
Monte Carlo
photon transport
on a vector
supercomputer

by William R. Martin
Paul F. Nowak
James A. Rathkopf

The use of “event-based” algorithms for particle
transport Monte Carlo methods has allowed the
successful adaptation of these methods to
vector supercomputers. An alternative algorithm
for the specific application of photon transport in
an axisymmetric inertially confined fusion
plasma has been developed and implemented
on a vector supercomputer. The new algorithm
is described; its unique features are discussed
and compared with existing vectorized
algorithms for Monte Carlo. Numerical results
are presented illustrating its efficiency on a
vector supercomputer, relative to an optimized
scalar Monte Carlo algorithm that was
developed for this purpose.

Introduction
The Monte Carlo method is a general approach to solving
complex problems in science and engineering, wherein the
physical phenomenon is simulated statistically by sampling
from known probability distributions that describe the
specific physical process. Thus, the Monte Carlo method has
been used to simulate traffic flow, fluid flow, radiation
transport, and quantum-mechanical systems. This paper
discusses one specific type of Monte Carlo, particle transport
Monte Carlo, which is used to simulate the transport of

@Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copred or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

particles in a medium. Typical particle transport examples
are electron transport in a semiconductor device and photon
transport in an inertially confined fusion (ICF) plasma; the
latter is the specific application discussed in this paper. There
are several other examples of Monte Carlo methods, but this
paper is restricted to particle transport Monte Carlo.

The basic idea of the Monte Carlo method for solving
particle transport problems is to simulate the actual behavior
of the particle by drawing random samples from appropriate
probability distributions describing the actual physical
process. Thus a source particle is randomly sampled from a
known distribution by sampling an initial position F and
velocity G for the particle (for a photon, one would sample
the frequency u and the direction of travel 6).

the properties of the medium in which the particle is
traveling, the particle transport process is simulated by
sampling from known probability distributions describing
the interaction of the particle with the medium. The particle
moves on straight lines between interactions and the
simulation proceeds until the particle is “killed,” such as by
escaping from the system or being absorbed by the medium.
The specific application of photon transport is described in
more detail later.

Each of the particle simulations is called a “history,” and
by keeping track of the various outcomes (“tallies” or
“scores”), one can obtain estimates of the various quantities
of interest to the analyst, such as the escape probability or
the absorption probability for particles in a given energy
range and in a given region. Because the physical process is
faithfully represented by the computer simulation, this is
known as “analog” Monte Carlo. Modern-day Monte Carlo
methods for particle transport are generally “non-analog”

Given the initial position and velocity of the particle and

IBM J. RES DEVELOP. VOL. 30 NO. 2 MARCH 1986 WILLIAM R. MARTIN, PAUL F. NOWAK. AND JAMES A. RATHKOPF

because they contain variance-reduction schemes which
allow the estimation of the quantities of interest with fewer
histories. The vectorization approach is the same for either
analog or non-analog Monte Carlo, and no distinctions are
made between these types in the following discussion.

geometry or physical process, no matter how complex,
assuming the geometry can be represented by mathematical
equations and the physical process can be described by a
probability distribution (which may have been
experimentally or theoretically determined). The
disadvantage is typically computation time-a substantial
number of histories may be needed to yield reasonable
statistics and thus may lead to excessive computing times. In
addition, the inherent scalar nature of the conventional
Monte Carlo algorithm has made it difficult to implement
Monte Carlo methods on high-performance vector
supercomputers such as the Cray-1 or CDC Cyber-205.
However, recent advances in developing vectorized particle
transport Monte Carlo algorithms have had a substantial
impact on the cost of performing a Monte Carlo simulation.
This paper discusses an alternative vectorized algorithm for a
specific particle transport application which has been
implemented on the Cray-1 and single-processor Cray-XMP
vector supercomputer.

The advantage of Monte Carlo is its capability to treat any

Vectorized Monte Carlo
The independence of the particle histories makes it
impossible to vectorize the conventional Monte Carlo
algorithm. Trying to follow a “vector” of particles would be
fruitless because each component of the vector (i.e., each
particle) follows a different path since the histories are all
different. Hence, the “history-based’’ algorithm is not
vectorizable. However, if instead of following “histories” the
algorithm follows “events,” then a vectorized algorithm can
be formulated. In particular, an event is defined as a portion
of a history that begins with the particle emerging at a
position i with a velocity 6. This particle may have been the
result of a scattering collision, it may have been emitted by a
source, or it may be sitting on a boundary ready to be
transported into the adjacent zone. As the event proceeds,
the particle is tracked either to its next collision or to the
next boundary, whichever is closer. The event terminates at
the boundary or collision site, where the position and
velocity of the continuing particle (if any) are known. These
can then be used to initiate the next event. For time-
dependent Monte Carlo, the event may be terminated by
reaching the end of the current time step. Whereas all
histories are different, all events are similar. The key to
vectorizing Monte Carlo is to construct an “event-based”
algorithm and process the particle vector for many events,
continually updating the particle vector by eliminating
deleted particles and adding new particles until the requisite
number of simulations is performed. 194

WILLIAM R. MARTIN, PAUL F. NOWAK. AND JAMES A. RATHKOPF

Previous work
Brown and Martin [1 J have vectorized multigroup neutron
transport Monte Carlo in a general geometry. The term
“multigroup” describes the cross-section database as well as
the method for treating collisions. (The alternative to
multigroup is “continuous-energy,” wherein the energy of
the particle is used directly to sample from probability
distributions representing the collision physics.) Because of
the difficulties in tracking particles in a general geometry
with many dissimilar zones, the algorithm treated particles
in only one zone at a time. This avoided the necessity to
“gather” zonal data for the particle vector because all
particles were in the same zone, but it did necessitate an
outer loop over zones to process all of the particles. This
“one-zone” algorithm yielded speedups of a factor of 30-35
on the CDC Cyber 205 versus an optimized scalar code on
the CDC 7600. Brown [1,2] subsequently developed a
vectorized algorithm for continuous-energy Monte Carlo for
reactor lattice geometry, where symmetry allowed the
tracking of all particles simultaneously, irrespective of zone.
This “all-zone” algorithm resulted in speedups of a factor of
20-85 on the Cyber 205, compared with the old production
code on the CDC 7600.

The most recent work to vectorize Monte Carlo is that of
Bobrowicz et al. [3], which considered the specific
application of photon transport in a 2D axisymmetric
geometry. In this case the zones are all similar, being
bounded in general by four conic sections. This zonal
symmetry allows an “all-zone” algorithm, but the overall
algorithm is very different from the preceding one. Separate
stacks (or “queues”) of particles are constructed in
accordance with what is to happen to the particles next
(track to boundary, perform Thomson scatter, etc.). Eight
stacks are utilized and a stack is executed if its length
becomes 64-the length of the Cray vector registers. Hence
this algorithm is optimized for the Cray architecture.
Speedups in the range of 8-10 times on the Cray-1 versus
the old scalar code on the Cray- 1 are reported.

It is difficult to compare the results of the various efforts
because the speedups are problem-sensitive as well as being
sensitive to the efficiency (or inefficiency) of the original
scalar code.

The present work is also devoted to the vectorization of
photon transport in a 2D axisymmetric geometry. As will be
seen, however, there are few similarities between the present
approach and the algorithm of Bobrowicz et al. [3], although
there are some common features with the earlier algorithms
of Brown and Martin [11 and Brown [2].

Specific application
The Monte Carlo algorithm developed for this research is
intended to analyze the transport of photons in a high-
density, high-temperature plasma in an axisymmetric
geometry. The material zones (each with its own

IBM J. RES. DEVELOP. ! IOL. 30 NO, 2 MARCH 1986

composition, temperature, and density) are simple volumes
of revolution, bounded by at most four surfaces, each of
which is a conic section. A typical mesh is illustrated in
Figure 1. This relatively simple geometry allows the use of
the “all-zone” algorithm in which all particles can be treated
simultaneously, irrespective of zone. Although Fig. I depicts
a uniform mesh, the algorithm assumes a general two-
dimensional r-z mesh. Photons are sampled uniformly and
isotropically within each zone from a Planckian energy
spectrum (“blackbody” emission). The number of photons
emitted within each zone is a function of the zone material
properties. The photons which are emitted are then followed
through the plasma until they are absorbed, have escaped, or
reach census (end of time step). Besides absorption, the
photons may undergo Thomson scattering. The photon
transport calculation would normally alternate with a
hydrodynamic calculation which updates the material
properties of the zones, as well as the geometry of the zones.
However, the present simulation includes only the within-
time-step Monte Carlo calculation. A realistic database
consisting of frequency-, temperature-, and density-
dependent opacities for hydrogen, deuterium, tritium,
silicon, and oxygen was obtained from Lawrence Livermore
National Laboratory. This database returns an opacity, given
the photon frequency and the zone composition,
temperature, and density. The product of the opacity and
density yields the macroscopic total cross section for the
zone in question, which is the probability per unit length
that the photon suffers a collision in the zone. The
macroscopic cross section is needed to sample a distance to
collision within a given zone. The macroscopic total cross
section has units of cm”.

Conventional (scalar) Monte Carlo algorithm
The conventional Monte Carlo approach to solving this
problem would be to have an outer loop over the zones to
generate the photons, which are followed one at a time as
soon as they are produced until they have escaped, have
been absorbed, have reached the end of the current time step
(census), or have otherwise been eliminated from the
problem. This is known as a “history-based” algorithm,
where a “history” corresponds to following a photon from
birth (blackbody emission) to death (escape, absorption, or
census). Within a given zone, a photon is sampled by
determining its initial position F, frequency u, and direction
of travel 6. The position F is sampled uniformly within the
zone, the frequency is sampled from the Planckian
spectrum, and the direction of travel is sampled uniformly
on the unit sphere (isotropic emission). A distance to
collision dC is sampled from the exponential distribution
describing the penetration of photons of frequency v in the
specific material composition contained within the zone.
Since zones can be of different composition, if the sampled
distance to collision is greater than the distance to the

r‘

Typical 2D (r -z) axisymmetric mesh for a spherical configuration;

boundary of the zone, the photon must be advanced to the
boundary and a new distance to collision dC sampled in the
new zone. Therefore, the distance to the nearest zone
boundary dB along the photon trajectory must be calculated.
In addition, far time-dependent problems, a distance to
census dCEN must be calculated, since the photon history
must be terminated at the end of the time step (and saved
for the next time step).

If the photon suffers a collision, the type of collision is
sampled: For this application it may be either an absorption
or a Thomson scattering collision. If absorption, the history
is terminated, appropriate tallies are made, and a new
history is initiated. If scattering, the angle of scattering is
sampled and the new direction of travel is calculated. New
distances to boundary and census are calculated, a distance
to collision is sampled, and the history proceeds as before.

If the photon crosses a boundary, the photon is advanced
to the boundary along its flight path and a test is made to see
if the boundary is an outer boundary. If so, a tally for the
escaping particles is incremented and a new history is
initiated. If the boundary is an internal boundary, the zone
index is updated and the photon is tracked through its next
event (collision, boundary crossing, or census).

The history continues until the photon is gone. The
overall simulation continues until the loop over zones has
been completed and all of the photons have been emitted
and followed. Figure 2 is a flowchart for the scalar algorithm.
A separate Monte Carlo code (SPHOT) based on this
algorithm has been developed for comparison with the
vectorized algorithm; that algorithm is discussed next.

Vectorized Monte Carlo algorithm
Since this is an “event-based” algorithm, a vector of particle
“descriptors” must be constructed and then processed on an

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986 WILLIAM R. MARTIN, PAUL F. NOWAK. AND JAMES A. RATHKOPF

Sample source
particle +

c
TRACK Sample distance to

collision, dc

Calculate distance to all
boundaries and choose I minimum distance dB I

I

Calculate distance
to census ZEN

I yNmine 1
distance
minimum

I

Advance to
boundary

.L

I U I-

I
and determine

time step
q [-I scatter

event basis. For the current application, twelve descriptors
are used to describe each photon, as illustrated in Figure 3.
The basic approach is then to process this “particle vector”
until all of the photons are emitted and followed to
termination. At this point the various tallies (or “scores”) are
accumulated and the problem is finished. A summary of the
steps in the vectorized algorithm follows:

Initialization

1. Read input data to set up geometrical mesh and specify
zone compositions, temperatures, and densities. Also read
in the maximum number of particles N to be included in
the particle vector. Typically, N = 2000.

2. Using the zone compositions, temperatures, and densities,
calculate the total cross section Si for zone i and photon
energy group g. This cross section is constant over the
simulation time step. For the purpose of the following
discussion, we denote this array as 5, which has length
M X G, where M = the number of zones and G = the
number of photon energy groups. For our application,
G = 12 and M = 1960.

3. Determine the (z , r) coordinates of the vertices of each
surface S bounding zone i. For zones along the z-axis

which have only two or three bounding surfaces, fictitious
coordinates are included for the “missing” sides to allow
the vectorization of the distance to boundary calculation.
These fictitious vertices are specified to be outside the
problem geometry, hence never leading to a valid
intersection. This array of 8 coordinate pairs for each
zone is denoted by E, which has length 8M.

particles, determined by sampling in the source routine.

particles, where N, is the number of particles stored in
the source buffer, and the source routine is used to fill

4. Load the particle vector with descriptors for N

5. Load the source buffer 5; with descriptors for N,

xr.
Simulation

For event n = I , 2, . . .

1. Fetch ;(””), the particle vector at the end of the

2. Gather a vector of total cross sections
previous event iteration. is the initial particle vector.

- z = COl[Z,, z,, . . .) Z,]

from s,
- z -5,
where 5 is the cross-section array tabulated by zone-
group index and 2 is the cross-section array tabulated by
particle. The zone and group indexes for particle i are
two of the twelve descriptors constituting the particle
descriptor vector Note that the cross-section data
must be arranged by particle in order to vectorize the
calculations that are to come.

3. Similarly, gather a vector of (z , r) vertices for each of the
bounding surfaces,

- Y + E ’
where 8 contains the vertices tabulated by zone and y
contains the vertices tabulated by particle.

4. Using the vector 2, sample a distance-to-collision vector

- dC = col [dy, d:, dp, . . . , d i] ,

where dc = distance to collision for particle i. It is easy
to show that

c 1
zi

di = - -1nt

is a distance to collision sampled from the exponential
distribution, where Zi is the macroscopic total cross
section for the zone which contains particle i, and is a
random number on [0, 11.

distance-to-boundary vector _dB, where dB is the
minimum distance to a boundary enclosing particle i
(along the particle flight path). This calculation, while

5. Using the vector of vertices y, calculate the minimum

WILLIAM R. MARTIN, PAUL F. NOWAK, AND JAMES A. RATHKOPF IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

straightforward (the intersection of a straight line with a
conic section), may consume the bulk of the
computational time in a typical Monte Carlo
simulation.

d y = distance traveled by particle i at the end of the
current time step.

6 . Calculate the distance-to-census vector &EN, where

7. Determine the minimum distance-to-event vector,

- dMIN = c~l[d:'~, dYrN, . . ., d?],

where

dYlN = min [dc, dB, d y] .

8. Update the particle position coordinates in

Fi c gi +
where Fi = position of particle i and hi = direction of
travel of particle i.

The above steps are performed in a strict sequential order
and involve the entire particle vector The following
steps are performed on specific elements of the particle
vector; they are controlled by logic vectors (bit vectors)
which signal whether the indicated operation is to occur.

9. If the particle suffers a collision, sample the type of
collision (either absorption or Thomson scatter). If the
photon is absorbed, tag it for deletion from

photon direction of travel:
a. Gather up a vector of direction cosines

10. If the photon undergoes Thomson scattering, update the

- a + E,
where g = col[a,, a2, . . ., aNTHOM] and CY, =

col[uJ, u,, wj]. The terms uJ, vJ, w, are the direction
cosines for thej th particle to be Thomson-scattered,
and NTHOM is the number of particles to be
Thomson-scattered. Note that only the Thomson-
scattered photons are to be analyzed, not all of the
particles in - rcn-l).

b. Sample angles of scattering e from the Thomson
angular distribution for the NTHOM particles and
determine the new direction cosines g' for the
scattered particles.

c. Update the particle vector by scattering the new
direction cosines g' back into the particle vector
r(n-l)

1 1. If the particle crosses a boundary, check to see if it is an
outer boundary. If so, tag particle for deletion from

12. If the particle is at the end of the time step (census), tag

13. Advance the particle vector to the beginning of the next

-

r(n-l) . If not, update the zone index. -

it for deletion from

Bank vector, 1:

-

time

N = number of particles in 1

g Particle bank vector.

I

___c
After
event

Particle vector Particle vector
(before event) (with particles

to be deleted)

Source buffer

1 Use of source buffer to replenish particle vector via scatter operation.

event,

by either
a. Scattering new particles from the source buffer into

the tagged locations of (see Figure 4), or
b. Compressing E""') by deleting the tagged particles

and re-indexing E""'). The compress step is
performed if there are not enough particles in the

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986 WILLIAM R. MARTIN. PAUL F NOWAK. P

197

rND JAMES A. RATHKOPF

source buffer to replace the tagged particles in
- rcn”). In that case, Xy is refilled for the next event
iteration. For the scatter fill, the length of the particle
vector remains constant.

14. Repeat steps 1 through 13 until the length of 1 is zero
and the source particles are depleted.

Comparison with existing algorithms
The present algorithm is similar in many respects to the
algorithm of Brown [1 , 21 for the analysis of nuclear reactor
lattice problems on a CDC Cyber 205. Both algorithms are
“event-based” (as are all vectorized Monte Carlo algorithms
for particle transport) and “all-zone,” because all particles (in
the current particle vector) are tracked simultaneously,
regardless of their zone. However, Brown utilizes three
separate particle stacks: one for particles being tracked to a
boundary, another for particles undergoing collision analysis,
and the third for particles outside the current energy group.
Thus the particle data must be moved from one stack to
another during the simulation. Our approach employs one
main stack (the particle vector) which is processed in a
manner similar to the way a scalar algorithm processes a
single particle history. That is, a strict sequence of decisions
and calculations is performed, but in a vector manner, and
logical control vectors are used to determine the final states
of the individual particles in the main stack. For those
calculations which are performed for only a subset of the
particles, such as the Thomson scattering transformation of
the velocity vector, a substack is created using gather
statements. These substacks contain the minimum amount
of data needed for the particular calculation. For example,
the Thomson scattering transformation requires only the
direction cosines of the affected particles; therefore, the
equivalent of three gather statements is performed to create a
vector of direction cosines which can be transformed via the
Thomson transformations to a new set of direction cosines.
These are then scattered back into the main stack with a
scatter operation, hence replacing the old direction cosines.

There is very little similarity to the algorithm of
Bobrowicz et al. [3] (other than the actual physical
application) because they employ many stacks, partitioning
the computation into relatively small parcels. In some sense
the present approach constructs these stacks implicitly as
opposed to the explicit construction (and execution) of the
stacks in the Bobrowicz scheme. In our algorithm, for
example, the particle vector 1 follows a predetermined path
through the various calculational kernels (distance to
boundary, distance to collision, collision analysis, boundary
crossing analysis, etc.), whereas the Bobrowicz scheme would
have partitioned into subvectors which would be
dispatched to their appropriate queues. These queues would
be processed if their length reached 64. There is one
similarity, however, in the two algorithms. In particular, the
treatment of Thomson scattering (or any other special

physics option) in the present scheme is not unlike the
Bobrowicz approach, because an explicit stack is constructed
(or gathered) from the main stack. However, in our
approach this substack is executed in its turn once every
event iteration, regardless of its length. It is conceivable that
some benefit might be realized if the substack were held until
it became reasonably long. This would result in longer vector
lengths, but at the penalty of having to save all of the particle
descriptors in a separate queue and having to remove them
from the main stack. This would complicate the algorithm
somewhat, but more importantly, would necessitate moving
all twelve of the particle descriptors rather than just the three
descriptors needed to perform the Thomson analysis. This
trade-off has not been evaluated but is currently under
investigation.

of the source buffer to fill the particle vector after every
event iteration. It is true that using a scatter operation to
replace deleted particles in 1 is in general no more efficient
(and perhaps less efficient) than compressing the main stack
to eliminate the particles tagged for deletion; however, the
logic is somewhat simpler and the source buffer can be used
to accommodate other sources in the problem, such as those
due to fission or splitting, because particles generated within
the simulation can be stored in the source buffer, no matter
where they come from.

Another unique feature of the present approach is the use

Results
The vectorized algorithm described here has been
incorporated into the FORTRAN code VPHOT, the present
version of which is intended for the Cray-1 and Cray-XMP
computers. The library STACKLIBE [4] is utilized
extensively throughout the code due to the necessity to
perform numerous gather and scatter operations. Because a
significant portion of the gather/scatter operations involve
multiple calls with the same index list, the “array” gather/
scatter routines in STACKLIBE were quite useful and
resulted in significant improvements in overall run time. For
example, to obtain the zonal vertices by particle requires 16
gather operations, but each of these utilizes the same index
list. The one STACKLIBE routine QARGATH performs
these with one call, utilizing the ability of the Cray to fetch a
vector with a constant stride.

The specific problem analyzed with the vectorized code
VPHOT is an ICF plasma consisting of a 50%-50% mixture
of deuterium and tritium (D-T) at elevated temperature and
density, surrounded by a SiO, region, also at elevated
temperature and density. Photons are emitted throughout
both regions via Planckian emission, and the problem
parameters are such that approximately 240000 photons
(actually photon “bundles”) are emitted during the
simulation. The problem configuration is illustrated in
Figure 5. In addition to keeping track of the number of
absorptions and the number of photons escaping the plasma,

WILLIAM R. MARTIN, PAUL F. NOWAK. AND JAMES A. RATHKOPF IBM J . RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

Table 1 Numerical results-ICF test problem.

LLNL

Histories 240.000’
Escaped 62,163
Census 3.033
Lost’ 248
Tracks 4.200.000’
CPU time’ (s) 336.8
Timing 80.3
(rsltrack)

VPHOT SPHOT

238,274 238,269
62.7 19 62.751
3.189 3,153

I I 7
4,192,157 4,195,966

30.5 139.9
6.97 33.3

its x. ?: : location).
’ A panicle is consldered “lost” if it is not in the correct zone (zone index is inconsistent wlth

’These quantities are estimates. since they were not avadable from the LLNL code.
Cray XMPI2 (single processor only)-no I/O.

the code tabulates the number of photons escaping within
each energy group (the escaping “spectrum”) as well as the
total number of events (or “tracks”) processed during the
simulation. This latter quantity is useful for arriving at an
absolute measure of efficiency-the average CPU time (in
ps) needed to process one track. In addition, a scalar version
(SPHOT) of the vectorized code VPHOT was created to
allow a fair comparison of the efficiency of the vectorized
algorithm. In addition to the need for a meaningful
comparison to show the efficiency of VPHOT, there was a
need to compare the accuracy of VPHOT to ensure that the
physics was being predicted correctly. This was done by
comparing the VPHOT and SPHOT results with results
from a reference (scalar) Monte Carlo code at Lawrence
Livermore National Laboratory (LLNL). This code was run
on the same problem (identical mesh, database, source, etc.),
and the results compared with the prediction of VPHOT and
SPHOT.

Table 1 contains a summary of the overall tallies and
timings for the reference LLNL Monte Carlo code as well as
VPHOT and SPHOT. As can be seen, the overall tallies are
predicted well within statistical error for all three codes.
Table 2 presents the escaping photon spectrum for the three
codes, and again the agreement is excellent. From these
results we have concluded that the scalar and vector codes
SPHOT and VPHOT are correct to the extent that they
predict essentially the same physics as does the reference
LLNL code.

The efficiency of the vectorized code is evident in Table 1,
where the vector code is seen to be faster by a factor of 4-5
than the scalar code SPHOT and nearly a factor of 12 faster
than the reference LLNL scalar code. Although one must
treat the comparison of VPHOT and the LLNL code
somewhat carefully, the comparison with SPHOT is
significant because SPHOT was developed to include the
same physics as VPHOT and the algorithm was optimized
for a scalar processor. Thus one can expect a speedup on the
order of 4-5 for the Cray-1 and single-processor Cray-XMP
supercomputers. This would correspond to speedups in

IBM J. RES, DEVELOP. \ ‘OL. 30 NO. 2 MARCH 1986

- 0 Deuterium-tritium (D-T)

I
-

Mesh: 49 axial

(1960 zones) T, = 20 OOO electron volts (eV)
40 radial

R, =0.0005 cm - pI = 1000 g/cm3

Silicon dioxide (SiO,)
R2 =O.OOl cm
T, = 1000 eV

4 = 100 g/cm3

Configuration for ICF test problem (two concentric spheres)

Table 2 Escaping photon energy spectrum

Photon Escaping photon energy2
energy
group’ LLNL VPHOT

1
2
3
4
5
6
7
8
9

10
1 1
12

All groups

0.0345
0.2398
1.065
2.383
1.783
1.978
5.381
9.716

26.02
62.45
80.07

3.439

194.56

0.0371
0.2207
1.223
2.365
1.773
2.01 5
5.593
9.867

25.96
63.09
80.09

3.446

195.67

I The photons range in energy from 1 electron volt (eV) lo 200 keV (200 OOO eV). This range is
divided into twelve energy groups.
’Total escaping photon energy is in units of IO” keV (by energy group).

excess of I O when compared with a CDC 7600, which was
an earlier measure of performance [1, 21. This should be
compared with the factor of 2-3 that would be expected for
a scalar algorithm, such as conventional Monte Carlo, when
converting from the CDC-7600 to the Cray-XMP (single
processor). This performance gain is simply due to the
increase in the scalar processing speed. 199

WILLIAM R. MARTIN. PAUL F. NOWAK. AND JAMES A. RATHKOPF

- 2400

- 2000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

CPU time (s)

Timing curves for step-refill scheme.

i

4t
01 I I I I I ‘, I Io

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

CPU time (s)

Timing curves for continuous-refill scheme.

In addition to keeping track of the overall timing statistics,
VPHOT is instrumented to allow output of the
instantaneous timing (in psltrack) as well as the cumulative
timing at each event iteration. The instantaneous timing is
simply the CPU time per track during the current event
iteration, and the cumulative timing is the average CPU time
per track up to that point in the overall simulation. This
time is calculated by determining the number of tracks and
dividing this number into the total CPU time for the
simulation, excluding input/output operations. Since some
event iterations involve calling the source routine to

replenish the source buffer, the instantaneous timing will
show a marked increase during these event iterations. In
Figures 6 and 7 we have plotted the timing curves for a
small test problem (746 1 source photons) for two different
replenishment schemes:

1 . Step refill-the particle vector is depleted to zero before
being refilled. Thus the particle vector is initially 2000
long and it decreases to zero before being refilled to 2000.
This continues until the 746 1 photons are processed.

2. Continuous refill-the particle vector is refilled after each
event iteration by scattering from the source buffer
(scatter fill). This is the current approach in VPHOT.

Figures 6 and 7 plot the cumulative and instantaneous
timing as well as the instantaneous vector length as a
function of event iteration. As expected, the timing improves
with increasing vector length. In Figure 8 we have plotted
the cumulative timing curves for the two replenishment
schemes on the same scale. It is evident that the continuous-
refill scheme is to be preferred. It results in longer vector
lengths on the average since there is only one reduction to a
zero vector length. A variation on the step-refill scheme was
examined wherein the particle vector was not allowed to go
below some’minimum length specified by the user. If it does
fall below this minimum, it is refilled from the source
routine. It was found that the optimal minimum particle
vector length was 1750 for a maximum vector length of
2000, which is the usual case. However, for this optimal
minimum length, the overall timing was about the same as
with the continuous-refill scheme. Since the logic was much
simpler with the continuous scheme, it was chosen for the
final algorithm.

Figure 7 illustrates another point regarding the overall
performance. Since there is no provision in VPHOT to
switch to a scalar algorithm when the vector length becomes
small (e.g., less than 5), there is a substantial increase in the
instantaneous CPU time per track towards the end of the
overall simulation. During this “end game” the vector length
may be 1 or 2 for many event iterations, resulting in s

inefficient code due to the vector constructs that are utilized:
for example, the instantaneous timing peaks at 300-400
ps/track, which is nearly ten times slower than the scalar
code. However, the interesting observation is that this
relatively slow portion of the simulation has a negligible
effect on the overall timing, as can be seen by the slight
increase in the cumulative timing over this portion of the
simulation. The reason for this is that the bulk of the
simulation is performed with relatively long vectors and the
effect of the short-vector iterations is not important. This
leads one to conclude that the “end game” is not important
for the overall performance and that one should not worry
about schemes to avoid the short vectors, such as switching
to a scalar code when the vector length becomes short.

IBM J . RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986 WILLIAM R. MARTIN. PAUL F. NOWAK. AND JAMES A. RATHKOPF

Besides complicating the algorithm, the addition of separate
scalar code requires one to maintain two versions of the
same code, which is not advisable, especially if the code is to
be modified frequently.

A more difficult problem is the comparison with other
results, such as those of Bobrowicz et al. 131. One possible
measure is the absolute indicator of efficiency, given by the
average CPU time to process one track. Table 1 gives
approximately 7 bsltrack for VPHOT, versus 33 rsltrack for
SPHOT and in excess of 80 ws/track for the reference LLNL
code. Bobrowicz [3] reports 25 ps/track on the Cray-1, which
corresponds to 16- 18 &rack on the Cray-XMP. However,
his Monte Carlo algorithm includes different physics options;
hence this comparison must be taken with some caution.
Brown [51 reports approximately 4 p/track for the reactor
lattice problems on the CDC Cyber-205, but again the
different application and different computer make it difficult
to make a fair comparison of the relative efficiencies of the
various algorithms.

Summary and conclusions
A vectorized Monte Carlo code (VPHOT) has been
developed for the analysis of photon transport in an ICF
plasma with axisymmetric geometry. A companion scalar
code (SPHOT) has also been developed for comparison with
the vector code. Both VPHOT and SPHOT are capable of
performing realistic simulations, representative of typical
ICF fusion calculations, and they have been verified by
comparison with a reference Monte Carlo code at LLNL.
The vectorized code is approximately four to five times
faster than the scalar code and nearly twelve times faster
than the reference LLNL scalar code. The vectorized code
also compares well with the alternative algorithm of
Bobrowicz et al. [3], although the comparison is not
conclusive. The optimal algorithm may well be a
compromise between these two approaches. However, the
present algorithm has several advantages over the Bobrowicz
approach. The present algorithm is somewhat simpler and
has many similarities to the scalar Monte Carlo algorithm,
hence making it easier to make the transition to a vectorized
code. Second, it is relatively straightforward to add
additional physics options to the present code because there
is no complicated synchronization among the various stacks,
as in the Bobrowicz scheme. Finally, it minimizes the
movement of data because the same particle stack is
processed for most of the simulation. Although this may
have the effect of a shorter vector length, it is our opinion
that the minimization of the data movement is the more
important issue. However, this issue is still under
examination.

Future effort
Effort is now under way to implement a multiprocessed
version of VPHOT on the Cray-XMPl48 at LLNL. In

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

24 -
-

20 -
-

16 -
-

12 -
-

8 -

i

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

CPU time (s)

Cumulative timing curves for step-refill vs. continuous-refill
schemes.

addition, a parallel effort is under way to implement a
multiprocessed version of the scalar code SPHOT on the
four-processor IBM 3084, and it is expected that this latter
effort will be extended to massively parallel architectures in
the near future.

Acknowledgments
The authors acknowledge helpful comments and suggestions
from William Chandler, Rollin Harding, Frank McMahon,
and David Hardin of Lawrence Livermore National
Laboratory (LLNL) and Bernie Rudin of the IBM Kingston
laboratory. This work was partially supported by grants from
IBM (Kingston) and LLNL (under Contract W-7405-ENG-
48 with the U.S. Department of Energy).

References
1. F. B. Brown and W. R. Martin, “Monte Carlo Methods for

Radiation Transport Analysis on Vector Computers,” Prog. Nucl.
Energy 14, 269-299 (1984).

Lattice Problems,” Proceedings of the American Nuclear Society
Topical Meeting on Advances in Reactor Computations, Salt Lake
City, UT, 1983, pp. 108-123.

“Vectorized Monte Carlo Photon Transport,” Parall. Comput. 1,

2. F. B. Brown, “Vectorized Monte Carlo Methods for Reactor

3. F. W. Bobrowicz, J. E. Lynch, K. J. Fisher, and J. E. Tabor,

295-305 (1984).
4. F. H. McMahon, “STACKLIBE-A Library of Fast Vector

Functions for Complete Vector Formulation of Program Logic on
the Cray-I,” draft version of manuscript, Lawrence Livermore
National Laboratory, Livermore, CA, 1980.

NY, private communication, April 1985.
5. F. B. Brown, Knolls Atomic Power Laboratory, Schenectady,

Received July 29, 1985; accepted for publication October 28,
I985

WILLIAM R. MARTIN, PAUL F. NOWAK, AND JAMES A. RATHKOPF

William R. Martin University of Michigan, Department of Nuclear
Engineering, Ann Arbor, Michigan 48109. Dr. Martin is an associate
professor of nuclear engineering at the University of Michigan. He
received his Ph.D. in nuclear engineering from the University of
Michigan in 1976. Upon graduation he joined Combustion
Engineering Inc. and was responsible for developing advanced
computational methods for nuclear reactor analysis. He returned to
the University of Michigan in 1977 and has been active in
computational methods development in several areas, including
reactor physics, thermal/hydraulics, and particle transport. His
current research interests include the development of algorithms for
scientific computation on advanced computers, including Monte
Carlo simulation on vector supercomputers and parallel processors,
nuclear reactor plant simulation on parallel processors, and logic
simulation on vector supercomputers. Dr. Martin is a member of the
American Association for the Advancement of Science, the
American Nuclear Society, the American Physical Society, the
Association for Computing Machinery, Sigma Xi, and the Society
for Industrial and Applied Mathematics.

Paul F. Nowak University of Michigan, Ann Arbor, Michigan
48109. Mr. Nowak is a graduate student in the Department of
Nuclear Engineering at the University of Michigan, where he
received his B.S.E. degree in 1984 and his M.S.E. degree in 1985. He
is currently working on Monte Carlo algorithms for vector
computers with single processors and multiprocessors, with
application to photon transport in inertially confined plasmas. He is
also interested in the development of nodal transport and diffusion
methods for purposes of nuclear reactor design and analysis. Mr.
Nowak is a member of Alpha Nu Sigma, the American Nuclear
Society, and Tau Beta Pi.

James A. Rathkopf Westinghouse Eleclric Corporation,
Pittsburgh, Pennsylvania 15235. Dr. Rathkopf received his B.S.E.
degree in nuclear engineering at the University of Florida,
Gainesville, in 1979 and his Ph.D. in nuclear engineering from the
University of Michigan in 1984. While a graduate student, he spent
several summers at Lawrence Livermore National Laboratory
studying the application of Monte Carlo methods on vector
supercomputers. Since receiving his Ph.D., he has been with the
Nuclear Fuels Division of Westinghouse Electric Corporation, where
he is developing advanced computational methods for the analysis of
nuclear reactor cores. His technical interests include the
development of methods for scientific computation on vector and
parallel processors, real-time simulation of nuclear reactor core
behavior, and deterministic and probabilistic methods of nuclear
analysis. Dr. Rathkopf is a member of the American Nuclear
Society.

202

WILLIAM R. MARTIN, PAUL F. NOWAK, AND J IAMES A. RATHKOPF IBM 1. RES. DEVELOP. ‘OL. 30 NO. 2 MARCH 1986

