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The  use of “event-based” algorithms  for  particle 
transport  Monte  Carlo  methods  has  allowed  the 
successful  adaptation  of  these  methods  to 
vector  supercomputers.  An  alternative  algorithm 
for the  specific  application of  photon  transport in 
an  axisymmetric  inertially  confined  fusion 
plasma  has  been  developed  and  implemented 
on a vector  supercomputer.  The  new  algorithm 
is  described;  its  unique  features are discussed 
and  compared  with  existing  vectorized 
algorithms  for  Monte  Carlo.  Numerical  results 
are presented  illustrating  its  efficiency  on  a 
vector  supercomputer, relative to an  optimized 
scalar  Monte  Carlo  algorithm  that  was 
developed for  this  purpose. 

Introduction 
The  Monte  Carlo method is a general approach to solving 
complex  problems in science and engineering, wherein the 
physical phenomenon is simulated statistically by sampling 
from  known  probability distributions  that describe the 
specific physical process. Thus,  the  Monte Carlo  method  has 
been used to simulate traffic flow, fluid flow, radiation 
transport,  and  quantum-mechanical systems. This  paper 
discusses one specific type of Monte Carlo, particle transport 
Monte Carlo, which is  used to  simulate  the transport of 
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particles in a medium. Typical particle  transport  examples 
are electron transport in a semiconductor device and  photon 
transport in an inertially confined fusion (ICF) plasma; the 
latter is the specific application discussed in  this  paper. There 
are several other examples of Monte Carlo  methods, but this 
paper is restricted to particle  transport Monte Carlo. 

The basic idea of the  Monte Carlo  method for solving 
particle transport problems is to simulate the actual  behavior 
of the particle by drawing random samples  from appropriate 
probability distributions describing the actual physical 
process. Thus a  source particle is randomly  sampled  from a 
known  distribution by sampling an initial position F and 
velocity G for the particle  (for  a photon,  one would  sample 
the frequency u and  the direction of travel 6). 

the properties  of the  medium in which the particle is 
traveling, the particle transport process is simulated by 
sampling  from  known  probability  distributions describing 
the interaction of the particle with the  medium.  The particle 
moves on straight lines between interactions and  the 
simulation  proceeds  until  the particle is “killed,”  such as by 
escaping from the system or being absorbed by the  medium. 
The specific application of photon transport is described in 
more  detail later. 

Each of the particle simulations is called a  “history,” and 
by keeping track  of the various outcomes (“tallies” or 
“scores”), one can obtain estimates of the various quantities 
of  interest to  the analyst,  such  as the escape probability or 
the absorption  probability for particles in  a given energy 
range and in a given region. Because the physical process is 
faithfully represented by the  computer  simulation, this is 
known as “analog” Monte Carlo.  Modern-day Monte Carlo 
methods for particle transport  are generally “non-analog” 

Given the initial  position and velocity of the particle and 
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because  they contain variance-reduction  schemes  which 
allow the estimation of the quantities of interest with fewer 
histories. The vectorization approach is the same for either 
analog or non-analog Monte Carlo, and no distinctions are 
made between  these  types in the following  discussion. 

geometry or physical  process, no matter how complex, 
assuming the geometry can be  represented by mathematical 
equations and  the physical  process can be described by a 
probability distribution (which  may  have  been 
experimentally or theoretically determined). The 
disadvantage  is  typically computation time-a substantial 
number of histories  may be needed to yield reasonable 
statistics and thus may  lead to excessive computing times.  In 
addition, the inherent scalar nature of the conventional 
Monte Carlo algorithm has made it difficult to implement 
Monte Carlo methods on high-performance  vector 
supercomputers such as the Cray-1 or CDC  Cyber-205. 
However,  recent  advances in developing  vectorized  particle 
transport Monte Carlo algorithms have had a substantial 
impact on the cost of performing a Monte Carlo simulation. 
This paper discusses an alternative vectorized algorithm for a 
specific particle transport application which  has  been 
implemented on the Cray-1 and single-processor  Cray-XMP 
vector supercomputer. 

The advantage of Monte Carlo is its capability to treat any 

Vectorized  Monte  Carlo 
The independence of the particle  histories  makes  it 
impossible to vectorize the conventional Monte Carlo 
algorithm. Trying to follow a “vector” of particles  would be 
fruitless  because  each component of the vector (i.e., each 
particle) follows a different path since the histories are all 
different.  Hence, the “history-based’’ algorithm is not 
vectorizable.  However, if instead of  following  “histories” the 
algorithm follows “events,” then a vectorized algorithm can 
be formulated. In particular, an event is  defined as a portion 
of a history that begins  with the particle  emerging at a 
position i with a velocity 6. This particle  may  have  been the 
result  of a scattering collision, it may  have  been emitted by a 
source, or it may be sitting on a boundary ready to be 
transported into the adjacent zone. As the event proceeds, 
the particle is tracked either to its next  collision or to the 
next boundary, whichever  is  closer. The event terminates at 
the boundary or collision  site,  where the position and 
velocity  of the continuing particle (if any) are known.  These 
can then be  used to initiate the next  event. For time- 
dependent Monte Carlo, the event  may  be terminated by 
reaching the end of the current time step.  Whereas  all 
histories are different,  all events are similar. The key to 
vectorizing Monte Carlo is to construct an “event-based” 
algorithm and process the particle vector for many events, 
continually updating the particle  vector by eliminating 
deleted  particles and adding new particles until the requisite 
number of simulations is performed. 194 
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Previous  work 
Brown and Martin [ 1 J have  vectorized multigroup neutron 
transport Monte Carlo in a general  geometry. The term 
“multigroup” describes the cross-section database as well as 
the method for treating collisions. (The alternative to 
multigroup is “continuous-energy,” wherein the energy  of 
the particle  is  used  directly to sample  from  probability 
distributions representing the collision  physics.)  Because  of 
the difficulties in tracking particles in a general  geometry 
with many dissimilar  zones, the algorithm treated particles 
in only one zone at a time. This avoided the necessity to 
“gather” zonal data for the particle  vector  because  all 
particles  were in the same zone, but it did  necessitate an 
outer loop over  zones to process  all  of the particles. This 
“one-zone” algorithm yielded speedups of a factor of 30-35 
on the CDC Cyber  205  versus an optimized scalar  code on 
the CDC 7600.  Brown [ 1,2] subsequently developed a 
vectorized algorithm for continuous-energy Monte Carlo for 
reactor lattice geometry,  where  symmetry  allowed the 
tracking of all particles simultaneously, irrespective of zone. 
This “all-zone” algorithm resulted in speedups of a factor of 
20-85 on the Cyber  205, compared with the old production 
code on the CDC 7600. 

The most  recent work to vectorize Monte Carlo is that of 
Bobrowicz et al. [3], which  considered the specific 
application of photon transport in a 2D axisymmetric 
geometry.  In this case the zones are all similar, being 
bounded in general by four conic sections. This zonal 
symmetry  allows an “all-zone” algorithm, but the overall 
algorithm is  very  different  from the preceding one. Separate 
stacks (or “queues”) of  particles are constructed in 
accordance with  what is to happen to the particles  next 
(track to boundary, perform Thomson scatter, etc.).  Eight 
stacks are utilized and a stack  is  executed if its length 
becomes 64-the length of the Cray  vector  registers. Hence 
this algorithm is optimized for the Cray architecture. 
Speedups  in the range of 8-10 times on the Cray-1  versus 
the old  scalar  code on the Cray- 1 are reported. 

It is  difficult to compare the results of the various  efforts 
because the speedups are problem-sensitive as well as being 
sensitive to the efficiency (or inefficiency)  of the original 
scalar  code. 

The present  work  is  also  devoted to the vectorization of 
photon transport in a 2D axisymmetric geometry. As will  be 
seen, however, there are few similarities  between the present 
approach and the algorithm of  Bobrowicz et al. [3], although 
there are some common features with the earlier algorithms 
of  Brown and Martin [ 11 and Brown [2]. 

Specific  application 
The Monte Carlo algorithm developed  for this research  is 
intended to analyze the transport of photons in a high- 
density, high-temperature plasma in an axisymmetric 
geometry. The material zones (each  with its own 
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composition, temperature,  and density) are simple  volumes 
of revolution, bounded by at most four surfaces, each of 
which is a  conic  section. A typical mesh is illustrated  in 
Figure 1. This relatively simple  geometry allows the use of 
the “all-zone” algorithm  in which all particles can be treated 
simultaneously, irrespective of  zone.  Although Fig. I depicts 
a  uniform  mesh, the algorithm  assumes  a general two- 
dimensional r-z mesh. Photons  are sampled  uniformly and 
isotropically within each zone from a Planckian energy 
spectrum (“blackbody” emission). The  number of photons 
emitted within  each zone is a function of the  zone material 
properties. The  photons which are  emitted  are  then followed 
through  the plasma  until  they are absorbed,  have escaped, or 
reach census (end of time step). Besides absorption,  the 
photons may  undergo Thomson scattering. The  photon 
transport calculation  would  normally alternate with a 
hydrodynamic calculation which updates the material 
properties of the zones, as well as  the geometry of the zones. 
However, the present  simulation  includes  only the within- 
time-step Monte  Carlo calculation. A realistic database 
consisting  of  frequency-,  temperature-, and density- 
dependent opacities  for  hydrogen, deuterium,  tritium, 
silicon, and oxygen was obtained from Lawrence  Livermore 
National  Laboratory. This database returns  an opacity, given 
the  photon frequency and  the  zone  composition, 
temperature,  and density. The  product of the opacity and 
density yields the macroscopic  total  cross  section  for the 
zone  in question, which is the probability per unit length 
that  the  photon suffers a collision in  the zone. The 
macroscopic  cross  section is needed to sample  a  distance to 
collision within  a given zone. The macroscopic  total  cross 
section has units of cm”. 

Conventional  (scalar)  Monte  Carlo  algorithm 
The conventional Monte  Carlo approach to solving this 
problem would be to have an  outer loop  over the zones to 
generate the  photons, which are followed one  at a time as 
soon as they are produced  until  they have escaped, have 
been  absorbed, have reached the  end of the  current  time step 
(census), or have otherwise been  eliminated from  the 
problem. This is known  as  a  “history-based”  algorithm, 
where a  “history”  corresponds to following a photon from 
birth  (blackbody  emission) to  death (escape, absorption, or 
census). Within  a given zone,  a photon is sampled by 
determining its  initial  position F, frequency u, and direction 
of travel 6.  The position F is sampled  uniformly  within the 
zone,  the frequency is sampled  from the Planckian 
spectrum,  and  the direction of travel is sampled  uniformly 
on  the  unit sphere  (isotropic  emission). A distance to 
collision dC is sampled  from the exponential  distribution 
describing the penetration  of photons of  frequency v in the 
specific material  composition contained within the zone. 
Since  zones can be of different composition, if the sampled 
distance to collision is greater than  the distance to  the 

r‘ 

Typical 2D ( r -z )  axisymmetric  mesh for a spherical  configuration; 

boundary of the zone, the  photon must be advanced to  the 
boundary  and a new distance to collision dC sampled in  the 
new zone. Therefore, the distance to  the nearest  zone 
boundary dB along  the  photon trajectory must  be calculated. 
In addition,  far time-dependent  problems,  a  distance to 
census dCEN must be calculated,  since the  photon history 
must be terminated  at  the  end  of  the  time  step  (and saved 
for the next time step). 

If the  photon suffers a collision, the type of collision is 
sampled: For this application  it  may be either an absorption 
or a Thomson scattering collision. If absorption,  the history 
is terminated,  appropriate tallies are  made,  and a new 
history is initiated. If scattering, the angle of scattering is 
sampled and  the new direction  of travel is calculated. New 
distances to  boundary  and census are calculated,  a  distance 
to collision is sampled, and  the history proceeds as before. 

If the  photon crosses a boundary,  the  photon is advanced 
to  the  boundary along  its flight path  and a test is made  to see 
if the  boundary is an  outer  boundary. If so, a tally for the 
escaping particles is incremented and a new history is 
initiated. If the boundary is an internal  boundary, the  zone 
index is updated and  the  photon is tracked through its  next 
event (collision, boundary crossing, or census). 

The history continues until the  photon is gone. The 
overall simulation continues until the  loop over  zones  has 
been completed and all of the  photons have been emitted 
and followed. Figure 2 is a flowchart for the scalar algorithm. 
A separate Monte  Carlo code (SPHOT) based on this 
algorithm has been developed  for comparison with the 
vectorized algorithm; that algorithm is discussed next. 

Vectorized  Monte  Carlo  algorithm 
Since  this is an “event-based”  algorithm,  a vector of particle 
“descriptors” must be constructed and  then processed on  an 
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event basis. For the current application, twelve descriptors 
are used to describe  each photon, as illustrated in Figure 3. 
The basic approach is then to process this “particle vector” 
until all of the photons are emitted and followed to 
termination. At this point the various  tallies (or “scores”) are 
accumulated and  the problem is finished. A summary of the 
steps in the vectorized algorithm follows: 

Initialization 

1. Read input  data to set up geometrical  mesh and specify 
zone compositions, temperatures, and densities. Also read 
in the maximum number of particles N to be included in 
the particle  vector.  Typically, N = 2000. 

2. Using the zone compositions, temperatures, and densities, 
calculate the total cross  section Si for  zone i and photon 
energy group g. This cross  section is constant over the 
simulation time step. For the purpose of the following 
discussion, we denote this array as 5, which has length 
M X G, where M = the number of zones and G = the 
number of photon energy  groups. For our application, 
G = 12 and M =  1960. 

3. Determine the ( z ,  r )  coordinates of the vertices of each 
surface S bounding zone  i.  For  zones  along the z-axis 

which  have  only  two or three bounding surfaces,  fictitious 
coordinates are included for the “missing”  sides to allow 
the vectorization of the distance to boundary calculation. 
These  fictitious  vertices are specified to be outside the 
problem  geometry,  hence  never  leading to a valid 
intersection. This array of 8 coordinate pairs  for  each 
zone is denoted by E,  which  has  length 8M. 

particles, determined by sampling in the source routine. 

particles,  where N, is the number of particles  stored in 
the source buffer, and the source routine is used to fill 

4. Load the particle  vector with descriptors for N 

5. Load the source  buffer 5; with descriptors for N, 

xr. 
Simulation 

For event n = I ,  2, . . . 

1. Fetch ;(””), the particle  vector at the end of the 

2.  Gather a vector of total cross  sections 
previous  event iteration. is the initial particle  vector. 

- z = COl[Z,, z,, . . .) Z,] 

from s, 
- z -5, 
where 5 is the cross-section array tabulated by zone- 
group index and 2 is the cross-section array tabulated by 
particle. The zone and group indexes  for  particle i are 
two  of the twelve descriptors constituting the particle 
descriptor vector Note that the cross-section data 
must be arranged by particle  in order to vectorize the 
calculations that are to come. 

3. Similarly,  gather a vector of ( z ,  r )  vertices  for  each of the 
bounding surfaces, 

- Y + E ’  
where 8 contains the vertices tabulated by zone and y 
contains the vertices tabulated by particle. 

4. Using the vector 2, sample a distance-to-collision  vector 

- dC = col [dy, d:, dp, . . . , d i ] ,  

where dc = distance to collision  for  particle i.  It  is  easy 
to show that 

c 1  
zi 

di = - -1nt 

is a distance to collision  sampled  from the exponential 
distribution, where Zi is the macroscopic total cross 
section  for the zone  which contains particle  i, and is a 
random number on [0, 11. 

distance-to-boundary vector _dB, where dB is the 
minimum distance to a boundary enclosing  particle i 
(along the particle  flight path). This calculation, while 

5. Using the vector of vertices y, calculate the minimum 
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straightforward (the intersection of a  straight  line with a 
conic  section),  may consume  the bulk  of the 
computational  time in  a typical Monte Carlo 
simulation. 

d y  = distance traveled by particle i at  the  end of the 
current  time step. 

6 .  Calculate the distance-to-census vector &EN, where 

7. Determine  the  minimum distance-to-event vector, 

- dMIN = c~l[d:'~,  dYrN, . . ., d?], 

where 

dYlN = min [ dc, dB, d y ] .  

8. Update  the particle position coordinates in 

Fi c gi + 
where Fi = position of particle i and hi = direction  of 
travel of  particle i. 

The above  steps are performed  in  a strict sequential order 
and involve the  entire particle vector The following 
steps are performed on specific elements of the particle 
vector; they are controlled by logic vectors (bit vectors) 
which signal whether the indicated  operation is to occur. 

9. If the particle suffers a collision,  sample the type of 
collision (either  absorption or Thomson scatter). If the 
photon is absorbed,  tag  it  for  deletion  from 

photon direction of travel: 
a. Gather  up a vector of direction  cosines 

10. If the  photon undergoes Thomson scattering, update  the 

- a + E, 
where g = col[a,, a2, . . ., aNTHOM] and CY, = 

col[ uJ, u,, wj]. The  terms uJ, vJ, w, are  the direction 
cosines for thej th  particle to be Thomson-scattered, 
and NTHOM is the  number of particles to be 
Thomson-scattered. Note  that only the  Thomson- 
scattered photons  are  to  be analyzed, not all of the 
particles in - rcn-l). 

b. Sample angles  of  scattering e from the  Thomson 
angular  distribution  for the NTHOM particles and 
determine  the new direction cosines g' for the 
scattered particles. 

c. Update  the particle vector by scattering the new 
direction  cosines g' back into  the particle vector 
r(n-l) 

1 1. If the particle crosses a boundary, check to see if it is an 
outer boundary. If so, tag particle for deletion  from 

12. If the particle is at  the  end of the  time step  (census),  tag 

13. Advance the particle vector to  the beginning of the next 

- 

r(n-l)  . If not, update  the  zone index. - 

it  for  deletion  from 

Bank  vector, 1: 

- 

time 

N =  number of particles in 1 

g Particle  bank vector. 

I 

___c 
After 
event 

Particle  vector  Particle  vector 
(before  event)  (with  particles 

to be deleted) 

Source  buffer 

1 Use  of source buffer  to replenish particle vector via scatter operation. 

event, 

by either 
a.  Scattering new particles from the source buffer into 

the tagged locations  of (see Figure 4), or 
b. Compressing E""') by deleting the tagged particles 

and re-indexing E""'). The compress  step is 
performed if there  are  not  enough particles in the 
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source buffer to replace the tagged particles in 
- rcn”). In that case, Xy is refilled for the next  event 
iteration. For  the scatter fill, the length of the particle 
vector remains constant. 

14. Repeat  steps 1 through 13 until the length of 1 is zero 
and  the source  particles are depleted. 

Comparison  with  existing  algorithms 
The present  algorithm is similar  in  many respects to  the 
algorithm  of Brown [ 1 ,  21 for the analysis of nuclear  reactor 
lattice  problems on a CDC Cyber 205. Both algorithms are 
“event-based” (as  are all vectorized Monte Carlo  algorithms 
for particle transport)  and “all-zone,” because all particles (in 
the  current particle vector) are tracked  simultaneously, 
regardless of their  zone. However, Brown utilizes three 
separate particle stacks: one for particles being  tracked to a 
boundary,  another for particles undergoing collision analysis, 
and  the  third for particles outside the  current energy group. 
Thus  the particle data must be moved from one stack to 
another  during  the  simulation. Our approach  employs one 
main  stack (the particle vector) which is processed in a 
manner similar to  the way a scalar algorithm processes a 
single particle history. That is, a  strict  sequence of decisions 
and calculations is performed, but in  a vector manner,  and 
logical control vectors are used to  determine  the final states 
of the individual particles in the main  stack. For those 
calculations which are performed for only a subset of the 
particles, such as  the  Thomson scattering transformation of 
the velocity vector,  a  substack is created using gather 
statements.  These  substacks contain  the  minimum  amount 
of data needed for the particular  calculation. For example, 
the  Thomson scattering transformation requires  only  the 
direction cosines of the affected particles; therefore, the 
equivalent of three gather statements is performed to create  a 
vector of direction cosines which can be transformed via the 
Thomson  transformations  to a new set of direction cosines. 
These are  then scattered back into  the main stack with a 
scatter operation, hence replacing the old direction cosines. 

There is very little similarity to  the algorithm of 
Bobrowicz et al. [3]  (other  than  the actual physical 
application) because they employ  many stacks, partitioning 
the  computation  into relatively small parcels. In some sense 
the present approach constructs  these  stacks implicitly as 
opposed to  the explicit construction  (and execution) of  the 
stacks  in the Bobrowicz scheme. In our algorithm, for 
example, the particle vector 1 follows a  predetermined path 
through  the various  calculational kernels (distance to 
boundary, distance to collision, collision analysis, boundary 
crossing analysis, etc.), whereas the Bobrowicz scheme would 
have partitioned into subvectors which would be 
dispatched to their appropriate queues.  These queues would 
be processed if their length reached 64. There is one 
similarity, however, in the two  algorithms. In particular, the 
treatment of Thomson scattering (or any  other special 

physics option) in the present  scheme is not unlike the 
Bobrowicz approach, because an explicit stack is constructed 
(or gathered)  from the  main stack. However, in our 
approach  this  substack is executed  in its turn once every 
event iteration, regardless of its length. It is conceivable that 
some benefit might be realized if the substack were held until 
it became reasonably long. This would result in longer vector 
lengths, but  at  the penalty of having to save all of the particle 
descriptors  in  a  separate queue  and having to remove them 
from the main  stack. This would  complicate the algorithm 
somewhat, but more importantly, would necessitate moving 
all twelve of the particle descriptors rather  than  just  the  three 
descriptors needed to perform the  Thomson analysis. This 
trade-off has not been evaluated  but is currently under 
investigation. 

of the source buffer to fill the particle vector after every 
event  iteration. It is true  that using a  scatter  operation to 
replace deleted particles in 1 is in general no more efficient 
(and perhaps less efficient) than compressing the main  stack 
to eliminate the particles tagged for deletion; however, the 
logic is somewhat  simpler and  the source buffer can be used 
to  accommodate  other sources  in the problem,  such  as  those 
due  to fission or splitting, because particles generated  within 
the simulation can be stored  in the source buffer, no  matter 
where they come  from. 

Another  unique feature  of the present  approach is the use 

Results 
The vectorized algorithm described here has been 
incorporated into  the  FORTRAN code VPHOT,  the present 
version of which is intended for the Cray-1 and  Cray-XMP 
computers. The library STACKLIBE [4] is utilized 
extensively throughout  the code due  to  the necessity to 
perform numerous gather and scatter  operations. Because a 
significant portion of the gather/scatter operations involve 
multiple calls with the  same index list, the “array”  gather/ 
scatter  routines  in  STACKLIBE were quite useful and 
resulted in significant improvements in overall run  time. For 
example, to obtain the zonal vertices by particle  requires 16 
gather  operations,  but  each  of these utilizes the  same index 
list. The  one STACKLIBE routine  QARGATH performs 
these with one call, utilizing the ability of the Cray to fetch a 
vector with a constant stride. 

The specific problem  analyzed with the vectorized code 
VPHOT is an  ICF plasma consisting of a  50%-50% mixture 
of deuterium  and  tritium  (D-T)  at elevated temperature  and 
density, surrounded by a SiO, region, also at elevated 
temperature  and density. Photons  are  emitted  throughout 
both regions via Planckian  emission, and  the problem 
parameters  are  such that approximately 240000  photons 
(actually photon “bundles”) are  emitted  during  the 
simulation.  The problem  configuration is illustrated  in 
Figure 5. In addition  to keeping track of the  number of 
absorptions  and  the  number of photons escaping the plasma, 
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Table 1 Numerical results-ICF test problem. 

LLNL 

Histories 240.000’ 
Escaped 62,163 
Census 3.033 
Lost’ 248 
Tracks 4.200.000’ 
CPU time’ (s) 336.8 
Timing 80.3 
(rsltrack) 

VPHOT SPHOT 

238,274 238,269 
62.7 19 62.751 
3.189 3,153 

I I  7 
4,192,157 4,195,966 

30.5 139.9 
6.97 33.3 

its x. ?: : location). 
’ A panicle is consldered “lost” if it is not in the correct zone (zone index is inconsistent wlth 

’These quantities  are estimates. since they were not avadable from the LLNL code. 
Cray XMPI2 (single processor only)-no I/O. 

the code  tabulates the  number of photons escaping within 
each energy group  (the escaping “spectrum”) as well as the 
total number of  events (or “tracks”) processed during  the 
simulation. This latter quantity is useful for  arriving at  an 
absolute  measure  of efficiency-the average CPU  time  (in 
ps) needed to process one track. In addition, a scalar version 
(SPHOT) of the vectorized code VPHOT was created to 
allow a fair comparison of the efficiency of the vectorized 
algorithm. In addition  to  the need for  a  meaningful 
comparison to show the efficiency of VPHOT,  there was a 
need to  compare  the accuracy  of VPHOT  to ensure that  the 
physics was being predicted correctly. This was done by 
comparing  the  VPHOT  and  SPHOT results with results 
from  a reference (scalar) Monte Carlo  code at Lawrence 
Livermore  National  Laboratory  (LLNL). This code was run 
on  the  same problem  (identical  mesh,  database,  source, etc.), 
and  the results compared with the prediction of VPHOT  and 
SPHOT. 

Table 1 contains a summary of the overall tallies and 
timings for the reference LLNL  Monte Carlo  code  as well as 
VPHOT  and  SPHOT. As can be seen, the overall tallies are 
predicted well within statistical error for all three codes. 
Table 2 presents the escaping photon spectrum  for the  three 
codes, and again the agreement is excellent. From these 
results we have  concluded that  the scalar and vector codes 
SPHOT  and  VPHOT  are correct to  the extent that they 
predict essentially the  same physics as  does the reference 
LLNL code. 

The efficiency of the vectorized code is evident  in  Table 1, 
where the vector code is seen to be faster by a  factor  of 4-5 
than  the scalar code SPHOT  and nearly a  factor of 12 faster 
than  the reference LLNL  scalar code. Although one must 
treat the  comparison of VPHOT  and  the  LLNL code 
somewhat carefully, the comparison with SPHOT is 
significant because SPHOT was developed to include the 
same physics as  VPHOT  and  the algorithm was optimized 
for  a scalar processor. Thus  one can  expect  a  speedup  on the 
order of 4-5 for the Cray-1 and single-processor Cray-XMP 
supercomputers. This would correspond to speedups  in 
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R2 =O.OOl cm 
T, = 1000 eV 

4 = 100 g/cm3 

Configuration for ICF test problem (two concentric spheres) 

Table 2 Escaping photon energy spectrum 

Photon Escaping photon energy2 
energy 
group’ LLNL VPHOT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 

All groups 

0.0345 
0.2398 
1.065 
2.383 
1.783 
1.978 
5.381 
9.716 

26.02 
62.45 
80.07 

3.439 

194.56 

0.0371 
0.2207 
1.223 
2.365 
1.773 
2.01  5 
5.593 
9.867 

25.96 
63.09 
80.09 

3.446 

195.67 

I The  photons range in energy from 1 electron volt (eV) lo 200 keV (200 OOO eV). This range is 
divided into twelve energy groups. 
’Total escaping photon energy is in units of IO” keV (by energy group). 

excess of I O  when compared with a CDC 7600, which was 
an earlier measure of performance [ 1, 21. This should be 
compared with the factor  of 2-3 that would be expected for 
a scalar algorithm,  such  as  conventional Monte Carlo, when 
converting  from the CDC-7600 to  the  Cray-XMP (single 
processor). This performance gain is simply due  to  the 
increase in the scalar processing speed. 199 
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In addition  to keeping track  of the overall timing statistics, 
VPHOT is instrumented  to allow output of the 
instantaneous  timing (in psltrack)  as well as  the  cumulative 
timing  at each event iteration. The  instantaneous  timing is 
simply the  CPU  time per track during  the  current event 
iteration, and  the  cumulative  timing is the average CPU  time 
per  track up  to  that  point  in  the overall simulation. This 
time is calculated by determining  the  number of  tracks and 
dividing this  number  into  the total CPU  time for the 
simulation,  excluding input/output operations. Since some 
event  iterations  involve calling the source routine  to 

replenish the source buffer, the  instantaneous  timing will 
show  a  marked increase during these  event  iterations. In 
Figures 6 and 7 we have  plotted the  timing curves  for a 
small test problem  (746 1 source  photons)  for  two different 
replenishment schemes: 

1 .  Step refill-the particle vector is depleted to zero before 
being refilled. Thus  the particle vector is initially 2000 
long and it decreases to zero before being refilled to 2000. 
This  continues until the 746 1 photons  are processed. 

2. Continuous refill-the particle vector is refilled after each 
event  iteration by scattering  from the source buffer 
(scatter fill). This is the  current  approach in VPHOT. 

Figures 6 and 7  plot the  cumulative  and  instantaneous 
timing  as well as  the  instantaneous vector length as a 
function of event  iteration. As expected, the  timing improves 
with increasing vector length. In Figure 8 we have plotted 
the  cumulative  timing curves  for the two  replenishment 
schemes on  the  same scale. It is evident that  the  continuous- 
refill scheme is to be preferred. It results in longer vector 
lengths on  the average since there is only  one reduction to a 
zero vector length. A variation on  the step-refill scheme was 
examined wherein the particle vector was not allowed to go 
below some’minimum length specified by the user. If it does 
fall below this minimum, it is refilled from  the source 
routine. It was found  that  the  optimal  minimum particle 
vector length was 1750 for a maximum vector length of 
2000, which is the usual case. However, for this  optimal 
minimum length, the overall timing was about  the  same as 
with the continuous-refill scheme.  Since the logic was much 
simpler with the  continuous scheme,  it was chosen for the 
final algorithm. 

Figure 7  illustrates another  point regarding the overall 
performance. Since there is no provision in VPHOT  to 
switch to a  scalar  algorithm when the vector length becomes 
small (e.g., less than 5), there is a  substantial increase in the 
instantaneous  CPU  time per  track  towards the  end of the 
overall simulation.  During this  “end game”  the vector length 
may be 1 or 2 for many event  iterations, resulting in s 

inefficient code due  to  the vector constructs that  are utilized: 
for example, the  instantaneous  timing peaks at 300-400 
ps/track, which is nearly ten times slower than  the scalar 
code. However, the interesting  observation is that this 
relatively slow portion of the simulation  has  a negligible 
effect on  the overall timing,  as can be seen by the slight 
increase in the  cumulative  timing over  this  portion of the 
simulation.  The reason for  this is that  the bulk of the 
simulation is performed with relatively long vectors and  the 
effect of the short-vector  iterations is not  important.  This 
leads one  to conclude that  the “end game” is not  important 
for the overall performance and  that  one should not worry 
about schemes to avoid the  short vectors, such  as switching 
to a  scalar  code when the vector length becomes  short. 
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Besides complicating the algorithm, the  addition of  separate 
scalar  code  requires one  to  maintain two versions of the 
same code, which is not advisable, especially if the code  is to 
be modified frequently. 

A more difficult problem  is the  comparison with other 
results, such as those of Bobrowicz et al. 131. One possible 
measure is the  absolute  indicator of efficiency, given by the 
average CPU  time  to process one track. Table 1 gives 
approximately 7 bsltrack for  VPHOT, versus 33  rsltrack for 
SPHOT  and in excess of 80 ws/track for the reference LLNL 
code. Bobrowicz [3]  reports 25 ps/track on  the Cray-1, which 
corresponds  to 16- 18 &rack on  the Cray-XMP.  However, 
his Monte Carlo  algorithm  includes different physics options; 
hence  this comparison must be taken with some  caution. 
Brown [ 51 reports  approximately 4 p/track for the reactor 
lattice  problems on  the  CDC Cyber-205, but again the 
different  application and different computer  make  it difficult 
to  make a fair comparison of the relative efficiencies of the 
various  algorithms. 

Summary  and  conclusions 
A vectorized Monte Carlo code  (VPHOT) has  been 
developed for  the analysis of photon  transport in an  ICF 
plasma with axisymmetric  geometry. A companion scalar 
code (SPHOT) has also been developed  for comparison with 
the vector code. Both VPHOT  and  SPHOT  are capable of 
performing realistic simulations,  representative of typical 
ICF fusion  calculations, and they  have  been verified by 
comparison with a reference Monte Carlo code  at LLNL. 
The vectorized code is approximately four  to five times 
faster than  the scalar  code and nearly twelve times faster 
than  the reference LLNL scalar code. The vectorized code 
also compares well with the alternative  algorithm  of 
Bobrowicz et al. [3], although the  comparison is not 
conclusive. The  optimal algorithm may well be a 
compromise between these two approaches.  However, the 
present  algorithm has several advantages  over the Bobrowicz 
approach.  The present  algorithm  is  somewhat  simpler and 
has many similarities to  the scalar Monte  Carlo algorithm, 
hence  making  it easier to  make  the transition to a vectorized 
code.  Second,  it is relatively straightforward to  add 
additional physics options  to  the present  code because there 
is no complicated  synchronization among  the various stacks, 
as  in the Bobrowicz scheme. Finally, it  minimizes the 
movement of data because the  same particle stack  is 
processed for  most  of the simulation.  Although this  may 
have the effect of a shorter  vector  length,  it  is our  opinion 
that  the  minimization of the  data  movement is the  more 
important issue. However, this issue is still under 
examination. 

Future  effort 
Effort is now under way to  implement a multiprocessed 
version of VPHOT  on  the  Cray-XMPl48  at LLNL. In 
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addition, a parallel effort is under way to  implement a 
multiprocessed version of the scalar  code SPHOT  on  the 
four-processor IBM  3084, and  it is expected that this  latter 
effort will be extended to massively parallel architectures in 
the  near future. 

Acknowledgments 
The  authors acknowledge  helpful comments  and suggestions 
from William Chandler, Rollin  Harding, Frank  McMahon, 
and David Hardin  of Lawrence  Livermore National 
Laboratory  (LLNL) and Bernie Rudin of the IBM  Kingston 
laboratory. This work was partially supported by grants from 
IBM (Kingston) and  LLNL  (under  Contract W-7405-ENG- 
48 with the U.S. Department of Energy). 

References 
1. F.  B.  Brown  and W. R. Martin, “Monte Carlo Methods for 

Radiation Transport Analysis on Vector Computers,” Prog.  Nucl. 
Energy 14, 269-299 (1984). 

Lattice Problems,” Proceedings of the American  Nuclear Society 
Topical Meeting on Advances in Reactor Computations, Salt  Lake 
City, UT, 1983, pp. 108-123. 

“Vectorized Monte Carlo Photon Transport,” Parall. Comput. 1, 

2. F. B. Brown, “Vectorized Monte Carlo Methods for  Reactor 

3. F. W. Bobrowicz, J.  E. Lynch, K. J. Fisher, and J. E.  Tabor, 

295-305 (1984). 
4. F. H. McMahon, “STACKLIBE-A  Library of Fast  Vector 

Functions for Complete Vector Formulation of Program Logic on 
the Cray-I,” draft  version of manuscript,  Lawrence  Livermore 
National Laboratory,  Livermore, CA, 1980. 

NY, private communication, April 1985. 
5. F. B. Brown, Knolls Atomic Power  Laboratory, Schenectady, 

Received July 29, 1985; accepted for publication  October 28, 
I985 

WILLIAM R. MARTIN, PAUL F. NOWAK, AND JAMES A. RATHKOPF 



William R. Martin University of Michigan,  Department of Nuclear 
Engineering, Ann Arbor,  Michigan 48109. Dr. Martin is an associate 
professor of nuclear engineering at the University  of  Michigan. He 
received  his Ph.D. in nuclear engineering  from the University  of 
Michigan  in  1976. Upon graduation he joined Combustion 
Engineering  Inc. and was responsible  for  developing advanced 
computational methods for  nuclear reactor analysis.  He returned to 
the University  of  Michigan in  1977 and has  been  active  in 
computational methods development in  several  areas, including 
reactor physics, thermal/hydraulics, and particle transport. His 
current research interests include the development of algorithms for 
scientific computation on advanced computers, including Monte 
Carlo simulation on vector supercomputers and parallel  processors, 
nuclear reactor plant simulation on parallel  processors, and logic 
simulation on vector supercomputers. Dr. Martin is a member  of the 
American  Association  for the Advancement of  Science, the 
American  Nuclear  Society, the American  Physical  Society, the 
Association  for Computing Machinery,  Sigma  Xi, and the Society 
for Industrial and Applied Mathematics. 

Paul F. Nowak University of Michigan, Ann Arbor,  Michigan 
48109. Mr.  Nowak  is a graduate student in the Department of 
Nuclear Engineering at the University of Michigan,  where he 
received  his  B.S.E.  degree  in  1984 and his  M.S.E. degree in  1985.  He 
is currently working on Monte Carlo algorithms for  vector 
computers with  single  processors and multiprocessors,  with 
application to photon transport in  inertially  confined  plasmas.  He  is 
also interested in the development of nodal transport and diffusion 
methods for purposes of  nuclear reactor design and analysis.  Mr. 
Nowak  is a member of  Alpha  Nu  Sigma, the American  Nuclear 
Society, and Tau  Beta  Pi. 

James A. Rathkopf Westinghouse Eleclric Corporation, 
Pittsburgh,  Pennsylvania 15235. Dr. Rathkopf received  his  B.S.E. 
degree  in nuclear engineering at the University  of Florida, 
Gainesville, in 1979 and his Ph.D. in nuclear  engineering  from the 
University  of  Michigan  in  1984.  While a graduate student, he spent 
several summers at Lawrence  Livermore National Laboratory 
studying the application of Monte Carlo methods on vector 
supercomputers. Since  receiving  his Ph.D., he has  been  with the 
Nuclear  Fuels  Division  of  Westinghouse  Electric Corporation, where 
he  is  developing advanced computational methods for the analysis of 
nuclear reactor cores.  His  technical interests include the 
development of methods for  scientific computation on vector and 
parallel  processors,  real-time simulation of  nuclear reactor core 
behavior, and deterministic and probabilistic methods of nuclear 
analysis.  Dr. Rathkopf is a member of the American  Nuclear 
Society. 

202 

WILLIAM  R. MARTIN, PAUL F. NOWAK, AND J IAMES A. RATHKOPF IBM 1. RES. DEVELOP. ‘OL. 30 NO. 2 MARCH 1986 


