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This  paper  suggests  a  new  algorithm  for  solving 
sparse  linear  systems  which  is  readily 
parallelized  and  is very  efficient  for  matrices 
arising  in such  domains  as  reservoir  modeling. 
The  algorithm  is,  in  fact,  a  variant  of  the 
incomplete  block  factorization  technique, 
accelerated by  Biconjugate  Gradient  iterations 
or  by  another  acceleration  method. 
Implementation on a vector  computer  such  as 
the  IBM 3090 Vector  Facility  is  described.  We 
also  suggest  some  refinements of  known 
preconditioning  methods  enabling  their parallel 
computation.  Numerical  experiments  are 
presented  to  display  the  performance  of  the 
suggested  methods.  Special  attention  is  given  to 
fully  implicit,  multiphase  models  which  yield 
asymmetrical  systems. 

1. Introduction 
This  paper presents an algorithm  for an efficient, easily 
vectorized, parallel iterative  solution of sparse linear systems. 
Because it is a block method, it involves operations between 
long  subvectors and  thus  may be performed efficiently on a 
vector computer such  as the IBM 3090 Vector Facility. The 
algorithm is in fact a variant of incomplete block 
factorization  accelerated by the Biconjugate Gradients 
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method [ 11 (or some  other acceleration  method).  Typical 
linear  systems  occurring,  for  example, in oil reservoir 
simulations may consist of 10’ or more  unknowns. Because 
the solution of these unknowns  consumes vast 
computational resources, efficient linear solvers which are 
readily parallelized are of great importance. Although 
modern direct solvers are fast and robust, there  are  many 
large systems occurring in oil reservoir simulations  and 
elsewhere, especially in  three-dimensional models, where 
iterative methods  are substantially  superior. 

We present  numerical experiments which show the 
attractive  performance  of our algorithm as compared with 
popular iterative solvers. We show  how to perform the 
method  on parallel or vector computers  and give complexity 
estimates. 

The  computational bottleneck  in parallel implementation 
of iterative methods is matrix  preconditioning. Popular 
conditioning techniques are based on a pointwise LU 
decomposition and  thus  are sequential in their  nature. We 
give several techniques to aid in parallelizing. 

Some  methods  are suggested for the  implementation of 
preconditioned  iterative methods  on  computers with low- 
level parallelism (4-8 processors). This  type  of  computing is 
possible using the recently announced  FORTRAN 
Multitasking Facility on IBM multiprocessor  mainframes. 

2. Reservoir  model  equations 
This section gives a brief survey of the governing oil 
reservoir model equations, which are detailed  in [2]. 

Single-phaseflow 
Flow of a single fluid within a porous  medium is described 
by a second-order nonlinear differential equation 

ILAN EFRAT AND MlRON TISMENETSKY IBM 1. RES, DEVELOP. VOL. 30 NO. 2 MARCH 1986 



Numerical  solution  for the two-phase model is harder 
than for the single-phase model because 

where P = fluid pressure, p = density  (function  of P), T = 
transmissibility (function of rock type and fluid viscosity), 
and 4 = rock porosity. The reservoir is assumed to be 
surrounded by a nonpermeable rock. Hence  boundary 
conditions  are of the no-flow type  (Neumann  boundary 
conditions). After time discretization of the right-hand side 
of the  equation,  the left-hand  side is linearized, usually by 
using Newton  iteration. The resulting linear  partial 
differential equations  are  then discretized. In the 
incompressible case this  may be done  in a way that yields a 
symmetric  linear system. 

Multiphaseflow procedure is called IMPES  (IMplicit  Pressure, Explicit 

Most reservoir models  include at least two major fluids, Saturation).  IMPES  imposes a stability limit on  the time- 

replicated: the fully implicit approach. 

I .  The resulting  linear system is twice as big, and since the 
complexity of its solution is greater,  its  cost increases 
considerably. 

produced by a Finite Difference discretization is usually 
nonsymmetric, a serious  drawback  for most linear system 
solvers. 

2. The system is no longer self-adjoint, and  the matrix 

In many  simulations where convection effects dominate  the 
diffusion effect, it is possible to solve implicitly  for P, and 
then explicitly (without matrix  inversion)  for S. This 

oil and water. a multiphase model ( 1)  is integration  step and hence may require more iterations than 

V * ( TipiVPi) = -. a(4PiSJ 
at 

The new variable Si is the relative mass Concentration Of 
phase i (E Si = 1). The variable Ti is factored as T - t i ,  where 
Tis a property  of the rock (a function  of position) and ti is a 
nondecreasing function of Si. The pressure difference Cii = 
pi - p, is called capillary  pressure and is usually considered a 
function of Si and Si. 

For a two-phase flow the following constraints result: 

Ti = T * ti(Si), 

SI + s, = 1, 

P2 = PI + C(S2). 

Combining these constraints with Eq. (2) to eliminate s2 and 
P2, we obtain 

The first equation is second-order self-adjoint for a fixed SI, 
and first-order for a fixed P I .  The second equation is first- 
order for a fixed s,. Its nature for a fixed PI is clarified when 
we rewrite it as follows (assuming, for simplicity, constant 
density): 

[(t2VT + T dt, as, V S l )  . (VP, + $ VS,)]  

3. Preconditioned  Biconjugate Gradients 
Iterative methods  are most effective when the matrix  is 
symmetric positive definite (SPD). Unfortunately, many of 
the linear systems in  multiphase reservoir models are 
asymmetric  and have some complex eigenvalues. The matrix 
asymmetry grows when  convection effects are strong relative 
to diffusion effects. For  our numerical  experiments with 
parallel preconditioning  algorithms, we chose the 
Preconditioned Biconjugate Gradients (PBCG) method [I].  
The choice was motivated by the following: 

1. Unlike  some  other  nonsymmetric generalizations  of the 
Conjugate Gradients  (CG)  method, BCG reduces to  CG if 
the matrix is SPD. 

2. No estimation  of the  spectrum of the matrix A is needed 
for BCG. 

3. Our experience is that for linear systems appearing  in 
two-phase oil reservoir models, PBCG converges almost 
as fast as  PCG for the corresponding single-phase 
problem, even when  convection effects are  dominant. 

To present the PBCG algorithm, let x, be an initial guess 
for the solution  of Ax = b, and K an easily invertible 
approximation  to A.  Define r, = to = b - Ax,; p ,  = K-lr,; 
0, = (KT)-' tW PBCG then  computes iteratively for k = 
1, 2, . . ., 

This is a convection-diffusion equation.  The diffusion 
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Premultiplying A by K-' is sometimes called 
preconditioning. Recent efficient preconditioning techniques 
are responsible  for dramatic improvements in the efficiency 
of iterative methods. It is well known that iterative solution 
techniques are sensitive to the matrix spectral condition 
number K(A) .  For a given  reservoir  model, K ( A )  grows as h-' 
when the mesh  spacing h is  refined.  Note that drastic 
variations in rock  transmissibility  may  increase K ( A )  by 
several orders of magnitude. The role of the conditioning 
operation is to reduce the spectral condition number of the 
resulting matrix so that K(K-'A)  cc K(A).  

preconditioning techniques and ways to parallelize them. 
Although  presented in the context of  PBCG,  these methods 
are suitable for other preconditioned iterative methods as 
well. 

0 Modified  Block  Incomplete  Decomposition (MBID) in two 
dimensions 
In this section we consider a numerical solution of  large 
sparse  algebraic  systems 

AX = b, A E RNnN, b E R", ( 5 )  

with the matrix A partitioned into block  form.  These  blocks 
correspond to partitioning of the state vector along lines of 
the Finite Difference  grid. For instance, in the case  of a five- 
point discretization scheme  over an n X n square, all the 
blocks are n X n, and they  form a block tridiagonal matrix. 

In the L-phase model the variables are usually  grouped 
into nodes  with L phase parameters per  node. This grouping 
results in a matrix A = {Ab) ,  where  each A,  is  itself a block 
matrix consisting of L X L blocks. 

For a numerical solution of (5) which  is simultaneously 
efficient and vectorized, we  suggest a new variant of an 
incomplete block LU decomposition of A followed  by 
application of the BCG method. Note that the matrix A is 
assumed to be  real but not necessarily  symmetric. 

matrix with  block entries A,   (A ,  are sparse matrices and 
A, = 0 for I i - j I > 1). If  all leading  principal  block 
submatrices of A are nonsingular, then [3] there exists the 
decomposition 

A = LU, 

In the following  sections we outline several 

To explain our approach, let A be first a block tridiagonal 

where the upper and lower  block matrices U = [U,]  and 
L = [L,] are defined as follows: 

U ,  = A , , ;  U, = Ah - AJ, j - ,UJ~lAj- , , j  

(where,  for  brevity, UN is denoted by U,), 

LN = I .  J' Lj+l,j = Aj+,,juJ-l 9 

V , - l , j  = '4 j - , ,J ,  186 
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and 4 stands for the appropriate identity matrix. This leads 
to a well-known algorithm for  solving ( 5 )  which  is equivalent 
to the block Gaussian method. In  presenting the algorithm, 
we assume that Ai, are square matrices  of order nj, 
cJzl nj = N,  and that the vectors x and b are partitioned 
conformably  with the partition of A :  

x = [x,, x,, . . *, x,,,] , b = [b:, b:, ., b;]'. 

Set U ,  = A , , ,  y ,  = b, ,  and compute for; = 2, 3, ., m 

U, = Aj, - Aj,j-l   q-'IAj-I, j ,   (6) 

yj = bj - A ,  j -  I UJL', yj- , . (7)  

Then set x,,, = Ui'  y,,,, and compute for j = m - 1, m - 2, 
..., 1 

T T  T T  

xj = UJ"(YJ - A,,j+lXj+l). (8) 

In the applications under consideration the matrices A,  are 
sparse and banded. Nevertheless the matrices Uj gradually 
become  full. The resulting computational complexity in the 
case  of nj = n for all; is O(mn'). 

necessity  of inverting U,, in (6) ,  we combine several  ideas 
which  modify the algorithm into a preconditioner. 

To reduce the complexity  caused primarily by the 

1. The matrices q - I I  in ( 6 )  are replaced by sparse 
approximate inverses. This can be done in several  ways 
[4-61. Here we use an approximate inverse  which  is 
simple,  applicable to most problems arising in reservoir 
modeling, and, moreover,  trivially  vectorized. 

If 11 CII < 1, it is  reasonable to approximate U-' by 
( I  + C + Cz + + Ck)D-'. Numerical tests  have 
verified that the approximation with k = 1 is quite 
satisfactory in many reservoir  modeling  problems. Thus 

Let U = D(I - C), where D denotes the diagonal of U. 

u" = ( I  + C)D" = (21 - D-'u)D-'. (9) 

Johnson et al. [7]  suggests a refinement of the idea of 
Dubois et al. [8]  to exploit the truncated Neumann series 
as an approximate inverse of a matrix.  Specifically,  they 
select  scalars z,, z,, . . -, zk to minimize the condition 
number of the matrix 

(%,I + z , C  + * * * + ZkCk)(I - C), 

provided that the lower and upper limits of the spectrum 
of C are known. Our experience  shows that the matrix C 
arising in reservoir simulations is  usually  strongly 
contracting, and therefore no substantial gain  results 
from this attempted optimization. 

2. Let the nonzero submatrices AN be banded. If Aj,j.-, and 
Aj-,,j fail to be  diagonal, the bandwidth of the matrices U, 
in ( 6 )  increases to nj,  and despite (9) the complexity of 
the algorithm remains high. To avoid the fill-in  of V, it is 
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hence suggested that  the  bandwidth of V ,  be kept 
constant, say, p, where p is the maximal bandwidth 
of the diagonal  blocks A,. Thus we replace (6) with the 
approximation 

V ,  {A, - Aj,j-l UJ:Il Aj-I , jJ(p)  (6’) 

where { .  1‘’) denotes  the  p-banded matrix obtained  from 
(6) by replacing all elements outside the  p-band with 
zeros. This deletion  of  diagonals  is  motivated by the fast 
decay of their entries away from  the  main diagonal, as 
occurs in most  problems of oil reservoir simulation (see 
[9]). Clearly, the  bandwidth of U, should be kept larger if 
the matrices Aj.J-l and AJ-l,j differ significantly from 
diagonal matrices. 

3. At this stage some  compensation for the  error which 
occurs  in replacing (6) with (6’) is  required. Specifically, 
we require that  the  approximation of A have the  same 

matrix is O(m)  [ 1 I]. This fact does  not hold  for block 
incomplete  factorization methods which do  not apply the 
row-sum correction. 

The latter result is an extension of Gustafsson’s theorems 
[IO] related to pointwise incomplete  decomposition. It is 
evident that  the block method suggested here is  superior  for 
rectangular  problems  where m < n. In this case the  condition 
number of the matrix  preconditioned by the pointwise 
method is O(n), which is worse than  the O(m) that holds  for 
MBID. 

The  computational tests  presented in Section 5 indicate 
that  the validity of MBID encompasses a much larger class 
of matrices than  the class of M matrices. Our experience 
suggests that  the asymptotic results hold for many two-phase 
models, with varying transmissibility,  even  such that their 
matrices are nonsymmetric. It is  certainly desirable to 
discover the correct  limits of the class of  matrices for which 
MBID reduces the  condition  number of O( m2) to O( m). 

row sums  as A (following Gustafsson’s “row-sum 
agreement” [IO]). To this end,  it suffices to  make  the row 
sums of the (block diagonal!) defect  matrix E = A - LU 
equal zero. 

MBID for three-dimensional problems 
The Finite Difference discretization of a differential operator 
on a Cartesian k by m by n grid results in a matrix which 
may be viewed as block tridiagonal or block pentadiagonal. 

Combining all three ideas above (approximate inverse, 
“cutting” the  additional diagonals, and  the row-sum 
agreement), we obtain  the following preconditioning 
algorithm MBID (Aij  are assumed, for simplicity, to be of 
order n = rw: 

The first alternative  corresponds to a partition  of the state 
vector by planes, the second to a partition by lines. It turns 
out  that  an efficient and vectorizable extension  of the MBID 
algorithm to three-dimensional  problems is only possible if 
we choose the block pentadiagonal  organization. 

notation: The vector of row sums of a matrix B is denoted 
by RS(B). This  quantity is computed as in  the two- 
dimensional case. The diagonal matrix,  the diagonal 
elements  of which are  the corresponding elements of the 
vector 6, is called diag [b]. Also, an  approximate inverse of a 
matrix B which is of the  form (9) is denoted by INV(B). 

Consider a block pentadiagonal  matrix of order N by 
N,  N = mn, with k by k blocks, 

In presenting the algorithm we adopt  the following 

R, = diag [dl ,  d2, . . . , d,] , A =  

q = i ’ , + R j .  

The preconditioning of Ax = b is then  computed as 
follows: 

Set y ,  = b,; for j = 2, 3 ,  . . -, m compute 

YJ = b] - AJJ_l q l 1  Yj-I . 

0 

0 1  

~ e t x , = i r ~ ’ y , ; f o r j = m - 1 , m - 2 ,  ..., lcompute 

-y = uj ( Y j  - AJ,]+lJ$+1). 
arising from a seven-point  Finite Difference discretization of 
the  operator  mentioned above. Now consider the  equation 

Ax = b. (1  1)  

Poisson operator with Dirichlet or Neumann  boundary Partitioning the vectors x and b in accordance with the block 
conditions, discretized on  an m by n rectangle, we were able organization  of A, we have the following preconditioning 
to prove that  the  condition  number of the preconditioned algorithm  for ( 1  I ) :  187 

A - I  

For the  commonly analyzed  model  problems  of the 
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1. Fori= I toN,  

U, = Aij, 

Ri = RS(A,,). 

3. Set yI = b,. 

For i = 2 to N, 

Y ,  = Y ,  - Ai,,-, u;-'l~i-l ; 

if i > m, then y ,  = bi - Uzmyi-m. 

4. Set x, = u;' y,. 

F o r i = N -  1 to 1, 

z. = y .  - A , .  X.  . 
I I 1,1+1 1 + 1 9  

if i + m I N,  then zi = zi - Ai,i+m~i+m, 

x, = u;lz,. 

During  the  preparation of  this  manuscript, the work by 
Concus  et al. [4] was brought to our attention.  One of the 
algorithm  variants suggested there is similar to MBID. 
Extensive tests  presented there confirm the  importance  that 
we attribute  to  the row-sum agreement  correction. The work 
by Concus et al. does  not refer to  the vectorizability 
potential  of block methods. It is limited to two-dimensional 
problems and  does  not present  analytical results about  the 
resulting condition  number. 

4. Parallel  execution of iterative methods 
The  computation of preconditioned  iterative methods 
comprises  matrix-vector  multiplications and  the 
preconditioning  operation. In this section we present, for the 
convenience  of the reader, two  known  methods for the 
parallel computation of  matrix-vector  products and  the 
solution of tridiagonal  linear systems. We also suggest some 
methods for an efficient parallel preconditioning on 
computers with a limited number of processors. 

Parallel matrix vector product 
It is pointed out in [ 121 that if the  nonzero  pattern of the 

188 matrix is several diagonals, then its product by a vector may 

be performed very effectively on vector or pipeline 
processors. 

To  outline  the  method,  assume A E RNxN to be a matrix 
which is nonzero only on m diagonals. Let V be a 
displacement vector such that its components Vk = j - i for 
the  elements a, on  the  kth diagonal. This matrix  may be 
stored efficiently in a rectangular array C of dimensions 
N X m. C(I,  K )  = 

The  product Ax = y is then  implemented in FORTRAN 
as 

DO 100 K= 1 ,M 
BOT=MAX( I ,  1 -V(K)) 
TOP=MIN(N,N-V(K)) 
DO 100 I=BOT,TOP 

Y(I)=Y(I)+C(I,K)*X(I+V(K)) 
100 CONTINUE 

The  inner  loop is performed very efficiently on parallel or 
pipeline processors, since it references elements which are 
stored  contiguously in memory.  Similar  rearrangement of 
the  operations  can  implement sparse  matrix-matrix 
products. 

from a discretization  of differential equations, it is 
unreasonable to require  diagonal  ordering. If the matrix 
nonzero  pattern is not along several diagonals, then a 
different packed storage scheme must be used. For instance, 
it  may be stored in  three vectors: I ,  J, V, where V(k)  is the 
numerical value of the [ I (k ) ,  J(k)]th  element. Such 
organization is hard to parallelize on pipeline or 
synchronously parallel processors. On  asynchronous 
machines, however, it is easy to divide I ,  J, V into several 
sections and let each processor multiply a section. If the 
division is done along rows, then  no  memory locking is 
necessary, since  each processor writes its  own part of the 
output vector. 

In  some applications  where sparse linear systems result 

Matrix preconditioning 
The LU decomposition  phase of iterative  algorithms is 
harder to perform in parallel, because it is inherently 
recursive. Several methods for parallel preconditioning are 
presented. 

Parallel MBID 
The block nature of the  MBID algorithm allows one  to 
perform  most of the  computations as block matrix-vector or 
matrix-matrix  products.  These operations  can be parallelized 
by a straightforward  application of the  methods given in  the 
section on  the parallel matrix-vector  product. The  one 
exception is the solution  of the  equation qx,  = y j ,  where q 
is a p-banded  matrix. 

Feilmeyer and  Hatzopoulous [ 131 give some of the parallel 
tridiagonal solvers which were introduced during  the last two 
decades and have been tailored for various vectors and 
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parallel architectures. For completeness we outline  the Cyclic 
Reduction process [ 141, which is very competitive  for vector 
computers. 

Let Ux = f be a tridiagonal linear system and U = 

D(I - C), where D is the diagonal  part  of U, and C, = 0 for 
I i - j I # 1. The system may be rewritten  as follows: 

X = Cx + D-Y= C'X + C0-Y-k D-Y (12) 

Observe that (C'), # 0 only  for I i - j 1 E (0, 2 ) .  
Consequently, the odd  elements in  the system, 

( I  - C2)x = C0-Y-k D-% (13) 

are decoupled  from the even ones. The even rows and 
columns may  hence be deleted to produce a reduced 
tridiagonal system. This reduction process can be repeated 
recurs~vely. After the  odd  elements  are  found,  the even ones 
are  computed explicitly by (12). 

The cyclic reduction process involves log, n stages and is 
stable for strongly diagonally dominant matrices. If the 
number of diagonals p > 3, then U should be viewed as a 
block tridiagonal  matrix, and a block tridiagonal solver may 
be applied. 

We conclude this section with a parallel-operations count 
of the MBID method. Parallel operations  are defined in 
terms of a computational model with p concurrent 
processors, each  performing one  arithmetic operation per 
time unit. Thus,  the  number of parallel operations equals the 
number of time units  required by the model. 

Assume that  the algorithm  applied to a matrix 
representing a five-point discretization of a differential 
operator  on  an n X n grid and  that  the length of the vector 
registers is q. Each  product of an m-diagonal n X n matrix by 
a vector costs m [ n / q ]  parallel operations, where [n /q ]  is the 
least integer  greater than n/q. 

The solution  of @'x = y for a tridiagonal fi consumes 
less than 8[n /q ]  log, n parallel operations. The total cost of 
the factorization is n(9 + 8 log, n)[n/q] ,  and each  solution  of 
LUX = b costs n(4 + 8 log, n) [n /q ]  parallel operations. 
Notice for comparison  that, for the scalar computation of 
MICCG  (relating to  the  same problem), 8n2 floating-point 
operations  are required for the incomplete  factorization, and 
about 9n2 are needed for  each  solution of LUX = b. 

Conditioning  with partial nested  dissection  ordering 
The nested dissection ordering which is so effective for 
speeding up direct  solutions [ 151 may be used for parallel 
conditioning if the  number of processors is relatively small. 

To this  end, consider Figure l(a). If the state vector is 
reordered by placing the entries of region B after  those of A ,  
followed by those of C, then  the matrix  takes the  shape 
shown  in Figure l(b). 

corresponding to regions A ' and B' can be decomposed  in 
parallel, and  then  the  submatrix C' has to be factored 

When the Choleski factorization  is  performed, the blocks 

I B ' I  I 

1 (a) Rectangular domain. (b) Nested dissection reordering 

separately. For an n X n square domain,  the  computation 
cost of the serial part is proportional to n2. This is the case 
because the decomposition is of the incomplete  kind, and 
thus  the original sparsity pattern is retained. 

parallel, and  then for the C region. When Ux = v is being 
solved, entries  of C are solved first, and then A and B in 
parallel. As long  as the connecting region is relatively small, 
this parallelization is very effective. There exist powerful 
algorithms for the  automatic generation  of nested dissection 
reordering [ 151. 

The  equation Lv = r can be solved for regions A and B in 

Matrix splitling 
If the matrix were reducible to several uncoupled 
submatrices, then each block could be factored 
independently, on a separate processor. Motivated by this 
idea, we suggest decoupling the matrix into several 
submatrices. As long  as the  number of splits is small relative 
to the  space dimension, a conditioning of the decoupled 
matrix  may serve as a reasonable conditioner of the original 
matrix. 

We now  describe the  method formally: Let A be an N X N 
matrix.  Choose break points K , ,  I 5 KO I K,  5 . . . I Km = 
N. Then define a split matrix 

B = C A /  
m 

/= I 

so that 

A row-sum agreement  correction  may be applied if the  main 
diagonals of B are modified to satisfy E, b,, = E, a ,  for all i. 
A reasonable policy will be to divide the  domain  into halves, 
quarters, eighths, etc. This kind  of parallel processing 
will have no  communications overhead during  the 
preconditioning phase, because each processor will read and 
write its private subset of the vector. 
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Table 1 Condition  number  computations for Dirichlet 
boundary  conditions. 

Grid K(K"A) K ( 4  

I O  x 10 1.4 49 
20 x 20 2.3 179 
40 X 40 4.4 68 I 
60 X 60 6.6 1508 
80 x 80 8.8 2659 

100 x 100 10.9 4134 

Table 2 The  effect of anisotropy  (Dirichlet  boundary 
conditions). 

e K ( ~ " ~ )  

-0.24 1.006 
-0.15  1.15 
-0.05 

0 
1.29 
1.33 

0.05  1.35 
0. I 5  1.28 
0.24 1.027 

Table 3 The  effect of anisotropy  (Neumann  boundary 
conditions). 

E K(K'A) 

-0.15 
0 

3.5 
4 

0.15  2.6 

Table 4 Test  results  with  three-dimensional  CG 
preconditioned  by  three-dimensional  MBID. 

Grid size Number of iterations 

No row-sum Row-sum 
agreement agreement 

5 X 5 X 5  7 9 
10 x 10 x 10 13  12 
20 x 20 x 20 22 18 

Although the matrix  splitting  degrades the conditioning, 
and  thus  the convergence rate is  decreased, our experience  is 
that  the  added  computation is more  than offset  by the gains 
achieved by parallelization, and significant speedup factors 
may be achieved. The results of  applying  this method  to a 
two-phase problem are described in  the next  section. 

5. Computational  experiments 

MBID tests 
The  MBID algorithm  is found to have a better numerical 
performance than  the pointwise MICCG [IO], even as a 
sequential  algorithm. The Poisson operator with Neumann 
boundary  conditions was discretized on a 40 X 40 grid. To 
avoid a singular  matrix, we added 1/1600 to  the  main 
diagonal. This  addition is  equivalent to integrating the time- 
dependent problem  over a time step  of  unity. 

iterations were needed,  whereas with block preconditioning 
MBID  this accuracy was obtained after just 12 iterations. 
For 10 digits  of relative accuracy the MICCGO required 41 
iterations and  MBID  took 18  iterations. Note  that  the 
sequential computational cost of an iteration is similar  for 
the  two methods. 

The reduction  in the  number of  iterations  required by 
MBID is explained by the  condition  number  improvement 
of the (symmetrizable)  matrix K"A. Namely,  it is found  that 
for a 10 X 10 grid, K(K"A) = 1.8 if e = IO-* is added  to  the 
main diagonal. If e = is added to  the  main diagonal, 
then K(K"A) = 5.3. 

For Dirichlet boundary  conditions  the results shown in 
Table 1 were obtained. 

In  order to test the effect of  anisotropy we took  the five- 
point discretization  of Poisson's operator with Dirichlet 
boundary  conditions over a 10 X 10 grid and modified its 
nonzero diagonals so that  the  nonzero diagonals  of A, are 
(-0.25 - e,  -0.25 + e, 1, -0.25 + e,  -0.25 - e). Table 2 
gives the  computed  condition  number of several A, 
preconditioned by MBID. 

Similar tests were performed on Poisson's operator with 
Neumann  boundary  conditions,  as shown in Table 3 (0.001 
was added to  the  main diagonal to avoid  matrix singularity). 
These results show that weakly anisotropic  problems are 
harder  to  condition  than strongly anisotropic ones. This is 
the case regardless of the  orientation of the  line  method  to 
the anisotropic  directions. 

Table 4 shows the  number of iterations  required to solve 
the system corresponding to  the three-dimensional Poisson 
operator with Dirichlet boundary conditions.  Iteration 
was stopped  when  solutions accurate  to 10 digits were 
obtained. The table  makes  evident the advantage of applying 
the row-sum correction  for larger problems. The 
convergence rate of the three-dimensional MBID is slightly 
lower than  that of the two-dimensional version. 

We conclude  this section on MBID tests with results of 

To reduce the  error  to a relative level of  27 MICCGO 

two-phase linear systems. A grid of I X I was used to 
discretize the linearization  of Eqs. (3). In  the case of weak 
convection the real part  of the  spectrum lies within (-3.6, 
-0.04), and its imaginary  part in (- 1.1,  1.1). The  MBID 
preconditioning transforms all the eigenvalues into  the 
(1, 1.58) interval, with the imaginary  part  smaller than 
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Table 5 Matrix  splitting tests. 

Segments  Iterations KFLOPs Speedup 

I 32 I942 1 
2 45 2580 1.5 
4 55 2814  2.76 

Note that  the MICBCG  algorithm  (pointwise) cannot be 
applied to such matrices. We also tried  a strong convection 
case, the matrix spectrum of which has  a real part  in (-3.94, 
-0.026), and  an imaginary part in (- 1 .O 1, 1.10). The MBID 
conditioned matrix  has  only real eigenvalues, all of them 
within ( 1 ,  1 S7).  Both examples  required nine PBCG 
iterations to reach nine  accurate digits. 

Two-phase tests 
A PBCG solver was used to solve two-phase problems. 
Equations (3) were discretized using a block five-point Finite 
Difference scheme. The permeability function T(x,  y )  was 
taken as shown  in Figure 2. 

In addition  to estimating the behavior of some of the 
parallel algorithms described above, the numerical tests 
below display the sensitivity of the PBG method  to  some 
parameter variations. Comparisons were made with the 
preconditioning methods of ICCG [ 161 and MICCG [ 101. 
We call their  extension to Biconjugate Gradients ICBCG and 
MICBCG, respectively. 

The  method presented  in the section on matrix  splitting 
was tested on a 20 X 20  domain. High diffusion in the 
saturation  equation was implemented by forcing aC/aS = 
0.5. Iteration was stopped  when the average error dropped 
below of the average solution. The underlying  method 
is MICBCGO. (MICBCGk is the Biconjugate Gradients 
method conditioned by the factorization method of 
MICCGk, as described in [lo].) Table 5 shows the speedup 
factors  for two  and for four processors. (The  speedup factors 
were computed by dividing the  CPU  time needed for the 
split-matrix solution, by the  number of  segments, and 
comparing  the result to  the  CPU  time needed for a straight 
serial solution.  These figures are theoretical  maxima, and 
because synchronization is ignored,  actual implementations 
will yield smaller gains.) 

We now proceed to the computational results of  various 
preconditioning versions as  summarized in Table 6. It  is 
evident that MICBCG is superior to ICBCG for our test 
cases. The  numbers  appended  to MICBCG signify the 
number of added diagonals  in the LU factors. MICBCG 1 
gave the lowest computation  counts for the 20 X 20 domain, 
while for the 30 X 30 domain MICBCG2 was best. 

Finally, the sensitivity of MICBCG to matrix  asymmetry 
was tested by varying the  magnitude of the convection 
terms.  Convection  becomes dominant as aC/aS approaches 

Table 6 Number of iterations  and  total  computation needed to 
reach six digits of accuracy. 

20 x 20 

30 x 30 

ICBCG 
MICBCGO 
ICBCG I 
MICBCGI 
ICBCG2 
MlCBCG2 
MICBCG3 
MICBCG 1 
MlCBCG2 

45 
32 
26 
14 
16 
12 
8 

19 
13 

2725 
1942 
2320 
I307 
201 I 
1573 
1521 
3924 
3284 

Table 7 The sensitivity of MICBCG to varying convection 
terms. 

actas MICBCGx Iteralions KFLOPs 

0.5 0 32 I942 
0.5 1 14 I307 
0.0 I 0 39 2359 
0.0 I 1 15 1392 
0.000 I 0 42 2537 
0.000 I I 15 1392 
0.000 I 2 I O  1355 

zero. The results show that MICBCGO is more sensitive to 
asymmetry than MICCG 1. Neither version suffered 
considerable  degradation  when the diffusion (symmetric) 
terms became negligible compared  to  the convection 
(asymmetric)  terms. The problem domain for all tests 
summarized in Table 7 was 20 X 20. 
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