
The average
complexity of
depth-first search
with backtracking
and cutoff

by Harold S. Stone
Paolo Sipala

This paper analyzes two algorithms for depth-
first search of binary trees. The first algorithm
uses a search strategy that terminates the
search when a successful leaf is reached. The
algorithm does not use internal cutoff to restrict
the search space. If N is the depth of the tree,
then the average number of nodes visited by th;
algorithm is as low as O (N) and as high as O(2)
depending only on the value of the probability
parameter that characterizes the search. The
second search algorithm uses backtracking with
cutoff. A decision to cut off the search at a node
eliminates the entire subtree below that node
from further consideration. The surprising result
for this algorithm is that the average number of
nodes visited grows linearly in the depth of the
tree, regardless of the cutoff probability. If the
cutoff probability is high, then the search has a
high probability of failing without examining
much of the tree. If the cutoff probability is low,
then the search has a high probability of
succeeding on the leftmost path of the tree
without performing extensive backtracking. This
model sheds light on why some instances of
NP-complete problems are solvable in practice
with a low average complexity.

"Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

1. Introduction
This paper finds the average complexity of two kinds of
depth-first search algorithms. The problem is of interest
because the traditional worst-case analyses have shown that
the complexity grows exponentially in the depth of the
search tree. However, there exist interesting practical
problems whose average complexity grows far less quickly.
For example, the Traveling Salesman problem is known to
be NP-complete and therefore is in the class of problems for
which there exists no known algorithm whose worst-case
complexity grows less than exponentially in the size of the
problem. Smith [I] studied the Traveling Salesman problem
and found that the average complexity of a branch-and-
bound (ordered depth-first) algorithm for this problem is
only O[N3 In (N)] , where N is the number of nodes in the
graph. Since the natural size of the problem is the number of
edges, which grows as the square of the number of nodes, the
average complexity grows less than quadratically in the size
of the problem. Roth's D-algorithm [2] for generating test
patterns for logic circuits discovers test patterns through an
efficient backtrack search procedure. After years of extensive
use, the overwhelming evidence is that each test generation
cycle runs in an average time that grows linearly with the
number of logic gates. The purpose of this paper is to
explore a mathematical model that offers a partial
explanation for that low average complexity.

probabilistic behavior of a depth-first search. The objective is
to estimate the average complexity of real programs. While
the results from the models give an intuitive picture of the
behavior of depth-first search, they are generic models and

In this paper we examine two different models of

IBM J . RES. DEVELOP. VOL. 30 NO. 3 MAY 1986 HAROLD S. STONE AND PAOLO SIPALA

do not model specific algorithms. Hence, particular depth-
first algorithms may behave quite differently from the
algorithms described in this paper, and our results will not
hold for such algorithms.

The first of the two models is depth-first search without
internal cutoff. This algorithm explores a decision path from
the root of the search tree to a leaf node in the tree. At the
leaf node, the algorithm determines whether the search is
successful. If so, the search terminates. If not, the algorithm
backtracks through the search tree, continues until it reaches
another leaf node, and repeats this process until it terminates
with success or until all of the leaves are exhausted. Our
analysis shows that the average number of nodes visited is a
function that varies from being linear in the depth of the tree
to being exponential in the depth of the tree, depending on
the probability of making good decisions on the path to a
leaf.

The second algorithm exploits internal cutoff to eliminate
searching of entire subtrees and terminates at the first leaf
node encountered. The analysis shows that the average
number of nodes visited by this algorithm tends to grow
linearly in the depth of the tree rather than exponentially,
regardless of the probability of cutoff. This surprising result
is due to the fact that for high cutoff probability very little of
the tree is actually examined, and the search has a high
probability of failing. For low cutoff probability, the search
tends to take successful paths, and with high probability the
search succeeds in reaching a leaf node without having to
examine most of the branches in the tree.

Although the number of nodes visited grows only linearly
in the depth of the tree, because the cutoff computation may
be a function of the depth of the tree, the average complexity
of the search algorithm can grow much faster than linearly
with the depth of the tree. For example, a particularly
expensive way of implementing cutoff is to decide which
node to visit at level i by examining all 2‘ nodes at level i. In
this case the cutoff computation grows exponentially in the
depth of the tree, and the search is actually a breadth-first
search. If the complexity of the cutoff computation is a
polynomial function of the depth of the tree, then our model
shows that the average complexity of the full search
algorithm is a polynomial function of the depth of the tree.

Critical assumptions of the analysis are that the cutoff
probability and the branching factor are uniform throughout
the search tree. We do not claim that our results hold for
problems where these assumptions are violated. In the N-
Queens problem, for example, the branching factor near the
root of the search tree is much higher than near the leaves of
the search tree. Such problems may well yield average
complexity that grows exponentially in the depth of the tree.

Karp and Pearl [3] have examined a related algorithm
model and obtained similar results, although our analytical
techniques are quite different. The methods in this paper are
constructive and yield very close approximations to the exact

functions that describe the search behavior as a function of
tree depth, as opposed to the asymptotic values of the
functions published by Karp and Pearl. Also, the
methodology in this paper yields results for the average
length of successful search paths, which are not directly
obtainable from the theory of branching processes on which
the work of Karp and Pearl is based.

searches. Branch-and-bound algorithms such as those
described by Smith [11 have the property that they visit
many nodes in a tree before deciding on a specific node to
“expand” for further processing. Branch-and-bound
algorithms can be viewed as best-first algorithms rather than
depth-first algorithms. These algorithms exhibit an efficient
cutoff process much like the cutoff explored in this paper,
and as such the analyses contained here may be useful in
characterizing these algorithms.

The results presented here are rather robust and appear to
be insensitive to small perturbations in the underlying
model. We show in this paper that the results do not change
qualitatively when we relax the constraint that the first leaf
node reached must produce a success. We also derive
expressions for the variance in the number of nodes visited,
and find that in several cases the variance is independent of
the depth of the tree, so that the calculated value of the
mean number of nodes visited is a very good estimate of the
observed values in those cases. The highest growth rate for
the variance is O(N 3) for cases in which the average number
of nodes visited grows as O(N) . The ratio of standard
deviation to mean in these cases grows as O(No”), which
places a reasonably tight constraint on the observed values of
the number of nodes visited, although the observed values
are not as tightly constrained as for cases that have a
variance that does not depend on the depth N.

The analysis is not necessarily limited to strictly depth-first

The next section discusses the model with no internal
cutoff. In Section 3 we describe the model that has internal
cutoff. The analysis of this model appears in Section 4, and
in Section 5 we describe a variation in which the leaf-success
probabilities differ from the success probabilities of internal
branches. Section 6 derives the variance on the functions
that describe average search effort. Conclusions and
recommendations appear in the final section.

2. A search strategy with termination at leaf
nodes
The model that we use for this problem is illustrated in
Figure 1. We call it the “hacker’s problem” because it
models the search for a password to enter a computer system
illegally. To make an illegal entry, the prober guesses at each
character in a password until a candidate trial is built. At
this point the prober submits the candidate and is told
whether the password is correct or not. In our model, we use
binary characters, and we presume that the prober searches
by choosing in each position the most likely bit for that 243

’AOLO SIPALA IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986 HAROLD S. S TONE AND I

' rch with no internal cutoff:
ecision node; (b) Probabilities

position. If a password fails, the prober backs up and
changes the most recent decision. In Figure 1 each decision
has a more probable path (the left-hand path), and a less
probable path (the right-hand path). The search strategy
starts at the root of the tree shown in the figure and
progresses N levels in the tree, making N decisions along the
way, one at each level. The leaves of the tree are decision
points. When the algorithm reaches a leaf, it has completely
characterized a possible solution (password) through the
sequence of N decisions made between the root and the leaf
node. The algorithm next consults an oracle to determine
whether this solution is acceptable. The oracle says "yes" or
"no," where the probability distribution on the answer
depends only on the number of high- and low-probability
branches on the path back to the root of the tree.

The detailed assumptions of this model are the following:

1. At each internal node there are two outgoing branches.
The leftmost branch is traversed first. If all paths through
the left descendant fail, then the search backs up and tries
the right-hand branch. If all paths through the right-hand
descendant fail, then the node is said to have failed, and
the search returns to the ancestor of the present node.

2. At a leaf node, the algorithm consults an oracle to
determine whether the search is successful. The

244 oracle returns SUCCESS with a probability

pNLEFT(- p) N R / G H T , where NLEFT is the number of left-
hand branches on the path between the leaf and the root,
and NRIGHT is the number of right-hand branches on
this path. The sum obeys the equality N = NLEFT +
NRIGHT, where N is the depth of the tree. If the search
does not succeed, the oracle returns FAIL.

3. The algorithm terminates when the search succeeds or
when all leaves have been examined.

We have chosen the probability distribution to be that of N
Bernoulli trials, which is not necessarily the distribution of
bits in passwords but is a reasonable assumption for the
general class of searches of this type in the absence of
additional information for specific situations.

The search algorithm traverses the search tree by
backtracking. By picking the most likely branch first at every
node of the search tree, the algorithm tends to reduce the
search complexity, but the algorithm is not optimal, since
the cost is lower if the partial passwords are ordered by
probability rank, with the more likely bit sequences
appearing before the less likely bit sequences.

The model is characterized by a small set of recurrence
relations. Let C,, C,, and C,, respectively, be the cost of
traversing a left branch, traversing a right branch, and
backtracking along a branch after a failure. Let av(N)
designate the average cost of traversing a tree of depth N.
This is the cost expended on the average to search the tree of
depth N, possibly to succeed or possibly to fail in the search.
We also need the function max (N) , which is equal to the
cost of searching an entire tree of depth N, given that the
search fails. The following recurrence equations describe
how to compute av(N) :

av(l) =PC, + d C L + cB + cR)3 (1)

av(N) = p[CL + av(N - I)]

+ q[C, + max(N - 1)

+ C, + CR + av(N - I)]. (2)

The first formula states that with probability p the algorithm
traverses a left branch and succeeds. Otherwise, with
probability q = 1 - p the algorithm traverses the left branch,
fails, backtracks along the left branch, then reaches the right
branch. The second equation states that the cost of a search
at depth N is equal to the weighted sum of two events. The
first term is the probability of traversing the left branch and
succeeding in the left subtree. The cost of the second term
includes the cost of taking the left branch, traversing the
entire left subtree and failing, backtracking along the left
branch, moving down the right branch, and searching the
right subtree. The max function is used to describe the
search of the left subtree because that search is not
terminated early by a successful outcome, and therefore it
visits the entire left subtree. The max function is given by
the formula

max(N) = (2N - l)(CL + C, + 2CB). (3)

In a tree of depth N there are 2” - 1 left branches and an
equal number of right branches. The number of backtracks
is equal to the sum of the number of left and right branches,
because for each branch taken there is a corresponding
backtrack.

As an example of an application of (2) and (3), consider a
tree of depth 2. The average cost to search this tree can be
computed by examining the cost of each of the four possible
outcomes multiplied by the probability of each outcome.
This is

av(2) = p2(2cL)

+ P d 2 cL + cB + cR)

+ pq(2CL + C, + C, + 2C, + C, + C,)

+ q2(2cL + C, + C, + 2c , + C, + C, + C, + c,).
(4)

Each term in (4) describes a path to a leaf, and the
probability associated with each term is the probability of
terminating at that leaf. Equation (4) yields precisely the
same result for av(2) as Equation (2) after substituting
Equations (I) and (3), followed by algebraic reductions.

The solution to Equation (2) for N > 1 is given by

av(N) =pNCL + 4(2”- I)(CL + C, + 2C,) - qNC,. (5)

Note that both Equations (4) and (5) reduce to

av(2) = 2pCL + 34(CL + C,) + 44C,. (6)

For values of p near unity, Equation (5) grows linearly in
the number of levels and tends to succeed on the leftmost
branches of the tree. For small values of p the second term
becomes large, and the complexity tends to grow
exponentially in the number of levels. It is this aspect of tree
search that makes tree searches appear to be intractable for
moderate numbers of levels. Plots of Equation (5) for
various values of N and p appear in Figure 2. All costs are
assumed to be unit costs in the plot. The straight lines on the
semilog plot show an exponential growth as the depth
increases, but for values of p very close to 1 the search
complexity for shallow trees grows linearly with depth, as
indicated by the logarithmically shaped portion of the
curves. A very good guesser can achieve linear average
search time for shallow trees, but as the search tree deepens,
the search time becomes exponential.

This analysis suggests that some depth-first searches could
be very efficient on the average in spite of the exponential
bound on worst-case complexity. In reality, the strategy
considered here is not generally acceptable because of the
potential for exponential complexity. The next section shows
how a strategy with internal cutoff is vastly superior on the
average to the strategy used here.

r

0 10 20

Tree depth

Expected number of nodes visited for backtrack search without
internal cutoff.

3. Depth-first search with internal cutoff
In this section we examine the effects of internal cutoff and
present a model in which the average number of nodes
visited grows only linearly with the depth of the tree.
(Complexity may grow at a rate faster than linear if the work
per node explored is a function of the depth of the tree.)

The tree search considered in the previous section benefits
from cutoff at success, but the strategy can do extensive
computation if the successful outcome terminates at a leaf
far from the left side of the tree. This search suffers from the
problem that an early selection may be entirely wrong, but
the algorithm continues to explore the entire subtree beneath
that selection. The algorithm outline is a nondeterministic
program with the following structure:

Choose attribute 1 ;
Choose attribute 2:

Choose attribute N,
If Oracle(attributes) then succeed else fail;

The Oracle procedure examines the set of attributes selected
and returns a value of TRUE or FALSE depending on
whether the set describes a pattern sought. To reduce the
possibility of exponential search, it is general practice to seek
a strategy with internal cutoff. This strategy leads to a
nondeterministic program with a slightly different structure,
as indicated below:

Choose attribute 1;
If not Oracle(attributes) then fail: 245

ND PAOLO SIPALA IBM J . RES. DEVELOP. VOL. 30 NO. 3 M A Y 1 9 ~ 6 HAROLD S. STONE A

h with internal cutoff: (a) Success on left
branch; (c) Success on right branch;

Choose attribute 2;
If not Oracle(attributes) then fail;

Choose attribute N,
If Oracle(attributes) then succeed else fail;

The Oracle procedure in this form of the program accepts a
partial list of attributes. A FALSE result indicates certainty
that no pattern exists for the corresponding selection of
attributes. However, a TRUE result is returned when the
Oracle is unsure of the outcome or when the Oracle knows
with certainty that patterns with the selected attributes exist.
The search must continue after a TRUE result is observed
until all attributes are selected. Only after all are selected
does a TRUE response from the Oracle indicate certainty.

to the latter algorithm. His oracle procedure helps to guide
the search down the most likely path, and when the
procedure reaches a leaf for the first time, the search
terminates successfully. The total complexity of such a
search may grow at a rate faster than linear in the depth of
the tree because the consultations of the oracle may require
computations that are in turn functions of the size of the
problem. For Smith’s approach the number of nodes of the
search tree visited grows linearly in the depth of the tree
search, at the rate O[Nln(N)], where N is the number of
cities to visit in the Traveling Salesman problem. The search
grows only linearly in the depth of the search tree because
the search is conducted over N ! permutations of N cities,
and a search tree with N ! leaves has a depth that grows at
least as fast as O[log(N!)] = O[Nln(N)].

Smith [11 examines a branch-and-bound algorithm similar

246

1

Roth’s D-algorithm [2] is similar to Smith’s algorithm in
that it conducts a backtracking search with cutoff until it
reaches a leaf node. If it reaches a leaf node in the search
tree, the search terminates successfully. Unlike Smith’s
algorithm, Roth’s algorithm does not have to visit every
element in the database to reach a successful termination,
whereas Smith has to examine every city in the city graph to
meet the specifications of the problem. Roth’s D-algorithm
may find an input combination that exercises a particular
internal node properly without necessarily visiting each logic
element in a circuit.

Both Roth’s algorithm and Smith’s algorithm have
exponential upper bounds and the corresponding problems
are NP-complete. They both terminate when they reach a
leaf node. The fact that only one leaf needs to be examined
is crucial to the analysis that follows. In this case the
procedure that determines whether or not to cut off a search
is the deciding factor in the nonexponential average number
of nodes visited by the algorithm. If cutoff can be decided
efficiently, then on the average the entire algorithm runs
efficiently.

Karp and Pearl [3] have studied a slightly different
problem and report results that are close to those reported
here. Although they use a different search strategy, their
results are identical to ours for the case in which the search
fails, since the nodes actually explored by their algorithm are
the same ones explored in our model. The approaches
followed are quite different, however, and the methods
described here yield nearly exact formulas as opposed to
bounds and asymptotic formulas reported by Karp and
Pearl.

To begin the analysis, let us model the effects of internal
cutoff as illustrated in Figure 3, which shows one node of a
search tree. In this case, the search makes a selection of an
attribute and consults an oracle. With probability p the
oracle returns TRUE and the search proceeds into the
subtree, as indicated in Figure 3(a). With probability
4 = 1 - p the oracle returns FALSE and the search is
terminated on the left branch of the node without any
further computation. This is shown in Figure 3(b). When the
search terminates unsuccessfully on the left side of the node
for any reason, the search continues on the right side of the
tree. We call p the survival probability and 4 the cutoff
probability. Figures 3(c) and 3(d) show the corresponding
cases occumng on the right side. Although this model is
similar to the model in the preceding section, the meaning of
the probability parameter p has changed. In the prior model,
p modeled the likelihood of the left branch being successful
as compared to the right branch. In this model, there is no
difference in probabilities between right-hand and left-hand
branches. The probability parameter expresses the likelihood
of early cutoff, not the asymmetry of the search.

describe the average cost of a search of a tree of depth N. Let
The probability model requires several functions to

3AROLD S. S ;TONE A .ND PAOLO SIPALA IBM J . RES DEVELOP VCL 30 NO. 3 MAY 1986

F(N) and S (N) , respectively, denote the probability of
failure and success in searching a tree of depth N. These
functions are described recursively by the following
equations:

F(1) = q2, (7)

F(N) = [q + PF(N - 1)1’, (8)

S(1) = p + pq = 1 - F(1), (9)

S (N) = pS(N - 1) + p [q + pF(N - I)]S(N - I)

= 1 - F(N) . (10)

Equation (7) says that a failure at depth 1 occurs if there is a
failure on both branches. Similarly, Equation (8) says that a
failure at depth N occurs if a branch fails (with probability q)
or if the branch succeeds and the tree in the next lower level
fails [with probability pF(N - I)]. Moreover, a failure must
occur on both the left and right branches so that the
probabilities of failure are multiplied, whence comes the
square in the formula. Equations for S(N) can be derived by
similar arguments. Later in this section we explore analytical
results concerning the growth of these functions.

We are interested in obtaining the average work
performed per search. If we let path, denote one possible
search path, p , be the probability of that path, and
/ength(path,) be the number of nodes on path,, then the
average number of nodes visited during a search is given by

L(N) = C p,length(path,), (1 1)

where the summation is taken over all tree paths. We have
adopted a unit cost for the traversal of a branch in this
model, rather than carrying the costs of left and right
branches separately, and the cost of backtracking is ignored
because the extra complication makes the discussion less
clear while not adding materially to the nature of the results.
Because it is convenient to deal with failure paths and
successful paths separately, we break Equation (1 1) into two
separate summations, and this requires the definition of two
new functions. Let LJ N) and L,(N) , respectively, designate
the contributions to Equation (I 1) from searches that end in
failure and from searches that end in success. The formula
for calculating L, is given by

,

where the set FP(N) is the set of all paths in a tree of depth
N along which a search of the tree fails. The function Ls(N)
is given by

where the sum is taken over the successful paths.

the recursive formulas
To compute the values of LAN) and L,(N), we may use

IBM J . RES. DEVELOP VOL. 30 NO. 3 M A Y 1986

LJ1) = 2q2,

= 2q2 + 2pq c pi[2 + length(path,)l
i€FP(N-I)

+ P’ C P , P,P + length(path,)
i€EFP(N-l) , €FP(N-I)

+ length(path,)], (1 5)

L,(1) = P + 2Pq,

L,(N) = P C pi[1 + length(pa th,)]
t€SP(N-I)

+ p 2 C P, C P,P + length(path,)
rEFP(N-I) , € S P (N - l)

+ length(path,)]

+ P q C ~ , [2 + length(path,)l.
,ESP(N- l)

Equation (14) states that the unique failure path for a tree
of depth I has length 2 and probability q2. The recursive
equation (I 5) states that there are three different kinds of
internal failure paths. The shortest one has immediate cutoff
on both branches so it has length 2 and probability q2. The
next type of path has immediate cutoff on one branch, but
succeeds on the other immediate successor, only to fail in
the tree of depth N - 1 below. The last term describes failure
paths that succeed on both immediate successor branches
and fail in their respective subtrees of depth N - 1. Note
that the probability of the last term is p 2 and the probability
of the middle term is 2pq. The factor of 2 in the middle term
arises because there are two different ways to produce such
paths-one with an immediate failure on a left successor and
one with an immediate failure on a right successor.

Equation (1 6) follows from the fact that a search of length
1 can succeed on the left branch with probability p , and a
search of length 2 can succeed on the right branch with
probability qp. The most complicated equation is (1 7). This
equation sums the cost of a successful search of the left
subtree with the cost of a successful search of the right
subtree. Note that the last two terms account for the two
ways a search can succeed in the right subtree. The second
term accounts for the case in which the left branch survives
and the tree beneath it fails. The last term accounts for the
case in which the left branch fails and the search of the left
tree is cut off immediately.

Equations (15) and (17) are very difficult to evaluate as
written, and exact analytic solutions of the equations in this
form are out of the question. Fortunately, both (15) and (17)
simplify. By regrouping terms within the summations and
using the identities

F (N) = c P, 3 (18)

S (N) = c P , , (19)

I € FP(h7

Z€SP(N)

HAROLD S. STONE AND PAOLO SIPALA

24

20

16

12

8

4

0

Tree depth

ch complexity. (a) Probability of
al branch-survival probabilityp.
r of nodes visited on paths that
ional expected number of nodes

we obtain the two recursion equations below that are readily
evaluated:

L,(N) = 24’ + 4pgF(N - 1) + 2pqLJN - 1)

+ 2p2[F(N - 1) 2 + F (N - l) L F (N - l)] , (20)

L,(N) = p [S (N - 1) + L,(N - l)]

+ p2[2F(N - l)S(N - 1)

+ P q P S (N - 1) + L,(N - I)] . (21)

Data for the average search complexity for failures and
successes are plotted in Figure 4. Figure 4(a) gives the
probability for a search to fail as a function of depth and
survival probability. Note the difference in behavior of the
curves above and below the critical value of 0.5 for survival
probability. Figures 4(b) and 4(c) plot the average number of
nodes visited, respectively, for searches that fail and for
searches that succeed. Note that for all values of the cutoff
probability the average length of a search grows at most
linearly in N. The sum of the plots in Figures 4(b) and 4(c) is
the total average search complexity. Recall from Equation
(1 1) that the probabilities used in Equations (18) and (19)
are not conditioned on the success or failure of a search
path. Hence, the expectations in Equations (20) and (21) are
unconditional expectations, and for this case the average
number of nodes visited for successful searches can be less
than the depth of the tree. However, when we use
conditional probabilities in Equation (18), the conditional
expectation corresponding to Equation (21) is at least as
large as the tree depth. This is plotted in Figure 5 together
with the conditional expectation for the failure effort.

The next section derives approximate solutions to
Equations (20) and (21) to show their asymptotic behavior.

4. Analytic approximations
The goal of this section is to derive analytic solutions to the
recurrences (20) and (2 I) . Some of the results derived below
can be obtained from the theory of branching processes [4].
In particular, the failure probability (7) and (8) and failure-
path length (20) are explained by the theory. However,
success-path length (2 1) is not a direct consequence of the
theory because successful paths are not symmetric with
respect to the root of a tree, and symmetry is required for
the published results of the theory. We develop a new
derivation technique that solves both (20) and (21). Because
these equations depend upon search failure probability, we
begin by deriving asymptotic solutions to Equation (8) and
find the rate of convergence to those solutions.

nonlinear recurrence equation (8). Since 0 I F(N) 5 I , we
know that F(N) must approach a limit point or limit cycle
as N becomes large. The possible limit points are values of F
that solve the equation

The failure probability function F(N) satisfies the

F = (4 + pF)’. (22)

There are two solutions:

HAROLD S STOVE AUD PAOLO SIPALA IBM J R t S DEVELOP V O I . 30 NO 3 M A Y iYRh

F = 1 (2 3)

and

F = q2/p2 . (24)

It is not difficult to show that successive iterations of
Equation (22) converge to the smaller of the roots given in
Equations (23) and (24) (cf. Hams [4]).

Figure 6 shows a plot of the limit points of F(N) as a
function of p , the survival probability. For values of survival
probability less than or equal to 0.5, the limiting probability
of search failure is unity, since the expected number of
surviving branches beneath a node is less than I and
decreases exponentially at each successive level in the tree.
For greater values of survival probability, the probability of
search failure falls away from 1, as shown in Figure 6. In this
probability region the expected number of live branches
beneath a node increases exponentially in the depth of the
tree. This derivation agrees with that of Mullikin [5], who
proves the following result. Let F, be defined by

F, = lim F (N)
I%"

and let s(s) be the generating function whose coefficient of sf
is the probability of having i nodes active at the first
generation of the branching process. In this case,

"/(x) = q2 + 2pqs + p s . 2 2
(25)

Mullikin [5] shows that F, is the smallest nonnegative
root of/($) = s and that

F, < I if J'(l) > I ,

= 1 if f ' (1) = 1 andf i s nonlinear,

= 0 if f (1) = 1 andf i s linear,

= 1 if f (1) < 1. (26)

Note thatf(1) = 2 p andfis nonlinear in its argument s if
p > 0.

It is not surprising that the searching effort grows less than
exponentially when the survival probability is less than 0.5.
Regardless of the true depth of the search tree, the region of
the tree visited during a search approaches a finite limit.
What is less obvious is that the search space does not blow
up for high values of p .

goes to I , the search is more likely to succeed in reaching a
leaf with a minimum of backtracking. And since this type of
search terminates with certainty when it reaches a leaf, the
search terminates before it expends a great deal of effort in
visiting much of the tree. In our experiments with an
implementation of Roth's D-algorithm, we found exactly
this behavior. Most of the searches terminated quickly
because the survival probability was essentially near 1. When
we deliberately inserted untestable elements into a logic

From an intuitive point of view, as the survival probability

IBM J RES DEVELOP. VOL. 30 NO 3 M A Y IYXh

L

8
E

D
E

C

B

80

70

60

50

40

30

20

10

0
0 10 20 30 40

Tree depth

i Conditional statistics functions. (a) Average number of nodes visited
6 on paths that fail, given that the search fails. (b) Average number of 1 nodes visited on paths that succeed, given that the search succeeds.

r

Sulvival probability p

B Search-failure probability for trccs o f infinite depth as a function of
f the branch-survival probability / J .

HAROLD S STONE AND PAOLO SIPALA

circuit so as to prevent a successful termination, the
algorithm continued to execute rather quickly, except that
the algorithm generally performed more work than in the
cases that yielded successful termination. We observed that
the algorithm behaved as if the probability of survival were
rather low in these cases, and therefore early cutoff
eliminated lengthy searches.

In order to obtain approximations to functions that
describe the average search complexity, we shall need to
know the rate at which F(N) converges to its asymptotic
limit. The plot in Figure 4(a) suggests that the convergence is
very fast except for p = 0.5. Indeed, this case is exceptional
and exhibits the slowest convergence. Let

F (N) = r - E,, (27)

where r is the asymptotic limit of F(N) , i.e., the smaller of
the roots given in Equations (23) and (24). It follows that

r - = r - 2p(q + pr)c, + p E,.

From (28), when F(N) increases monotonically to its
asymptote, the following difference equation holds:

2 2
(28)

= 2P(q + prlcN - P EN.
2 2

(29)

For the special case ofp = 0.5, Equation (29) can be
rewritten

Equation (30) is related to the equations studied by Aho and
Sloane [6] , who found that solutions grow at a doubly
exponential rate. Their studies, however, did not treat the
equation for the range of constants of interest to us, where
the solution converges asymptotically to a finite limit.
Franklin and Golomb [7] studied a closely related recurrence
equation and discovered an application for the enumeration
of trees. Their studies also explored solutions in regions that
are not of interest to us in this paper. Gottlieb and Schwartz
[8] show that Equation (30) describes the bandwidth of a
multistage interconnection network. Although they evaluate
the recursion in their paper, they do not present a solution
to the recurrence. Kruskal and Snir [9] give a detailed
solution of the recurrence E,+, = 1 - (1 - c, /k)k, and the
solution for k = 2 corresponds to our problem for p = 0.5.
The approach we use here solves the problem for all p and
gives average path lengths not directly computable with the
approach used by Kruskal and Snir. It is similar in spirit to
the solution of almost-linear recurrences described by
Purdom and Brown [101 and Greene and Knuth [1 I] in that
it finds an approximate solution that is perturbed by a small
amount to yield the true solution. In the present case, our
solution is asymptotically exact, and extremely accurate but
not exact for small values of N.

Our approach is to find a continuous equation that is
easily solvable whose solution approximates the solution to 250

1

the discrete equation. We proceed by putting (30) into
difference form, and then move to differential form. From
(30), we find

Let i., be a continuous variable that approximates E,. Using
1, in the continuous analog of (31) yields the equation

.2

d N 4 ’

whose solution is

4
E, = ~

(N + C)’ (33)

where C is a constant of integration. This function converges
very slowly to zero.

Hams [4], we have

lim N[1 - F(N)] = T ,

where u2 is the variance in the number of immediate
successors of a node. Since p = 0.5, the variance for each
successor is the variance for a single Bernoulli trial, which is
pq = 0.25. Because there are two successors, u2 = 2pq = 0.5.
Therefore Hams’ limit for 1 - F(N) is 4/N, which agrees
with (33).

To compare this result with the result obtained from

2
N-CC U

Kruskal and Snir [9] obtain the solution

For p # 0.5, the continuous form of Equation (29) is

- = -{[I - 2p(q + pr)liN + p2 i i l .
d i ,
dN

For p < 0.5 replace q + pr with unity, and find

diN
” dN - -[(1 - 2p)i , + p2e;1.

This equation can be solved by separating variables to place
it in the form

p 2] = -(1 - 2p)dN. (34)

Its solution is

In(;,) - ln[(l - 2p) + p2iN] = -(1 - 2p)N + C(p) , (35)

where C (p) is a function that depends on p but not on N.
The continuous solution is only an approximation of the
discrete solution, so the discrete solution has additional
terms that do not appear in (35). Using the techniques of
Purdom and Brown [I O] for solutions to almost-linear
equations, we can improve the approximation to the discrete

-IAROLD S. STONE AND F ’AOLO SIPALA IBM J . RES. DEVELOP. VOL 30 NO. 3 MAY 1986

solution as given below:

In(c,) - ln[(1 - 2 p) + p’c,] = Nln(2p) + C(p). (36)

Note that

ln(2p) = In11 - (I - 2p) l = -(I - 2 p) + O[(I - 2p)7,

so that the difference between Equations (35) and (36) can
be attributed to higher-order terms in the discrete solution
that are absent in the continuous solution. Equation (36) is
an extremely accurate approximation, and differs from the
exact solution by terms that quickly go to zero as N
increases. To solve Equation (36) for E* we first exponentiate
to obtain

where K (p) is a function independent of N . Solving for cN

yields

which indicates that the convergence is exponential in N.
For p > 0.5 the equation has the similar form

(37)

which again indicates that convergence is exponential in N .
Therefore the only case for which convergence is not
exponential is the case p = 0.5. This is shown graphically in
Figure 4(a).

An approximation to the function K (p) is easily obtained
from Equations (37) and (38) by setting N = 1 and equating
the expressions in those equations to the expressions for e, .

After making the substitutions and solving for K(p) we
obtain

and

When these expressions for K(p) are substituted back into
(37) and (38), the resulting equations yield extremely
accurate approximations for E * . This convergence is
predicted by Harris [4. Sec. 8.31 in his formula

F, - s
lim c,.[,J’(F,)]-” = Is1 < 1 ,
N; m 1 + (F , - s)(u(s)

where,/(s) is the generating function defined by Equation
(25) and a(s) is a function of s that is analytic in the region
I s I < F, and bounded for I s 1 5 I . Set s = 0 in Equation
(4 1) and note that

IBM J. RES DEVELOP. VOL. 30 NO. 3 MAY 1986

f’(F-1 = 2P(l - P) + 2P2F,, (42)

Then, by using the values from (23) and (24) for F,, we
discover

and

(43)

(44)

These equations are similar to (37) and (38) in form, but
because (~ (0) is not given explicitly, Harris’ equations cannot
be directly compared to (37) and (38). Also. note that
Equations (37)-(40) are valid approximations for all N ,
rather than valid only in the limit.

Now we can return to the original goal, the derivation of
the asymptotic estimates of average complexity. First, let us
reexamine Equation (20). This can be rewritten as

L F (N) = 2 F (N) + 2 p [4 + p F (N - l)] L F (N - 1). (45)

Instead of using the exact value of F(N) we can replace F(N)
with its asymptotic value and obtain an approximation for
Equation (45) that yields good estimates for L,(N). Exact
expressions for the solution of Equation (45) can be obtained
by using techniques described by Purdom and Brown [101
for the solution of almost-linear recurrences. The leading
terms of the solution are obtained by solving the linear
recurrence, and the higher-order terms vanish as N increases.
The accuracy of the approximation depends on how quickly
F(N) converges to its asymptotic limit. Numerical studies
have shown that the approximations are excellent even for
values of N as small as 10. Assuming that p is less than 0.5,
we substitute Equation (23) for F(N) , and Equation (45)
becomes

L A N) = 2 + 2pLF(N - I) ,

which has the solution

L J N) = (2p)”-lLF(1) + 2 [I ; “;-‘I
L

T-
I - 2p’ (46)

For p > 0.5 we substitute Equation (24) in (45) and obtain

LF(N) = 2 7 + 2qL,(N - 1). (I2
(47)

Y

The solution to this equation is

LF(N) = (2q)””LF(1) + 2
1 - (2q)“” [1 - 2 4 I($)

25 1

HAROLD S STONE 4 U D PAOLO SIPALA

The curves in Figures 4(b) and 4(c) exhibit the predicted
behavior for p # 0.5 because F (N) converges sufficiently fast
for its approximations to be rather good. For p = 0.5 we
must look specifically at the rate of convergence of F(N) .
Substituting Equations (27) and (33) into (45) and settingp
equal to 0.5 yields the equation

L A N) = 2 - - + (I -
N + C N - I + C)LF(N - 1) . (49)

By putting this into difference form similar to Equation (31),
we obtain

Proceeding as before, we move to the continuous solution by
solving

The solution to this equation approaches a linear function as
N becomes large. To find that linear function, substitute
L A N) = kN into Equation (5 I) . This produces the equation

k = 2 - - - 8 2k(N - 1)
N + C N - 1 + C '

or

2
3 + (C - 3)/Ar

k = + 0 (1 / N)

= 213.

Observe that the slope of the curve for p = 0.5 in Figure 4(b)
approaches 213, in agreement with this analysis.

branching processes. According to Karp and Pearl [3], the
number of nodes in a finite tree produced by a branching
process is given by

lim (expected number of internal nodes in a jinite tree}

This result is also in agreement with the theory of

N"

N
3

= - if f (F J = I , (53)

wheref(s) is the generating function from Equation (25). In
our case,f(F,) = 2p(q + pF,). We wish to find LF(N) , the
number of branches in the search tree which is exactly twice
the number of internal nodes counted by (53). The average
number of nodes visited is computed by multiplying this
count by F,, the probability that the branching tree is finite.
Hence,

2N
3

= - if p = 0.5,

=-
I - 2p if p < 0.5. (54)

Compare Equation (54) with Equations (46), (48), and (52).
Karp and Pearl do not give a derivation of the formula for
the case p = 0.5, so we are not sure whether their reasoning
is similar to the reasoning applied in this paper.

A major advantage of the approach proposed in this paper
is that it can be used to solve Equation (2 1) for L,(F), which
is a function that is not directly treated by the theory of
branching processes. To find the asymptotic behavior of
Equation (2 1) for p < 0.5, we set F(N) = 1 and S (N) = 0,
their asymptotic values. So Equation (2 1) becomes

L,(N) = (P + P 2 + P4)L,(N - 1)

= 2pL,(N - I) ,

which has as its solution

Ls(N) = (~ P) ~ " L , (I) . (5 5)

This function goes to 0 exponentially in N. For p > 0.5, we
substitute

F (N) = 1 - S (N) = q2/p2

and

to obtain, after several algebraic simplifications,

L,(N) = L,(N - 1) + l /p .

This equation has the solution

L,(N) = L,(1) + (N - l) /p. (56)

Therefore the value of Equation (2 1) asymptotically
approaches a linear function of depth whose slope vanes
inversely with the survival probability. This analysis is
confirmed by the curves plotted in Figure 4(c).

Equation (52). Specifically, we assume that
For p = 0.5 we use the same approach used to derive

4
(N + C)'

F (N) = 1 - ~

4
(N + C) '

S (N) = ~

LF(N) = 2N/3,

and

L,(N) = kN.

HAROLD S STONE AND PAOLO SIPALA IBM J RES. DEVELOP VOL. 30 NO. 3 M A Y 19x6

After tedious manipulation we discover that k = 1/3. Figure
4(c) shows that Ls(N) for p = 0.5 is linear, with a slope of
1/3 for N 2 10. The figure shows that the curve does not go
through the origin, so that a good approximation must add a
constant offset to the linear slope, and thus

Ls(N) = N/3 + C (5 7)

for some constant C.
A summary of the formulas derived in this section appears

in Table 1.

5. Effects of leaf probabilities
We have shown that an algorithm that terminates when it
encounters the first leaf has a low average complexity
provided that the cutoff-probability distribution is uniform
across the tree. But the algorithm in Section 2 does not
terminate at its first leaf, and it has an average complexity
that could grow exponentially in the depth of the tree. In this
section we consider what happens when the leaf nodes have
a different probability of cutoff than do the internal nodes of
the tree. We discover that the average number of nodes
visited does increase in some cases, but the function remains
a linear function of the depth.

This model presumes that the probability of success at a
leaf is the probability po, which is constant for all leaves in
the tree and need not be equal to the survival probability of
an internal branch. To find the average number of nodes
visited, we simply substitute different initial values in
Equations (46) and (56). Note that the dependence on the
initial value of Equation (46) dies out exponentially for
sufficiently deep trees, whereas the initial value of Equation
(5 6) provides a constant offset for the solution. When we
evaluate the functions themselves as described in Equations
(8), (20), and (2 1) using po and 40 = 1 - po in place of p and
4, we obtain the plots shown in Figures 7,8, and 9. Figure 7
shows the plots for a sdrvival probability of 0.5. Note that all
of the curves for the probability of search failure converge to
a common asymptote. Shallow trees behave differently
because the leaf nodes are close to the root, and the different
probabilities of success at the leaves strongly influence the
probability of failure of a search of the tree. But deep trees
do not depend strongly on the leaf probabilities, because if a
search fails, it is most likely to fail high up in the tree
without ever visiting a leaf. The curves for the functions
LF(N) and Ls(N) asymptotically become linear and parallel
to the curve for which the leaf probability is equal to the
survival probability. The offset of an asymptotic curve from
the asymptote for p = 0.5 is a function of the leaf-success
probability. The plots do not show all of the slopes becoming
equal because convergence is very slow for this special case
of survival probability. If the curves were extended to show
greater (and less realistic) depths, the curves would be
parallel straight lines. Figures 8 and 9 show similar curves
for higher survival probabilities. We expect to see a greater

Table 1 Summary of formulas: Mean values of search functions.

impact from the leaf-survival probabilities because with high
probability the search reaches the leaves of the tree. We can
set po to a low value to force failure to occur at a leaf and
increase the probability of backtracking once a leaf is
reached. Indeed the curves show this effect. But trees with
depth greater than 10 to 20 exhibit almost no dependence on
the leaf-success probability in the graphs for F (N) and
L,(N). The behavior of the failure-effort function agrees with
the analysis above. Similarly, the curves for the success-effort
function Ls(N) asymptotically become parallel straight lines.
The slope of these lines is inversely proportional to N , which
is consistent with our derivations. Consequently, the analyses
and the plots confirm that this model of search leads to
algorithms that examine a number of nodes that grows at
most linearly in the depth of the tree for all values of the
model’s parameters for sufficiently great tree depths.

not depend strongly on the assumption that cutoff
probabilities are uniform throughout a tree, nor does it
depend strongly on the search terminating at the first leaf. If
over a small neighborhood the cutoff probability q exceeds
0.5, within that neighborhood the search will almost surely
cut off, regardless of the probabilities of nodes that lie

We conclude that the model is quite robust since it does

I B M J . RES. t>F.Vtl.OP VOL 3 0 YO 1 M A Y 14x6 HAROLD S. STOhE AND P4OLO SIP4LA

After tedious manipulation we discover that k = 1/3. Figure
4(c) shows that Ls(N) for p = 0.5 is linear, with a slope of
1/3 for N 2 10. The figure shows that the curve does not go
through the origin, so that a good approximation must add a
constant offset to the linear slope, and thus

Ls(N) = N/3 + C (5 7)

for some constant C.
A summary of the formulas derived in this section appears

in Table 1.

5. Effects of leaf probabilities
We have shown that an algorithm that terminates when it
encounters the first leaf has a low average complexity
provided that the cutoff-probability distribution is uniform
across the tree. But the algorithm in Section 2 does not
terminate at its first leaf, and it has an average complexity
that could grow exponentially in the depth of the tree. In this
section we consider what happens when the leaf nodes have
a different probability of cutoff than do the internal nodes of
the tree. We discover that the average number of nodes
visited does increase in some cases, but the function remains
a linear function of the depth.

This model presumes that the probability of success at a
leaf is the probability po, which is constant for all leaves in
the tree and need not be equal to the survival probability of
an internal branch. To find the average number of nodes
visited, we simply substitute different initial values in
Equations (46) and (56). Note that the dependence on the
initial value of Equation (46) dies out exponentially for
sufficiently deep trees, whereas the initial value of Equation
(5 6) provides a constant offset for the solution. When we
evaluate the functions themselves as described in Equations
(8), (20), and (2 1) using po and 40 = 1 - po in place of p and
4, we obtain the plots shown in Figures 7,8, and 9. Figure 7
shows the plots for a sdrvival probability of 0.5. Note that all
of the curves for the probability of search failure converge to
a common asymptote. Shallow trees behave differently
because the leaf nodes are close to the root, and the different
probabilities of success at the leaves strongly influence the
probability of failure of a search of the tree. But deep trees
do not depend strongly on the leaf probabilities, because if a
search fails, it is most likely to fail high up in the tree
without ever visiting a leaf. The curves for the functions
LF(N) and Ls(N) asymptotically become linear and parallel
to the curve for which the leaf probability is equal to the
survival probability. The offset of an asymptotic curve from
the asymptote for p = 0.5 is a function of the leaf-success
probability. The plots do not show all of the slopes becoming
equal because convergence is very slow for this special case
of survival probability. If the curves were extended to show
greater (and less realistic) depths, the curves would be
parallel straight lines. Figures 8 and 9 show similar curves
for higher survival probabilities. We expect to see a greater

Table 1 Summary of formulas: Mean values of search functions.

impact from the leaf-survival probabilities because with high
probability the search reaches the leaves of the tree. We can
set po to a low value to force failure to occur at a leaf and
increase the probability of backtracking once a leaf is
reached. Indeed the curves show this effect. But trees with
depth greater than 10 to 20 exhibit almost no dependence on
the leaf-success probability in the graphs for F (N) and
L,(N). The behavior of the failure-effort function agrees with
the analysis above. Similarly, the curves for the success-effort
function Ls(N) asymptotically become parallel straight lines.
The slope of these lines is inversely proportional to N , which
is consistent with our derivations. Consequently, the analyses
and the plots confirm that this model of search leads to
algorithms that examine a number of nodes that grows at
most linearly in the depth of the tree for all values of the
model’s parameters for sufficiently great tree depths.

not depend strongly on the assumption that cutoff
probabilities are uniform throughout a tree, nor does it
depend strongly on the search terminating at the first leaf. If
over a small neighborhood the cutoff probability q exceeds
0.5, within that neighborhood the search will almost surely
cut off, regardless of the probabilities of nodes that lie

We conclude that the model is quite robust since it does

I B M J . RES. t>F.Vtl.OP VOL 3 0 YO 1 M A Y 14x6 HAROLD S. STOhE AND P4OLO SIP4LA

0.6

po=o.l
p0=0.3

p0=0.5

p0=0.7

p0=0.9

16

14

12

IO

8

6

4

2

0
0 10 20 30 40

Tree depth Tree depth

Search statistics for branch-survival probability p =0.5. (a) Search-
failure probability as a function of leaf-survival probability po .
(b) Expected number of nodes visited on paths that fail as a function

of leaf-survival probability po. (c) Expected number of nodes visited

beyond the cutoff points. When the search is far enough adds a cost to the search that is independent of N but does
from regions of the tree that have markedly different cutoff depend on the probability of failing at a leaf node. Hence, by
probabilities, the remote regions have little influence on the dropping the two assumptions of uniform cutoff probability
search. Similarly, if a search reaches a leaf node and does not within the tree and success on encountering the first leaf, we
succeed, it backtracks into the tree and seeks another leaf still have a search that visits an average number of nodes
node. The cost of backtracking and seeking additional leaves that grows linearly in the depth of the tree.

IBM J . RES. DEVELOP. VOL. 30 NO 3 MAY 1986

The critical aspect of the search algorithm that leads to
this efficient behavior is that there does exist a cutoff
probability that can eliminate large sections of the search
tree. Therefore a search either fails quickly, or quickly
reaches the leaves of the search tree where it examines
possible solutions. If the search backtracks to the interior of
the search tree, the cutoff probability eliminates unlikely
nodes and quickly takes the search to other likely solutions
at the leaves of the tree. The search basically does not
expend much time in the interior of the tree examining
improbable paths.

6. Derivation of variance
This section derives the variance of the averages of the
functions defined in Section 4. The objective is to show that
the averages are quite meaningful because the variances are
very small. In some cases, the variances depend only on p
and are independent of the depth of the tree. We use the
same method used in Section 4 to solve recurrence equations
that describe the variance functions. The details are quite
complicated, however, and are generally omitted here. The
results have been checked for accuracy with the aid of a
symbolic expression analyzer.

straightfonvard, the details are rather complicated, so we
state only the method and the final results. The basic idea
follows the techniques of Section 3, in which we formulate
recursion equations for the variance of the failure-effort and
success-effort functions. The recurrences depend on the
functions F(N) , S(N) , LF(N) , and Ls(N) defined in Section
3. But because each of these functions converges to an
asymptotic function of N , as given in Table I , we can
replace the function with its asymptotic formula and obtain
an approximation for the recurrence for the variance
formulas. The recurrence obtained by using asymptotic
approximations is far simpler than the original recurrence,
and it reduces to very simple expressions in most of the
cases. With this structure in mind, here is a derivation for
the function V,(N) , the variance of the average failure-effort
function LF(N) :

VF(N) = q222

Although the method for computing variance is

+ 2qP C ~ , [2 + /ength(path,)12

+ pZ c P , c pj[2 + /ength(path,)

+ /ength(path,)~~

r E F 4 N - I)

lEFP(N-I) ,EFP(N-I)

- [L F (N) 1 2 . (5 8)

Equation (5 8) expresses the variance as the mean square
minus the square of the mean, where the mean square is
made up of the first three terms of the equation. These three

0 2 4 6 8 10 12

0 10 20 30 40

Tree depth

Search statistics for branch-survival probability p =0.9. (a) Search-
failure probability as a function of leaf-survival probability p O .
(b) Expected number of nodes visited on paths that fail as a function
of leaf-survival probabilityp,,. (c) Expected number of nodes visited
on paths that succeed as a function of leaf-survival probability pO.

terms correspond to those of Equation (1 S), except that the
path lengths in Equation (5 8) are the squares of those in
Equation (1 5). We use the same notation in Equation (5 8) as
in Equation (1 S) , so that the summations are taken over all
failure paths in a tree of depth N - I . To evaluate Equation
(5 8) we square the various terms and perform the

IBM J RES. DEVELOP VOL. 30 NO. 3 MAY 1986 HAROLD S STONE AND PAOLO SIPALA

summations, replacing the results as necessary with the
functions F(N - I) , LF(N - l), and a new function,
QF(N - I) , defined as the mean square failure path for trees
of depth N - I . This substitution yields, after some algebraic
manipulation,

VAN) = 2[q + pF(N - 1)](2q + p[2F(N - 1)

+ 4 L d N - 1) + QF(N - I)])

+ 2p2[LF(N - l)] ’ - [LF(N)J2. (59)

Equation (59) can be simplified slightly by using Equation
(20) to obtain

V F (N) = 2‘%(N)

+ 2 P [q + PF(N - 1) 1 [2 L F (N - 1) + QF(N - 111

+ 2p2[LF(N - ‘) I 2 - [LF(N)12’ (60)

Since, by definition,

VF(N - 1) = QF(N - 1) - [L J N - 1)1’$ (61)

after substitution of (6 1) into (60) and some algebraic
reduction we have

VAN) = 2 P [q + PF(N -])I VAN - 1) + &(N)[2 - LAN)]

+ 2pLF(N - ‘) (P U N - l)

+ [q + pF(N - 1)][2 + LAN - I)]) .

(62)

Equation (62) is in a form that can be evaluated easily when
we replace the functions with their asymptotes. From Table
1, forp < 0.5 we discover that Equation (62) approaches

‘F(N) E 2P(q + P)‘AN - I) + Ep 2

+ 2 p - -
1 - 2 p [’ 1 - 2 p + (4 + P) (2 + Ad]

The general form of Equation (63) is essentially the same as

VF(N) = a VAN - 1) + P, (64)

where a and P are functions of p but not of N. The solution
to Equation (64) is

For this case, the coefficient (Y = 2 p < 1, so the first term
goes to 0 exponentially, and the limit of the second term is
P/(I - a), from which we obtain

For the case for which p > 0.5, we obtain an equation
similar to (64) except that

a = 2q (67)

and

Since a = 2q < 1, the first term of the solution in Equation
(65) vanishes exponentially in N, and the asymptotic
solution is

where (Y and P are given by Equations (67) and (68).
The variance for the case for p = 0.5 is somewhat more

challenging: The analysis is complicated because many terms
depend on N in this case, whereas they are independent of N
in the other two cases. The analysis technique we propose is
to examine Equation (62) with all functional dependencies
replaced by their asymptotic values. Specifically we use the
following four relations from Table 1 :

F (N) = 1 ”
4
N ’

4
S (N) = 1 - F (N) = - N ’

L A N) = -, 2 N
3

and

N
L,(N) = -. 3

When we use these approximations together with
p = q = 0.5 and substitute into (62), we obtain, after
regrouping terms,

N - 3 2 N’
‘F(N) = VF(N - 1) + - + O(N). 9

The solution to Equation (70) is

2 N

VF(N) = 9(N - 1)(N - 2) r=3
(i - 2)(i - 1)z’

+ O (N 2)

= $+ O(N’).

In this derivation, we have concentrated on the dominant
terms. The terms of lower order can be derived as well
simply by carrying through the tedious detail. Note that the
variance grows as the cube of N while the mean grows only
linearly with N.

HAROLD S. STONE AND PAOLO SIPALA IBM J . RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

This completes the derivation of the variance of the failure
effort for all values of p. Only the case p = 0.5 has a variance
that depends on the depth of the tree. The variance for the
cases for which p # 0.5 asymptotically approaches a function
that depends on p only and not on the depth of the search
tree. Consequently, the observed value of L A N) in these
cases is expected to fall within a bounded region from the
mean value where the bound is independent of the depth of
the tree.

The derivation of V,(N), the variance of the success
function, follows in a similar fashion. With some algebraic
manipulation we can produce the recurrence equation

V,(N) = p[1 + 9 + pF(N - l)]Vs (N - 1)

+ P [1 + q + p F (N - 111

X (4 S (N - I) + L,(N - 1)[4 + L,(N - I)])

+ 2p[pLJN - 1) - 1][2S(N - 1) + L,(N - I)]

+ pS(N - I) (1 + p V A N - I) + p[L&N - I)]’)

- [L,(N)I2. (72)

In spite of the complexity of (72), it simplifies greatly when
we supply the asymptotic values from Table 1. For the case
p < 0.5, since the asymptotic limit of S(N) and L,(N) is 0,
we have

VAN) = P(1 + 9 + P)V,(N - 1)

= 2pV,(N- I).

The solution to this equation is

V,(N) = (2pyN-’)Vs(1), (73)

which goes to 0 exponentially in N.
For the case p > 0.5, the equation becomes messy because

the terms in the equation do not vanish. Most terms
converge to asymptotic functions that depend on p only and
not on N. The function Ls(N) , however, converges
asymptotically to N/p. To solve Equation (73), it is necessary
to group the terms of (72) according to whether they depend
on L,(N) or not. When we do this and note that

L , (N - l t - L s (N) 2 = - - + . . . ,
2 (N - 1)

P

we find that Equation (72) eventually simplifies to

(74)

where (Y is a function of p and is independent of N. We can
solve Equation (74) by using techniques described above for
Equation (70), and we obtain

(75)

Table 2 Summary of formulas: Variance of search functions.

Case 1: p < 0.5

Vs(N) 0 as N -+ m

Case 2: p = 0.5

V F (N) - 45 as N + m
2 ~ ’

 IN^
V,(N) = - as N m

180

Case 3: p > 0.5

For the case p = 0.5, after substituting the asymptotic
values used to derive Equation (70), we obtain

N - 2 7 N 2
N - 1 VAN) = ~

V,(N - 1) + - + O(N).
45 (76)

The solution to Equation (76) is

2 (i - 1)z’
7 N

vs(N) = 45(N - 1) 1=2

+ O(N’)

7 N 3
180

- ” + O(N’).

A summary of the variance formulas appears in Table 2.

(77)

7. Summary and conclusions
We have shown two models for searching trees. The first
model has no internal cutoff and does not terminate at the
first leaf. The discussion shows that this model can yield an
average search effort that grows only linearly in the depth of
the tree if the search is very clever at picking the branch to
examine first. If the search is not particularly clever in
making this choice, the average search complexity will grow
exponentially in the depth of the tree.

The second model is more interesting because it shows a
way for building efficient search algorithms for NP-complete
problems. The search algorithm is assumed to be able to
identify fruitless search paths early and to prune these from

IBM J . RES. DEVELOP VOL. 30 NO. 3 MAY 1986 HAROLD S . STONE AYD PAOLO SIPALA

the search tree. It also requires the search to terminate
successfully at the first leaf node. We presume that at
each node in the tree the search algorithm performs a
computation that decides whether to cut off a branch. If the
cost of this calculation grows only polynomially in the depth
of the tree, the average complexity of the total search will be
bounded by a polynomial in the depth of the tree, which is
substantially better than the exponential bound for the worst
case. We also explored the effect of different leaf-success
probabilities on the average search effort, and we discovered
that the linear nature of the bounds is not affected by leaf-
success probability, although the effort does depend on the
probability of success at each leaf. Hence, the fact that the
model terminates at the first leaf encountered is not a critical
factor in the linear behavior of the complexity functions we
analyzed. What appears to be the crucial element of the
model is the internal cutoff probability. Many questions
remain open about search models for which cutoff
probability varies with the depth of the tree, and finding
accurate probability models for existing search algorithms
that have internal cutoff.

While the results of this paper may have direct influence
on some search algorithms, there are many types of search
algorithms for which no obvious cutoff computation is
available. For example, the Traveling Salesman problem
lends itself quite well to various branch-and-bound strategies
that take into account the lengths of paths. The numerical
measure gives a natural way of ordering partial solutions by
their “quality.” But what can be done to guide a theorem
prover? Are there reasonable functions that can tell a
program when to abandon or defer unpromising search
paths? If so, then there may be ways to build theorem
provers whose average performance is very efficient.

References
1. D. R. Smith, “Random Trees and the Analysis of Branch and

Bound Procedures,” J. ACM 31, No. 1, 163-188 (January
1984).

Algorithms to Compute Tests to Detect and Distinguish
Between Failures in Logic Circuits,” IEEE Trans. Electron.
Comouters EC-16. 567-580 (1967).

2. J. P. Roth, W. G. Bouricius, and P. R. Schneider, “Programmed

3.

4.

5.

6.

I .

8.

9.

R. M. Karp and J: Pearl, “Searching for an Optimal Path in a
Tree with Random Costs,” Artif: Intell. 21, 99-1 16 (1983).
T. Hams, The Theory of Branching Processes, Springer-Verlag,
Berlin, 1963.
T. W. Mullikin, “Branching Processes in Neutron Transport
Theory,” Probabilistic Methods in Applied Mathematics, A. T.
Bharucha-Reid, Ed., Academic Press, Inc., New York, 1968.
A. V. Aho and N. J. A. Sloane, “Some Doubly Exponential
Sequences,” Fibonacci Quart. 11, No. 4,429-431 (1973).
J. N. Franklin and S. W. Golomb, “A Function-Theoretic
Approach to the Study of Nonlinear Recurring Sequences,”
PaciJic J. Math. 56, No. 2, 455-468 (1975).
A. Gottlieb and J. T. Schwartz, “Networks and Algorithms for
Very-Large-Scale Parallel Computation,” Computer 15, No. 1,

C. P. Kruskal and M. Snir, “The Performance of Multistage
Interconnection Networks for Multiprocessors,” IEEE Trans.
ComputersC-32, No. 12, 1091-1098 (December 1983).

\ ,

27-36 (1982).

258

HAROLD S. STONE AND PAOLO SIPALA

10. P. W. Purdom, Jr. and C. A. Brown, The Analysis of
Algorithms, Holt, Rinehart, and Winston, New York, 1985.

1 I . D. H. Greene and D. E. Knuth, Mathematics for the Analysis of
Algorithms, Birkhauser Publishing Co., Boston, 198 1.

Received November 13, 1985; accepted for publication
January 13, 1986

Harold S . Stone IBM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Stone is the manager of
advanced architecture studies at the IBM Thomas J. Watson
Research Center. He has been a faculty member at the University of
Massachusetts and Stanford University and has held visiting faculty
appointments at institutions throughout the world. Dr. Stone
received a Ph.D. in electrical engineering in 1963 from the
University of California at Berkeley. His research contributions have
been primarily in computer architecture and digital systems design.
He is the author, coauthor, or editor of six textbooks. As a
consulting editor to Addison-Wesley, McGraw-Hill, and University
Microfilms, Dr. Stone has produced four series which contain more
than seventy titles in all areas of computer science and engineering.
He has been active in both the Association for Computing
Machinery and the Institute of Electrical and Electronics Engineers,
and has served as Technical Editor of Computer Magazine and
Governing Board Member of the IEEE Computer Society.

Pa010 Sipala University of Trieste, Department of Electrical
Engineering, Via A. Valerio, 10, Trieste, Italy 34127. Dr. Sipala
received a Ph.D. in electronic engineering from the University of
Padua, Italy, in 1964. He then joined the Department of Electrical
Engineering of the University of Trieste, Italy, where he is currently
an Associate Professor. He has spent sabbatical periods in England
(University of Newcastle, Imperial College of London) and in the
U.S.A. (University of Massachusetts, IBM Thomas J. Watson
Research Center). The present paper was conceived and written
during his sabbatical with IBM. His main professional interests are
in the fields of automata theory and formal languages.

IBM J . RES. DEVELOP. \ ‘OL. 30 NO. 3 MAY 1986

