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This  paper  analyzes  two  algorithms  for  depth- 
first search  of  binary  trees.  The first algorithm 
uses  a  search  strategy  that  terminates  the 
search  when  a  successful  leaf is reached.  The 
algorithm  does  not  use  internal  cutoff to restrict 
the  search  space.  If N is the  depth of the  tree, 
then  the  average  number  of  nodes visited by th; 
algorithm is as  low  as O ( N )  and  as  high  as O(2 ) 
depending  only  on  the  value  of  the  probability 
parameter  that  characterizes  the  search.  The 
second  search  algorithm  uses  backtracking  with 
cutoff. A decision to cut off the  search  at  a  node 
eliminates  the  entire  subtree  below  that  node 
from  further  consideration.  The  surprising  result 
for this algorithm is that  the  average number of 
nodes visited grows  linearly in the  depth  of  the 
tree,  regardless  of  the  cutoff  probability. If the 
cutoff  probability is high,  then  the  search  has  a 
high  probability  of failing without  examining 
much  of the  tree. If the  cutoff  probability is low, 
then  the  search  has  a  high  probability  of 
succeeding on the  leftmost  path  of  the  tree 
without  performing  extensive  backtracking.  This 
model  sheds light on  why  some instances of 
NP-complete  problems  are  solvable in practice 
with a low  average  complexity. 
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1. Introduction 
This paper finds the average complexity of two kinds of 
depth-first search algorithms. The problem is of interest 
because the traditional worst-case analyses have  shown that 
the complexity grows exponentially in the depth of the 
search  tree.  However, there exist interesting practical 
problems whose  average complexity grows far less quickly. 
For example, the Traveling Salesman problem is known to 
be NP-complete and therefore is in the class  of problems for 
which there exists no known algorithm whose  worst-case 
complexity grows  less than exponentially in the size  of the 
problem. Smith [ I ]  studied the Traveling Salesman problem 
and found that the average complexity of a branch-and- 
bound (ordered depth-first) algorithm for this problem is 
only O[N3 In (N)] ,  where N is the number of nodes in the 
graph. Since the natural size  of the problem is the number of 
edges,  which  grows as the square of the number of nodes, the 
average complexity grows  less than quadratically in the size 
of the problem. Roth's D-algorithm [2] for generating test 
patterns for  logic circuits discovers  test patterns through an 
efficient backtrack search procedure. After  years of extensive 
use, the overwhelming evidence is that each test generation 
cycle runs in an average time that grows  linearly  with the 
number of  logic gates. The purpose of this paper is to 
explore a mathematical model that offers a partial 
explanation for that low  average complexity. 

probabilistic behavior of a depth-first search. The objective is 
to estimate the average complexity of  real  programs.  While 
the results  from the models give an intuitive picture of the 
behavior of  depth-first search, they are generic  models and 

In this paper we examine two different models of 
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do not model specific algorithms.  Hence,  particular depth- 
first algorithms may behave quite differently from the 
algorithms described in  this  paper, and  our results will not 
hold  for  such  algorithms. 

The first of the  two models is depth-first search without 
internal cutoff. This algorithm explores a decision path  from 
the root  of the search tree to a leaf node  in the tree. At the 
leaf node,  the algorithm determines whether the search is 
successful. If so, the search terminates. If not, the algorithm 
backtracks  through the search tree, continues until  it reaches 
another leaf node, and repeats this process until  it terminates 
with success or until all of the leaves are exhausted. Our 
analysis shows that  the average number of nodes visited is a 
function that varies from being linear  in the  depth of the tree 
to being exponential  in the  depth of the tree,  depending on 
the probability  of making good decisions on  the  path  to a 
leaf. 

The second  algorithm  exploits internal cutoff to eliminate 
searching of entire subtrees and  terminates  at  the first leaf 
node  encountered. The analysis shows that  the average 
number of nodes visited by this algorithm tends  to grow 
linearly in the  depth of the tree  rather than exponentially, 
regardless of the probability  of cutoff. This surprising result 
is due  to  the fact that for high cutoff probability very little of 
the tree is actually examined,  and  the search has a high 
probability  of failing. For low cutoff probability, the search 
tends  to take successful paths, and with high probability the 
search succeeds in reaching a leaf node  without  having to 
examine most of the branches  in the tree. 

Although the  number of nodes visited grows only linearly 
in the  depth of the tree, because the cutoff computation may 
be a  function of the  depth of the tree, the average complexity 
of the search algorithm can grow much faster than linearly 
with the depth of the tree. For example,  a  particularly 
expensive way of implementing cutoff is to decide which 
node to visit at level i by examining all 2‘ nodes at level i. In 
this case the cutoff computation grows exponentially  in the 
depth of the tree, and  the search is actually a breadth-first 
search. If the complexity of the cutoff computation is a 
polynomial  function  of  the depth of the tree, then  our model 
shows that  the average complexity  of the full search 
algorithm is a  polynomial  function  of the  depth of the tree. 

Critical assumptions of the analysis are  that  the cutoff 
probability and  the branching  factor are uniform throughout 
the search tree. We do not claim that our results hold for 
problems where these assumptions  are violated. In the N- 
Queens problem, for example, the branching  factor  near the 
root of the search tree is much higher than near the leaves of 
the search tree. Such  problems  may well  yield average 
complexity that grows exponentially  in the  depth of the tree. 

Karp  and Pearl [3] have examined a related algorithm 
model and obtained  similar results, although our analytical 
techniques are  quite different. The  methods in  this  paper are 
constructive and yield very close approximations  to  the exact 

functions that describe the search behavior  as  a  function  of 
tree depth,  as opposed to  the asymptotic values of the 
functions published by Karp  and Pearl. Also, the 
methodology in  this  paper yields results for the average 
length of successful search paths, which are  not directly 
obtainable  from the theory of branching processes on which 
the work of Karp  and Pearl is based. 

searches. Branch-and-bound  algorithms  such as those 
described by Smith [ 11 have the property that they visit 
many nodes in  a tree before deciding  on  a specific node to 
“expand” for further processing. Branch-and-bound 
algorithms  can be viewed as best-first algorithms  rather than 
depth-first algorithms.  These  algorithms  exhibit an efficient 
cutoff process much like the cutoff explored in  this  paper, 
and as  such  the analyses contained here may be useful in 
characterizing  these  algorithms. 

The results presented here are rather  robust and  appear  to 
be insensitive to small perturbations in the  underlying 
model. We show in  this  paper that  the results do  not change 
qualitatively when we relax the  constraint  that  the first leaf 
node reached must  produce  a success. We also derive 
expressions for the variance in the  number of nodes visited, 
and find that in several cases the variance is independent of 
the depth of the tree, so that  the calculated value of the 
mean number of nodes visited is a very good  estimate  of the 
observed values in  those cases. The highest growth rate  for 
the variance is O( N 3 )  for cases in which the average number 
of nodes visited grows as O( N ) .  The ratio of standard 
deviation to mean  in  these cases grows as O(No”), which 
places a reasonably tight constraint  on  the observed values of 
the  number of nodes visited, although the observed values 
are  not as tightly constrained as for cases that have a 
variance that does  not  depend on  the depth N. 

The analysis is not necessarily limited to strictly depth-first 

The next section discusses the model with no internal 
cutoff. In Section 3 we describe the model that has  internal 
cutoff. The analysis of this  model  appears in Section 4, and 
in Section 5 we describe a  variation in which the leaf-success 
probabilities differ from the success probabilities of internal 
branches. Section 6 derives the variance on the functions 
that describe average search effort. Conclusions and 
recommendations  appear  in  the final section. 

2. A search  strategy  with  termination at leaf 
nodes 
The model that we use for this  problem is illustrated in 
Figure 1. We call it the “hacker’s problem” because it 
models the search for a password to enter  a computer system 
illegally. To make an illegal entry, the prober guesses at each 
character in a password until  a  candidate trial is built. At 
this  point the prober  submits the  candidate  and is told 
whether the password is correct or not. In our model, we use 
binary characters, and we presume that  the prober searches 
by choosing in each position the most likely bit for that 243 
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' rch  with no internal  cutoff: 
ecision  node;  (b)  Probabilities 

position. If a password fails, the prober backs up  and 
changes the most  recent  decision. In Figure 1 each decision 
has  a more probable path  (the left-hand path),  and a less 
probable path  (the right-hand path).  The search strategy 
starts at  the root of the tree  shown  in the figure and 
progresses N levels in the tree,  making N decisions  along the 
way, one  at each level. The leaves of the tree are decision 
points. When  the algorithm reaches a leaf, it  has  completely 
characterized  a possible solution  (password)  through the 
sequence of N  decisions made between the root and  the leaf 
node. The algorithm next consults an oracle to  determine 
whether  this  solution is acceptable. The oracle says "yes" or 
"no," where the probability  distribution on  the answer 
depends  only  on  the  number of high- and low-probability 
branches on  the path back to  the root of the tree. 

The detailed assumptions of this model are  the following: 

1.  At each internal node there are two outgoing  branches. 
The leftmost  branch is traversed first. If all paths  through 
the left descendant fail, then  the search backs up  and tries 
the right-hand branch. If all paths through the right-hand 
descendant fail, then  the  node is said to have failed, and 
the search returns  to  the ancestor of the present node. 

2. At a leaf node, the algorithm  consults an oracle to 
determine whether the search is successful. The 

244 oracle returns SUCCESS with a  probability 

pNLEFT( - p ) N R / G H T  , where NLEFT is the  number of left- 
hand  branches  on the path between the leaf and  the root, 
and  NRIGHT is the  number of right-hand  branches on 
this  path. The  sum obeys the equality N = NLEFT + 
NRIGHT, where N is the  depth of the tree. If the search 
does not succeed, the oracle returns FAIL. 

3. The algorithm  terminates when the search succeeds or 
when all leaves have been examined. 

We have chosen  the  probability  distribution to be that of N 
Bernoulli trials, which is not necessarily the distribution of 
bits in passwords but is a  reasonable assumption for the 
general class of searches of this type in the absence of 
additional  information for specific situations. 

The search algorithm traverses the search tree by 
backtracking. By picking the most likely branch first at every 
node of the search tree, the algorithm tends  to reduce the 
search complexity, but  the algorithm is not optimal, since 
the cost is lower if the partial passwords are ordered by 
probability  rank, with the  more likely bit  sequences 
appearing before the less likely bit sequences. 

The model is characterized by a  small set of recurrence 
relations. Let C,,  C,, and C,, respectively, be the cost of 
traversing a left branch, traversing a right branch, and 
backtracking  along  a branch after  a failure. Let av(  N) 
designate the average cost of traversing a tree of depth N. 
This is the cost expended on  the average to search the tree of 
depth N, possibly to succeed or possibly to fail in the search. 
We also need the function max ( N ) ,  which is equal to  the 
cost of searching an entire tree of depth N, given that  the 
search fails. The following recurrence equations describe 
how to  compute  av( N ) :  

av(l)  =PC,  + d C L  + cB + cR)3 (1 )  

av(N) = p[CL + av(N - I ) ]  

+ q[C, + max(N - 1) 

+ C, + CR + av(N - I)]. ( 2 )  

The first formula states that with probability p the algorithm 
traverses a left branch and succeeds. Otherwise, with 
probability q = 1 - p the algorithm traverses the left branch, 
fails, backtracks  along the left branch, then reaches the right 
branch. The second equation states that  the cost of a search 
at  depth N is equal to  the weighted sum of two  events. The 
first term is the probability of traversing the left branch and 
succeeding in the left subtree. The cost of the second term 
includes the cost of taking the left branch, traversing the 
entire left subtree and failing, backtracking  along the left 
branch,  moving  down the right branch, and searching the 
right subtree. The max function is  used to describe the 
search of the left subtree because that search is not 
terminated early by a successful outcome,  and therefore  it 
visits the entire left subtree. The max function is given by 
the  formula 



max(N) = (2N - l)(CL + C, + 2CB). (3) 

In a  tree of depth N there  are  2” - 1 left branches and  an 
equal number of right branches. The  number of  backtracks 
is equal to  the  sum of the  number of left and right branches, 
because for each branch taken there is a  corresponding 
backtrack. 

As an example of an application  of (2)  and (3), consider  a 
tree of depth 2. The average cost to search this  tree can be 
computed by examining  the cost of each of the  four possible 
outcomes multiplied by the  probability of each  outcome. 
This is 

av(2) = p2(2cL) 

+ P d 2  cL + cB + cR) 

+ pq(2CL + C, + C, + 2C, + C, + C,) 

+ q2(2cL + C, + C, + 2c ,  + C, + C, + C, + c,). 
(4) 

Each term in (4) describes a  path to a leaf, and  the 
probability associated with each term is the probability of 
terminating  at  that leaf. Equation (4) yields precisely the 
same result for av(2)  as Equation (2) after substituting 
Equations ( I )  and (3), followed by algebraic reductions. 

The solution to Equation  (2)  for N > 1 is given by 

av(N)  =pNCL + 4(2”- I)(CL + C, + 2C,) - qNC,. ( 5 )  

Note  that both Equations (4) and (5) reduce to 

av(2) = 2pCL + 34( CL + C,) + 44C,. (6) 

For values of p near  unity,  Equation ( 5 )  grows linearly in 
the  number of levels and  tends  to succeed on the leftmost 
branches of the tree. For small values of p the second term 
becomes large, and  the complexity tends  to grow 
exponentially  in the  number of levels. It  is this  aspect of tree 
search that makes  tree  searches appear  to be intractable for 
moderate  numbers of levels. Plots of Equation ( 5 )  for 
various values of N and p appear in Figure 2. All costs  are 
assumed to be unit costs in the plot. The straight lines on the 
semilog plot show an exponential growth as the  depth 
increases, but  for values of p very close to 1 the search 
complexity  for shallow trees grows linearly with depth, as 
indicated by the logarithmically shaped  portion of the 
curves. A very good guesser can achieve  linear average 
search time for shallow trees, but  as the search tree  deepens, 
the search time becomes  exponential. 

This analysis suggests that  some depth-first searches could 
be very efficient on  the average in  spite of the exponential 
bound  on worst-case complexity. In reality, the strategy 
considered  here is not generally acceptable because of the 
potential for exponential  complexity. The next section shows 
how a strategy with internal cutoff is  vastly superior on  the 
average to  the strategy used here. 

r 

0 10 20 

Tree depth 

Expected  number of nodes  visited  for  backtrack  search without 
internal  cutoff. 

3. Depth-first search  with internal cutoff 
In this section we examine  the effects of internal cutoff and 
present a  model  in which the average number of nodes 
visited grows only linearly with the  depth of the tree. 
(Complexity  may grow at a rate faster than linear if the work 
per node  explored is a  function of the depth of the tree.) 

The tree search considered  in the previous  section benefits 
from cutoff at success, but  the strategy can do extensive 
computation if the successful outcome  terminates  at a leaf 
far from the left side of the tree. This search suffers from the 
problem that  an early selection may be entirely wrong, but 
the  algorithm continues  to explore the entire  subtree  beneath 
that selection. The algorithm outline is a  nondeterministic 
program with the following structure: 

Choose attribute 1 ; 
Choose attribute 2: 

Choose attribute N, 
If Oracle(attributes) then succeed else fail; 

The Oracle  procedure  examines the set of attributes selected 
and returns  a value of TRUE or FALSE depending on 
whether the set describes a pattern sought. To reduce the 
possibility of exponential search, it is general practice to seek 
a strategy with internal cutoff. This strategy leads to a 
nondeterministic  program with a slightly different structure, 
as  indicated below: 

Choose attribute 1; 
If not Oracle(attributes) then fail: 245 
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h  with  internal  cutoff:  (a)  Success on left 
branch; (c) Success  on  right  branch; 

Choose attribute 2; 
If not Oracle(attributes) then fail; 

Choose attribute N, 
If Oracle(attributes) then succeed else fail; 

The Oracle procedure in this form of the program  accepts  a 
partial list of  attributes.  A FALSE result indicates  certainty 
that no pattern exists for the corresponding selection of 
attributes.  However,  a TRUE result is returned  when the 
Oracle is unsure of the  outcome or when the Oracle  knows 
with certainty that  patterns with the selected attributes exist. 
The search must  continue after  a TRUE result is observed 
until all attributes  are selected. Only after all are selected 
does a TRUE response from  the Oracle  indicate  certainty. 

to  the latter  algorithm.  His  oracle  procedure helps to guide 
the search down  the most likely path,  and when the 
procedure reaches a leaf for the first time, the search 
terminates successfully. The total  complexity of such  a 
search may grow at a  rate faster than linear  in the  depth of 
the tree because the  consultations of the oracle may require 
computations  that  are in turn  functions of the size of the 
problem. For Smith’s approach  the  number of nodes of the 
search tree visited grows linearly in  the  depth of the tree 
search, at  the rate O[Nln(N)], where N  is the  number of 
cities to visit in  the Traveling  Salesman  problem. The search 
grows only linearly in  the  depth of the search tree because 
the search is conducted over N !  permutations of N cities, 
and a search tree with N !  leaves has  a depth  that grows at 
least as fast as  O[log(N!)] = O[Nln(N)]. 

Smith [ 11 examines a branch-and-bound algorithm similar 
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Roth’s D-algorithm [2] is similar to Smith’s  algorithm  in 
that it conducts a  backtracking search with cutoff until  it 
reaches a leaf node. If it reaches a leaf node  in the search 
tree, the search terminates successfully. Unlike Smith’s 
algorithm,  Roth’s  algorithm does not have to visit every 
element in  the database to reach a successful termination, 
whereas Smith has to  examine every city in the city graph to 
meet the specifications of the problem.  Roth’s  D-algorithm 
may find an  input  combination  that exercises a  particular 
internal  node  properly  without necessarily visiting each logic 
element  in  a  circuit. 

Both Roth’s  algorithm and Smith’s  algorithm have 
exponential  upper bounds  and  the corresponding  problems 
are NP-complete.  They  both terminate when they reach a 
leaf node. The fact that only one leaf needs to be examined 
is crucial to  the analysis that follows. In this case the 
procedure that  determines whether or not  to  cut off a search 
is the deciding  factor  in the nonexponential average number 
of nodes visited by the algorithm. If cutoff can be decided 
efficiently, then  on  the average the entire  algorithm runs 
efficiently. 

Karp  and Pearl  [3]  have  studied  a slightly different 
problem and report results that  are close to those  reported 
here. Although they use a different search strategy, their 
results are identical to ours for the case in which the search 
fails, since the nodes actually explored by their  algorithm  are 
the  same  ones explored in our model. The approaches 
followed are  quite different, however, and  the  methods 
described here yield nearly exact formulas  as opposed to 
bounds  and asymptotic  formulas  reported by Karp  and 
Pearl. 

To begin the analysis, let us model the effects of internal 
cutoff as  illustrated  in Figure 3, which shows one  node of a 
search tree. In this case, the search makes  a selection of an 
attribute  and consults an oracle.  With  probability p the 
oracle returns  TRUE  and  the search proceeds into  the 
subtree,  as  indicated  in Figure 3(a). With probability 
4 = 1 - p the oracle  returns FALSE and  the search is 
terminated  on  the left branch  of the node  without any 
further computation.  This is shown in Figure 3(b). When the 
search terminates unsuccessfully on  the left side of the node 
for any reason, the search continues on the right side of the 
tree. We call p the survival probability and 4 the cutoff 
probability. Figures 3(c) and 3(d) show the corresponding 
cases occumng  on  the right side. Although this model is 
similar to  the model  in the preceding section, the meaning of 
the probability parameter p has changed. In the prior  model, 
p modeled the likelihood of the left branch being successful 
as compared  to  the right branch. In this  model, there is no 
difference in  probabilities between right-hand and left-hand 
branches. The probability parameter expresses the likelihood 
of early cutoff, not  the asymmetry of the search. 

describe the average cost of a search of a tree of depth N. Let 
The probability  model  requires several functions to 
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F( N )  and S ( N ) ,  respectively, denote  the probability of 
failure and success in searching  a tree of depth N. These 
functions  are described recursively by the following 
equations: 

F(1)  = q2, (7) 

F(N)  = [q  + PF(N - 1)1’, (8) 

S(1) = p + pq  = 1 - F(1), (9) 

S ( N )  = pS(N - 1) + p [ q  + pF(N - I)]S(N - I )  

= 1 - F(N) .  (10) 

Equation (7) says that a failure at  depth 1 occurs if there is a 
failure on both  branches.  Similarly, Equation (8) says that a 
failure at  depth N occurs if a branch fails (with  probability q )  
or if the  branch succeeds and  the tree in  the next lower level 
fails [with  probability pF( N - I)]. Moreover,  a  failure must 
occur  on both the left and right branches so that  the 
probabilities  of  failure are multiplied,  whence  comes the 
square  in  the formula. Equations for S( N) can be derived by 
similar arguments.  Later in this section we explore  analytical 
results concerning the growth of  these  functions. 

We are interested in  obtaining  the average work 
performed  per  search. If  we let path, denote  one possible 
search path, p ,  be the probability  of that path, and 
/ength(path,) be the  number of  nodes on path,, then  the 
average number of  nodes visited during a  search is given by 

L(N)  = C p,length(path,), ( 1  1) 

where the  summation is taken  over all tree  paths. We have 
adopted a unit cost for the traversal of  a branch  in  this 
model, rather  than carrying the costs of left and right 
branches  separately, and  the cost  of  backtracking  is ignored 
because the  extra complication makes  the discussion less 
clear while not  adding materially to  the  nature of the results. 
Because it is convenient  to deal with failure paths  and 
successful paths separately, we break Equation ( 1  1) into two 
separate summations,  and  this requires the definition of two 
new functions. Let LJ N )  and L,( N ) ,  respectively, designate 
the  contributions  to  Equation ( I  1 )  from  searches that  end  in 
failure and  from searches that  end in success. The  formula 
for calculating L, is given by 

, 

where the set FP(N) is the set of all paths  in a  tree of depth 
N along which a  search of the  tree fails. The  function Ls( N) 
is given by 

where the  sum is taken over the successful paths. 

the recursive formulas 
To  compute  the values  of LAN) and L,(N), we may use 
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LJ1) = 2q2, 

= 2q2 + 2pq c pi[2 + length(path,)l 
i€FP(N-I) 

+ P’ C P ,  P,P + length(path,) 
i€EFP(N-l) , €FP(N-I )  

+ length(path,)], (1 5 )  

L,( 1) = P + 2Pq,  

L,(N) = P C pi[ 1 + length(pa th,)] 
t€SP(N-I) 

+ p 2  C P,  C P,P + length(path,) 
rEFP(N-I) , € S P ( N - l )  

+ length(path,)] 

+ P q  C ~ , [ 2  + length(path,)l. 
,ESP(N- l )  

Equation (14) states that  the  unique failure path for a tree 
of depth I has  length 2 and probability q2. The recursive 
equation ( I  5 )  states that  there  are three different kinds of 
internal  failure  paths. The shortest one has immediate  cutoff 
on  both branches so it  has  length 2 and probability q2. The 
next  type  of path has immediate cutoff on  one branch, but 
succeeds on  the  other  immediate successor, only to fail in 
the tree  of depth N - 1 below. The last term describes failure 
paths  that succeed on  both  immediate successor branches 
and fail in  their respective subtrees of depth N - 1. Note 
that  the probability  of the last term is p 2  and  the probability 
of the middle term is 2pq. The factor  of 2 in  the middle term 
arises because there  are two different ways to produce  such 
paths-one with an  immediate failure on a left successor and 
one with an  immediate failure on a right successor. 

Equation ( 1  6) follows from the fact that a search of length 
1 can succeed on  the left branch with probability p ,  and a 
search of length 2 can succeed on  the right branch with 
probability qp. The most  complicated equation is ( 1  7). This 
equation  sums  the cost of a successful search of  the left 
subtree with the cost of a successful search of  the right 
subtree. Note  that  the last two terms  account for the two 
ways a  search can succeed in  the right subtree. The second 
term  accounts for the case in which the left branch survives 
and  the  tree  beneath it fails. The last term  accounts  for  the 
case in which the left branch fails and  the search of the left 
tree is cut off immediately. 

Equations ( 15) and ( 17) are very difficult to evaluate as 
written, and exact analytic solutions of the  equations in  this 
form are out of the question. Fortunately,  both ( 15) and ( 17) 
simplify. By regrouping terms within the  summations  and 
using the identities 

F ( N )  = c P, 3 (18) 

S ( N )  = c P , ,  (19) 

I €  FP( h7 

Z€SP(N) 
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we obtain  the two  recursion equations below that  are readily 
evaluated: 

L,(N) = 24’ + 4pgF(N - 1 )  + 2pqLJN - 1) 

+ 2p2[F(N  - 1 ) 2  + F ( N  - l ) L F ( N  - l ) ] ,  (20)  

L,(N) = p [ S ( N  - 1) + L,(N - l ) ]  

+ p2[2F(N - l)S(N - 1) 

+ P q P S ( N  - 1) + L,(N - I ) ] .  (21) 

Data for the average search complexity  for failures and 
successes are plotted  in Figure 4. Figure 4(a) gives the 
probability for a search to fail as a function of  depth and 
survival probability. Note  the difference in  behavior  of the 
curves  above and below the critical value of 0.5 for survival 
probability. Figures 4(b) and 4(c) plot the average number of 
nodes visited, respectively, for  searches that fail and for 
searches that succeed. Note  that for all values of the  cutoff 
probability the average length of a search grows at most 
linearly in N.  The  sum of the plots in Figures 4(b) and 4(c) is 
the total average search complexity. Recall from Equation 
( 1 1 ) that  the probabilities used in Equations ( 18) and ( 19) 
are  not conditioned on  the success or failure of a search 
path.  Hence, the expectations in  Equations (20)  and (21)  are 
unconditional expectations, and for this case the average 
number of nodes visited for successful searches can be less 
than  the  depth of the tree. However, when we use 
conditional  probabilities  in Equation ( 18), the conditional 
expectation  corresponding to  Equation (21)  is at least as 
large as the tree depth.  This is plotted  in Figure 5 together 
with the conditional  expectation for the failure effort. 

The next  section derives approximate solutions to 
Equations (20) and (21)  to show their asymptotic behavior. 

4. Analytic  approximations 
The goal of  this section is to derive  analytic  solutions to  the 
recurrences (20)  and (2 I ) .  Some of the results derived below 
can be obtained from the theory of branching processes [4]. 
In particular, the failure probability (7) and (8) and failure- 
path  length (20)  are  explained by the theory. However, 
success-path length (2 1 )  is not a  direct  consequence  of the 
theory because successful paths are  not symmetric with 
respect to  the root of a  tree, and  symmetry is required  for 
the published results of the theory. We develop  a new 
derivation technique  that solves both (20)  and (21). Because 
these equations depend upon search failure probability, we 
begin by deriving  asymptotic  solutions to  Equation (8) and 
find the rate of convergence to those  solutions. 

nonlinear recurrence equation (8). Since 0 I F( N )  5 I ,  we 
know that F( N )  must  approach a  limit  point or limit cycle 
as N becomes large. The possible limit  points are values of F 
that solve the  equation 

The failure  probability  function F( N )  satisfies the 

F = ( 4  + pF)’. (22)  

There  are two  solutions: 
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F =  1 ( 2 3 )  

and 

F = q2/p2 .  (24) 

It is not difficult to show that successive iterations  of 
Equation (22) converge to  the smaller  of the roots given in 
Equations (23) and (24) (cf. Hams [4]). 

Figure 6 shows  a  plot of the limit  points of F( N )  as  a 
function of p ,  the survival probability. For values of survival 
probability less than or equal to 0.5, the limiting  probability 
of search failure is unity,  since the expected number  of 
surviving branches  beneath  a  node is less than I and 
decreases exponentially at each successive level in  the tree. 
For greater values of survival probability, the probability of 
search failure falls away from 1, as shown  in Figure 6. In this 
probability region the expected number of live branches 
beneath  a node increases  exponentially  in the  depth of the 
tree. This derivation agrees with that of Mullikin [5], who 
proves the following result. Let F, be defined by 

F, = lim F ( N )  
I%" 

and let s(s) be the generating  function whose coefficient of sf 
is the probability  of having i nodes active at  the first 
generation of the branching process. In this case, 

"/(x) = q2 + 2pqs + p s . 2 2  
(25 )  

Mullikin [ 5 ]  shows that F, is the smallest nonnegative 
root of/($) = s and  that 

F, < I if J'(l) > I ,  

= 1 if f ' (  1 )  = 1 andf i s  nonlinear, 

= 0 if f (  1) = 1 andf i s  linear, 

= 1 if f ( 1 )  < 1. (26)  

Note thatf(  1) = 2 p  andfis  nonlinear in its argument s if 
p > 0. 

It is not surprising that  the searching  effort grows less than 
exponentially  when the survival probability is less than 0.5. 
Regardless of the  true  depth of the search tree, the region of 
the tree visited during a search approaches  a finite limit. 
What is less obvious is that  the search space does not blow 
up for high values of p .  

goes to I ,  the search is more likely to succeed in  reaching  a 
leaf with a minimum of backtracking.  And since this type of 
search terminates with certainty  when it reaches a leaf, the 
search terminates before it  expends  a great deal of effort in 
visiting much of the tree. In our experiments with an 
implementation of Roth's  D-algorithm, we found exactly 
this  behavior.  Most of the  searches terminated quickly 
because the survival probability was essentially near 1. When 
we deliberately inserted  untestable  elements into a logic 

From  an intuitive  point  of view, as the survival probability 
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circuit so as  to prevent a successful termination,  the 
algorithm continued  to execute rather quickly,  except that 
the algorithm generally performed more work than in the 
cases that yielded successful termination. We observed that 
the algorithm  behaved  as if the probability  of survival were 
rather low in these cases, and therefore early cutoff 
eliminated lengthy searches. 

In  order  to  obtain  approximations  to  functions  that 
describe the average search complexity, we shall need to 
know the  rate  at which F( N )  converges to its asymptotic 
limit. The plot  in  Figure 4(a) suggests that  the convergence is 
very fast except  for p = 0.5. Indeed,  this case is exceptional 
and exhibits the slowest convergence. Let 

F ( N )  = r - E,, (27) 

where r is the asymptotic  limit of F( N ) ,  i.e., the smaller of 
the roots given in  Equations (23)  and (24). It follows that 

r - = r - 2p(q  + pr)c, + p E,. 

From (28),  when F( N )  increases  monotonically to its 
asymptote,  the following difference equation holds: 

2 2  
(28) 

= 2P(q + prlcN - P EN.  
2 2  

(29) 

For the special case ofp = 0.5, Equation (29)  can be 
rewritten 

Equation (30) is related to  the  equations studied by Aho  and 
Sloane [6] ,  who  found  that solutions grow at a doubly 
exponential  rate. Their studies, however, did  not  treat  the 
equation for the range of constants of interest to us, where 
the solution converges asymptotically to a finite limit. 
Franklin  and  Golomb [7] studied  a closely related recurrence 
equation  and discovered an application  for the  enumeration 
of trees. Their studies also explored  solutions  in regions that 
are  not of  interest to us in  this paper. Gottlieb  and Schwartz 
[8] show that  Equation (30) describes the bandwidth of a 
multistage interconnection network.  Although they evaluate 
the recursion in their  paper,  they do  not present  a  solution 
to  the recurrence.  Kruskal and Snir [9] give a  detailed 
solution of the recurrence E,+, = 1 - ( 1  - c, /k)k,  and  the 
solution  for k = 2 corresponds  to  our problem  for p = 0.5. 
The  approach we use here solves the problem  for all p and 
gives average path lengths not directly computable with the 
approach used by Kruskal and Snir. It is similar  in  spirit to 
the solution of almost-linear  recurrences described by 
Purdom  and Brown [ 101 and  Greene  and  Knuth [ 1 I ]  in that 
it finds an  approximate solution that is perturbed by a  small 
amount  to yield the  true solution. In the present case, our 
solution is asymptotically  exact, and extremely accurate  but 
not exact for  small values of N. 

Our approach is to find a continuous  equation  that is 
easily solvable whose solution approximates  the solution to 250 

1 

the discrete equation. We proceed by putting (30)  into 
difference form,  and  then  move  to differential form. From 
(30),  we find 

Let i., be a continuous variable that  approximates E,. Using 
1, in the  continuous analog of (31)  yields the  equation 

.2 

d N   4 ’  

whose solution is 

4 
E, = ~ 

( N  + C)’ (33)  

where C is a constant of integration. This  function converges 
very slowly to zero. 

Hams [4],  we have 

lim N[ 1 - F( N ) ]  = T ,  

where u2 is the variance  in the  number of immediate 
successors of a node. Since p = 0.5, the variance  for  each 
successor is the variance  for  a single Bernoulli trial, which is 
pq = 0.25. Because there  are two successors, u2 = 2pq = 0.5. 
Therefore Hams’ limit  for 1 - F( N )  is 4/N,  which agrees 
with (33).  

To  compare  this result with the result obtained from 

2 
N-CC U 

Kruskal and Snir [9] obtain  the solution 

For p # 0.5, the  continuous form of Equation (29) is 

- = -{[ I  - 2p(q + pr)liN + p2 i i l .  
d i ,  
dN 

For p < 0.5 replace q + pr with unity, and find 

diN 
” dN - -[( 1 - 2p)i ,  + p2e;1. 

This  equation  can be solved by separating variables to place 
it  in the  form 

p 2  ] = -( 1 - 2p)dN. (34)  

Its  solution is 

In(;,) - ln[(l - 2p)  + p2iN] = -(1 - 2p)N + C(p) ,   (35)  

where C ( p )  is a function  that  depends  on p but  not  on N. 
The  continuous solution  is  only an  approximation of the 
discrete solution, so the discrete  solution  has additional 
terms  that do  not  appear  in (35). Using the techniques of 
Purdom  and Brown [ I O ]  for  solutions to almost-linear 
equations, we can  improve  the  approximation  to  the discrete 
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solution  as given below: 

In(c,) - ln[(1 - 2 p )  + p’c,] = Nln(2p) + C(p).  (36) 

Note that 

ln(2p) = In11 - ( I  - 2p) l  = -(I - 2 p )  + O[(I - 2p)7, 

so that the difference between Equations (35) and (36) can 
be attributed  to higher-order terms in the  discrete  solution 
that  are absent in the  continuous solution.  Equation  (36) is 
an extremely accurate approximation,  and differs from the 
exact solution by terms  that quickly  go to zero as N 
increases. To solve Equation (36) for E* we first exponentiate 
to  obtain 

where K ( p )  is a function  independent of N .  Solving for cN 

yields 

which indicates that  the convergence is exponential in N. 
For p > 0.5 the  equation has the similar  form 

(37) 

which again indicates that convergence is exponential in N .  
Therefore the only case for which convergence is not 
exponential is the case p = 0.5. This is shown graphically in 
Figure 4(a). 

An approximation  to the  function K ( p )  is easily obtained 
from Equations (37)  and  (38) by setting N = 1 and equating 
the expressions in those equations  to  the expressions for e, .  

After making  the  substitutions and solving for K( p )  we 
obtain 

and 

When these expressions for K( p )  are substituted back into 
(37)  and (38), the resulting equations yield extremely 
accurate  approximations for E * .  This convergence is 
predicted by Harris  [4. Sec.  8.31  in his formula 

F, - s 
lim c,.[,J’(F,)]-” = Is1 < 1 ,  
N; m 1 + ( F ,  - s)(u(s) 

where,/(s) is the generating  function defined by Equation 
(25)  and a(s) is a  function of s that is analytic  in the region 
I s I < F, and  bounded for I s 1 5 I .  Set s = 0 in  Equation 
(4 1 ) and note that 
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f’(F-1 = 2P( l  - P )  + 2P2F,, (42) 

Then, by using the values from (23) and (24) for F,, we 
discover 

and 

(43) 

(44) 

These equations are  similar to  (37)  and  (38) in form, but 
because ( ~ ( 0 )  is not given explicitly, Harris’ equations  cannot 
be directly compared to  (37)  and  (38). Also. note  that 
Equations  (37)-(40) are valid approximations for all N ,  
rather than valid only in the limit. 

Now we can  return to  the original goal, the  derivation of 
the asymptotic  estimates of average complexity. First, let us 
reexamine Equation (20). This can be rewritten as 

L F ( N )  = 2 F ( N )  + 2 p [ 4  + p F ( N  - l ) ] L F ( N  - 1). (45) 

Instead of using the exact value of F( N )  we can replace F( N )  
with its asymptotic value and obtain  an approximation for 
Equation  (45) that yields good estimates  for L,(N). Exact 
expressions for the solution of Equation  (45)  can be obtained 
by using techniques described by Purdom  and Brown [ 101 
for the solution of almost-linear recurrences. The leading 
terms of the solution  are  obtained by solving the linear 
recurrence, and  the higher-order terms vanish as N increases. 
The accuracy of the  approximation  depends on how quickly 
F( N )  converges to its asymptotic  limit.  Numerical  studies 
have shown that the approximations are excellent even for 
values of N as  small  as 10. Assuming that p is  less than 0.5, 
we substitute  Equation (23) for F( N ) ,  and Equation  (45) 
becomes 

L A N )  = 2 + 2pLF(N - I ) ,  

which has the  solution 

L J N )  = (2p)”-lLF(1) + 2 [ I  ; “;-‘I 
L 

T- 
I - 2p’ (46) 

For p > 0.5 we substitute  Equation (24) in (45) and obtain 

LF( N )  = 2 7 + 2qL,( N - 1 ). ( I2  
(47) 

Y 

The solution to this equation is 

LF( N )  = (2q)””LF( 1 )  + 2 
1 - (2q)“” [ 1 - 2 4  I($) 

25 1 
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The curves in Figures 4(b) and  4(c) exhibit the predicted 
behavior  for p # 0.5 because F ( N )  converges sufficiently fast 
for  its approximations  to be rather good. For p = 0.5 we 
must look specifically at  the rate of convergence of F( N ) .  
Substituting Equations (27) and (33) into (45) and  settingp 
equal  to 0.5 yields the  equation 

L A N )  = 2 - - + ( I -  
N + C   N - I + C  )LF(N - 1 ) .  (49) 

By putting this into difference form similar to  Equation (31), 
we obtain 

Proceeding  as  before, we move to  the  continuous solution by 
solving 

The solution to this equation approaches  a  linear function as 
N becomes large. To find that linear  function,  substitute 
L A N )  = kN into  Equation ( 5  I) .  This produces the  equation 

k = 2 - - -  8 2k(N - 1 )  
N + C   N -  1 + C '  

or 

2 
3 + ( C  - 3)/Ar 

k =  + 0 ( 1 / N )  

= 213. 

Observe that  the slope of the  curve for p = 0.5 in Figure 4(b) 
approaches 213, in  agreement with this analysis. 

branching processes. According to  Karp  and Pearl [3], the 
number of  nodes in a finite tree  produced by a  branching 
process is given by 

lim (expected  number of internal nodes in a jinite tree} 

This result is also in  agreement with the theory of 

N" 

N 
3 

= -  if f ( F J  = I ,  (53) 

wheref(s) is the generating function  from  Equation (25). In 
our case,f(F,) = 2p(q + pF,). We wish to find LF( N ) ,  the 
number of  branches in  the search tree which is exactly twice 
the  number of internal nodes counted by (53). The average 
number of nodes visited is computed by multiplying  this 
count by F,, the probability that  the branching  tree is finite. 
Hence, 

2N 
3 

= -  if p = 0.5, 

=- 
I - 2p if p < 0.5.  (54) 

Compare  Equation (54) with Equations (46),  (48), and (52). 
Karp  and Pearl do  not give a  derivation of the  formula for 
the case p = 0.5, so we are  not sure whether  their  reasoning 
is similar to  the reasoning  applied  in  this  paper. 

A major advantage of the  approach proposed  in  this  paper 
is that it can be used to solve Equation ( 2 1 )  for L,(F), which 
is a  function that is not directly treated by the theory  of 
branching processes. To find the  asymptotic behavior of 
Equation ( 2 1 )  for p < 0.5, we set F( N )  = 1 and S ( N )  = 0, 
their  asymptotic values. So Equation ( 2 1 )  becomes 

L,(N) = ( P  + P 2  + P4)L,(N - 1 )  

= 2pL,(N - I ) ,  

which has  as  its  solution 

Ls( N )  = ( ~ P ) ~ " L , (  I ) .  ( 5 5 )  

This  function goes to 0 exponentially  in N. For p > 0.5, we 
substitute 

F ( N )  = 1 - S ( N )  = q2/p2 

and 

to  obtain, after several algebraic simplifications, 

L,(N) = L,(N - 1) + l /p .  

This  equation has the solution 

L,( N )  = L,( 1 )  + ( N  - l) /p.   (56) 

Therefore the value of Equation ( 2 1 )  asymptotically 
approaches a  linear  function  of depth whose slope vanes 
inversely with the survival probability. This analysis is 
confirmed by the curves  plotted  in Figure 4(c). 

Equation (52). Specifically, we assume that 
For p = 0.5 we  use the  same approach used to derive 

4 
( N  + C)' 

F ( N )  = 1 - ~ 

4 
( N  + C) '  

S ( N )  = ~ 

LF( N )  = 2N/3, 

and 

L,( N )  = kN. 
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After tedious manipulation we discover that k = 1/3. Figure 
4(c) shows that Ls(N) for p = 0.5 is linear, with a slope of 
1/3  for N 2 10. The figure shows that  the curve does  not go 
through  the origin, so that a good approximation must add a 
constant offset to  the linear slope, and  thus 

Ls(N)  = N/3  + C ( 5 7 )  

for some  constant C. 
A summary of the  formulas derived in this  section  appears 

in Table 1. 

5. Effects of leaf  probabilities 
We have shown that  an algorithm that  terminates when  it 
encounters  the first leaf has  a low average complexity 
provided that  the cutoff-probability distribution is uniform 
across the tree. But the algorithm  in Section 2 does  not 
terminate  at its first leaf, and it  has an average complexity 
that could grow exponentially  in the  depth of the tree. In this 
section we consider what happens when the leaf nodes have 
a different probability of cutoff than  do  the  internal nodes of 
the tree. We discover that  the average number of nodes 
visited does  increase  in some cases, but  the  function  remains 
a  linear  function  of the  depth. 

This model  presumes that  the probability of success at  a 
leaf is the probability po, which is constant for all leaves in 
the tree and need not be equal  to  the survival probability of 
an internal branch. To find the average number of nodes 
visited, we simply substitute different initial values in 
Equations (46) and (56). Note that  the dependence on  the 
initial value of Equation (46) dies out exponentially for 
sufficiently deep trees, whereas the initial value of Equation 
( 5 6 )  provides a constant offset for the solution.  When we 
evaluate  the functions themselves as described in Equations 
(8), (20), and (2 1 )  using po and 40 = 1 - po in place of p and 
4, we obtain the plots shown  in Figures 7,8,  and 9. Figure 7 
shows the plots for a sdrvival probability of 0.5. Note that all 
of the curves  for the probability of search failure converge to 
a common asymptote. Shallow trees behave differently 
because the leaf nodes  are close to  the root, and  the different 
probabilities of success at the leaves strongly influence the 
probability of failure of a search of the tree. But deep trees 
do  not depend strongly on  the leaf probabilities, because if a 
search fails, it is most likely to fail  high up in the tree 
without ever visiting a leaf. The curves for the functions 
LF( N )  and Ls( N )  asymptotically  become  linear and parallel 
to  the curve  for which the leaf probability is equal to  the 
survival probability. The offset of an asymptotic  curve  from 
the  asymptote for p = 0.5 is a  function of the leaf-success 
probability. The plots do  not show all of the slopes becoming 
equal because convergence is very  slow for  this special case 
of survival probability. If the curves were extended to show 
greater (and less realistic) depths,  the curves would be 
parallel straight lines. Figures 8 and 9 show similar  curves 
for higher survival probabilities. We expect to see a  greater 

Table 1 Summary of formulas: Mean values of search functions. 

impact from the leaf-survival probabilities because with high 
probability the search reaches the leaves of the tree. We can 
set po to a low value to force failure to  occur  at a leaf and 
increase the probability of backtracking once a leaf is 
reached. Indeed the curves  show  this effect. But trees with 
depth greater than 10 to 20 exhibit  almost no dependence on 
the leaf-success probability  in the graphs for F ( N )  and 
L,(N).  The behavior of the failure-effort function agrees with 
the analysis above.  Similarly, the curves  for the success-effort 
function Ls(N)  asymptotically  become parallel straight lines. 
The slope of these lines is inversely proportional  to N ,  which 
is consistent with our derivations.  Consequently, the analyses 
and  the plots confirm that this model of search leads to 
algorithms that  examine a number of nodes that grows at 
most linearly in the  depth of the tree for all values of the 
model’s parameters for sufficiently great tree depths. 

not depend strongly on  the  assumption  that cutoff 
probabilities are uniform throughout a  tree, nor does it 
depend strongly on  the search terminating  at  the first leaf. If 
over  a  small  neighborhood the cutoff probability q exceeds 
0.5, within that neighborhood the search will almost surely 
cut off, regardless of the probabilities of nodes that lie 

We conclude that  the model is quite robust since it  does 
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After tedious manipulation we discover that k = 1/3. Figure 
4(c) shows that Ls(N) for p = 0.5 is linear, with a slope of 
1/3  for N 2 10. The figure shows that  the curve does  not go 
through  the origin, so that a good approximation must add a 
constant offset to  the linear slope, and  thus 

Ls(N)  = N/3  + C ( 5 7 )  

for some  constant C. 
A summary of the  formulas derived in this  section  appears 

in Table 1. 

5. Effects of leaf  probabilities 
We have shown that  an algorithm that  terminates when  it 
encounters  the first leaf has  a low average complexity 
provided that  the cutoff-probability distribution is uniform 
across the tree. But the algorithm  in Section 2 does  not 
terminate  at its first leaf, and it  has an average complexity 
that could grow exponentially  in the  depth of the tree. In this 
section we consider what happens when the leaf nodes have 
a different probability of cutoff than  do  the  internal nodes of 
the tree. We discover that  the average number of nodes 
visited does  increase  in some cases, but  the  function  remains 
a  linear  function  of the  depth. 

This model  presumes that  the probability of success at  a 
leaf is the probability po, which is constant for all leaves in 
the tree and need not be equal  to  the survival probability of 
an internal branch. To find the average number of nodes 
visited, we simply substitute different initial values in 
Equations (46) and (56). Note that  the dependence on  the 
initial value of Equation (46) dies out exponentially for 
sufficiently deep trees, whereas the initial value of Equation 
( 5 6 )  provides a constant offset for the solution.  When we 
evaluate  the functions themselves as described in Equations 
(8), (20), and (2 1 )  using po and 40 = 1 - po in place of p and 
4, we obtain the plots shown  in Figures 7,8,  and 9. Figure 7 
shows the plots for a sdrvival probability of 0.5. Note that all 
of the curves  for the probability of search failure converge to 
a common asymptote. Shallow trees behave differently 
because the leaf nodes  are close to  the root, and  the different 
probabilities of success at the leaves strongly influence the 
probability of failure of a search of the tree. But deep trees 
do  not depend strongly on  the leaf probabilities, because if a 
search fails, it is most likely to fail  high up in the tree 
without ever visiting a leaf. The curves for the functions 
LF( N )  and Ls( N )  asymptotically  become  linear and parallel 
to  the curve  for which the leaf probability is equal to  the 
survival probability. The offset of an asymptotic  curve  from 
the  asymptote for p = 0.5 is a  function of the leaf-success 
probability. The plots do  not show all of the slopes becoming 
equal because convergence is very  slow for  this special case 
of survival probability. If the curves were extended to show 
greater (and less realistic) depths,  the curves would be 
parallel straight lines. Figures 8 and 9 show similar  curves 
for higher survival probabilities. We expect to see a  greater 

Table 1 Summary of formulas: Mean values of search functions. 

impact from the leaf-survival probabilities because with high 
probability the search reaches the leaves of the tree. We can 
set po to a low value to force failure to  occur  at a leaf and 
increase the probability of backtracking once a leaf is 
reached. Indeed the curves  show  this effect. But trees with 
depth greater than 10 to 20 exhibit  almost no dependence on 
the leaf-success probability  in the graphs for F ( N )  and 
L,(N).  The behavior of the failure-effort function agrees with 
the analysis above.  Similarly, the curves  for the success-effort 
function Ls(N)  asymptotically  become parallel straight lines. 
The slope of these lines is inversely proportional  to N ,  which 
is consistent with our derivations.  Consequently, the analyses 
and  the plots confirm that this model of search leads to 
algorithms that  examine a number of nodes that grows at 
most linearly in the  depth of the tree for all values of the 
model’s parameters for sufficiently great tree depths. 

not depend strongly on  the  assumption  that cutoff 
probabilities are uniform throughout a  tree, nor does it 
depend strongly on  the search terminating  at  the first leaf. If 
over  a  small  neighborhood the cutoff probability q exceeds 
0.5, within that neighborhood the search will almost surely 
cut off, regardless of the probabilities of nodes that lie 

We conclude that  the model is quite robust since it  does 
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Search statistics for branch-survival probability p =0.5. (a) Search- 
failure  probability as a  function of leaf-survival probability po .  
(b) Expected number of nodes visited on paths that fail  as a function 

of leaf-survival probability po. (c) Expected number of nodes visited 

beyond the cutoff points.  When the search is far enough adds a cost to  the search that is independent of N but does 
from regions of the tree that have  markedly different cutoff depend  on the probability of failing at a leaf node.  Hence, by 
probabilities, the  remote regions have little influence on  the dropping  the two assumptions of uniform cutoff probability 
search.  Similarly, if a search reaches a leaf node and does not within the tree and success on encountering  the first leaf, we 
succeed, it  backtracks into  the tree and seeks another leaf still have a search that visits an average number of nodes 
node. The cost of  backtracking and seeking additional leaves that grows linearly in the depth of the tree. 
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The critical aspect of the search algorithm that leads to 
this efficient behavior is that  there  does exist a cutoff 
probability that  can eliminate large sections of the search 
tree. Therefore  a search either fails quickly, or quickly 
reaches the leaves of the search tree where it  examines 
possible solutions. If the search backtracks to  the interior of 
the search tree, the cutoff probability  eliminates unlikely 
nodes and quickly  takes the search to  other likely solutions 
at  the leaves of the tree. The search basically does  not 
expend much  time in the  interior of the tree examining 
improbable  paths. 

6. Derivation of variance 
This section  derives the variance of the averages of the 
functions defined  in Section 4. The objective is to show that 
the averages are  quite meaningful because the variances are 
very small. In some cases, the variances  depend  only on p 
and  are  independent of the  depth of the tree. We use the 
same  method used in Section 4 to solve recurrence equations 
that describe the variance  functions. The details are  quite 
complicated, however, and  are generally omitted here. The 
results have been checked for  accuracy with the  aid of a 
symbolic expression analyzer. 

straightfonvard, the details are rather  complicated, so we 
state  only the  method  and  the final results. The basic idea 
follows the techniques of Section 3, in which we formulate 
recursion equations for the variance of the failure-effort and 
success-effort functions. The recurrences depend  on  the 
functions F( N ) ,  S( N ) ,  LF( N ) ,  and Ls( N )  defined in Section 
3. But because each of  these functions converges to  an 
asymptotic function  of N ,  as given in  Table I ,  we can 
replace the  function with its asymptotic formula  and  obtain 
an  approximation for the recurrence  for the variance 
formulas. The recurrence obtained by using asymptotic 
approximations is far simpler than  the original recurrence, 
and it reduces to very simple expressions in  most of the 
cases. With this  structure in mind, here is a  derivation  for 
the function V,( N ) ,  the variance of the average failure-effort 
function LF( N ) :  

VF(N)  = q222 

Although the  method for computing variance is 

+ 2qP C ~ , [ 2  + /ength(path,)12 

+ pZ c P ,  c pj[2 + /ength(path,) 

+ /ength(path,)~~ 

r E F 4 N - I )  

lEFP(N-I)   ,EFP(N-I)  

- [ L F ( N ) 1 2 .  ( 5 8 )  

Equation ( 5 8 )  expresses the variance  as the  mean square 
minus  the  square of the  mean, where the mean  square is 
made  up of the first three terms of the  equation. These three 

0 2 4 6 8 10 12 

0 10 20 30 40 

Tree depth 

Search statistics for branch-survival probability p =0.9. (a) Search- 
failure  probability as a function of leaf-survival probability p O .  
(b) Expected number of nodes visited on paths that fail as a function 
of leaf-survival probabilityp,,. (c) Expected number of nodes visited 
on paths that succeed as a function of leaf-survival probability pO. 

terms correspond to those of Equation ( 1  S),  except that  the 
path lengths in  Equation ( 5 8 )  are the  squares of those  in 
Equation ( 1  5). We use the  same notation  in Equation ( 5 8 )  as 
in Equation ( 1  S ) ,  so that  the  summations are  taken  over all 
failure paths in a tree of depth N - I .  To evaluate Equation 
( 5 8 )  we square the various terms  and perform the 

IBM J RES. DEVELOP VOL. 30 NO. 3 MAY 1986 HAROLD S STONE AND PAOLO SIPALA 



summations, replacing the results as necessary with the 
functions F(N - I ) ,  LF( N - l), and a new function, 
QF(N - I ) ,  defined as  the  mean  square failure path for trees 
of depth N - I .  This substitution yields, after some algebraic 
manipulation, 

VAN) = 2[q + pF(N - 1)](2q + p[2F(N - 1) 

+ 4 L d N  - 1) + QF(N - I)]) 

+ 2p2[LF(N - l ) ] ’  - [LF(N)J2. (59) 

Equation (59) can  be simplified slightly by using Equation 
(20)  to  obtain 

V F ( N )  = 2‘%(N) 

+ 2 P [ q  + PF(N - 1 ) 1 [ 2 L F ( N  - 1) + QF(N - 111 

+ 2p2[LF(N - ‘ ) I 2  - [LF(N)12’ (60) 

Since, by definition, 

VF(N - 1) = QF(N - 1) - [ L J N  - 1)1’$ (61) 

after substitution of (6 1) into (60) and  some algebraic 
reduction we have 

VAN)  = 2 P [ q  + PF(N - ])I VAN - 1) + &(N)[2 - LAN)] 

+ 2pLF(N - ‘ ) ( P U N  - l )  

+ [q  + pF(N - 1)][2 + LAN - I ) ] ) .  

(62) 

Equation (62) is in a form  that  can be evaluated easily when 
we replace the  functions with their asymptotes. From Table 
1, forp < 0.5 we discover that  Equation (62 )  approaches 

‘F(N) E 2P(q + P)‘AN - I )  + Ep 2 

+ 2 p -  - 
1 - 2 p  [ ’  1 - 2 p  + ( 4  + P) (2 + Ad] 

The general form of Equation (63) is essentially the  same as 

VF(N) = a VAN - 1) + P, (64) 

where a and P are  functions of p but  not of N.  The solution 
to  Equation (64) is 

For this case, the coefficient (Y = 2 p  < 1, so the first term 
goes to 0 exponentially, and  the  limit of the second term is 
P/(  I - a),  from which we obtain 

For the case for which p > 0.5, we obtain  an  equation 
similar to (64) except that 

a = 2q (67) 

and 

Since a = 2q < 1, the first term of the solution  in Equation 
(65) vanishes exponentially in N,  and  the  asymptotic 
solution is 

where (Y and P are given by Equations (67) and (68).  
The variance  for the case for p = 0.5 is  somewhat more 

challenging: The analysis is complicated because many  terms 
depend  on N in  this case, whereas  they are  independent of N 
in  the  other two cases. The analysis technique we propose  is 
to  examine  Equation (62) with all functional dependencies 
replaced by their asymptotic values. Specifically we use the 
following four relations from  Table 1 : 

F ( N ) =  1 ”  
4 
N ’  

4 
S ( N )  = 1 - F ( N )  = - N ’  

L A N )  = -, 2 N  
3 

and 

N 
L,( N )  = -. 3 

When we  use these approximations together with 
p = q = 0.5 and  substitute  into (62),  we obtain, after 
regrouping terms, 

N - 3  2 N’ 
‘F(N) = VF(N - 1) + - + O(N). 9 

The solution to  Equation (70) is 

2 N 

VF(N)  = 9(N - 1)(N - 2) r=3 
( i  - 2)( i  - 1)z’ 

+ O ( N 2 )  

= $+ O(N’).  

In this  derivation, we have concentrated  on  the  dominant 
terms. The  terms of lower order  can be derived  as well 
simply by carrying through  the tedious  detail. Note  that  the 
variance grows as the  cube of N while the  mean grows only 
linearly with N.  
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This completes the derivation of the variance of the failure 
effort for all values of p. Only the case p = 0.5 has a variance 
that  depends  on  the  depth of the tree. The variance  for the 
cases for which p # 0.5 asymptotically approaches a function 
that  depends  on p only  and  not  on  the  depth of the search 
tree.  Consequently, the observed value of L A N )  in these 
cases is expected to fall within a bounded region from  the 
mean value where the  bound is independent of the  depth of 
the tree. 

The derivation of V,(N), the variance of the success 
function, follows in a similar fashion. With  some algebraic 
manipulation we can  produce  the recurrence equation 

V,(N) = p[1 + 9 + pF(N - l ) ]Vs (N  - 1) 

+ P [ 1  + q + p F ( N -  111 

X ( 4 S ( N  - I )  + L,(N - 1)[4 + L,(N - I)])  

+ 2p[pLJN - 1) - 1][2S(N  - 1) + L,(N - I ) ]  

+ pS(N - I ) (  1 + p V A N  - I )  + p[L&N - I)]’)  

- [L,(N)I2.  (72) 

In spite  of the complexity  of (72),  it simplifies greatly when 
we supply the  asymptotic values from Table 1. For  the case 
p < 0.5, since the  asymptotic limit of S( N )  and L,( N) is 0, 
we have 

VAN) = P(1 + 9 + P)V,(N - 1) 

= 2pV,(N- I). 

The solution to  this  equation is 

V,(N) = (2pyN-’)Vs(1), (73) 

which goes to 0 exponentially in N. 
For  the case p > 0.5, the  equation becomes messy because 

the  terms in the  equation do  not vanish.  Most terms 
converge to  asymptotic  functions  that  depend  on p only  and 
not  on N. The  function Ls( N ) ,  however, converges 
asymptotically to N/p. To solve Equation (73),  it is necessary 
to  group  the  terms of (72) according to whether  they depend 
on L,(N) or not. When we do this and  note  that 

L , ( N -  l t - L s ( N ) 2 = - - +  . . . ,  
2 ( N  - 1) 

P 

we find that  Equation (72) eventually simplifies to 

(74) 

where (Y is a function of p and is independent of N. We can 
solve Equation (74) by using techniques described above  for 
Equation (70), and we obtain 

(75) 

Table 2 Summary of formulas:  Variance of search functions. 

Case 1: p < 0.5 

Vs(N)  0 as N -+ m 

Case 2: p = 0.5 

V F ( N )  - 45 as N +  m 
2 ~ ’  

 IN^ 
V,(N) = - as N m 

180 

Case 3: p > 0.5 

For  the case p = 0.5, after  substituting the asymptotic 
values used to derive Equation (70),  we obtain 

N - 2  7 N 2  
N -  1 VAN) = ~ 

V,(N - 1) + - + O(N). 
45 (76) 

The solution to  Equation (76) is 

2 ( i  - 1)z’ 
7 N  

vs(N) = 45(N - 1) 1=2 

+ O(N’) 

7 N 3  
180 

- ” + O(N’). 

A summary of the variance formulas  appears  in Table 2. 

(77) 

7. Summary and conclusions 
We have shown  two  models  for  searching trees. The first 
model  has no  internal cutoff and does not  terminate  at  the 
first leaf. The discussion shows that this  model can yield an 
average search effort that grows only linearly in the  depth of 
the tree if the search is very clever at picking the  branch  to 
examine first. If the search is not particularly clever in 
making  this choice, the average search complexity will grow 
exponentially  in the  depth of the tree. 

The second  model is more interesting because it shows a 
way for building efficient search  algorithms  for  NP-complete 
problems. The search  algorithm is assumed to be able to 
identify fruitless search paths early and  to  prune these  from 
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the search  tree.  It also requires the search to terminate 
successfully at the first  leaf node. We presume that at 
each node in the tree the search algorithm performs a 
computation  that decides whether to cut off a branch. If the 
cost of this calculation grows only polynomially in the depth 
of the tree, the average complexity of the total search will  be 
bounded by a polynomial in the depth of the tree, which is 
substantially better than  the exponential bound for the worst 
case. We also explored the effect  of  different  leaf-success 
probabilities on  the average search effort, and we discovered 
that  the linear nature of the bounds is not affected by leaf- 
success probability, although the effort does depend on  the 
probability of  success at each leaf. Hence, the fact that the 
model terminates at the first  leaf encountered is not a critical 
factor in the linear behavior of the complexity functions we 
analyzed. What appears to be the crucial element of the 
model is the internal cutoff probability. Many questions 
remain open about search models for  which  cutoff 
probability varies  with the depth of the tree, and finding 
accurate probability models for  existing search algorithms 
that have internal cutoff. 

While the results  of this paper may  have direct influence 
on some search algorithms, there are many types of search 
algorithms for  which no obvious cutoff computation is 
available. For example, the Traveling Salesman problem 
lends itself quite well to various branch-and-bound strategies 
that take into account the lengths of paths. The numerical 
measure gives a natural way  of ordering partial solutions by 
their “quality.” But  what can be done  to guide a theorem 
prover?  Are there reasonable functions that can tell a 
program when to abandon  or defer unpromising search 
paths? If so, then there may be  ways to build theorem 
provers whose  average performance is  very  efficient. 
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