000 00101000 | 10100011 11000110 | 11010110 11010111
06001011 10011000 | 00111110 00010101 | 01110001 11010001 | 10100100 00110100 | 11010111 11010110
00001100 00111101 | 00111111 11100001 | 01110010 00010001 | 10100101 11000010 | 11011000 00010000
00001101 10101010 | 01000000 00110110 | 01110011 11011001 | 10100110 01000110 | 11011001 01110011
00001110 01011101 | 01000001 01011111 | 01110100 11101001 | 10100111 00000101 | 11011010 01110110
00001111 10010110 | 01000010 11111000 | 01110107 11111011 | 10101000 11001110 | 11011011 01111000
00010000 11011000 | 01000011 11010101 | 01110110 11011010 | 10101001 00111011 | 11011100 10011001
00010007 01110070 | 01000100 10010010 | 01130111 01111001 | 10101010 00001101 | 110611101 00001010
00010010 11000000 | 01000101 01001110 | 01111000 11011011 | 10101011 00111100 | 11011110 00011001
00010011 01011000 | 01000110 10100110 | 01111001 01110111 | 10101100 10011100 | 11011111 10010001
00010100 11100000 | 01000111 00000100 | 01111010 00000110 | 10101101 00001000 | 11100000 00010100
00010101 00111110 | 01001000 00110000 | 01111011 10111011 | 10101110 10111110 | 11100001 00111111
00010110 01001100 | 01001001 10001000 | 01111100 10000100 | 10101111 10110111 | 11100010 11100110
00010111 01100110 | 01001010 00101011 | 01111101 11001101 | 10110000 10000111 | 11100011 11110000
00011000 10010000 | 01001011 00011110 | 01111110 11111110 | 10110001 11100101 | 11100100 10000110
00011001 11011110 | 01001100 00010110 | 01111111 11111100 | 10110010 11101110 | 11100101 10110001
00011010 01010101 | 01001101 01100111 | 10000000 00011011 | 10110011 01101011 | 11100110 11100010
00011011 10000000 = 01001110 01000101 | 10000001 01010100 | 10110100 11101011 | 11100111 11110001
00011100 10100000 | 01007111 10070011 | 10000010 30700007 | 10110101 11110010 | 11101000 11111010
00011101 10000011 | 01010000 00111000 | 10000011 00011101 | 10110110 10111111 | 11101001 01110100
00011110 01001011 | 01010001 00100011 | 10000100 01111100 | 10110111 10101111 | 11101010 11110011
00011111 00101010 | 01010010 01101000 | 10000101 11001100 | 10111000 11000101 | 11101011 10110100
00100000 01101100 | 01010011 10001100 | 10000110 11100100 | 10111001 01100100 | 11101100 01101101
00100001 11101101 | 01010700 10000001 | 10000111 10110000 | 10111010 00000111 | 11101101 00100001
00100010 00111001 | 01010101 00011010 | 10001000 01001001 | 10111011 01111011 | 11101110 10110010
00100071 01010001 | 01010110 00100101 | 10001001 00110001 | 10111100 10010101 | 11101111 01101010
00100100 01100000 | 01010111 01100001 | 10001010 00100111 | 10111101 10011010 | 11110000 11100011
00100101 01010110 | 01011000 00010011 | 10001011 00101101 | 10111110 10101110 | 11110001 11100111
00100110 00107100 | 01011001 11000001 | 10001100 01010011 | 10111111 10110110 | 11110010 10110101
00100111 10001010 | 01011010 11007011 | 10001107 01101007 | 11000000 00010010 | 111100611 11101010
00101000 01110000 | 01011011 01100011 | 10001110 00000010 | 11000001 01011007 | 11110100 00000011
00101001 11010000 | 01011100 10010111 | 10001111 11110101 | 11000010 10100101 | 11110101 10001111
00101010 00011111 | 01011101 00001110 | 10010000 00011000 | 11000011 00110101 | 11110110 11010011
00101011 01001010 | 01011110 00110111 | 10010001 11011111 | 11000100 01100101 | 11110111 11001001
00101100 00100110 | 01011113 01000001 | 10010010 01000100 | 11000101 10111000 | 11111000 01000010
00101101 10001011 | 01100000 00100100 | 10010011 01001111 | 11000110 10100011 | 11111001 11010100
00101110 00110011 | 01100001 01010111 | 10070100 10011011 | 11000111 10011110 | 11111010 11101000
00101111 01101110 | 01100010 11001010 | 10010101 10111100 | 11001000 11010010 | 11111011 01110101
00110000 01001000 | 01100011 01011011 | 10010110 00001111 | 11001007 11110111 | 11111100 01111111
00110001 10001001 | 01100100 10111001 | 10010111 01011100 | 11001010 01100010 | 11111101 11111111
00110010 01101111 | 61100101 11000100 | 10011000 00001011 | 11001011 01011070 | 11111110 01111110
00110011 00101110 | 01100110 00010111 | 10011001 11011100 | 11001100 10000101 | 11111111 11111101

Inverse of field elements in GF(2%). § is an element of GF(2%). S as a polynomial has the high-order term on the left and is defined By a residue

8
El
H

class, modulo p(x), where p(x) =&+ + 3+ + 1.

Received May 22, 1985, accepted for publication November
25, 1985

Arvind M. Patel /BM General Products Division, 5600 Cottle
Road, San Jose, California 95193. Dr. Patel is a senior technical staff
member in the Magnetic Recording Institute, a GPD/Research
organization at San Jose. He is currently involved with the
development of computer storage products using magnetic recording
technology. He received his B.E. from Sardar Vallabh-Bhai
Vidyapeeth, India, in 1959, his M.S. from the University of [llinois,
Urbana, in 1961, and his Ph.D. from the University of Colorado at
Boulder in 1969, all in electrical engineering. Dr. Patel joined IBM
at the Poughkeepsie, New York, laboratory in 1962. Since then he
has worked on various aspects of magnetic recording technology and

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

product development projects in the Poughkeepsie, Boulder, and San
Jose laboratories. His main theoretical interest has been in exploring
the area of information theory and coding for computer applications.
His work on data encoding and error-correcting codes has won him
four Outstanding Invention Awards from IBM in 1972, 1973, 1983,
and 1985, and an Outstanding Technical Paper Award from the
American Federation of Information Processing Societies in 1970.
Dr. Patel has been elected a Fellow of the Institute of Electrical and
Electronics Engineers, with the citation: “For contributions to data
encoding/decoding and error correction and their application to
magnetic storage devices.”

ARVIND M. PATEL

269

