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Methods  for  creating  and  maintaining key- 
sequence  data  sets  without  overwriting the 
storage  medium  are  described.  These  methods 
may  be  applied to erasable  or to write-once 
storage  devices,  and  they  are  compatible  with 
conventional  device  error-management 
techniques. All past  values  of  data  records  are 
preserved in a  data  structure  called  a  Write- 
Once  6-Tree.  Rapid  random  access is available 
to records  by  key value; rapid sequential  access 
is available to records in key-sequence  order. 
Moreover,  queries  requesting  data  as of a 
previous  time  are  processed  as  rapidly  as 
requests  for  current data.  Access  time is 
proportional to the  logarithm  of  the  number  of 
current  records in the  database.  Efficient 
methods  for  inserting,  updating,  and  deleting 
records  are  described.  Upper  bounds  for  tree 
depth  and  for  storage  consumption  are  given 
and  compared  with  results  from  simulation. It is 
concluded  that,  with  rapidly  improving  storage 
technologies,  indelible  databases will become 
practical for  many  applications. 

Introduction 
Optical disks, both write-once and reversible, are expected to 
provide high-density  storage at a low cost per bit [I] .  At the 
same time, magnetic storage  costs are rapidly dropping. 
Copeland [ 2 ]  suggests that these developments in  technology 
may  change data management policies. Present practice  is to 
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keep on line only current data, while archiving historical 
data. Recovery from data processing errors typically requires 
a time-consuming process  of  restoring the database to an 
earlier state and then rerunning all subsequent transactions. 
Current methodology  is also prone to human error and is 
vulnerable to unauthorized alteration of data. 

Copeland also  argues that the practice of erasing is 
contrary to basic accounting principles. If storage  costs 
permit, he  writes, then no erasing should occur in databases 
holding  business  records. He cites accounting practices that 
require a reversing entry to alter an existing entry. 
Svobodova [3] also notes the utility of saving  all  values that 
a data field  ever  takes. The possibility  of  using  write-once 
optical disks for database applications is discussed by Maier 

These considerations give  rise to the notion of indelible 
data. An indelible data set is one in which  all  old  values of 
data records are retained. Such data sets are useful  if rapid 
access is needed to historical data. They also provide a built- 
in audit trail. 

A data structure that serves  as the basis  for many database 

141. 

management schemes  is the B-tree  of  Bayer and McCreight 
[ 5 ] .  IBM's  VSAM as well as many other database 
management systems  use variations of this approach to 
maintain key-sequence data sets (KSDS), that is,  sets  of 
records that can be rapidly  accessed either by primary key 
value or in key-sequence order. We show  here how the B- 
tree approach can be modified to provide efficient, indelible 
management of a KSDS on a rotating storage  device. The 
performance benefits of B-trees are retained, and moreover 
the evolution of the database in time is  preserved. 

Related  work 
Management of data on write-once  disks  has  been 
approached by several authors. Vitter [6] expands on an 
earlier report [7] of the B-tree methods described  here but 
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makes different assumptions about  the device. (Our 
assumptions are described in the next section.) If a variable- 
size record can be appended to a track with reasonable 
efficiency, then Vitter’s scheme improves storage utilization 
by encoding changes rather than rewriting entire new 
records. Vitter also generalizes the methodology to apply to a 
class  of data management problems. 

Rathmann [SI has  proposed an alternative tree 
management scheme that requires no overwriting. 
Rathmann implicitly restricts his  device to writing  all records 
sequentially from the first track, and thus must rewrite the 
full path from root to data record whenever an update is 
made. He also proposes a trie scheme that provides better 
performance than  the tree scheme if  keys are short. On a less 
restrictive  device,  however, Rathmann’s schemes are less 
efficient than  the methods described  here. On the other 
hand, the “append-only” device model offers the advantage 
of an extremely simple method for “undoing” the most 
recent changes to the  data set. 

Terminology and device characteristics 
Let the storage space consist of a number of trucks. To 
include both optical and magnetic disks under a single 
terminology, we use the term sector to refer to the  unit of 
data  that is written within a track. On write-once  disks, the 
sector size  is  typically  fixed. 

We assume that  the device  allows random access to the 
start of any track. Following such a “seek” operation, we 
require only the capability to write into  the first  free  space 
on  the track. We do not assume the possibility  of  what 
Maier calls backwriting, that is, writing into a gap that 
precedes a previously written area on a track. One reason  for 
avoiding the use of backwriting is the difficulty  of handling, 
on a write-once disk, a write error when there is no space  left 
in the gap. 

For simplicity, we assume that a data record can be stored 
in a single sector. A datu set is a collection of data records. A 
specific field within each data record  is designated as the 
primary  key, and  no two data records within a particular 
data set  have the same primary key.  In addition, other fields 
of a data record  may  be designated as secondary keys. 

Device error  strategies-write-once  disks 
If a write-once optical disk is the storage medium, then 
special considerations apply to error management. Each 
sector is written with a redundancy check (CRC). Typically, 
each written sector is  checked during or  just after the write 
operation. The reason for this check is the relatively high bit 
error rate of optical recording. If a write error occurs, then 
the sector is copied to a new area. In addition, the device 
controller may overwrite, or otherwise mark, the bad sector 
to provide an unambiguous indication that the sector is to 
be ignored in future readings.  We  call this overwrite 
procedure demarking. 

The details of handling the bad sector on readback depend 
on the controller and software. In some systems, the bad 
sector is automatically hidden from the application program, 
but the number of sectors in the track is reduced. The data 
management techniques described  here are compatible with 
such systems. 

the database must handle the recovery operations on 
encountering a read error. If demarking is  used to indicate 
invalid sectors, then the problem is  simplified.  Any 
demarked sectors are ignored on readback.  Any other type of 
read error must be retried. We assume in the main 
discussion that, whenever a write error occurs, the sector is 
immediately demarked. Issues arising when no such 
capability  exists are discussed  in  Appendix A. 

We also consider the case  where the software that manages 

Basic  operations 
We assume that hardware and 1/0 software provide the 
following operations: 

I .  Write into  the first  free  space  of a track or determine that 
no additional sector can be written. (This may  be 
implemented by  first reading the track.) 

2.  Read all valid  sectors  of a track. 

Database operations 
The following database operations are required: 

1. Insert a data record into the data set. 
2. Given a primary key,  find the record  having that primary 

3. Retrieve data records in primary key-sequence order 

4. Given a primary key,  erase the data record  which  has that 

key. 

starting with a specified  key. 

primary key. 

Many methods that require overwriting the storage 
medium have  been  described  for accomplishing these tasks 
efficiently.  We  describe techniques for doing them without 
overwriting data  or index records. (One reason that index 
records are not overwritten is to preserve  historical paths to 
data.) 

An essential feature of the methods described is that they 
are compatible with the use  of error-detection and error- 
correction codes. Other approaches to managing data  on 
write-once  disks  have not dealt with the possibility of data 
errors [4, 91. 

Write-once balanced tree data set 
The B-tree  of  Bayer and McCreight [5] is modified for 
application to indelible data sets. One important alteration 
comes from the need  for  different splitting rules than are 
used  with conventional B-trees.  Also, the structure of data 
within a node (bucket) is  necessarily  different in the Write- 
Once Balanced Tree (WOBT). 93 1 
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i A - 2 H + 3  

Bucket 1 (index) 

Bucket 2 (data) Bucket 3 (data) 

1 Sample WOBT containing primary keys A ,  C ,  H ,  K ,  W. 

Bucket 1 (index) 

Bucket 2 (data)  Bucket 3 (data) 

1 Initial WOBT. 

Each data record contains a  primary key as well as 
possible secondary keys and  data. We use X,x to indicate an 
example  of  a record with primary key X whose remaining 
part is x. The records are organized in buckets.  Each  bucket 
is implemented as one  or  more physical tracks and  contains 
all records of the data set whose primary keys fall (in 
collating order) between the smallest and largest primary 
keys stored in  the bucket. The bucket header is the smallest 
key in  the bucket.  Each bucket’s header  appears in  the index 
along with a pointer  to  the bucket. 

The index itself is organized in a  similar manner. Each 
index  bucket contains all keys of the index whose values fall 
between the smallest and largest keys in  the index  bucket. 
Each  such  bucket in  turn  has its header in a higher index 
bucket  until there is a single (root)  bucket that holds the 
highest level of  index keys. Within each  index  bucket, the 
entries appear as  key-pointer pairs, each pointer giving the 
location  (bucket  address)  of  a  header key in  the next lowest 
level. Figure 1 shows an example with four sectors per 
bucket and  one index level. In  the example, each sector can 
hold  either one key-pointer  pair or one  data record. The 
contents of bucket 1 indicate that all primary keys equal to 
or greater than A and less than H a r e  found  in bucket 2. All 
primary keys equal  to or greater than H appear in  bucket 3. 

The first entry of a  bucket  holds the bucket’s smallest key; 
otherwise entries  are  in no particular order. Keys may 
appear  more  than once in a  bucket, because updating is 
done by writing the key again with its new pointer or record 
values. The last pointer or the last data  entry with a 
particular  primary key is deemed to be the  current  or active 
value. 

Whenever  a  bucket is filled, its contents  are processed and 
then rewritten into a new bucket or buckets. This step 
constitutes  a local reorganization of the  data. As in  the case 
of the conventional B-tree, it will be shown that  the  depth of 
the tree grows as  the logarithm to  some large base of the 
number  of primary keys in  the database. (That is, the  depth 
depends  on  the  number of current entries  rather than  on  the 
number of updates made  to  the database.) The  fanout  at 
each level of the tree is controlled by the recopying 
algorithm and  depends  on  the bucket size. 

sets. 
We now describe the operations  for key-sequenced data 

Initialization of data set 
The initial  tree  has  a single bucket  for  its one index level and 
a single data bucket.  A  null (dummy) record whose primary 
key is all zeros (denoted *) is the initial entry  in  the  one  data 
bucket, and its key is the initial entry in the index, paired 
with a  pointer to  the  data bucket. No real key may have this 
(all-zeros) value. (See Figure 2.) 

Handling  write  errors  on  write-once  disk 
In  the procedures below, the only write operation is to write 
into  the next free sector in  a  bucket. If a write error occurs, 
then  the bad sector is demarked  and  the  contents rewritten 
into  the next position in the bucket. If there is no  room, 
then the bucket is “full.” See “Reorganize  a  bucket” below 
for the handling of this case. 

Insert  a  record  whose key is X 
Begin with the root  as the  current index bucket. 

1. Search the keys in  the  current index  bucket  for the largest 
key that does not exceed X. Find  the last copy of that key. 
Follow the pointer with that key to  the next level of 
index. 

Repeat Step 1 until  a data bucket is reached. 

If space exists in the bucket, write the record into  the first 

If not, then reorganize the bucket (see below) and write the 
available space. 

new record into  the  appropriate new bucket. 

Example showing insertions 
In the figures that follow, four sectors can be written per 
bucket, and  one sector can hold  either  a  key-pointer  pair or 
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a data record. The symbol : designates the key that is stored 
as all binary zeros. The  entry A -+ 2 means  that key A points 
to bucket  address 2.  The  dummy key : is the initial key in 
the  data set and  has  no  data with it; the first index entry 
points  to  the bucket  holding  this key, as in Figure 2.  

We  then insert  records with primary keys F, E, B, as  in 
Figure 3. Next the record with primary key W is inserted. 
Since  bucket 2 is full, its contents  are reorganized and  then 
written out  into new buckets 3 and 4, as  in Figure 4. Bucket 
2 is  discarded. The index gets new pointers. Note  that  the 
second pointer for : supersedes the earlier  entry. 

Now the record with  primary key W is updated  three 
times. When  the  third  update is attempted, bucket 4 is found 
to be full. The  contents, including the new record with key 
W, are reorganized. Since only two  distinct keys are present, 
the  contents  are recopied into a single new bucket,  bucket 5 
in Figure 5. Bucket 4 is  discarded. A new index entry is 
written for key F. The most  recent data record with key W is 
denoted w#. 

Suppose that  at a  later time  another entry, Z -+ 8, comes 
to bucket 1, which is then reorganized and copied into two 
buckets (to allow adequate free space). The index must now 
grow by one level. The two buckets  derived  from the old 
root form  the second level of the new index, and a new first 
level (root) is written containing  the pointers to  the second- 
level buckets. 

Retrieve record  having  primary key X 
Let the  current index  bucket be the root. 

1. Search the keys in  the  current index  bucket for the largest 
key that  does  not exceed X .  Follow the most  recent 
pointer stored with that key to  the next level of  index. 

2.  Repeat Step 1 until a data bucket is reached. 
3. Search the  data bucket for  the last record with key X .  Or, 

if none is found, report that  the record is absent  from the 
data set. 

Retrieve records  in (ascending) primary key- 
sequence  order 
The  start of the sequence to be retrieved is specified by an 
initial search key. The procedure does  not require  horizontal 
pointers in the tree structure to link  together  buckets on  the 
same level. By holding in memory  the index  bucket that is 
one level higher than  the  data bucket  being processed, the 
number of accesses required to read the  entire set of  records 
is kept to a  small percentage increase  over the  number of 
accesses required to read  each data bucket  once. In essence, 
the algorithm  provides  what Knuth calls a preorder traversal 
of the tree [IO]. 

The procedure uses a list, called a  Search  Sequence. This 
list has  one  entry for each level of the index. Each entry in 
the list is a  pair  consisting of the address of the last bucket 
visited on  that level and a key value. The last-bucket-visited 
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Bucket 1 (index) 

Bucket 2 (data)  Bucket 3 (data) 

j WOBT after inserting primary keys F, E, B .  

Bucket 1 (index) 

Bucket 3 (data)  Bucket 4 (data) 

f WOBT after inserting key W. 

Bucket I (index) 

Bucket 3 (data)  Bucket 5 (data) 

WOBT after three updates of  key W. 

entry for a level is updated whenever a  bucket is visited. The 
updates to  the key entry  are described below: 

1. Using the initial search key, locate  its data bucket D. 
(This may be the  dummy record associated with the all- 
zeros key.) While descending to D, at each  index level of 
the tree, set the key entry in the Search Sequence to be 
the smallest nondeleted key of the bucket that exceeds the 
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search key. Save the  contents of D and  the  contents of the 
last (index)  bucket searched before reaching D. Sort  this 
index  bucket by  keys, retaining  only the latest copy of 
each  record. The  current key is the first  key in the sorted 
list. 

2. The  current key points  to  the  current  data bucket.  Sort 
the records  of this  data bucket by  key in ascending  order, 
retaining only  the latest copy of each. Output  the ordered 
records. 

3. In the (sorted) saved index  bucket, let the  current key be 
the next key in  sequence. If no keys remain, go to  Step 4. 
Otherwise, go to  Step 2. 

4. Obtain  from  the Search  Sequence the  entry pair (B,K) for 
the tree level just above that of the saved index  bucket. [If 
K is NULL,  then go to  the next highest entry  in  the 
Search  Sequence  until entry (B ,K)  with non-NULL key K 
is found. If the entire  Search  Sequence list is exhausted, 
then  terminate since all records  have  been retrieved.] K is 
the new search key for the level. 

5. Proceed from bucket B to search the tree for data bucket 
D that  contains  the record whose primary key is K. 
Update  the Search  Sequence at each level passed as in 
Step I .  

before reaching the  data bucket,  retaining  only the latest 
copy of  each. The  current key is the first key in  the sorted 
list. Go to  Step 2. 

6. Sort by key the  contents of the last bucket  searched 

Reorganize a  bucket 
Reorganizing  of  buckets is essential for eliminating  obsolete 
records from  the search path  and for keeping the  number of 
levels of the tree at a minimum.  The procedure is basically 
the  same for data buckets and index buckets. Reorganization 
occurs when an  attempt is made  to  add a record to a full 
bucket. The new record is included in the contents that are 
reorganized. First, the records are sorted by key; records 
marked  for  deletion and  outdated records are eliminated. 
However, the most  recent record with a  bucket  header key is 
never eliminated. 

The next  step is to rewrite the  contents  into a new bucket 
or buckets. The original bucket  becomes  inactive.  A 
significant design feature is the  method used to  determine 
the  number of new buckets that will be written from a filled 
bucket. (The need for  such a method arises from the fact 
that  the  number of  retained  entries  after  reorganization is 
data-dependent.) 

The specific method studied  here  for determining how 
many new buckets to copy into is based on two  parameters, 
TD > 1 and TI > 1. If the reorganized  bucket is a data 
bucket and holds fewer than TD entries, then  one new 
bucket is written. If it is a data bucket and holds at least TD 
entries, then  two new buckets are written. The index  bucket 
decision is similar, but based on  parameter TI. 

Each new bucket receives, as closely as possible, an equal 234 
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share of the contents, which are stored sorted  in key- 
sequence  order.  A new header-pointer  pair for each of these 
new buckets is sent  to  the next highest level of  index. 

If such  a  pair is sent to  the root, and  that is full, then  the 
root is reorganized in the  same  manner. If the root  bucket is 
written to a single bucket, then  that becomes the new root. 
Otherwise, the tree  must grow one level. The buckets  written 
from the old  root  constitute the new second level, and 
another bucket, the new root, is created to hold the pointers 
to  the second level’s buckets. 

The implications of this approach for storage 
consumption  and for performance are discussed below. 

Erase a data record 

1. Find  the  data bucket  holding the record, as in  “Retrieve 

2.  Write  a new record in that bucket with the  same primary 
key but with an indication that  the record is deleted. (Call 
this  a delete  record.) 

record.” 

Retrieval operations  report “no record found” if a  delete 
record is the latest record for  a  particular  primary key. 

Handling of delete records 
On reorganizing a data bucket,  a  delete record normally is 
not copied to a new bucket. There  are two exceptions: 

The record’s primary key is the old bucket’s header key. 
(Reason: The header is retained to simplify management 
of the index.) 
The delete record was the last record added  to  the bucket 
contents  that were reorganized. (Reason: The design 
philosophy requires that every data  entry be stored at least 
once  in the database.) 

Note that  there  are  no delete records for  index entries. 

Initialize a tree with records  that are already  in 
key-sequence order 
If a data set already exists on  some  other storage medium, 
then  the records  should be sorted  in key-sequence order  and 
loaded onto  the write-once device in one operation. This 
saves disk space by eliminating rewrites of full buckets and 
also saves time. The procedure for doing  this is 
straightforward. Conceptually,  “Insert  a record whose key is 
X” is invoked  once  for each record.  Instead of filling a 
bucket, when  a  certain number of records have been written 
into a  bucket, the writing halts  there and  continues in the 
next  bucket  in the  same level of the tree. An index entry for 
the new bucket is sent to  the index. Free space is left in  each 
bucket for updates or additions. The  same approach is used 
at each index level, with a new root  created whenever the 
topmost  index level expands beyond one bucket. 
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Performance-depth of tree 
The  depth of the  tree is a measure of performance since this 
determines  the  number of random accesses for  insertion and 
retrieval. In this  discussion, we ignore the possibility of 
shortening  of  buckets by write errors. We also ignore 
deletion.  Retrieving a record or inserting a record requires at 
most  one disk access for  each  index level of the tree other 
than  the root (which can reside in  memory),  plus one for the 
data record. Each disk access consists of seeking to  and 
reading a (fixed-size) bucket. We now  estimate the capacity 
of a tree of a given number of levels. 

Recall that TI > 1 and TD > 1. Let F be the greatest 
integer that  does  not exceed TI/2. Let J be the greatest 
integer that  does  not exceed TD/2. For simplicity, we only 
consider the case where the tree  has grown larger than its 
initial  configuration, so that  it consists of at least two  active 
data buckets in  addition  to  the root.  When a bucket is 
reorganized to  two new buckets, the  number of  distinct 
entries in each new bucket is at least F for index  buckets and 
at least J for data buckets. When  reorganization is to a single 
new bucket, the  number of  distinct  entries in  the new bucket 
does  not decrease. When the tree first grows, each new data 
bucket  holds at least J distinct  entries. It follows that every 
active data bucket  holds at least J distinct  entries. Similarly, 
if there exist active nonroot index  buckets, then each holds 
at least F distinct  entries. 

We call a tree full if inserting some key in  it will force the 
tree to grow to a greater depth. We compute  the  minimum 
number of data records  stored in a full tree having h index 
levels (including the root) and  thus find a maximum  number 
of levels required in a tree that holds that  many or fewer 
data records. 

If a reorganized bucket is copied into  one new bucket, 
then  one index record is sent  to  the level above. If a 
reorganized bucket is  copied into two  buckets, then only one 
of the index  records sent  to  the level above  holds a key not 
already  stored in  that level. In a full tree, the root bucket's 
contents, plus the root's newly arriving  index  record key(s) 
resulting  from an insertion, amount  to  at least TI distinct 
keys. However, the new key(s) add  at most one distinct key. 
Therefore, a full tree has at least TI - 1 distinct keys in the 
root. 

From this we conclude that a full tree with h index levels 
holds at least (TI - l)Fh"J active data records. 

Indexing  options 
The B-tree can  be used for indexing  only, keeping in  the 
bottom level of the tree the pointers to  the  data records. In 
this case, the  data records themselves are written  sequentially 
as they  arrive and need never move. The disadvantage of this 
approach is that retrieval of  records in key-sequence order 
would typically require a seek for  each  record,  rather than a 
seek per bucket of data.  The advantage is a possible storage 
savings. The index must  in  this case contain  an  entry for 

each data record,  rather than for each data bucket;  this  extra 
space in  the index is compared with the savings in data 
record storage. As shown below, the recopying of data 
records to  maintain  the  data organization  consumes on 
average, depending on key distribution and use of data 
compression, 0.5 to 2 extra record slots per original record 
stored. 

By not copying data records we have a data access 
technique with characteristics  similar to those of extendible 
hashing [ 1 11 used on erasable storage. While the application 
of hashing to indelible data sets is beyond the scope of this 
paper, we note  that a performance  problem arises if  we have 
many updates to  one record. Each entry uses the  same key 
and  thus gets hashed to  the  same bucket. The approach 
taken here provides  for elimination of the obsolete values 
from the search path and  thus offers fast access regardless of 
the  number of updates. 

Storage  consumption 
The values of TD and TI can be used to  trade access time 
against storage consumption. If the  incoming sequence  of E 
data records (inserts or updates) were simply  written 
sequentially onto  the disk, then E data sectors would be 
consumed.  Extra storage is required by the  WOBT in order 
to provide fast access in key-sequence order. We argue  here 
that  the storage consumption by index  entries is negligible 
compared with that by data sectors (if the  data buckets  are  of 
reasonable size) and  that, for a range of values of TD, the 
worst-case storage consumption for data is 4E sectors. 
Typical behavior is better than  the worst case, and so 
consumption of storage will usually fall between 2E and 3E; 
that is, between I and 2 extra copies of a data record are 
written on average. In the next section we show how data 
compression can reduce this  amount. 

For  performance reasons, the bucket size should be 
chosen so that  the  fanout  parameter F discussed above  is 
large enough to keep the tree to three levels. Typically, this 
value of F will  be so large that storage in the index  part  of 
the tree is a negligible part  of the whole. Filling of data 
buckets will send  pointer updates  to  the index, and  thus 
many duplicates will occur  in the sequence  of keys sent to 
index buckets. Choosing TI close to  the capacity of a bucket 
will result in  extra copying in  the index  buckets but will 
increase fanout; high fanout reduces the required  bucket size 
and hence the access time.  Extra copying in the higher-level 
index  buckets will cost little in  comparison with the  total 
space consumption. Therefore, a good value for TI is 80 to 
90 percent of the capacity of a bucket. 

Choosing TD close to  the capacity of a bucket, however, 
may result in excessive storage consumption. An 
experimental  study of the  impact of TD values on 
consumption is described in a later  section.  Theoretical and 
experimental arguments suggest that a reasonable value of 
TD is 1/2 to 3/4 the capacity of a bucket. 236 
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Consider first the special case in which data records are 
never  updated. Then a filled bucket will always be rewritten 
into two  buckets  (because  a single bucket cannot hold the 
contents)  and  the value of T D  > 1 has no effect. A  simple 
argument (see Appendix B) shows that  at  any  time after the 
first bucket  has been rewritten, the  number of  active  buckets 
is slightly greater than  the  number of inactive  (discarded) 
buckets.  Therefore, about half the disk space allocated to  the 
WOBT holds active buckets when the disk becomes full (that 
is, when no tracks are available for new buckets). Assume 
that  the keys arrive  in random order. An active  bucket will 
start  out half full and so, at  the  time  the disk is filled, about 
3/4 of the space in the active  buckets will be occupied. This 
leads to  the conclusion that 3/8 of the  data sectors contain 
active data records when the disk is filled. Therefore, about 
2.7E sectors are  consumed  in storing E data records. In a 
conventional B-tree, on average, about 1/4 of each node is 
empty also at  that time.  Therefore, if a record is exactly the 
size of a  sector, then  the  WOBT requires about  double  the 
storage used by a conventional B-tree. 

If the  WOBT is initially loaded  from  sorted records, then 
the  additional storage consumption  depends  on  the  amount 
of updating since the initial load. Use of free space in  the 
WOBT initial  load  should be more generous than with a 
conventional B-tree since  updates  must be accommodated. 

The following result, which makes no  assumption  about 
the keys or update rates of the  incoming records, provides a 
theoretical  guide to selecting the value of TD. Let rn be the 
number of sectors  in  a data bucket. In Appendix B,  we show 
that  at most (about) 4 E  sectors are  consumed in  storing E 
data records provided that T D  5 3m/4 + 2. This  bound 
holds regardless of the  number of updates. The worst-case 
situation is approached by introducing  data records in 
descending sorted order by primary key. Experiments with 
realistic as well as simulated  workloads (see below) have 
shown that 2E to 3E is a  reasonable  estimate of 
consumption for randomly ordered keys and  that storage 
consumption shows little sensitivity to  the exact value of TD. 

Data compression 
Data compression provides a way to “buy  back” some of the 
storage lost in  reorganization  without sacrificing the  added 
value of on-line historical data. When  a  bucket is 
reorganized, the  amount of data  camed over to  the new 
bucket or buckets is typically half a  track or more. 
Compression  techniques  applied to 20000-byte blocks have 
been found typically to reduce size by factors from 2 to 3 
[ 121. One reason that such  techniques are  not  commonly 
used in conventional database systems is that when  a block 
is altered, its compression ratio changes and it  may not fit 
back into  the  same storage location.  With indelible data, 
however, the problem does  not occur. The  approximate 
calculation  of the previous  section is now extended. Again, 
assume  that  there  are  no  updates  and  that keys arrive  in 236 
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random order. Also consider only the case where every 
reorganization  produces  two new buckets. If compression 
reduces the storage required by a factor 1/R, then  the 
fraction of space initially occupied  in  either first  new bucket 
is 1 /2R. Copying cames forward the  compressed  entries, but 
a  simple  calculation shows that  the fraction of initial space 
filled in a new bucket  does not grow beyond 1/( I + R). Once 
this value is reached, successive buckets have nearly identical 
initial occupancies. 

[ 1 - 1/( 1 + R)]m = Rm/( 1 + R) free entries.  When the disk 
is filled, all the initial free slots in each discarded bucket have 
been consumed by  new entries.  About half the buckets in the 
tree are active, and  about half the initial free slots in the 
active buckets have been consumed by new entries. 
Therefore, the average number of new entries per allocated 
bucket is at least 0.75Rm/( 1 + R). For example, if R = 2, 
then on average at most 2 storage slots are  consumed for 
each new data entry. This compares with an average of 8/3 
when no compression is used. 

Each bucket of m slots initially has at least 

Comparison  with storage costs of conventional 
B-tree data sets 
The  amount of storage consumed by a  WOBT is necessarily 
greater than  that  consumed by a  conventional B-tree on  an 
erasable medium. For the extra cost, we gain the advantage 
of additional  on-line information. We now estimate  this 
increase in storage requirement. 

Let u be the fraction of data set entries that have new keys 
(that is, the fractions of entries that  are inserts). It was argued 
above that storing D (distinct) records in  a  conventional 
B-tree requires approximately 4D/3 storage spaces. With 
D = uE, the worst-case storage requirement for a  WOBT is 
4D/u sectors. Thus, if the record size exactly equals the 
sector size, then  the WOBT storage required is at most 3/u 
times  as great, and typically 2/24 times  as great. 

blocks of data,  then typical WOBT storage is reduced to 
1.5/u times  that required by conventional B-tree storage. 

Space can also be saved, if the  data records  are larger than 
the index records, by not recopying data records. This results 
in  extra access costs  when retrieving records in key-sequence 
order. 

If compression by a  factor of 2 is achieved on  the recopied 

Timestamps and historical data 
Each index and  data  entry  can be timestamped. The only 
requirement on  the  timestamps is that each data  entry carry 
a timestamp  that is later than  that of the previous  entry to 
the database. The  timestamp for an index entry is that of the 
most  recent data record. The retrieval procedures previously 
described can be used to perform  the task as ofa particular 
time  and  thus reflect the state of the database at  any chosen 
past time T. The search starts at the  bucket that was the root 
of the tree at  time T. (To find the root that pertains to a 
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particular time, use the list of successive roots described 
under  “Finding  the  root” below.) The only other change  in 
the retrieval algorithms  is that entries with timestamps 
exceeding Tare ignored in the searched buckets. This is the 
same  as saying that  the search of each bucket  halts when a 
record is found with a timestamp larger than T. 

A general facility for retrieving successively older versions 
of a data record is obtained  as follows. Include  in each data 
bucket  a  pointer back to  the bucket  from whose 
reorganization  it came.  Then, after retrieving the  current 
version of  a  record,  it is easy to follow the pointers back to 
find each  earlier version. The  same  technique  can be used to 
find earlier versions of a  particular  index entry. 

Copying  to  a  new  disk 
If the storage medium is filled, then  the  current records 
(only) can be copied to a new disk using the procedure 
“Retrieve  records  in  primary key-sequence order.” The old 
disk can be kept on  or off line as facilities permit. A new 
disk can also be created which will provide all historical data 
back to a specified time. 

Secondary indexes 
A write-once B-tree can be used to provide an index to 
secondary keys. Such keys need not be unique. The key SEC 
from  the record whose primary key is PRIME is stored 
under  the index entry SEC.PRIME. This makes possible 
deletion of specific instances of a  secondary key  by the 
method described above. All secondary keys with the  same 
value are clustered in a minimum  number of tracks by the 
insertion  procedure and  are quickly found. To obtain all 
instances of SEC.???, for example, begin by searching  for key 
SEC and  then  continue  to retrieve in key-sequence order. 

Choosing  bucket size 
One basic assumption  made  at  the  start was that a  bucket is 
a  multiple number of tracks. This  assumption is tied to  the 
requirement  that writing  must be sequential  within  a  track. 
For a  device that has no such requirement, however, it may 
be possible to use an arbitrary number of sectors  as the 
bucket size. 

Finding  the  current  root  (or  root as of time T )  
Starting  from  track 1 (or another track that is agreed on by 
convention) a method  must be provided by which a program 
rapidly locates the  current root (or root  as of time T )  of the 
write-once B-tree. For most  applications it is sufficient to 
keep  a  time-stamped log of successive roots, using linear or 
binary search to find the required entry.  For  the  current 
root,  this search need only be done when  a new disk is 
mounted.  During subsequent processing, the address of the 
current root  is held in memory. 
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Concurrency  control 
The availability of earlier versions of records permits 
transactions to read while other transactions are updating. 
The development of appropriate concurrency controls is 
beyond the scope of this  paper, but offers a  promise of 
performance gains [ 3 ] .  

Performance summary 
Through use of a value of TI close to  that of the bucket 
capacity, we can achieve a fanout close to  that of a 
conventional B-tree with the  same bucket size. Thus  the 
number of accesses for random insert or retrieval is about 
the  same  as if overwriting were allowed. 

standard B-trees because of the need for some linear search. 
After a  bucket  has been copied, however, its initial  entries 
are in  sorted order. Binary search can  thus be used on  the 
old entries and linear search on  the new entries  within  a 
bucket. Because of rapid advances  in processor speeds 
relative to disk access times, the search cost should be a 
small part of the cost of operating the algorithm. 

Search time within  a  bucket will  be slower than with 

Summary  of design features 
The design was planned to minimize the need for updating. 
The policy of not deleting  a data bucket’s header key avoids 
the need for changing the index  as  a result of deletions. The 
avoidance of horizontal  pointers  eliminates the need to keep 
these  pointers current as  buckets are reorganized. 

Control of storage space and  fanout is accomplished 
through the reorganization  algorithm. The use of  a high 
threshold  for copying an index  bucket into two buckets 
keeps the  fanout in the tree relatively high. Use of a 
somewhat lower threshold  in the  data buckets provides space 
for updates  in newly copied buckets. 

Finally, certain  features of the design take  into  account 
application to write-once disks. In particular, there is no 
forward chaining of tracks or buckets using a  pointer that is 
written into  the track or bucket that is being chained. This 
avoids the case where an  error occurs while the pointer is 
being written, and  the space  in the track or bucket is 
exhausted. 

Experimental study 
A write-once B-tree algorithm was implemented using 
magnetic disk as  the storage device but  treating the  medium 
as indelible. 

The first set of experiments was based on a  workload  from 
a possible application of write-once disks to archiving. The 
workload comes  from  a system that periodically copies all 
changed user files to tape. If the files were instead  stored on 
write-once disk, then a  WOBT  could be used to  maintain 
the  index to these files on  the disk as well. For  the test of this 
assumed  application, the workload was a chronological list 
of 3000 file names. This is the “File Names”  workload. 
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A second  workload was generated by the following 
method. Keys were selected at  random  from a space of 
values. The frequency of repetition of each key was chosen 
in  accordance with Zipf’s law [ 13, 141 which has been found 
to describe many empirical frequency distributions. In this 
case, the frequency  of the  ith most  frequent key was I/i 
times  that of the most  frequent key for i = 1 to 175. Each 
remaining key had  a single appearance. The keys with these 
frequencies were sent  in  random  order  to  the file. 

A third  workload (“Uniform”) was generated by making 
three copies  of each of 1000 keys and arranging the 3000 
values in random order. 

Table 1 shows  for each workload the  number of distinct 
keys, the  number of  occurrences  of the most  frequently 
appearing key, and  the  number of keys that  appear exactly 
once. 

In  this experiment,  each  bucket  (index or data) held 
exactly 30 entries and  there were no write errors. Table 2 
summarizes  the storage consumption  found as  a function of 
the value of parameter TD. The  parameter TI was set at 25 
for each case. While 100 data buckets would be needed to 
store the unorganized data as received, the  WOBT used from 
206 to 307 buckets. It is interesting that  the storage 
consumption was not very sensitive to  the value of TD. 
Although the  number of buckets  “split”  (copied to two 

Table 1 Numbers of distinct keys,  occurrences of most 
frequently  appearing key, and  keys  that  appeared  exactly once for 
three  workloads.  Each  workload consisted of 3000 keys. 

Workload Number of Number of Number of 
distinct appearances keys that 

keys of most appear 
frequently once 
appearing 

key 

File names 2300 10 1879 
Zipf distribution 1253 349 1078 
Uniform distribution 1000 3 0 

Table 2 Storage consumption as a function of TD. 

buckets) decreased with increasing TD, the total 
consumption remained fairly constant for a large range of 
values of TD. A  setting of TD between 1/2 and 3/4 the 
capacity of a  bucket gave about the best results in all cases. 
A setting closer to the capacity generally gave worse results. 
The relative insensitivity of storage consumption  to  the 
distribution of updates  indicates the robustness of the 
technique. 

found  that  the storage consumption was 2 to 3 times E, 
rather than the worst-case 4E. 

In comparison with the theoretical arguments above, we 

The tree in all cases consisted of a  root,  a second level of 
index, and  the  data level. Table 3 gives the  fanout results for 
the second level of the index, where fanout is the  number of 
distinct  entries in  an index  bucket. (The  fanout  at  the root 
was typically only 4.) Again, we  saw little sensitivity to 
distribution. In all cases, TI = 25, so the theoretical 
minimum  fanout was 12. The observed values were 14.6 to 
2 1.3. 

Conclusions 
We have described methods for indelible management of 
key-sequence data sets. The performance,  measured  in terms 
of number of seeks and reads, is about  the  same as  for 
conventional B-tree management. 

Storage consumption  depends on the  update rate and 
involves an additional cost because information is rewritten 
to  maintain  data records in key-sequence order  and  to keep 
index records clustered for efficient retrieval. Compared with 
conventional  structures, the ratio of storage consumed is 
about 1S/u  to 2/u, where u is the fraction of entries that 
have new keys. The storage requirement  can be reduced by 
using better data compression, by not recopying data records 
and  thus accepting longer retrieval times for records in key- 
sequence  order, and by sorting the initial load of data 
records before entering them. 

Depending on  the  update rate and  the cost of storage, it 
appears that indelible key-sequence data sets will  be practical 

Workloud TD 

File names 

Zipf  distribution 

Uniform distribution 

6 
15 
24 
28 

6 
15 
24 
28 

6 
15 
24 
28 

Active data 
buckets 

134 
131 
126 
I20 

97 
85 
71 
62 

117 
99 
61 
51 

Data buckets 
split 

I33 
I30 
125 
119 

96 
84 
70 
61 

I16 
98 
60 
50 

Data buckets 
copied 

0 
3 

16 
65 

14 
37 
99 

184 

0 
18 

110 
204 

Total data 
buckets 

264 
264 
267 
304 

207 
206 
240 
307 

233 
215 
23 1 
305 

238 
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Table 3 Fanout  results  for  second  level of index, 
where TI = 25. 

Workload TD Average fanout in 
second level of index 

File names 6 
15 
24 
28 

Zipf distribution 6 
15 
24 
28 

Uniform distribution 6 
15 
24 
28 

16.8 
16.4 
15.8 
15.0 

16.2 
21.3 
17.8 
15.5 

14.6 
16.5 
15.3 
17.0 

for many applications. The high density of optical storage 
and advanced  magnetic  recording may lead to keeping on 
line historical data  that formerly were relegated to archives. 

Appendix A: Write-once  disk with  no demarking 
We discuss methods for implementing  the  WOBT scheme 
on a write-once disk in  the absence of a  “demarking” 
capability  for  bad writes. The crucial  problem is, on 
encountering a  read  error, to distinguish between a 
previously discarded  sector and  one  that was valid when 
written. In the  former case, the  error  can be ignored. In  the 
latter case, the  operation  must be retried. 

One strategy for  handling write errors is to copy the entire 
contents of the bucket where the  error occurred to a new 
bucket and  then write the new bucket’s address  in the index. 
An advantage  of this  approach is that discarded  sectors are 
never  subsequently read. The use of powerful error- 
correcting  codes may keep the write error  rate sufficiently 
low so that little space  is wasted by this  approach. 

Another  approach does not discard buckets. Instead, we 
rewrite a bad  sector in  the next  position  of the bucket if 
there is room. (Otherwise, the bucket is “full.”) Each  sector 
written into a bucket  contains a  bucket  sequence number 
(BSN). The BSNs are 1, 2, 3, . . . , increasing by one for each 
sector  written successfully to  the bucket. On reading  a 
bucket, read errors  on all but  the last written  sector in  the 
bucket  can be ignored so long as  there  are  no gaps in the 
BSNs read. A read error  on  the last sector of a  bucket that is 
not recovered by retries indicates a nonrecoverable  error. 

Appendix B: Upper  bound  on  storage 
consumption 
Assume that a reorganized data bucket  in  a WOBT is copied 
to a single node if it  holds fewer than TD current entries and 
is copied to  two nodes otherwise. (An entry is  a  stored record 
with  its key.) There  are  no deletions of entries in  the WOBT. 

Branch 

1-node /Leaf 
C”” 

2-node 

8 Example of graph showing movement of bucket contents after ’ reorganization. 

\ ”””“” 1 

Another example of graph showing  movement of bucket contents 
after reorganization. 

Let each data bucket hold m entries, and let there initially be 
a single data bucket. 

Claim 
If E data entries  (including the initial dummy entry) are 
stored  in the WOBT, then  at most r4E/ml  data buckets are 
allocated if TD 5 (3m/4) + 2. 

Proof Represent the initial data bucket  as the root node in 
a  directed  graph.  When  a  bucket is reorganized, draw an 
edge from  its  node to  the node(s) representing the new 
bucket(s). Examples of resulting graphs are shown  in Figures 
6 and 7. In these graphs, the nodes having two descendents 
are  shown  as boxes. 

A  node having a single descendent is called a I-node. A 
node having two  descendents is called a 2-node. Let K be the 
number of 1-nodes and let N be the  number of 2-nodes. The 
sequence of 1-nodes that precedes a 2-node, along with the 
2-node, is called a branch. Each branch  in Figures 6 and 7 is 
encircled with a dotted line. A node with no descendents is a 
leaf node. Let L be the  number of leaf nodes. 
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Consider first the case in which no 2-nodes appear in the 
graph. This  means  that after every reorganization  there are 
at least m - TD + 1 2 (m/4) - 1 empty entries in  the  one 
new bucket  written. Then  at least m/4 new entries are 
included  in the m + 1 entries that  take  part  in  the later 
reorganization  of  this new bucket. Thus, by induction, every 
reorganized bucket accounts for at least m/4 new entries. 
This completes the proof  for the case of no 2-nodes  in the 
graph. 

If we sequentially  remove  each  1-node and  connect its 
descendent  node, if any,  to its ancestor  node, then we end 
up with a nonempty binary tree, the condensed graph.  (We 
also remove the root node if it  is a 1 -node.) Figure 8 shows 
the condensed  graph resulting from  the graph of Figure 7. 
The leaf nodes  represent all the  data buckets of the  WOBT 
that  are “active.”  A  simple  inductive argument for  binary 
trees shows that 

L = l + N .  (1) 

Now assume  that  there is at least one 2-node  in the graph. 

The  contents of every 2-node bucket  includes the records 
passed to its branch by its ancestor  2-node  bucket (if one 
exists). By definition of reorganization, the keys of these 
records are distinct. Let A be the  number of  such keys in all 
2-nodes. Every 2-node  bucket also contains initially the new 
keys stored into its branch buckets (excluding the  branch 
buckets’ initial contents) or added  to  branch buckets during 
reorganization. Let S be the  number of such keys in all 2- 
nodes. Let U denote  the  number of new keys (excluding 
initial  contents)  stored into all 2-nodes or  added  to 2-node 
contents before reorganization.  (Reorganization  occurs  when 
an  entry sent to a  bucket  finds the bucket full. The new 
entry is included  in the reorganization.) Let R be the 
number of repeated (update) keys stored into a  2-node or 
added  to 2-node contents before reorganization. 

By definition, every 2-node  has been reorganized. An 
entry typically is first stored  in some bucket, then copied 
several times  as each successive bucket is reorganized. Each 
of the m + I entries associated with 2-node X’s 
reorganization satisfies one  and only one of the following 
conditions: 240 
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1. The  entry was first stored  prior to creation of X’s branch. 
2. The  entry was first stored  in one of X’s branch 1-nodes 

(or added  to such  a node before its reorganization). 
3. The  entry was first stored into X itself (or added to X 

before its  organization) and was the first entry  to  appear 
in X with that key. 

4. The  entry was first stored into X (or added to X before its 
reorganization) and repeated  a key that already appeared 
in X .  

From this  it follows that 

N ( m +  l ) = A + S +  U + R .  (2) 

The  contents of a reorganized bucket  may  include  as 
many  as m + 1 distinct keys. Because of the even splitting, at 
most I + m/2 keys are passed from an ancestor  2-node 
bucket to  the branch.  Therefore, since one 2-node is the root 
of the tree, A I ( N  - I)( 1 + m/2) and hence, by (2), 

N + 1 < 2(S + U + R)/m. (3) 

Let R‘ be the  number of repeated keys that  are stored into 
I-node  buckets or added to 1-node  bucket contents when 
reorganized. A 1 -node  bucket, by definition  of the copy rule, 
holds at most TD - 1 distinct keys when it is reorganized, 
and so at least m - TD + 2 repeated keys are eliminated 
when a I-node is reorganized. Therefore, 

K 5 R’/(m - TD + 2). (4) 

Applying (1)-(4), we find that  the total number of nodes 
in theo r ig ina lg raph i sK+L+N=K+2N+ I <  
R‘/(m - TD + 2) + 4(S + U + R)/m. By assumption TD 5 
3m/4 + 2, that is, m - TD + 2 2 m/4, and therefore 

K + L + N < ~ ( S + U + R + R ’ ) / ~ ~ I ~ E / ~ .  ( 5 )  

This completes the proof. 

Comment I 
With the substitution of TI for TD, the result applies to  any 
non-root  index level of the tree. In this case, E refers to  the 
number of index  entries  inserted  including the  dummy 
entry. 

Comment 2 
We  briefly discuss the  tightness of the  bound  and worst 
cases. Consider the last inequality  in ( 5 ) .  There  are certain 
entries  in the  WOBT  not  counted in the  sum S + U + R + 
R‘. Equality  in ( 5 )  occurs if and only if no entries have been 
made  in  any leaf node since that node’s creation and  no new 
key has been stored  in any  I-node  that does not belong to a 
branch. In practice, however, leaves of the tree will contain 
new entries so the  bound will be pessimistic. 

For example,  suppose there  are no repeated keys in the 
entries (that is, no updates). Then,  just after  reorganization, 
a  node  bucket  holds about m/2 entries. If there is a random 
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distribution of incoming keys into leaves, then  the average 
number of entries  in  a leaf bucket is about 3m/4. If L is the 
number of leaves, then 3mL/4 is approximately the  number 
of entries made  to  the tree. By ( l ) ,  approximately 2L data 
buckets are  consumed. For this case, about 2.67Elm data 
buckets are  consumed if E is the  number of entries to  the 
tree. 

On  the  other  hand, suppose that  the sequence  of  inserted 
keys amves in reverse sorted order  and there are  no updates. 
Then, after  reorganization of a  bucket, the new bucket 
holding the higher keys from the old  bucket will never again 
have anything stored into it.  Moreover,  this  bucket will be 
half full and will remain active. The new bucket  holding the 
lower keys from  the reorganization will ultimately be filled 
and discarded. Thus, approximately 1/4 of the space 
allocated will contain active data  and  the worst-case bound 
will be approached. 

be approached,  but for  randomly  arranged keys with no 
updates, the average consumption will  be approximately 
2.67Elm. 

The conclusion from this discussion is that  the  bound  can 

References 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

IO. 

I I .  

12. 

13. 

14. 

A.  E.  Bell, “Optical  Data Storage Technology Status  and 
Prospects,” Computer Design, pp. 133-146 (January 1983). 
G. Copeland,  “What If Mass Storage Were Free,” Computer, pp. 
27-35 (July 1982). 
L. Svobodova,  “Management  of Object Histories in  the Swallow 
Repository,” Report No. MITfLCSfTR-243, Laboratory for 
Computer Science, Massachusetts Institute of Technology, 
Cambridge, MA, July 1980. 
D. Maier, “Using Write-Once Memory for Database Storage,” 
Proceedings ofthe  ACM  Symposium on Principles of Data Base 
Systems, March 29-31, 1982, pp. 239-246. 
R. Bayer and E. McCreight, “Organization  and  Maintenance of 
Large Ordered Indexes,” Acta Inform. 1, 197-189 (1972). 
J. S. Vitter, “An Efficient 1 / 0  Interface for Optical Disks,” 
Technical Report No. CS-84-15, Department of Computer 
Science, Brown University, Providence, RI,  June 1984. 
M. C. Easton, “Method for Dynamic  Data  Management  on 
Write-Once Disk,” Invention Disclosure No. 8830109, IBM 
Research Division, San Jose, CA, March 1983. 
P. Rathmann,  “Dynamic  Data  Structures  on  Optical Disks,” 
Proceedings of the  IEEE Data Engineering Conference, Los 
Angeles, CA, April 1984. 
R. L. Rivest and A. Shamir,  “How to Reuse a ‘Write-Once’ 
Memory,” Proceedings oJlhe 14th Annual STOC Conference, 
San Francisco, May 1982. See also Computer, pp. 27-35 (1982). 
D. E. Knuth, The Art ofcomputer Programming, Vol. 1 (2nd 
ed.), Addison-Wesley Publishing Co., Reading, MA, 1973. 
R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, 
“Extendible Hashing-A Fast Access Method for Dynamic 
Files,” ACM Trans. Database Syst. 4, No. 3,  3 15-344 
(September 1979). 
G.  G. Langdon,  Jr.  and  J.  J.  Rissanen, “A Double-Adaptive File 
Compression  Algorithm,” IEEE Trans. Commun. COM-31, No. 
I I ,  1253-1255 (November 1983). 
D. E. Knuth, The Art of Computer Programming, Vol. 3, 
Addison-Wesley Publishing Co., Reading, MA, 1973. 
G. K. Zipf, Human Behavior and the Principle of Least Effort, 
Addison-Wesley Publishing Co., Reading, MA, 1949. 

Received August 2, 1985; accepted for publication December 
26. 1985 

Malcolm C. Easton IBM Research Division, 5600 Cotile Road, 
Sun Jose, California 94304. Dr. Easton is a Research staff member 
in storage systems and technology. He received a B.S. from 
Massachusetts Institute of Technology, Cambridge, in 1964, and  a 
Ph.D.  in applied mathematics  from  the  State University of New 
York, Stony Brook, in 1973. From 1973 to 1980, he was with the 
Department of Computer Science, IBM Thomas J. Watson Research 
Center,  Yorktown Heights, New York. For  the 1979-1980 academic 
year, he  was on sabbatical leave to Stanford University, California, 
where he  was Consulting Associate Professor of Electrical 
Engineering. Dr. Easton received an IBM Outstanding  Technical 
Achievement Award in 1982 for his development  of novel data 
analysis techniques. 

24 1 

MALCOLM C EASTON IBM J .  RES, DEVELOP. VOL 30 NO. 3 MAY 1986 


