230

Key-sequence
data sets on
indelible storage

by Malcolm C. Easton

Methods for creating and maintaining key-
sequence data sets without overwriting the
storage medium are described. These methods
may be applied to erasable or to write-once
storage devices, and they are compatible with
conventional device error-management
techniques. All past values of data records are
preserved in a data structure called a Write-
Once B-Tree. Rapid random access is available
to records by key value; rapid sequential access
is available to records in key-sequence order.
Moreover, queries requesting data as of a
previous time are processed as rapidly as
requests for current data. Access time is
proportional to the logarithm of the number of
current records in the database. Efficient
methods for inserting, updating, and deleting
records are described. Upper bounds for tree
depth and for storage consumption are given
and compared with results from simulation. It is
concluded that, with rapidly improving storage
technologies, indelible databases will become
practical for many applications.

Introduction

Optical disks, both write-once and reversible, are expected to
provide high-density storage at a low cost per bit [1]. At the
same time, magnetic storage costs are rapidly dropping.
Copeland [2] suggests that these developments in technology
may change data management policies. Present practice is to

©Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

MALCOLM C. EASTON

keep on line only current data, while archiving historical
data. Recovery from data processing errors typically requires
a time-consuming process of restoring the database to an
earlier state and then rerunning all subsequent transactions.
Current methodology is also prone to human error and is
vulnerable to unauthorized alteration of data.

Copeland also argues that the practice of erasing is
contrary to basic accounting principles. If storage costs
permit, he writes, then no erasing should occur in databases
holding business records. He cites accounting practices that
require a reversing entry to alter an existing entry.
Svobodova [3] also notes the utility of saving all values that
a data field ever takes. The possibility of using write-once
optical disks for database applications is discussed by Maier
[4].

These considerations give rise to the notion of indelible
data. An indelible data set is one in which all old values of
data records are retained. Such data sets are useful if rapid
access is needed to historical data. They also provide a built-
in audit trail.

A data structure that serves as the basis for many database
management schemes is the B-tree of Bayer and McCreight
[5]. IBM’s VSAM as well as many other database
management systems use variations of this approach to
maintain key-sequence data sets (KSDS), that is, sets of
records that can be rapidly accessed either by primary key
value or in key-sequence order. We show here how the B-
tree approach can be modified to provide efficient, indelible
management of a KSDS on a rotating storage device. The
performance benefits of B-trees are retained, and moreover
the evolution of the database in time is preserved.

Related work

Management of data on write-once disks has been
approached by several authors. Vitter [6] expands on an
earlier report [7] of the B-tree methods described here but

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

makes different assumptions about the device. (Our
assumptions are described in the next section.) If a variable-
size record can be appended to a track with reasonable
efficiency, then Vitter’s scheme improves storage utilization
by encoding changes rather than rewriting entire new
records. Vitter also generalizes the methodology to apply to a
class of data management problems.

Rathmann [8] has proposed an alternative tree
management scheme that requires no overwriting.
Rathmann implicitly restricts his device to writing all records
sequentially from the first track, and thus must rewrite the
full path from root to data record whenever an update is
made. He also proposes a trie scheme that provides better
performance than the tree scheme if keys are short. On a less
restrictive device, however, Rathmann’s schemes are less
efficient than the methods described here. On the other
hand, the “append-only” device model offers the advantage
of an extremely simple method for “undoing” the most
recent changes to the data set.

Terminology and device characteristics

Let the storage space consist of a number of tracks. To
include both optical and magnetic disks under a single
terminology, we use the term sector to refer to the unit of
data that is written within a track. On write-once disks, the
sector size is typically fixed.

We assume that the device allows random access to the
start of any track. Following such a “seek” operation, we
require only the capability to write into the first free space
on the track. We do not assume the possibility of what
Maier calls backwriting, that is, writing into a gap that
precedes a previously written area on a track. One reason for
avoiding the use of backwriting is the difficulty of handling,
on a write-once disk, a write error when there is no space left
in the gap.

For simplicity, we assume that a data record can be stored
in a single sector. A data set is a collection of data records. A
specific field within each data record is designated as the
primary key, and no two data records within a particular
data set have the same primary key. In addition, other fields
of a data record may be designated as secondary keys.

Device error strategies—write-once disks

If a write-once optical disk is the storage medium, then
special considerations apply to error management. Each
sector is written with a redundancy check (CRC). Typically,
each written sector is checked during or just after the write
operation. The reason for this check is the relatively high bit
error rate of optical recording. If a write error occurs, then
the sector is copied to a new area. In addition, the device
controller may overwrite, or otherwise mark, the bad sector
to provide an unambiguous indication that the sector is to
be ignored in future readings. We call this overwrite
procedure demarking.

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

The details of handling the bad sector on readback depend
on the controller and software. In some systems, the bad
sector is automatically hidden from the application program,
but the number of sectors in the track is reduced. The data
management techniques described here are compatible with
such systems.

We also consider the case where the software that manages
the database must handle the recovery operations on
encountering a read error. If demarking is used to indicate
invalid sectors, then the problem is simplified. Any
demarked sectors are ignored on readback. Any other type of
read error must be retried. We assume in the main
discussion that, whenever a write error occurs, the sector is
immediately demarked. Issues arising when no such
capability exists are discussed in Appendix A.

Basic operations
We assume that hardware and 1/0 software provide the
following operations:

1. Write into the first free space of a track or determine that
no additional sector can be written. (This may be
implemented by first reading the track.)

2. Read all valid sectors of a track.

Database operations
The following database operations are required:

1. Insert a data record into the data set.

2. Given a primary key, find the record having that primary
key.

3. Retrieve data records in primary key-sequence order
starting with a specified key.

4. Given a primary key, erase the data record which has that
primary key.

Many methods that require overwriting the storage
medium have been described for accomplishing these tasks
efficiently. We describe techniques for doing them without
overwriting data or index records. (One reason that index
records are not overwritten is to preserve historical paths to
data.)

An essential feature of the methods described is that they
are compatible with the use of error-detection and error-
correction codes. Other approaches to managing data on
write-once disks have not dealt with the possibility of data
errors [4, 9].

Write-once balanced tree data set

The B-tree of Bayer and McCreight {5] is modified for
application to indelible data sets. One important alteration
comes from the need for different splitting rules than are
used with conventional B-trees. Also, the structure of data
within a node (bucket) is necessarily different in the Write-
Once Balanced Tree (WOBT).

MALCOLM C. EASTON

231

232

A—2lH-3

Bucket 1 (index)

Aa | Gig Hh | Wiw | Kik

Bucket 2 (data)

Bucket 3 (data)

Sample WOBT containing primary keys A, G, H, K, W.

* 0

Bucket 1 (index)

Bucket 2 (data)

Bucket 3 (data)

Initial WOBT.

Each data record contains a primary key as well as
possible secondary keys and data. We use X;x to indicate an
example of a record with primary key X whose remaining
part is x. The records are organized in buckets. Each bucket
is implemented as one or more physical tracks and contains
all records of the data set whose primary keys fall (in
collating order) between the smallest and largest primary
keys stored in the bucket. The bucket header is the smallest
key in the bucket. Each bucket’s header appears in the index
along with a pointer to the bucket.

The index itself is organized in a similar manner. Each
index bucket contains all keys of the index whose values fall
between the smallest and largest keys in the index bucket.
Each such bucket in turn has its header in a higher index
bucket until there is a single (root) bucket that holds the
highest level of index keys. Within each index bucket, the
entries appear as key-pointer pairs, each pointer giving the
location (bucket address) of a header key in the next lowest
level. Figure 1 shows an example with four sectors per
bucket and one index level. In the example, each sector can
hold either one key-pointer pair or one data record. The
contents of bucket 1 indicate that all primary keys equal to
or greater than A4 and less than H are found in bucket 2. All
primary keys equal to or greater than H appear in bucket 3.

MALCOLM C. EASTON

The first entry of a bucket holds the bucket’s smallest key;
otherwise entries are in no particular order. Keys may
appear more than once in a bucket, because updating is
done by writing the key again with its new pointer or record
values. The last pointer or the last data entry with a
particular primary key is deemed to be the current or active
value.

Whenever a bucket is filled, its contents are processed and
then rewritten into a new bucket or buckets. This step
constitutes a local reorganization of the data. As in the case
of the conventional B-tree, it will be shown that the depth of
the tree grows as the logarithm to some large base of the
number of primary keys in the database. (That is, the depth
depends on the number of current entries rather than on the
number of updates made to the database.) The fanout at
each level of the tree is controlled by the recopying
algorithm and depends on the bucket size.

We now describe the operations for key-sequenced data
sets.

Initialization of data set

The initial tree has a single bucket for its one index level and
a single data bucket. A null (dummy) record whose primary
key is all zeros (denoted) is the initial entry in the one data
bucket, and its key is the initial entry in the index, paired
with a pointer to the data bucket. No real key may have this
(all-zeros) value. (See Figure 2.)

Handling write errors on write-once disk

In the procedures below, the only write operation is to write
into the next free sector in a bucket. If a write error occurs,
then the bad sector is demarked and the contents rewritten
into the next position in the bucket. If there is no room,
then the bucket is “full.” See “Reorganize a bucket” below
for the handling of this case.

Insert a record whose key is X
Begin with the root as the current index bucket.

1. Search the keys in the current index bucket for the largest
key that does not exceed X. Find the last copy of that key.
Follow the pointer with that key to the next level of
index.

Repeat Step 1 until a data bucket is reached.

o If space exists in the bucket, write the record into the first
available space.

e If not, then reorganize the bucket (see below) and write the
new record into the appropriate new bucket.

Example showing insertions
In the figures that follow, four sectors can be written per
bucket, and one sector can hold either a key-pointer pair or

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

a data record. The symbol = designates the key that is stored
as all binary zeros. The entry 4 — 2 means that key A points
to bucket address 2. The dummy key = is the initial key in
the data set and has no data with it; the first index entry
points to the bucket holding this key, as in Figure 2.

We then insert records with primary keys F, E, B, as in
Figure 3. Next the record with primary key W is inserted.
Since bucket 2 is full, its contents are reorganized and then
written out into new buckets 3 and 4, as in Figure 4. Bucket
2 is discarded. The index gets new pointers. Note that the
second pointer for * supersedes the earlier entry.

Now the record with primary key W is updated three
times. When the third update is attempted, bucket 4 is found
to be full. The contents, including the new record with key
W, are reorganized. Since only two distinct keys are present,
the contents are recopied into a single new bucket, bucket 5
in Figure 5. Bucket 4 is discarded. A new index entry is
written for key F. The most recent data record with key Wis
denoted w#.

Suppose that at a later time another entry, Z — 8, comes
to bucket 1, which is then reorganized and copied into two
buckets (to allow adequate free space). The index must now
grow by one level. The two buckets derived from the old
root form the second level of the new index, and a new first
level (root) is written containing the pointers to the second-
level buckets.

Retrieve record having primary key X
Let the current index bucket be the root.

1. Search the keys in the current index bucket for the largest
key that does not exceed X. Follow the most recent
pointer stored with that key to the next level of index.

2. Repeat Step 1 until a data bucket is reached.

3. Search the data bucket for the last record with key X. Or,
if none is found, report that the record is absent from the
data set.

Retrieve records in (ascending) primary key-
sequence order

The start of the sequence to be retrieved is specified by an
initial search key. The procedure does not require horizontal
pointers in the tree structure to link together buckets on the
same level. By holding in memory the index bucket that is
one level higher than the data bucket being processed, the
number of accesses required to read the entire set of records
is kept to a small percentage increase over the number of
accesses required to read each data bucket once. In essence,
the algorithm provides what Knuth calls a preorder traversal
of the tree [10].

The procedure uses a list, called a Search Sequence. This
list has one entry for each level of the index. Each entry in
the list is a pair consisting of the address of the last bucket
visited on that level and a key value. The last-bucket-visited

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

*_,2

Bucket 1 (index)

* F.f Ee B:b

Bucket 2 (data) Bucket 3 (data)

WOBT after inserting primary keys F, E, B.

*o2*3lF -4

Bucket 1 (index)

* Bb | Eie Fif | Wiw

Bucket 3 (data)

Bucket 4 (data)

% WOBT after inserting key W.

520 53| F4|F -5

Bucket 1 (index)

* Bb | Eie Fif |Ww#

Bucket 3 (data)

Bucket 5 (data)

st

WOBT after three updates of key W.

entry for a level is updated whenever a bucket is visited. The
updates to the key entry are described below:

1. Using the initial search key, locate its data bucket D.
(This may be the dummy record associated with the all-
zeros key.) While descending to D, at each index level of
the tree, set the key entry in the Search Sequence to be
the smallest nondeleted key of the bucket that exceeds the

MALCOLM C. EASTON

233

234

search key. Save the contents of D and the contents of the
last (index) bucket searched before reaching D. Sort this
index bucket by keys, retaining only the latest copy of
each record. The current key is the first key in the sorted
list.

2. The current key points to the current data bucket. Sort
the records of this data bucket by key in ascending order,
retaining only the latest copy of each. Output the ordered
records.

3. In the (sorted) saved index bucket, let the current key be
the next key in sequence. If no keys remain, go to Step 4.
Otherwise, go to Step 2.

4. Obtain from the Search Sequence the entry pair (B,K) for
the tree level just above that of the saved index bucket. [If
Kis NULL, then go to the next highest entry in the
Search Sequence until entry (B,K) with non-NULL key K
is found. If the entire Search Sequence list is exhausted,
then terminate since all records have been retrieved.] K is
the new search key for the level.

5. Proceed from bucket B to search the tree for data bucket
D that contains the record whose primary key is K.
Update the Search Sequence at each level passed as in
Step 1.

6. Sort by key the contents of the last bucket searched
before reaching the data bucket, retaining only the latest
copy of each. The current key is the first key in the sorted
list. Go to Step 2.

Reorganize a bucket

Reorganizing of buckets is essential for eliminating obsolete
records from the search path and for keeping the number of
levels of the tree at a minimum. The procedure is basically
the same for data buckets and index buckets. Reorganization
occurs when an attempt is made to add a record to a full
bucket. The new record is included in the contents that are
reorganized. First, the records are sorted by key; records
marked for deletion and outdated records are eliminated.
However, the most recent record with a bucket header key is
never eliminated.

The next step is to rewrite the contents into a new bucket
or buckets. The original bucket becomes inactive. A
significant design feature is the method used to determine
the number of new buckets that will be written from a filled
bucket. (The need for such a method arises from the fact
that the number of retained entries after reorganization is
data-dependent.)

The specific method studied here for determining how
many new buckets to copy into is based on two parameters,
TD > | and TI > 1. If the reorganized bucket is a data
bucket and holds fewer than 7D entries, then one new
bucket is written. If it is a data bucket and holds at least TD
entries, then two new buckets are written. The index bucket
decision is similar, but based on parameter 77.

Each new bucket receives, as closely as possible, an equal

MALCOLM C. EASTON

share of the contents, which are stored sorted in key-
sequence order. A new header-pointer pair for each of these
new buckets is sent to the next highest level of index.

If such a pair is sent to the root, and that is full, then the
root is reorganized in the same manner. If the root bucket is
written to a single bucket, then that becomes the new root.
Otherwise, the tree must grow one level. The buckets written
from the old root constitute the new second level, and
another bucket, the new root, is created to hold the pointers
to the second level’s buckets.

The implications of this approach for storage
consumption and for performance are discussed below.

Erase a data record

1. Find the data bucket holding the record, as in “Retrieve
record.”

2. Write a new record in that bucket with the same primary
key but with an indication that the record is deleted. (Call
this a delete record.)

Retrieval operations report “no record found” if a delete
record is the latest record for a particular primary key.

Handling of delete records
On reorganizing a data bucket, a delete record normally is
not copied to a new bucket. There are two exceptions:

e The record’s primary key is the old bucket’s header key.
(Reason: The header is retained to simplify management
of the index.)

o The delete record was the last record added to the bucket
contents that were reorganized. (Reason: The design
philosophy requires that every data entry be stored at least
once in the database.)

Note that there are no delete records for index entries.

Initialize a tree with records that are already in
key-sequence order

If a data set already exists on some other storage medium,
then the records should be sorted in key-sequence order and
loaded onto the write-once device in one operation. This
saves disk space by eliminating rewrites of full buckets and
also saves time. The procedure for doing this is
straightforward. Conceptually, “Insert a record whose key is
X" is invoked once for each record. Instead of filling a
bucket, when a certain number of records have been written
into a bucket, the writing halts there and continues in the
next bucket in the same level of the tree. An index entry for
the new bucket is sent to the index. Free space is left in each
bucket for updates or additions. The same approach is used
at each index level, with a new root created whenever the
topmost index level expands beyond one bucket.

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

Performance—depth of tree

The depth of the tree is a measure of performance since this
determines the number of random accesses for insertion and
retrieval. In this discussion, we ignore the possibility of
shortening of buckets by write errors. We also ignore
deletion. Retrieving a record or inserting a record requires at
most one disk access for each index level of the tree other
than the root (which can reside in memory), plus one for the
data record. Each disk access consists of seeking to and
reading a (fixed-size) bucket. We now estimate the capacity
of a tree of a given number of levels.

Recall that 71> 1 and 7D > 1. Let F be the greatest
integer that does not exceed 77/2. Let J be the greatest
integer that does not exceed TD/2. For simplicity, we only
consider the case where the tree has grown larger than its
initial configuration, so that it consists of at least two active
data buckets in addition to the root. When a bucket is
reorganized to two new buckets, the number of distinct
entries in each new bucket is at least F for index buckets and
at least J for data buckets. When reorganization is to a single
new bucket, the number of distinct entries in the new bucket
does not decrease. When the tree first grows, each new data
bucket holds at least J distinct entries. It follows that every
active data bucket holds at least J distinct entries. Similarly,
if there exist active nonroot index buckets, then each holds
at least F distinct entries.

We call a tree full if inserting some key in it will force the
tree to grow to a greater depth. We compute the minimum
number of data records stored in a full tree having 4 index
levels (including the root) and thus find a maximum number
of levels required in a tree that holds that many or fewer
data records.

If a reorganized bucket is copied into one new bucket,
then one index record is sent to the level above. If a
reorganized bucket is copied into two buckets, then only one
of the index records sent to the level above holds a key not
already stored in that level. In a full tree, the root bucket’s
contents, plus the root’s newly arriving index record key(s)
resulting from an insertion, amount to at least 77 distinct
keys. However, the new key(s) add at most one distinct key.
Therefore, a full tree has at least 77 — 1 distinct keys in the
root.

From this we conclude that a full tree with 4 index levels
holds at least (71 — 1)F "1 J active data records.

Indexing options

The B-tree can be used for indexing only, keeping in the
bottom level of the tree the pointers to the data records. In
this case, the data records themselves are written sequentially
as they arrive and need never move. The disadvantage of this
approach is that retrieval of records in key-sequence order
would typically require a seek for each record, rather than a
seek per bucket of data. The advantage is a possible storage
savings. The index must in this case contain an entry for

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

each data record, rather than for each data bucket; this extra
space in the index is compared with the savings in data
record storage. As shown below, the recopying of data
records to maintain the data organization consumes on
average, depending on key distribution and use of data
compression, 0.5 to 2 extra record slots per original record
stored.

By not copying data records we have a data access
technique with characteristics similar to those of extendible
hashing [11] used on erasable storage. While the application
of hashing to indelible data sets is beyond the scope of this
paper, we note that a performance problem arises if we have
many updates to one record. Each entry uses the same key
and thus gets hashed to the same bucket. The approach
taken here provides for elimination of the obsolete values
from the search path and thus offers fast access regardless of
the number of updates.

Storage consumption

The values of TD and 77 can be used to trade access time
against storage consumption. If the incoming sequence of E
data records (inserts or updates) were simply written
sequentially onto the disk, then E data sectors would be
consumed. Extra storage is required by the WOBT in order
to provide fast access in key-sequence order. We argue here
that the storage consumption by index entries is negligible
compared with that by data sectors (if the data buckets are of
reasonable size) and that, for a range of values of TD, the
worst-case storage consumption for data is 4E sectors.
Typical behavior is better than the worst case, and so
consumption of storage will usually fall between 2E and 3E;
that is, between 1 and 2 extra copies of a data record are
written on average. In the next section we show how data
compression can reduce this amount.

For performance reasons, the bucket size should be
chosen so that the fanout parameter F discussed above is
large enough to keep the tree to three levels. Typically, this
value of F will be so large that storage in the index part of
the tree is a negligible part of the whole. Filling of data
buckets will send pointer updates to the index, and thus
many duplicates will occur in the sequence of keys sent to
index buckets. Choosing 77 close to the capacity of a bucket
will result in extra copying in the index buckets but will
increase fanout; high fanout reduces the required bucket size
and hence the access time. Extra copying in the higher-level
index buckets will cost little in comparison with the total
space consumption. Therefore, a good value for 77 is 80 to
90 percent of the capacity of a bucket.

Choosing TD close to the capacity of a bucket, however,
may result in excessive storage consumption. An
experimental study of the impact of TD values on
consumption is described in a later section. Theoretical and
experimental arguments suggest that a reasonable value of

TDis 1/2 to 3/4 the capacity of a bucket. 235

MALCOLM C. EASTON

236

Consider first the special case in which data records are
never updated. Then a filled bucket will always be rewritten
into two buckets (because a single bucket cannot hold the
contents) and the value of 7D > | has no effect. A simple
argument (see Appendix B) shows that at any time after the
first bucket has been rewritten, the number of active buckets
is slightly greater than the number of inactive (discarded)
buckets. Therefore, about half the disk space allocated to the
WOBT holds active buckets when the disk becomes full (that
is, when no tracks are available for new buckets). Assume
that the keys arrive in random order. An active bucket will
start out half full and so, at the time the disk is filled, about
3/4 of the space in the active buckets will be occupied. This
leads to the conclusion that 3/8 of the data sectors contain
active data records when the disk is filled. Therefore, about
2.7E sectors are consumed in storing E data records. In a
conventional B-tree, on average, about 1/4 of each node is
empty also at that time. Therefore, if a record is exactly the
size of a sector, then the WOBT requires about double the
storage used by a conventional B-tree.

If the WOBT is initially loaded from sorted records, then
the additional storage consumption depends on the amount
of updating since the initial load. Use of free space in the
WORBT initial load should be more generous than with a
conventional B-tree since updates must be accommodated.

The following result, which makes no assumption about
the keys or update rates of the incoming records, provides a
theoretical guide to selecting the value of TD. Let m be the
number of sectors in a data bucket. In Appendix B, we show
that at most (about) 4F sectors are consumed in storing E
data records provided that 7D < 3m/4 + 2. This bound
holds regardless of the number of updates. The worst-case
situation is approached by introducing data records in
descending sorted order by primary key. Experiments with
realistic as well as simulated workloads (see below) have
shown that 2F to 3F is a reasonable estimate of
consumption for randomly ordered keys and that storage
consumption shows little sensitivity to the exact value of TD.

Data compression

Data compression provides a way to “buy back” some of the
storage lost in reorganization without sacrificing the added
value of on-line historical data. When a bucket is
reorganized, the amount of data carried over to the new
bucket or buckets is typically half a track or more.
Compression techniques applied to 20000-byte blocks have
been found typically to reduce size by factors from 2 to 3
[12]. One reason that such techniques are not commonly
used in conventional database systems is that when a block
is altered, its compression ratio changes and it may not fit
back into the same storage location. With indelible data,
however, the problem does not occur. The approximate
calculation of the previous section is now extended. Again,
assume that there are no updates and that keys arrive in

MALCOLM C. EASTON

random order. Also consider only the case where every
reorganization produces two new buckets. If compression
reduces the storage required by a factor 1/R, then the
fraction of space initially occupied in either first new bucket
is 1/2R. Copying carries forward the compressed entries, but
a simple calculation shows that the fraction of initial space
filled in a new bucket does not grow beyond 1/(1 + R). Once
this value is reached, successive buckets have nearly identical
initial occupancies.

Each bucket of m slots initially has at least
[T =141+ R)Jm = Rm/(1 + R) free entries. When the disk
is filled, all the initial free slots in each discarded bucket have
been consumed by new entries. About half the buckets in the
tree are active, and about half the initial free slots in the
active buckets have been consumed by new entries.
Therefore, the average number of new entries per allocated
bucket is at least 0.75Rm/(1 + R). For example, if R = 2,
then on average at most 2 storage slots are consumed for
each new data entry. This compares with an average of 8/3
when no compression is used.

Comparison with storage costs of conventional
B-tree data sets

The amount of storage consumed by a WOBT is necessarily
greater than that consumed by a conventional B-tree on an
erasable medium. For the extra cost, we gain the advantage
of additional on-line information. We now estimate this
increase in storage requirement.

Let u be the fraction of data set entries that have new keys
(that is, the fractions of entries that are inserts). It was argued
above that storing D (distinct) records in a conventional
B-tree requires approximately 4D/3 storage spaces. With
D = uFE, the worst-case storage requirement for a WOBT is
4D/u sectors. Thus, if the record size exactly equals the
sector size, then the WOBT storage required is at most 3/u
times as great, and typically 2/u times as great.

If compression by a factor of 2 is achieved on the recopied
blocks of data, then typical WOBT storage is reduced to
1.5/u times that required by conventional B-tree storage.

Space can also be saved, if the data records are larger than
the index records, by not recopying data records. This results
in extra access costs when retrieving records in key-sequence
order.

Timestamps and historical data

Each index and data entry can be timestamped. The only
requirement on the timestamps is that each data entry carry
a timestamp that is later than that of the previous entry to
the database. The timestamp for an index entry is that of the
most recent data record. The retrieval procedures previously
described can be used to perform the task as of a particular
time and thus reflect the state of the database at any chosen
past time 7. The search starts at the bucket that was the root
of the tree at time 7" (To find the root that pertains to a

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

particular time, use the list of successive roots described
under “Finding the root” below.) The only other change in
the retrieval algorithms is that entries with timestamps
exceeding T are ignored in the searched buckets. This is the
same as saying that the search of each bucket halts when a
record is found with a timestamp larger than 7.

A general facility for retrieving successively older versions
of a data record is obtained as follows. Include in each data
bucket a pointer back to the bucket from whose
reorganization it came. Then, after retrieving the current
version of a record, it is easy to follow the pointers back to
find each earlier version. The same technique can be used to
find earlier versions of a particular index entry.

Copying to a new disk

If the storage medium is filled, then the current records
(only) can be copied to a new disk using the procedure
“Retrieve records in primary key-sequence order.” The old
disk can be kept on or off line as facilities permit. A new
disk can also be created which will provide all historical data
back to a specified time.

Secondary indexes

A write-once B-tree can be used to provide an index to
secondary keys. Such keys need not be unique. The key SEC
from the record whose primary key is PRIME is stored
under the index entry SEC.PRIME. This makes possible
deletion of specific instances of a secondary key by the
method described above. All secondary keys with the same
value are clustered in a minimum number of tracks by the
insertion procedure and are quickly found. To obtain all
instances of SEC.???, for example, begin by searching for key
SEC and then continue to retrieve in key-sequence order.

Choosing bucket size

One basic assumption made at the start was that a bucket is
a multiple number of tracks. This assumption is tied to the
requirement that writing must be sequential within a track.
For a device that has no such requirement, however, it may
be possible to use an arbitrary number of sectors as the
bucket size.

Finding the current root (or root as of time T)
Starting from track 1 (or another track that is agreed on by
conventjon) a method must be provided by which a program
rapidly locates the current root (or root as of time 7') of the
write-once B-tree. For most applications it is sufficient to
keep a time-stamped log of successive roots, using linear or
binary search to find the required entry. For the current
root, this search need only be done when a new disk is
mounted. During subsequent processing, the address of the
current root is held in memory.

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY (986

Concurrency control

The availability of earlier versions of records permits
transactions to read while other transactions are updating.
The development of appropriate concurrency controls is
beyond the scope of this paper, but offers a promise of
performance gains [3].

Performance summary

Through use of a value of 77 close to that of the bucket
capacity, we can achieve a fanout close to that of a
conventional B-tree with the same bucket size. Thus the
number of accesses for random insert or retrieval is about
the same as if overwriting were allowed.

Search time within a bucket will be slower than with
standard B-trees because of the need for some linear search.
After a bucket has been copied, however, its initial entries
are in sorted order. Binary search can thus be used on the
old entries and linear search on the new entries within a
bucket. Because of rapid advances in processor speeds
relative to disk access times, the search cost should be a
small part of the cost of operating the algorithm.

Summary of design features

The design was planned to minimize the need for updating.

The policy of not deleting a data bucket’s header key avoids
the need for changing the index as a result of deletions. The

avoidance of horizontal pointers eliminates the need to keep
these pointers current as buckets are reorganized.

Control of storage space and fanout is accomplished
through the reorganization algorithm. The use of a high
threshold for copying an index bucket into two buckets
keeps the fanout in the tree relatively high. Use of a
somewhat lower threshold in the data buckets provides space
for updates in newly copied buckets.

Finally, certain features of the design take into account
application to write-once disks. In particular, there is no
forward chaining of tracks or buckets using a pointer that is
written into the track or bucket that is being chained. This
avoids the case where an error occurs while the pointer is
being written, and the space in the track or bucket is
exhausted.

Experimental study
A write-once B-tree algorithm was implemented using
magnetic disk as the storage device but treating the medium
as indelible.

The first set of experiments was based on a workload from
a possible application of write-once disks to archiving. The
workload comes from a system that periodically copies all
changed user files to tape. If the files were instead stored on
write-once disk, then a WOBT could be used to maintain
the index to these files on the disk as well. For the test of this
assumed application, the workload was a chronological list

of 3000 file names. This is the “File Names” workload. 237

MALCOLM C. EASTON

238

A second workload was generated by the following
method. Keys were selected at random from a space of
values. The frequency of repetition of each key was chosen
in accordance with Zipf’s law [13, 14] which has been found
to describe many empirical frequency distributions. In this
case, the frequency of the ith most frequent key was 1/i
times that of the most frequent key for i = 1 to 175. Each
rematining key had a single appearance. The keys with these
frequencies were sent in random order to the file.

A third workload (“Uniform”) was generated by making
three copies of each of 1000 keys and arranging the 3000
values in random order.

Table 1 shows for each workload the number of distinct
keys, the number of occurrences of the most frequently
appearing key, and the number of keys that appear exactly
once.

In this experiment, each bucket (index or data) held
exactly 30 entries and there were no write errors. Table 2
summarizes the storage consumption found as a function of
the value of parameter 7D. The parameter 77 was set at 25
for each case. While 100 data buckets would be needed to
store the unorganized data as received, the WOBT used from
206 to 307 buckets. It is interesting that the storage
consumption was not very sensitive to the value of TD.
Although the number of buckets “split” (copied to two

Table 1 Numbers of distinct keys, occurrences of most
frequently appearing key, and keys that appeared exactly once for
three workloads. Each workload consisted of 3000 keys.

buckets) decreased with increasing 7D, the total
consumption remained fairly constant for a large range of
values of TD. A setting of TD between 1/2 and 3/4 the
capacity of a bucket gave about the best results in all cases.
A setting closer to the capacity generally gave worse resulits.
The relative insensitivity of storage consumption to the
distribution of updates indicates the robustness of the
technique.

In comparison with the theoretical arguments above, we
found that the storage consumption was 2 to 3 times FE,
rather than the worst-case 4 F.

The tree in all cases consisted of a root, a second level of
index, and the data level. Table 3 gives the fanout results for
the second level of the index, where fanout is the number of
distinct entries in an index bucket. (The fanout at the root
was typically only 4.) Again, we saw little sensitivity to
distribution. In all cases, 77 = 235, so the theoretical
minimum fanout was 12. The observed values were 14.6 to
21.3.

Conclusions

We have described methods for indelible management of
key-sequence data sets. The performance, measured in terms
of number of seeks and reads, is about the same as for
conventional B-tree management.

Storage consumption depends on the update rate and
involves an additional cost because information is rewritten
to maintain data records in key-sequence order and to keep
index records clustered for efficient retrieval. Compared with
conventional structures, the ratio of storage consumed is

Workload Number of Number of Number of . : R
distinct appearances keys that about 1.5/u 10 2/u, where u is the fraction of entries that
keys of most appear have new keys. The storage requirement can be reduced by
[frequently once : : :
appearing using better data compression, by not recopying data records
key and thus accepting longer retrieval times for records in key-
sequence order, and by sorting the initial load of data
File names 2300 10 1879 records before entering them
Zipf distribution 1253 349 1078 . &) .
Uniform distribution 1000 3 0 Depending on the update rate and the cost of storage, it
appears that indelible key-sequence data sets will be practical
Table 2 Storage consumption as a function of 7D.
Workload D Active data Data buckets Data buckets Total data
buckets split copied buckets
File names 6 134 133 0 264
15 131 130 3 264
24 126 125 16 267
28 120 119 65 304
Zipf distribution 6 97 96 14 207
15 85 84 37 206
24 71 70 99 240
28 62 61 184 307
Uniform distribution 6 117 116 0 233
15 99 98 18 215
24 61 60 110 231
28 51 50 204 305

MALCOLM C. EASTON

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

Table 3 Fanout results for second level of index,
where 7T = 25.

Workload D Average fanout in
second level of index
File names 6 16.8
15 16.4
24 15.8
28 15.0
Zipf distribution 6 16.2
15 2.3
24 17.8
28 15.5
Uniform distribution 6 14.6
15 16.5
24 15.3
28 17.0

for many applications. The high density of optical storage
and advanced magnetic recording may lead to keeping on
line historical data that formerly were relegated to archives.

Appendix A: Write-once disk with no demarking
We discuss methods for implementing the WOBT scheme
on a write-once disk in the absence of a “demarking”
capability for bad writes. The crucial problem is, on
encountering a read error, to distinguish between a
previously discarded sector and one that was valid when
written. In the former case, the error can be ignored. In the
latter case, the operation must be retried.

One strategy for handling write errors is to copy the entire
contents of the bucket where the error occurred to a new
bucket and then write the new bucket’s address in the index.
An advantage of this approach is that discarded sectors are
never subsequently read. The use of powerful error-
correcting codes may keep the write error rate sufficiently
low so that little space is wasted by this approach.

Another approach does not discard buckets. Instead, we
rewrite a bad sector in the next position of the bucket if
there is room. (Otherwise, the bucket is “full.”) Each sector
written into a bucket contains a bucket sequence number
(BSN). The BSNs are 1, 2, 3, - - -, increasing by one for each
sector written successfully to the bucket. On reading a
bucket, read errors on all but the last written sector in the
bucket can be ignored so long as there are no gaps in the
BSNs read. A read error on the last sector of a bucket that is
not recovered by retries indicates a nonrecoverable error.

Appendix B: Upper bound on storage
consumption

Assume that a reorganized data bucket in a WOBT is copied
to a single node if it holds fewer than 7D current entries and
is copied to two nodes otherwise. (An entry is a stored record
with its key.) There are no deletions of entries in the WOBT.

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

Branch

/ Leaf

Example of graph showing movement of bucket contents after

H
% reorganization.

Another example of graph showing movement of bucket contents
after reorganization.

Let each data bucket hold m entries, and let there initially be
a single data bucket.

Claim

If E data entries (including the initial dummy entry) are
stored in the WOBT, then at most [4E/m]1 data buckets are
allocated if TD < (3m/4) + 2.

Proof Represent the initial data bucket as the root node in
a directed graph. When a bucket is reorganized, draw an
edge from its node to the node(s) representing the new
bucket(s). Examples of resulting graphs are shown in Figures
6 and 7. In these graphs, the nodes having two descendents
are shown as boxes.

A node having a single descendent is called a /-node. A
node having two descendents is called a 2-node. Let K be the
number of 1-nodes and let N be the number of 2-nodes. The
sequence of 1-nodes that precedes a 2-node, along with the
2-node, is called a branch. Each branch in Figures 6 and 7 is
encircled with a dotted line. A node with no descendents is a
leaf node. Let L be the number of leaf nodes.

MALCOLM C. EASTON

239

240

Condensed graph of Figure 7.

Consider first the case in which no 2-nodes appear in the
graph. This means that after every reorganization there are
atleast m — TD + | = (m/4) — 1 empty entries in the one
new bucket written. Then at least #1/4 new entries are
included in the m» + 1 entries that take part in the later
reorganization of this new bucket. Thus, by induction, every
reorganized bucket accounts for at least m/4 new entries.
This completes the proof for the case of no 2-nodes in the
graph.

Now assume that there is at least one 2-node in the graph.
If we sequentially remove each 1-node and connect its
descendent node, if any, to its ancestor node, then we end
up with a nonempty binary tree, the condensed graph. (We
also remove the root node if it is a I-node.) Figure 8 shows
the condensed graph resulting from the graph of Figure 7.
The leaf nodes represent all the data buckets of the WOBT
that are “active.” A simple inductive argument for binary
trees shows that

L=1+N. (1

The contents of every 2-node bucket includes the records
passed to its branch by its ancestor 2-node bucket (if one
exists). By definition of reorganization, the keys of these
records are distinct. Let A be the number of such keys in all
2-nodes. Every 2-node bucket also contains initially the new
keys stored into its branch buckets (excluding the branch
buckets’ initial contents) or added to branch buckets during
reorganization. Let S be the number of such keys in all 2-
nodes. Let U denote the number of new keys (excluding
initial contents) stored into all 2-nodes or added to 2-node
contents before reorganization. (Reorganization occurs when
an entry sent to a bucket finds the bucket full. The new
entry is included in the reorganization.) Let R be the
number of repeated (update) keys stored into a 2-node or
added to 2-node contents before reorganization.

By definition, every 2-node has been reorganized. An
entry typically is first stored in some bucket, then copied
several times as each successive bucket is reorganized. Each
of the m + 1 entries associated with 2-node X’s
reorganization satisfies one and only one of the following
conditions:

MALCOLM C. EASTON

1. The entry was first stored prior to creation of X’s branch.

2. The entry was first stored in one of X’s branch 1-nodes
(or added to such a node before its reorganization).

3. The entry was first stored into X itself (or added to X
before its organization) and was the first entry to appear
in X with that key.

4. The entry was first stored into X (or added to X before its
reorganization) and repeated a key that already appeared
in X,

From this it follows that
Nm+1)=4+S+U+R. 2)

The contents of a reorganized bucket may include as
many as m + 1 distinct keys. Because of the even splitting, at
most 1 + m/2 keys are passed from an ancestor 2-node
bucket to the branch. Therefore, since one 2-node is the root
of the tree, 4 = (N - 1)1 + m/2) and hence, by (2),

N+1<2S+ U+ R)/m. 3)

Let R’ be the number of repeated keys that are stored into
1-node buckets or added to 1-node bucket contents when
reorganized. A 1-node bucket, by definition of the copy rule,
holds at most 7D — 1 distinct keys when it is reorganized,
and so at least m — TD + 2 repeated keys are eliminated
when a 1-node is reorganized. Therefore,

K= R /im~TD +2). @

Applying (1)-(4), we find that the total number of nodes
in the oniginal graphis K+ L+ N=K+ 2N+ 1<
R’/(m — TD + 2) + 4S + U + R)/m. By assumption 7D =<
3m/4 + 2, thatis, m — TD + 2 = m/4, and therefore

K+L+N<4S+U+R+R)m=4E/m. (5)

This completes the proof.

o Comment 1

With the substitution of 77 for TD, the result applies to any
non-root index level of the tree. In this case, E refers to the
number of index entries inserted including the dummy
entry.

o Comment 2
We briefly discuss the tightness of the bound and worst
cases. Consider the last inequality in (5). There are certain
entries in the WOBT not counted in the sum S+ U+ R +
R’. Equality in (5) occurs if and only if no entries have been
made in any leaf node since that node’s creation and no new
key has been stored in any 1-node that does not belong to a
branch. In practice, however, leaves of the tree will contain
new entries so the bound will be pessimistic.

For example, suppose there are no repeated keys in the
entries (that is, no updates). Then, just after reorganization,
a node bucket holds about m/2 entries. If there is a random

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

distribution of incoming keys into leaves, then the average
number of entries in a leaf bucket is about 3m/4. If L is the
number of leaves, then 3mL/4 is approximately the number
of entries made to the tree. By (1), approximately 2L data
buckets are consumed. For this case, about 2.67E/m data
buckets are consumed if E is the number of entries to the
tree.

On the other hand, suppose that the sequence of inserted
keys arrives in reverse sorted order and there are no updates.
Then, after reorganization of a bucket, the new bucket
holding the higher keys from the old bucket will never again
have anything stored into it. Moreover, this bucket will be
half full and will remain active. The new bucket holding the
lower keys from the reorganization will ultimately be filled
and discarded. Thus, approximately 1/4 of the space
allocated will contain active data and the worst-case bound
will be approached.

The conclusion from this discussion is that the bound can
be approached, but for randomly arranged keys with no
updates, the average consumption will be approximately
2.67E/m.

References

1. A. E. Bell, “Optical Data Storage Technology Status and
Prospects,” Computer Design, pp. 133-146 (January 1983).

2. G. Copeland, “What If Mass Storage Were Free,” Computer, pp.
27-35 (July 1982).

3. L. Svobodova, “Management of Object Histories in the Swallow
Repository,” Report No. MIT/LCS/TR-243, Laboratory for
Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, July 1980.

4. D. Maier, “Using Write-Once Memory for Database Storage,”
Proceedings of the ACM Symposium on Principles of Data Base
Systems, March 29-31, 1982, pp. 239-246.

5. R. Bayer and E. McCreight, “Organization and Maintenance of
Large Ordered Indexes,” Acta Inform. 1, 197-189 (1972).

6. J. S. Vitter, “An Efficient 1/O Interface for Optical Disks,”
Technical Report No. CS-84-15, Department of Computer
Science, Brown University, Providence, RI, June 1984,

7. M. C. Easton, “Method for Dynamic Data Management on
Write-Once Disk,” Invention Disclosure No. 8830109, IBM
Research Division, San Jose, CA, March 1983.

8. P. Rathmann, “Dynamic Data Structures on Optical Disks,”
Proceedings of the IEEE Data Engineering Conference, Los
Angeles, CA, April 1984.

9. R. L. Rivest and A. Shamir, “How to Reuse a ‘Write-Once’
Memory,” Proceedings of the 14th Annual STOC Conference,
San Francisco, May 1982. See also Computer, pp. 27-35 (1982).

10. D. E. Knuth, The Art of Computer Programming, Vol. 1 (2nd
ed.), Addison-Wesley Publishing Co., Reading, MA, 1973.

11. R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong,
“Extendible Hashing—A Fast Access Method for Dynamic
Files,” ACM Trans. Database Syst. 4, No. 3, 315-344
(September 1979).

12. G. G. Langdon, Jr. and J. J. Rissanen, “A Double-Adaptive File

Compression Algorithm,” JEEE Trans. Commun. COM-31, No.

11, 1253-1255 (November 1983).

13. D. E. Knuth, The Art of Computer Programming, Vol. 3,
Addison-Wesley Publishing Co., Reading, MA, 1973.

14. G. K. Zipf, Human Behavior and the Principle of Least Effort,
Addison-Wesley Publishing Co., Reading, MA, 1949.

Received August 2, 1985, accepted for publication December
26, 1985

IBM J. RES. DEVELOP. VOL. 30 NO. 3 MAY 1986

Malcolm C. Easton IBM Research Division, 5600 Cottle Road,
San Jose, California 94304. Dr. Easton is a Research staff member
in storage systems and technology. He received a B.S. from
Massachusetts Institute of Technology, Cambridge, in 1964, and a
Ph.D. in applied mathematics from the State University of New
York, Stony Brook, in 1973. From 1973 to 1980, he was with the
Department of Computer Science, IBM Thomas J. Watson Research
Center, Yorktown Heights, New York. For the 1979-1980 academic
year, he was on sabbatical leave to Stanford University, California,
where he was Consulting Associate Professor of Electrical
Engineering. Dr. Easton received an IBM Outstanding Technical
Achievement Award in 1982 for his development of novel data
analysis techniques.

MALCOLM C. EASTON

241

