
Parallel iterative by llan Efrat
Miron Tismenetsky

linear solvers
c .I I tor 011 reservor
models

This paper suggests a new algorithm for solving
sparse linear systems which is readily
parallelized and is very efficient for matrices
arising in such domains as reservoir modeling.
The algorithm is, in fact, a variant of the
incomplete block factorization technique,
accelerated by Biconjugate Gradient iterations
or by another acceleration method.
Implementation on a vector computer such as
the IBM 3090 Vector Facility is described. We
also suggest some refinements of known
preconditioning methods enabling their parallel
computation. Numerical experiments are
presented to display the performance of the
suggested methods. Special attention is given to
fully implicit, multiphase models which yield
asymmetrical systems.

1. Introduction
This paper presents an algorithm for an efficient, easily
vectorized, parallel iterative solution of sparse linear systems.
Because it is a block method, it involves operations between
long subvectors and thus may be performed efficiently on a
vector computer such as the IBM 3090 Vector Facility. The
algorithm is in fact a variant of incomplete block
factorization accelerated by the Biconjugate Gradients

@Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

method [11 (or some other acceleration method). Typical
linear systems occurring, for example, in oil reservoir
simulations may consist of 10’ or more unknowns. Because
the solution of these unknowns consumes vast
computational resources, efficient linear solvers which are
readily parallelized are of great importance. Although
modern direct solvers are fast and robust, there are many
large systems occurring in oil reservoir simulations and
elsewhere, especially in three-dimensional models, where
iterative methods are substantially superior.

We present numerical experiments which show the
attractive performance of our algorithm as compared with
popular iterative solvers. We show how to perform the
method on parallel or vector computers and give complexity
estimates.

The computational bottleneck in parallel implementation
of iterative methods is matrix preconditioning. Popular
conditioning techniques are based on a pointwise LU
decomposition and thus are sequential in their nature. We
give several techniques to aid in parallelizing.

Some methods are suggested for the implementation of
preconditioned iterative methods on computers with low-
level parallelism (4-8 processors). This type of computing is
possible using the recently announced FORTRAN
Multitasking Facility on IBM multiprocessor mainframes.

2. Reservoir model equations
This section gives a brief survey of the governing oil
reservoir model equations, which are detailed in [2].

Single-phaseflow
Flow of a single fluid within a porous medium is described
by a second-order nonlinear differential equation

ILAN EFRAT AND MlRON TISMENETSKY IBM 1. RES, DEVELOP. VOL. 30 NO. 2 MARCH 1986

Numerical solution for the two-phase model is harder
than for the single-phase model because

where P = fluid pressure, p = density (function of P), T =
transmissibility (function of rock type and fluid viscosity),
and 4 = rock porosity. The reservoir is assumed to be
surrounded by a nonpermeable rock. Hence boundary
conditions are of the no-flow type (Neumann boundary
conditions). After time discretization of the right-hand side
of the equation, the left-hand side is linearized, usually by
using Newton iteration. The resulting linear partial
differential equations are then discretized. In the
incompressible case this may be done in a way that yields a
symmetric linear system.

Multiphaseflow procedure is called IMPES (IMplicit Pressure, Explicit

Most reservoir models include at least two major fluids, Saturation). IMPES imposes a stability limit on the time-

replicated: the fully implicit approach.

I . The resulting linear system is twice as big, and since the
complexity of its solution is greater, its cost increases
considerably.

produced by a Finite Difference discretization is usually
nonsymmetric, a serious drawback for most linear system
solvers.

2. The system is no longer self-adjoint, and the matrix

In many simulations where convection effects dominate the
diffusion effect, it is possible to solve implicitly for P, and
then explicitly (without matrix inversion) for S. This

oil and water. a multiphase model (1) is integration step and hence may require more iterations than

V * (TipiVPi) = -. a(4PiSJ
at

The new variable Si is the relative mass Concentration Of
phase i (E Si = 1). The variable Ti is factored as T - t i , where
Tis a property of the rock (a function of position) and ti is a
nondecreasing function of Si. The pressure difference Cii =
pi - p, is called capillary pressure and is usually considered a
function of Si and Si.

For a two-phase flow the following constraints result:

Ti = T * ti(Si),

SI + s, = 1,

P2 = PI + C(S2).

Combining these constraints with Eq. (2) to eliminate s2 and
P2, we obtain

The first equation is second-order self-adjoint for a fixed SI,
and first-order for a fixed P I . The second equation is first-
order for a fixed s,. Its nature for a fixed PI is clarified when
we rewrite it as follows (assuming, for simplicity, constant
density):

[(t2VT + T dt, as, V S l) . (VP, + $ VS,)]

3. Preconditioned Biconjugate Gradients
Iterative methods are most effective when the matrix is
symmetric positive definite (SPD). Unfortunately, many of
the linear systems in multiphase reservoir models are
asymmetric and have some complex eigenvalues. The matrix
asymmetry grows when convection effects are strong relative
to diffusion effects. For our numerical experiments with
parallel preconditioning algorithms, we chose the
Preconditioned Biconjugate Gradients (PBCG) method [I].
The choice was motivated by the following:

1. Unlike some other nonsymmetric generalizations of the
Conjugate Gradients (CG) method, BCG reduces to CG if
the matrix is SPD.

2. No estimation of the spectrum of the matrix A is needed
for BCG.

3. Our experience is that for linear systems appearing in
two-phase oil reservoir models, PBCG converges almost
as fast as PCG for the corresponding single-phase
problem, even when convection effects are dominant.

To present the PBCG algorithm, let x, be an initial guess
for the solution of Ax = b, and K an easily invertible
approximation to A. Define r, = to = b - Ax,; p , = K-lr,;
0, = (KT)-' tW PBCG then computes iteratively for k =
1, 2, . . .,

This is a convection-diffusion equation. The diffusion

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986 ILAN EF'RAT AND MIRON TISMENETSKY

185

Premultiplying A by K-' is sometimes called
preconditioning. Recent efficient preconditioning techniques
are responsible for dramatic improvements in the efficiency
of iterative methods. It is well known that iterative solution
techniques are sensitive to the matrix spectral condition
number K(A) . For a given reservoir model, K (A) grows as h-'
when the mesh spacing h is refined. Note that drastic
variations in rock transmissibility may increase K (A) by
several orders of magnitude. The role of the conditioning
operation is to reduce the spectral condition number of the
resulting matrix so that K(K-'A) cc K(A).

preconditioning techniques and ways to parallelize them.
Although presented in the context of PBCG, these methods
are suitable for other preconditioned iterative methods as
well.

0 Modified Block Incomplete Decomposition (MBID) in two
dimensions
In this section we consider a numerical solution of large
sparse algebraic systems

AX = b, A E RNnN, b E R", (5)

with the matrix A partitioned into block form. These blocks
correspond to partitioning of the state vector along lines of
the Finite Difference grid. For instance, in the case of a five-
point discretization scheme over an n X n square, all the
blocks are n X n, and they form a block tridiagonal matrix.

In the L-phase model the variables are usually grouped
into nodes with L phase parameters per node. This grouping
results in a matrix A = {Ab) , where each A, is itself a block
matrix consisting of L X L blocks.

For a numerical solution of (5) which is simultaneously
efficient and vectorized, we suggest a new variant of an
incomplete block LU decomposition of A followed by
application of the BCG method. Note that the matrix A is
assumed to be real but not necessarily symmetric.

matrix with block entries A, (A , are sparse matrices and
A, = 0 for I i - j I > 1). If all leading principal block
submatrices of A are nonsingular, then [3] there exists the
decomposition

A = LU,

In the following sections we outline several

To explain our approach, let A be first a block tridiagonal

where the upper and lower block matrices U = [U,] and
L = [L,] are defined as follows:

U , = A , , ; U, = Ah - AJ, j - ,UJ~lAj- , , j

(where, for brevity, UN is denoted by U,),

LN = I . J' Lj+l,j = Aj+,,juJ-l 9

V , - l , j = '4 j - , ,J , 186

ILAN EFRAT AND MIRON TISMENETSKY

and 4 stands for the appropriate identity matrix. This leads
to a well-known algorithm for solving (5) which is equivalent
to the block Gaussian method. In presenting the algorithm,
we assume that Ai, are square matrices of order nj,
cJzl nj = N, and that the vectors x and b are partitioned
conformably with the partition of A :

x = [x,, x,, . . *, x,,,] , b = [b:, b:, ., b;]'.

Set U , = A , , , y , = b, , and compute for; = 2, 3, ., m

U, = Aj, - Aj,j-l q-'IAj-I, j , (6)

yj = bj - A , j - I UJL', yj- , . (7)

Then set x,,, = Ui' y,,,, and compute for j = m - 1, m - 2,
..., 1

T T T T

xj = UJ"(YJ - A,,j+lXj+l). (8)

In the applications under consideration the matrices A, are
sparse and banded. Nevertheless the matrices Uj gradually
become full. The resulting computational complexity in the
case of nj = n for all; is O(mn').

necessity of inverting U,, in (6) , we combine several ideas
which modify the algorithm into a preconditioner.

To reduce the complexity caused primarily by the

1. The matrices q - I I in (6) are replaced by sparse
approximate inverses. This can be done in several ways
[4-61. Here we use an approximate inverse which is
simple, applicable to most problems arising in reservoir
modeling, and, moreover, trivially vectorized.

If 11 CII < 1, it is reasonable to approximate U-' by
(I + C + Cz + + Ck)D-'. Numerical tests have
verified that the approximation with k = 1 is quite
satisfactory in many reservoir modeling problems. Thus

Let U = D(I - C), where D denotes the diagonal of U.

u" = (I + C)D" = (21 - D-'u)D-'. (9)

Johnson et al. [7] suggests a refinement of the idea of
Dubois et al. [8] to exploit the truncated Neumann series
as an approximate inverse of a matrix. Specifically, they
select scalars z,, z,, . . -, zk to minimize the condition
number of the matrix

(%,I + z , C + * * * + ZkCk)(I - C),

provided that the lower and upper limits of the spectrum
of C are known. Our experience shows that the matrix C
arising in reservoir simulations is usually strongly
contracting, and therefore no substantial gain results
from this attempted optimization.

2. Let the nonzero submatrices AN be banded. If Aj,j.-, and
Aj-,,j fail to be diagonal, the bandwidth of the matrices U,
in (6) increases to nj, and despite (9) the complexity of
the algorithm remains high. To avoid the fill-in of V, it is

IBM 1. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

hence suggested that the bandwidth of V , be kept
constant, say, p, where p is the maximal bandwidth
of the diagonal blocks A,. Thus we replace (6) with the
approximation

V , {A, - Aj,j-l UJ:Il Aj-I , jJ(p) (6’)

where { . 1‘’) denotes the p-banded matrix obtained from
(6) by replacing all elements outside the p-band with
zeros. This deletion of diagonals is motivated by the fast
decay of their entries away from the main diagonal, as
occurs in most problems of oil reservoir simulation (see
[9]). Clearly, the bandwidth of U, should be kept larger if
the matrices Aj.J-l and AJ-l,j differ significantly from
diagonal matrices.

3. At this stage some compensation for the error which
occurs in replacing (6) with (6’) is required. Specifically,
we require that the approximation of A have the same

matrix is O(m) [1 I]. This fact does not hold for block
incomplete factorization methods which do not apply the
row-sum correction.

The latter result is an extension of Gustafsson’s theorems
[IO] related to pointwise incomplete decomposition. It is
evident that the block method suggested here is superior for
rectangular problems where m < n. In this case the condition
number of the matrix preconditioned by the pointwise
method is O(n), which is worse than the O(m) that holds for
MBID.

The computational tests presented in Section 5 indicate
that the validity of MBID encompasses a much larger class
of matrices than the class of M matrices. Our experience
suggests that the asymptotic results hold for many two-phase
models, with varying transmissibility, even such that their
matrices are nonsymmetric. It is certainly desirable to
discover the correct limits of the class of matrices for which
MBID reduces the condition number of O(m2) to O(m).

row sums as A (following Gustafsson’s “row-sum
agreement” [IO]). To this end, it suffices to make the row
sums of the (block diagonal!) defect matrix E = A - LU
equal zero.

MBID for three-dimensional problems
The Finite Difference discretization of a differential operator
on a Cartesian k by m by n grid results in a matrix which
may be viewed as block tridiagonal or block pentadiagonal.

Combining all three ideas above (approximate inverse,
“cutting” the additional diagonals, and the row-sum
agreement), we obtain the following preconditioning
algorithm MBID (Aij are assumed, for simplicity, to be of
order n = rw:

The first alternative corresponds to a partition of the state
vector by planes, the second to a partition by lines. It turns
out that an efficient and vectorizable extension of the MBID
algorithm to three-dimensional problems is only possible if
we choose the block pentadiagonal organization.

notation: The vector of row sums of a matrix B is denoted
by RS(B). This quantity is computed as in the two-
dimensional case. The diagonal matrix, the diagonal
elements of which are the corresponding elements of the
vector 6, is called diag [b]. Also, an approximate inverse of a
matrix B which is of the form (9) is denoted by INV(B).

Consider a block pentadiagonal matrix of order N by
N, N = mn, with k by k blocks,

In presenting the algorithm we adopt the following

R, = diag [dl , d2, . . . , d,] , A =

q = i ’ , + R j .

The preconditioning of Ax = b is then computed as
follows:

Set y , = b,; for j = 2, 3 , . . -, m compute

YJ = b] - AJJ_l q l 1 Yj-I .

0

0 1

~ e t x , = i r ~ ’ y , ; f o r j = m - 1 , m - 2 , ..., lcompute

-y = uj (Y j - AJ,]+lJ$+1).
arising from a seven-point Finite Difference discretization of
the operator mentioned above. Now consider the equation

Ax = b. (1 1)

Poisson operator with Dirichlet or Neumann boundary Partitioning the vectors x and b in accordance with the block
conditions, discretized on an m by n rectangle, we were able organization of A, we have the following preconditioning
to prove that the condition number of the preconditioned algorithm for (1 I) : 187

A - I

For the commonly analyzed model problems of the

IBM 3. RES, DEVELOP. VOL. 30 NO. 2 MARCH 1986 ILAN EFRAT AND MIRON TISMENETSKY

1. Fori= I toN,

U, = Aij,

Ri = RS(A,,).

3. Set yI = b,.

For i = 2 to N,

Y , = Y , - Ai,,-, u;-'l~i-l ;

if i > m, then y , = bi - Uzmyi-m.

4. Set x, = u;' y,.

F o r i = N - 1 to 1,

z. = y . - A , . X. .
I I 1,1+1 1 + 1 9

if i + m I N, then zi = zi - Ai,i+m~i+m,

x, = u;lz,.

During the preparation of this manuscript, the work by
Concus et al. [4] was brought to our attention. One of the
algorithm variants suggested there is similar to MBID.
Extensive tests presented there confirm the importance that
we attribute to the row-sum agreement correction. The work
by Concus et al. does not refer to the vectorizability
potential of block methods. It is limited to two-dimensional
problems and does not present analytical results about the
resulting condition number.

4. Parallel execution of iterative methods
The computation of preconditioned iterative methods
comprises matrix-vector multiplications and the
preconditioning operation. In this section we present, for the
convenience of the reader, two known methods for the
parallel computation of matrix-vector products and the
solution of tridiagonal linear systems. We also suggest some
methods for an efficient parallel preconditioning on
computers with a limited number of processors.

Parallel matrix vector product
It is pointed out in [121 that if the nonzero pattern of the

188 matrix is several diagonals, then its product by a vector may

be performed very effectively on vector or pipeline
processors.

To outline the method, assume A E RNxN to be a matrix
which is nonzero only on m diagonals. Let V be a
displacement vector such that its components Vk = j - i for
the elements a, on the kth diagonal. This matrix may be
stored efficiently in a rectangular array C of dimensions
N X m. C(I, K) =

The product Ax = y is then implemented in FORTRAN
as

DO 100 K= 1 ,M
BOT=MAX(I , 1 -V(K))
TOP=MIN(N,N-V(K))
DO 100 I=BOT,TOP

Y(I)=Y(I)+C(I,K)*X(I+V(K))
100 CONTINUE

The inner loop is performed very efficiently on parallel or
pipeline processors, since it references elements which are
stored contiguously in memory. Similar rearrangement of
the operations can implement sparse matrix-matrix
products.

from a discretization of differential equations, it is
unreasonable to require diagonal ordering. If the matrix
nonzero pattern is not along several diagonals, then a
different packed storage scheme must be used. For instance,
it may be stored in three vectors: I , J, V, where V(k) is the
numerical value of the [I (k) , J(k)]th element. Such
organization is hard to parallelize on pipeline or
synchronously parallel processors. On asynchronous
machines, however, it is easy to divide I , J, V into several
sections and let each processor multiply a section. If the
division is done along rows, then no memory locking is
necessary, since each processor writes its own part of the
output vector.

In some applications where sparse linear systems result

Matrix preconditioning
The LU decomposition phase of iterative algorithms is
harder to perform in parallel, because it is inherently
recursive. Several methods for parallel preconditioning are
presented.

Parallel MBID
The block nature of the MBID algorithm allows one to
perform most of the computations as block matrix-vector or
matrix-matrix products. These operations can be parallelized
by a straightforward application of the methods given in the
section on the parallel matrix-vector product. The one
exception is the solution of the equation qx, = y j , where q
is a p-banded matrix.

Feilmeyer and Hatzopoulous [131 give some of the parallel
tridiagonal solvers which were introduced during the last two
decades and have been tailored for various vectors and

ILAN EFRAT AND MIRON TISMENETSKY IBM I. RES. DEVELOP, VOL. 30 NO. 2 MARCH 1986

parallel architectures. For completeness we outline the Cyclic
Reduction process [141, which is very competitive for vector
computers.

Let Ux = f be a tridiagonal linear system and U =

D(I - C), where D is the diagonal part of U, and C, = 0 for
I i - j I # 1. The system may be rewritten as follows:

X = Cx + D-Y= C'X + C0-Y-k D-Y (12)

Observe that (C'), # 0 only for I i - j 1 E (0, 2) .
Consequently, the odd elements in the system,

(I - C2)x = C0-Y-k D-% (13)

are decoupled from the even ones. The even rows and
columns may hence be deleted to produce a reduced
tridiagonal system. This reduction process can be repeated
recurs~vely. After the odd elements are found, the even ones
are computed explicitly by (12).

The cyclic reduction process involves log, n stages and is
stable for strongly diagonally dominant matrices. If the
number of diagonals p > 3, then U should be viewed as a
block tridiagonal matrix, and a block tridiagonal solver may
be applied.

We conclude this section with a parallel-operations count
of the MBID method. Parallel operations are defined in
terms of a computational model with p concurrent
processors, each performing one arithmetic operation per
time unit. Thus, the number of parallel operations equals the
number of time units required by the model.

Assume that the algorithm applied to a matrix
representing a five-point discretization of a differential
operator on an n X n grid and that the length of the vector
registers is q. Each product of an m-diagonal n X n matrix by
a vector costs m [n / q] parallel operations, where [n /q] is the
least integer greater than n/q.

The solution of @'x = y for a tridiagonal fi consumes
less than 8[n /q] log, n parallel operations. The total cost of
the factorization is n(9 + 8 log, n)[n/q] , and each solution of
LUX = b costs n(4 + 8 log, n) [n /q] parallel operations.
Notice for comparison that, for the scalar computation of
MICCG (relating to the same problem), 8n2 floating-point
operations are required for the incomplete factorization, and
about 9n2 are needed for each solution of LUX = b.

Conditioning with partial nested dissection ordering
The nested dissection ordering which is so effective for
speeding up direct solutions [151 may be used for parallel
conditioning if the number of processors is relatively small.

To this end, consider Figure l(a). If the state vector is
reordered by placing the entries of region B after those of A ,
followed by those of C, then the matrix takes the shape
shown in Figure l(b).

corresponding to regions A ' and B' can be decomposed in
parallel, and then the submatrix C' has to be factored

When the Choleski factorization is performed, the blocks

I B ' I I

1 (a) Rectangular domain. (b) Nested dissection reordering

separately. For an n X n square domain, the computation
cost of the serial part is proportional to n2. This is the case
because the decomposition is of the incomplete kind, and
thus the original sparsity pattern is retained.

parallel, and then for the C region. When Ux = v is being
solved, entries of C are solved first, and then A and B in
parallel. As long as the connecting region is relatively small,
this parallelization is very effective. There exist powerful
algorithms for the automatic generation of nested dissection
reordering [151.

The equation Lv = r can be solved for regions A and B in

Matrix splitling
If the matrix were reducible to several uncoupled
submatrices, then each block could be factored
independently, on a separate processor. Motivated by this
idea, we suggest decoupling the matrix into several
submatrices. As long as the number of splits is small relative
to the space dimension, a conditioning of the decoupled
matrix may serve as a reasonable conditioner of the original
matrix.

We now describe the method formally: Let A be an N X N
matrix. Choose break points K , , I 5 KO I K, 5 . . . I Km =
N. Then define a split matrix

B = C A /
m

/= I

so that

A row-sum agreement correction may be applied if the main
diagonals of B are modified to satisfy E, b,, = E, a , for all i.
A reasonable policy will be to divide the domain into halves,
quarters, eighths, etc. This kind of parallel processing
will have no communications overhead during the
preconditioning phase, because each processor will read and
write its private subset of the vector.

IBM J . RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986 ILAN EFRAT AND MlRON TISMENETSKY

Table 1 Condition number computations for Dirichlet
boundary conditions.

Grid K(K"A) K (4

I O x 10 1.4 49
20 x 20 2.3 179
40 X 40 4.4 68 I
60 X 60 6.6 1508
80 x 80 8.8 2659

100 x 100 10.9 4134

Table 2 The effect of anisotropy (Dirichlet boundary
conditions).

e K (~ " ~)

-0.24 1.006
-0.15 1.15
-0.05

0
1.29
1.33

0.05 1.35
0. I 5 1.28
0.24 1.027

Table 3 The effect of anisotropy (Neumann boundary
conditions).

E K(K'A)

-0.15
0

3.5
4

0.15 2.6

Table 4 Test results with three-dimensional CG
preconditioned by three-dimensional MBID.

Grid size Number of iterations

No row-sum Row-sum
agreement agreement

5 X 5 X 5 7 9
10 x 10 x 10 13 12
20 x 20 x 20 22 18

Although the matrix splitting degrades the conditioning,
and thus the convergence rate is decreased, our experience is
that the added computation is more than offset by the gains
achieved by parallelization, and significant speedup factors
may be achieved. The results of applying this method to a
two-phase problem are described in the next section.

5. Computational experiments

MBID tests
The MBID algorithm is found to have a better numerical
performance than the pointwise MICCG [IO], even as a
sequential algorithm. The Poisson operator with Neumann
boundary conditions was discretized on a 40 X 40 grid. To
avoid a singular matrix, we added 1/1600 to the main
diagonal. This addition is equivalent to integrating the time-
dependent problem over a time step of unity.

iterations were needed, whereas with block preconditioning
MBID this accuracy was obtained after just 12 iterations.
For 10 digits of relative accuracy the MICCGO required 41
iterations and MBID took 18 iterations. Note that the
sequential computational cost of an iteration is similar for
the two methods.

The reduction in the number of iterations required by
MBID is explained by the condition number improvement
of the (symmetrizable) matrix K"A. Namely, it is found that
for a 10 X 10 grid, K(K"A) = 1.8 if e = IO-* is added to the
main diagonal. If e = is added to the main diagonal,
then K(K"A) = 5.3.

For Dirichlet boundary conditions the results shown in
Table 1 were obtained.

In order to test the effect of anisotropy we took the five-
point discretization of Poisson's operator with Dirichlet
boundary conditions over a 10 X 10 grid and modified its
nonzero diagonals so that the nonzero diagonals of A, are
(-0.25 - e, -0.25 + e, 1, -0.25 + e, -0.25 - e). Table 2
gives the computed condition number of several A,
preconditioned by MBID.

Similar tests were performed on Poisson's operator with
Neumann boundary conditions, as shown in Table 3 (0.001
was added to the main diagonal to avoid matrix singularity).
These results show that weakly anisotropic problems are
harder to condition than strongly anisotropic ones. This is
the case regardless of the orientation of the line method to
the anisotropic directions.

Table 4 shows the number of iterations required to solve
the system corresponding to the three-dimensional Poisson
operator with Dirichlet boundary conditions. Iteration
was stopped when solutions accurate to 10 digits were
obtained. The table makes evident the advantage of applying
the row-sum correction for larger problems. The
convergence rate of the three-dimensional MBID is slightly
lower than that of the two-dimensional version.

We conclude this section on MBID tests with results of

To reduce the error to a relative level of 27 MICCGO

two-phase linear systems. A grid of I X I was used to
discretize the linearization of Eqs. (3). In the case of weak
convection the real part of the spectrum lies within (-3.6,
-0.04), and its imaginary part in (- 1.1, 1.1). The MBID
preconditioning transforms all the eigenvalues into the
(1, 1.58) interval, with the imaginary part smaller than

ILAN EFRAT AND MIRON TISMENETSKY IBM 1. RES. DEVELOP, VOL. 30 NO. 2 MARCH 1986

Table 5 Matrix splitting tests.

Segments Iterations KFLOPs Speedup

I 32 I942 1
2 45 2580 1.5
4 55 2814 2.76

Note that the MICBCG algorithm (pointwise) cannot be
applied to such matrices. We also tried a strong convection
case, the matrix spectrum of which has a real part in (-3.94,
-0.026), and an imaginary part in (- 1 .O 1, 1.10). The MBID
conditioned matrix has only real eigenvalues, all of them
within (1 , 1 S7). Both examples required nine PBCG
iterations to reach nine accurate digits.

Two-phase tests
A PBCG solver was used to solve two-phase problems.
Equations (3) were discretized using a block five-point Finite
Difference scheme. The permeability function T(x, y) was
taken as shown in Figure 2.

In addition to estimating the behavior of some of the
parallel algorithms described above, the numerical tests
below display the sensitivity of the PBG method to some
parameter variations. Comparisons were made with the
preconditioning methods of ICCG [161 and MICCG [101.
We call their extension to Biconjugate Gradients ICBCG and
MICBCG, respectively.

The method presented in the section on matrix splitting
was tested on a 20 X 20 domain. High diffusion in the
saturation equation was implemented by forcing aC/aS =
0.5. Iteration was stopped when the average error dropped
below of the average solution. The underlying method
is MICBCGO. (MICBCGk is the Biconjugate Gradients
method conditioned by the factorization method of
MICCGk, as described in [lo].) Table 5 shows the speedup
factors for two and for four processors. (The speedup factors
were computed by dividing the CPU time needed for the
split-matrix solution, by the number of segments, and
comparing the result to the CPU time needed for a straight
serial solution. These figures are theoretical maxima, and
because synchronization is ignored, actual implementations
will yield smaller gains.)

We now proceed to the computational results of various
preconditioning versions as summarized in Table 6. It is
evident that MICBCG is superior to ICBCG for our test
cases. The numbers appended to MICBCG signify the
number of added diagonals in the LU factors. MICBCG 1
gave the lowest computation counts for the 20 X 20 domain,
while for the 30 X 30 domain MICBCG2 was best.

Finally, the sensitivity of MICBCG to matrix asymmetry
was tested by varying the magnitude of the convection
terms. Convection becomes dominant as aC/aS approaches

Table 6 Number of iterations and total computation needed to
reach six digits of accuracy.

20 x 20

30 x 30

ICBCG
MICBCGO
ICBCG I
MICBCGI
ICBCG2
MlCBCG2
MICBCG3
MICBCG 1
MlCBCG2

45
32
26
14
16
12
8

19
13

2725
1942
2320
I307
201 I
1573
1521
3924
3284

Table 7 The sensitivity of MICBCG to varying convection
terms.

actas MICBCGx Iteralions KFLOPs

0.5 0 32 I942
0.5 1 14 I307
0.0 I 0 39 2359
0.0 I 1 15 1392
0.000 I 0 42 2537
0.000 I I 15 1392
0.000 I 2 I O 1355

zero. The results show that MICBCGO is more sensitive to
asymmetry than MICCG 1. Neither version suffered
considerable degradation when the diffusion (symmetric)
terms became negligible compared to the convection
(asymmetric) terms. The problem domain for all tests
summarized in Table 7 was 20 X 20.

Acknowledgments
The authors wish to thank V. Amdurski, B. Bachelis, and
G. Kozlovski for many valuable discussions. We also thank
1. Tsur for his assistance in implementing the algorithms. 191

IBM J . RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986 ILAN EFRAT AND MlRON TISMENETSKY

References
1. R. Fletcher, “Conjugate Gradient Methods for Indefinite

Systems,” Proceedings, Dundee Biannual Conference on
Numerical Analysis, Springer-Verlag New York, 1975, pp.
73-89.

2. D. W. Peaceman, Foundations ofNumerica1 Reservoir
Simulation, Elsevier, Amsterdam, 1977.

3. S. Schechter, “Quasi-Tridiagonal Matrices and Type-Insensitive
Difference Equations,” Quart. Appl. Math. 18, 285-295 (1960).

4. P. Concus, G. M. Golub, and G. Meurant, “Block
Preconditioning for the Conjugate Gradient Method,” SIAMJ.
Sci. Statist. Comp. 6, No. 1, 220-252 (1985).

Versions of Incomplete Block-Matrix Factorization Iterative
Methods,” Lin. Alg. & Appl. 58, 3-1 5 (1984).

Methods,” Siam J. Statist. Comp. 3, No. 3, 350-356 (1 982).

Preconditioning for Conjugate Gradient Calculations,” Siam J.
Numer. Anal. 20, No. 2, 362-376 (1983).

“Approximating the Inverse of a Matrix for Use in Iterative
Algorithms on Vector Processors,” Computing 22, 257-268
(1979).

9. S. Demko, W. F. Moss, and P. W. Smith, “Decay Rates for
Inverses of Band Matrices,” Math. Comp. 43,491-499 (1984).

IO. I. Gustafsson, “A Class of First Order Factorization Methods,”
BIT 18, 142-156 (1978).

I I . M. Tismenetsky and I . Efrat, “An Efficient Preconditioning
Algorithm and Its Analysis,” Technical Report 88-172, IBM
Israel Scientific Center. Haifa, December 1985.

Multiplication by Diagonals on a Vector/Parallel Processor,”
Info. Proc. Lett. 5, No. 2, 41-45 (1976).

13. D. J. Evans, Parallel Processing Systems, Cambridge University
Press, Cambridge, England, 1982.

14. B. L. Buzbee, G. H. Golub, and C. W. Nielson, “On Direct
Methods for Solving Poisson’s Equations,” Sium J. Numer.
Anal. 7,627-656 (1970).

15. A. George and J. W. Liu, Computer Solution of Large Sparse
Positive Definite Systems, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1981.

16. J. A. Meijerink and H. A. van der Vorst, “An Iterative Method
for Linear Systems of Which the Coefficient Matrix Is a
Symmetric M Matrix,” Math. Comp. 31, 148-162 (1977).

5. 0. Axelsson, S. Brinkklemer, and V. P. Win, “On Some

6. H. A. van der Vorst, “A Vectorizable Variant of Some ICCG

7. 0. G. Johnson, C. A. Micchelli, and G. Paul, “Polynomial

8. P. F. Dubois, A. Greenbaum, and G. H. Rodrigue,

12. N. K. Madsen, G. H. Rodrigue, and J. 1. Karush, “Matrix

”

Received July S, 1985; accepted f o r publication November 7,
198.5

llan Efrat IBM Israel, Scientific Center. Technion City, Haifa,
Israel. Mr. Efrat received an M.S. in aeronautical engineering in
1978 from the Massachusetts Institute of Technology, Cambridge,
Massachusetts. He worked for Intermetrics Inc. in Cambridge on
validation of the Space Shuttle software from 1978 to 1980. From
1980 until 1982 he worked for DSI ISRAEL on flight simulators and
flight models. Mr. Efrat has been at the IBM Haifa Scientific Center
since 1982, working on numerical methods for linear algebra.

Miron Tismenetsky IBM Israel, Scientific Center, Technion City,
Hajfa, Israel. Dr. Tismenetsky joined IBM Israel in 1983 and is
currently a research staff member at the Haifa Scientific Center. He
received the MSc. in 1977 and the Ph.D. in 1981, both in
mathematics, from the Technion, Haifa. From 198 I to 1983 he was a
Research Fellow in the Mathematics and Statistics Department of
the University of Calgary, Canada. His main interests are in
numerical linear algebra and matrix theory. Dr. Tismenetsky is a
member of the American Mathematical Society.

IBM J . RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

