172

Seismic migration
on the IBM 3090
Vector Facility

by J. Gazdag
G. Radicati
P. Sqguazzero
H. H. Wang

Seismic prospecting aims at determining the
structure of the earth from indirect
measurements. Acoustic wave fields are
generated at the surface, penétrate the earth,
and are backscattered by the earth’s
inhomogeneities. The data recorded at the
surface are processed in a complex sequence
of steps among which seismic migration plays
an important role. This is a wave depropagation
process that permits the localization in depth of
the origin of the diffraction events measured (in
time) at the surface. This paper presents an
overview of the major wave-equation migration
methods. The most frequently executed
algorithms or kernels on which the execution
speed depends most crucially are given
particular attention. The speedup resulting from
scalar-to-vector formulation is presented over
wide ranges of dimensionality for linear
tridiagonal equation solvers, Fourier Transforms,
and convolution operations. The vectorizability
and resulting speedup are also addressed in the
case of migration schemes known as the Phase-
Shift Method and the Phase Shift Plus
Interpolation (PSPI) Method. It is shown that
Fourier domain migration based on the phase-
shift concept lends itself conveniently to
multilevel parallelism on the 3090 Vector Facility
(VF): vectorization of the innermost loops and
concurrent processing in the outer loops by
means of the VS FORTRAN Version 2
Multitasking Facility.

©Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by ccinputer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

J. GAZDAG ET AL.

Introduction
The role of seismic signal processing is to render the
recorded data more easily interpretable by geologists. This
discipline represents one of the most important areas of
scientific/engineering computations. To meet “number-
crunching” requirements dating back more than a decade,
array processors (e.g., IBM 2938 and IBM 3838) were
developed specifically for the seismic industry. In recent
years, demands for more computing power have transcended
the capacity of array processors. At the same time, general-
purpose vector processors are gaining acceptance in the
seismic industry. This is particularly true for processing steps
involving two-, three-, and even four-dimensional data
volumes, such as seismic migration, the analysis of which is
the subject of this paper. The purpose of migration is to
reconstruct the reflectivity map of the earth from the seismic
data recorded at the surface.

The aim of this paper is to study the vectorizability of
major migration algorithms. The solution methods under
consideration fall into three major categories:

e Finite-difference methods in the space-time domain.

e Spectral methods formulated in the space-frequency
domain.

e Spectral methods formulated in the wavenumber domain.

The numerically most intensive algorithms (executed many
thousands of times within a migration job), henceforth
referred to as “kernels,” are linear tridiagonal equation
solvers, Fourier Transforms, and convolution operations.
The speed of migration depends crucially on the
performance of the corresponding kernel. Consequently, it is
of considerable importance to design, program, and use
these kernels optimally for particular applications. The
organization of the paper is as follows. First, the basic
concepts of seismic data representation are introduced. Next,
the theory of migration schemes is described. Then a general

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

overview of performance and programming considerations is
presented. This is followed by performance analyses of the
most important kernels and their vectorizability. Emphasis is
laid on estimating and/or measuring the speedup of the
vector algorithm versus the scalar one on the IBM 3090
Vector Facility. A summary of results and observations
concludes the paper.

Background

e Acquisition and representation of seismic data

Reflection seismology is an echo-ranging technique. An
acoustic source (shot) emits a short pulse and a set of
recorders (geophones) register the reflected waves at the
surface. The time series (sampled) data associated with a
single shot and receiver are known as a trace. In a typical
marine exploration (Figure 1), a boat tows a source and a
streamer of receivers. As it moves half a receiver interval
along a seismic line, it fires a shot and records the pressure at
each receiver location. A trace is associated with each shot
and receiver point. Let » be the horizontal coordinate of the
receiver and s be the horizontal coordinate of the source.
Both are measured along the seismic line. However, for
mathematical reasoning, it is helpful to represent r and s on
orthogonal axes, as shown in Fig. 1. We also define the
midpoint coordinate between source and receiver as

x = (r + 5)/2, and the source/receiver half-offset coordinate
as h = (r — 5)/2. From these equations we see that x and 4
are another set of axes rotated 45° with respect to the axes r
and s.

Seismic processing techniques have been developed for
groups of traces, called gathers, aligned parallel with one of
the four axes shown in Fig. 1. One such processing step
preceding migration is known as stacking. It consists of the
summation of the traces of each common midpoint (CMP)
gather after correcting them to compensate for the offset
between source and receiver. This is known as the normal
moveout (NMO) correction. When the proper amount of
time shift is applied to the traces, apart from a minor
distortion effect, they appear as if they were recorded with
coincident source and receiver, i.e., # = 0. The ensemble of
summed traces is referred to as the CMP stacked section. A
very important benefit of this operation is the significant
improvement in the signal-to-noise ratio of the CMP section
in comparison with the unstacked data.

o Wave equation migration

Migration calls for the numerical solution of partial
differential equations which govern the propagation of the
recorded signals from the surface to the reflector locations, in
reverse time. These methods, generally referred to as wave-
equation migration, consist of two steps: wave extrapolation
and imaging. Downward extrapolation results in a wave field
that is an approximation of the one that would have been

[BM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

Receivers Shot
Common offset
: gather

Common midpoint
(CMP) gather ~

Shot coordinate s

Receiver coordinate »

Relationship among the horizontal coordinates 7,s,x, and k. All axes
represent distances measured along the seismic line. Each dot on the
surface corresponds to a seismic trace.

recorded if both sources and recorders had been located at
depth z. Thus, events appearing at ¢ = 0 are at their correct
lateral position. Therefore, the extrapolated zero-offset data
at ¢ = 0 are taken as being the correctly migrated data at the
current depth. These data (1 = 0) are then mapped onto the
depth section at -, the depth of extrapolation. This mapping
process is also referred to as imaging.

Let p = p(x, z, t) be the CMP section (zero-offset pressure
data), where x is the midpoint variable, z is depth, and ¢ is
two-way travel time. The downward extrapolation of zero-
offset data is governed by the one-way wave equation [1]:

P 2iw ko*1"
5?7[“@)] P M

where P is the Fourier Transform of p, v is the velocity, & is
the wavenumber with respect to x, and w is the temporal
frequency. Equation (1) is expressed in the wavenumber-
frequency domain (&, w) and does not have an explicit
representation in the midpoint-time domain (., ¢).

Migration in the (k,) domain

We shall assume that within one extrapolation step, say from
depth = to - + Az, the velocity is constant. Then the solution
of Eq. (1) can be expressed as

P(k

v

w, 2+ AD)

>

2 kv 29172
= P(k,, w, Z) exp {—;’Jﬁ [l - <$>] A:}. (2)

J. GAZDAG ET AL.

173

174

lP (x, 2, @)

(2]

’P* (x, z, w)

FFT

e I v ()

b b4
=[] [whege]

Pl (kx, z+Az, w) P, (kx, 2+ Az, @)

Inverse FFT Inverse FFT

Pl (x, 2+ Az, w) P2 (x, z+ Az, w)

Interpolation

l P (x, 2+ Az, »)

Computational diagram of the PSPI method, with two reference
velocities.

This analytic solution states that P is extrapolated from z to
z + Az by simply rotating its phase by a specified amount.
Therefore, migration schemes based on this priciple are
referred to as phase-shift methods [1].

The simple analytic solution expressed by Eq. (2) is not
valid for velocity fields with lateral variations. In this case,
the square-root expression in Eq. (1) must be approximated
in some form—for example by a quadratic polynomial [2].
A second-order approximation of Eq. (1) can be written as

P 2w ki’”
we - ®

When v has lateral dependence, P needs to be convolved
with v or its inverse. To implement the migration algorithm
efficiently, the mean velocity should be treated separately
from the perturbation thereon. With regard to the mean
velocity u, the wave extrapolation is accomplished by the
phase-shift method, as expressed by Eq. (1) using u instead
of v. The velocity perturbation about u is taken into account
by what may be called the correction term, expressed as

aP_ 7 L3 l_l_k_)z(v %k —_
az_ZMPF[v u] z<4w>PF[v ul. 4)

In this expression F stands for the operation of Fourier
Transform with respect to x, and * denotes convolution with
respect to k.

J. GAZDAG ET AL.

Migration in the (x, w) domain

Another rational approximation of (1) is done by truncated
continued fractions [3] and splitting, which results in two
extrapolators

P 2w
o = (—> b ®

which is known as the thin lens term, and

[1 . v_za_z] P, w, 2) _ <:_u> FP(x, 0, 2)

16w* ax® 0z 4o ax’ ' ©

which is the Fresnel diffraction term. Advancing to greater
depths is done by applying Egs. (5) and (6) alternately in
small Az steps. To advance P with (6), for numerical stability
considerations, an implicit Crank-Nicolson difference
scheme is most often used.

An alternate approach to wave-field extrapolation in
general media is described in [4] and [5]. At each Az step the
wave extrapolation is accomplished in two stages. In the first
stage the wave field P(x, w, z) given at depth z is
extrapolated to z + Az by the phase-shift method using /
reference velocities v,, v,, -+, v~ spanning the velocity range
at depth z. This stage generates # reference extrapolated
wave fields at z + Az, namely P, P,, ---, P,. In the second
stage the definitive wave field P(x, w, z + Az) is constructed
by interpolation of the # reference wave fields. This Phase
Shift Plus Interpolation (PSPI) method is unconditionally
stable and has good dispersion relation properties worth its
relatively high computational cost (for each frequency w, and
for each step in depth, # + 1 Fourier Transforms in the x
direction are required). The computational diagram of the
PSPI algorithm is shown in Figure 2 for two reference
velocities (£ = 2).

Migration in the (x, t) domain
Equations (5) and (6) can be expressed in the physical (x, t)
domain by Fourier-transforming both equations with respect
to w. In order to ensure stability, an implicit differencing
scheme is used in extrapolating the wave field to greater
depths. A comprehensive description of (x, ¢) domain
migration techniques.is given by Claerbout [6, pp. 90-102].
Migration in the (x,) domain can also be formulated as a
solution of integral equations. The Kirchhoff integral
approximates the wave field at an arbitrary point as a
weighted integral of the wave field recorded at the surface
[5]. This approach to migration is not a wave-equation
method, and its detailed analysis is outside the scope of this
paper.

An example of migration of synthetic seismic data

As we have discussed earlier, migration is an inverse process.
To test a migration scheme and evaluate its performance, we
need a set of seismic data, e.g., a zero-offset section obtained
from an idealized model with known reflectivity and

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

velocities. This is usually done by simulating the forward
process using one of the standard forward modeling schemes
[4, 5). An example of such a modeling approach representing
a set of dipping reflectors is shown in Figure 3. On the
schematic of the model [Fig. 3(a)], the reflectors are
indicated by thick lines to distinguish them from interfaces
of velocity regions depicted by thin lines. Figure 3(b)
illustrates the synthetic zero-offset section. Figure 4 shows
the migrated results obtained by a finite-difference method,
based on Egs. (5) and (6), and the PSPI method. Both
migrated sections are of high quality, and they represent a
good reconstruction of the reflectors of the model. An
interesting feature superimposed on the migrated results is a
circular pattern extending down to the z = 5 level. These are
diffracted waves originating from the neighborhood of

(x = 8, z = 3), where the region in which v = 4 km/s
narrows to a point.

Vector algorithms

o General principles

The number of operations within an algorithm that can be
executed independently and therefore can be performed in
parallel is referred to as the parallelism of the algorithm [7].
These independent operations can, in principle, be
performed concurrently, or simultaneously, as one may wish
to do in certain parallel architectures such as processor
arrays. A pipelined computer is organized in a way similar to
an assembly line. Operations are divided into subtasks that
are executed by specialized hardware stages. Operands flow
from one stage to the next, so that the various stages may
concurrently process different operands. Successive tasks are
executed in the pipeline in an overlapped fashion.

From the programmer’s viewpoint, it makes little
difference whether parallel operations are executed
simultaneously or in a time sequence with considerable
overlapping among the operations. The data are defined as
vectors, and the operations correspond to vector
instructions. Vector instructions, which operate on arrays of
data rather than on single data items, serve the purpose of
feeding data to the pipelined units at an optimal rate. If
properly used, vector instructions can result in a tremendous
improvement of system throughput.

To obtain sustained high performance on a vector
computer, it is essential that the algorithms be designed
specifically for the architecture of the computer under
consideration. There are three approaches to implementing
vector algorithms: (1) programming in FORTRAN, (2)
programming in Assembler, and (3) using a set of routines
optimized for the vector architecture under consideration. In
the first case, while the program development is easier and
more efficient, one needs to rely on the ability of the

- compiler to vectorize the FORTRAN program. In the
second case, at the expense of working with a low-level

[BM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

(@)
B v=2 km/s

v=4 km/s

z (km)
T

Reflector
v=35 km/s

1 (s)
w

\
§ (a) A schematic model representing a dipping multilayer example.
. The thick-line segments denote where the reflector segments have
:; been “turned on.” (b) Synthetic zero-offset time section of the model
% shown in (a).
i
MWH e
R NWMWWW%}:#H
o R
T
%

i m\uwuumm»dumwnwmuwnwul i ||1H!l)N&II]iM?NlWNWW«II&IH\IKN{IW TN
i NMWHW A IN%NIH“MMWINW mummnmuld
WW”WINIWWWHMWWHH|

MR .. AR Gl

;MMMMI(}{%W{}H{

m S lilliilll!l T i I!{IIIMINI!{
R L ' il HMH
A A e il

\H\\Il\lm)IHIIHIHIIHN!MHI!lll\!Ilillltll\Illllllilltlllllmﬁltlim’&\\M\\ ! e _ mlillillllﬂ II!

0 2 4 6 8 10 12

i Depth migration sections obtained from the zero-offset section
% shown in Fig. 3(b) by means of (a) a finite-difference method and (b)
¢ the PSPI method.

J. GAZDAG ET AL.

175

176

language, one can select an optimal set of vector instructions
to define the algorithm. A well-written assembler code
tailored to a particular system is likely to outperform the
code produced by any compiler. While this has always been
true for serial computers, it is even more valid for vector
computers. The ratio of performance between good and bad
programs is substantially higher on vector computers than
on serial computers. For the third approach a highly tuned
subroutine library, the Engineering and Scientific Subroutine
Library (ESSL) [8], has been developed for the 3090 VF. It
contains routines for the solution of systems of linear
equations, eigenvalue problems, Fast Fourier Transforms,
etc.

& Performance

It is quite customary to measure the perforrhance ofa
computer in millions of instructions per second (MIPS) or,
in the case of a scientific computer, in millions of floating-
point operations per second (MFLOPS). In this paper we are
not interested in measuring hardware performance and we
do not wish to make any comparison with any other
hardware. Our primary interest lies in the relative
performance of the 3090 in vector and scalar mode, in order
to have a reasonably good appreciation for the incremental
performance due to the vector feature. We define the
performance of a computer program as the inverse of the
CPU time required. This is not the only definition that could
have been given. We could have taken into account the use
of the memory and other storage devices. However, in the
context of this paper we cannot address complicated
performance measures of this type.

It should be noted that, on vector computers, minimum
execution time is not necessarily synonymous with
minimum number of floating-point operations. The gain in
speed resulting from executing the program in vector mode
may outweigh the cost of extra arithmetic operations. An
example of this is the tridiagonal system solver, where the
vector algorithm requires about twice as many operations as
the scalar algorithm but is faster than the scalar version for
sufficiently long vectors. Finally, the performance of a vector
code may depend to a great extent on the average vector
length, on the startup time of the instructions, and on such
factors as how well the parallelism in the algorithm matches
the parallelism of the computer.

Our primary goal in examining some of the most
important kernels is to estimate the relative performance of
the best available vector code versus its scalar counterpart. In
the simpler algorithms, such as the phase-shifi operator, the
vector code is obtained from the scalar FORTRAN by using
the VS FORTRAN Version 2 compiler. In the more
complicated situations, the scalar and vector programs are
based on different algorithms, as in the case of Fast Fourier
Transforms (FFT), where we compare the performance of
Short-Precision Complex-to-Complex Fast Fourier

J. GAZDAG ET AL.

Transform (SCFT) from ESSL and a scalar program based
on a different algorithm. In the case of convolution we
compare the performance of different vector algorithms to
underscore the importance of tailoring the code to the
architecture under consideration. Thus our comparisons
refer to the performance of specific scalar and vector
algorithms. The relative performance improvement is
measured as the ratio of the scalar and vector execution
time, which we refer to as speedup. Speedup figures of
different algorithms show considerable variation. Thus, for
example, the measured speedup for convolution was more
than 10, and less than 1.5 for tridiagonal system solvers.

& The 3090 VF: An overview

The 3090 VF, as seen by the programmer, is essentially a
370 machine with the addition of vector instructions and
vector registers [9]. The length of the vector registers is
model-dependent, and in the following discussion we assume
the length to be 128, as on the machine on which we ran our
tests. The vector instructions process at most 128 elements
at a time; vectors of length greater than 128 must be
sectioned, in a process that is quite similar to what happens
on machines like the CRAY. In general, to maximize the
performance, data loaded into a vector register should be
held there for as many arithmetic operations as possible.

We now describe the formats of the vector instructions. In
what follows, FPR stands for a floating-point register, and
VRn stands for Vector Register n, The three basic floating-
point vector instructions (multiplication, addition, and
subtraction) have four different formats:

VRI1 = VR2 op memory, (7N
VRI = FPR op memory, 8)
VRI = FPR op VR2, ®
VRI = VR2 op VR3. (10

Floating-point division has only format (7). An input register
may also serve as an output register. In (7) and (8) one of the
vector operands comes directly from memory, without
having to be loaded in a vector register, and may be accessed
with stride (positive or negative). In all formats after a
startup time of approximately 20 cycles, the vector
instructions deliver one result per machine cycle. After the
first 128 elements of a vector have been processed, the
operations must be reinitialized on the next section.

There are also two compound instructions, multiply and
accumulate (VMC) and multiply-add (VMA), which perform
a multiplication and an addition at the same time and
deserve special attention.

& In the multiply and accumulate, a vector register is
multiplied by another vector and the result is accumulated
in another vector register, as shown below:

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

VRO, = VRO, + % VR2, W,

for k=1,5,9,13,...,125, (11)
VRO, = VRO, + % VR2,W,

for k=2,6,10, 14,126, (12)
VRO, = VRO, + § VR2, W,

for k=3,7,11,15,- 127, (13)
VRO, = VRO, + % VR2 W,

for k=4,8,12, 16,128 (14)

In these equations, W represents data residing either in a
vector register or in memory. Vector register VR0
contains, in the first four positions, partial results. The
final result is obtained by summing over the first four
elements of VR0 with the instruction sum-partial-sums
(VSPSD).

e The multiply-add instruction has the following formats:

(15)
(16)
(17

VRO = VRO + FPR X memory,
VRO = VRO + FPR X VR2,
VRO = VRO + VR2 X memory.

After some startup time, these compound instructions
deliver one result per machine cycle. This feature of the
3090 VF to perform multiple operations within one machine
cycle is similar to the chaining concept of the CRAY
computers.

When the vector length n exceeds 128, the vector
operation is partitioned into

n-~1

Sn)y=1+ [—1'28—]

sections, where [...] signifies the integer part of the bracketed
expression. Each section requires some startup time (3,
typically 20 machine cycles, to set up the pipeline. However,
when considering theoretical performance models, it is more
realistic to assume the startup time to be approximately 35
cycles, to include some auxiliary scalar instructions (load
address, etc.). After this overhead, the pipeline delivers one
result every a cycles (« is 1 for most instructions and is
larger for the more complicated instructions). Using these
definitions, the time required for a vector operation is

(18)

7(n) = an + BS(n), (19)

expressed in machine cycles.
Performance analysis of migration kernels

Our aim s to give the reader an estimate of the performance
improvement that can reasonably be expected from the

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

Vector Facility on the IBM 3090 system. The speedup
curves we describe are derived from actual measurements of
execution times. We make no effort to analyze a complete
migration program in detail. Instead, we focus our attention
on the most significant computational kernels of these
programs, the optimization of which plays a decisive role in
the global performance of migration algorithms.

® Representative kernels

Seismic migration codes are characterized by one or two
algorithms that account for most of the floating-point
operations or FLOPs. These algorithms, which may be a
relatively small subset of the entire migration program, are
executed hundreds of thousands of times within a job step.
Consequently, their implementation plays a key role in
determining the overall efficiency of the migration code
under consideration. In what follows, these algorithms are
referred to as representative kernels. In the migration
methods discussed above, one can identify four such kernels,
which are listed below.

Kernel 1: the phase-shift operator involves the evaluation
of the exponent in Eq. (2) followed by a complex
multiplication. This kernel is implemented for data
corresponding to a fixed w = w;and z = z,, i.e., for the
vector P(k,, w;, z,). The vector elements corresponding to
different k, are independent of one another; thus they lend
themselves conveniently to vectorization.

Kernel 2: the convolution of two functions f{x) and g(x) is
defined as

X+d

hix) = f Six = y)g(v)dy. (20)

X—a
This is one of the most often executed algorithms in seismic
data processing. While various approaches to seismic
migration, e.g. Eq. (4), can be expressed in terms of
convolution, this algorithm is used most often in
deconvolution, a time filtering of seismic traces.

Kernel 3: Fourier Transform. The widespread use of the
Fast Fourier Transform algorithm is well known in signal
processing, and there is little need to emphasize its
importance further. Its intensive use is most apparent in the
PSPI migration algorithm, which is a spectral method
requiring repeated Fourier Transforms of 1D or 2D arrays at
all depths z and all temporal frequencies w of interest.

Kernel 4: tridiagonal systems of equations are very
important since they occur frequently in finite-difference
approximations to differential equations, e.g., Heimholtz,
Poisson, diffusion, and wave equations. The wave
extrapolation equation (6) and (x, ¢) domain migration
techniques are based on the solution of tridiagonal systems.

o The phase-shift operator
The major computation task in migration by the phase-shift

method is the evaluation of Eq. (2). Numerically, this is 177

J. GAZDAG ET AL.

178

equivalent to multiplying each relevant complex Fourier
coefficient by a complex number of unit modulus. The
following FORTRAN DO-loop is the kernel of a phase-shift
program:

DO 101X =2, LIM

THETA = SQRT(1.0 — VPWSQ+KXSQ(IX))*DZ+WPERV
ROTATE = CMPLX(COS(THETA), SIN(THETA))

C APPLY PHASE SHIFT TO POSITIVE WAVENUMBERS
P(IX) = P(IX)*ROTATE

C APPLY PHASE SHIFT TO NEGATIVE WAVENUMBERS
INX=NX-(1X-2)
Q(INX) = Q(INX)+ROTATE

10 CONTINUE

The DO index limit, LIM, corresponds to the highest
wavenumber k_and is bounded by NX/2, and THETA is
the quantity inside the curved brackets of Eq. (2). The VS
FORTRAN Version 2 compiler vectorizes this DO-loop,
generating calls to vector-valued intrinsic functions SQRT,
COMPLX, SIN, and COS. We measured a scalar-to-vector
speedup of 2.1 on the phase-shift kernel of a migration
program.

o Convolution

Let u=(u, uy, -, u,)and x = (x,, X5, -*-, X,,,,,,_;) be
sequences of length n and n + m — 1, respectively. The
convolution u+x of these sequences is a sequence of length
m, defined as

(wex), = Y wx,,,, for i=1,.,m (21)
k=1

This operation plays a very important role in signal
processing. When both sequences are long, it is usually
implemented by means of algorithms based on Fast Fourier
Transforms. Here, we are concerned with a straightforward
implementation of Eq. (21). As we shall see, the compound
instructions discussed above are well suited to implementing
(21) and result in very high vector performances.

There are two ways of implementing Eq. (21). The first
one is described by the following FORTRAN loops, referred
to as Algorithm I:

DIMENSION U(N), X(M + N — 1), Y(M)
DO21=1,M
Y(I) = 0.
DOI1K=1N
YO = Y(I) + UK X(N + 1 - K)
1 CONTINUE
2 CONTINUE

The inner loop, over index k, is a scalar product of length n
between u and sections of vector x. One can see that loops 1
and 2 can be interchanged without affecting the result. This
second implementation is referred to as Algorithm 2:

J. GAZDAG ET AL.

DIMENSION U(N), X(M + N - 1), Y(M)
DO31=1,M
YD) =0.
3 CONTINUE
DOSK=1,N
DO41=1,M
Y() = Y(I) + UK)*X(N + I - K)
4 CONTINUE
5 CONTINUE

In this case the inner loop, over index i, is of the form
V1="VI1+sx V2, where VI and V2 are vectors and s = u,
is a scalar.

Both algorithms can be implemented on the 3090 VF by
making use of high-performance chained, or compound,
instructions, which perform two floating-point operations
per machine cycle. Using other vector instructions, such as
addition, multiplication, etc., it is possible to perform only
one floating-point operation per machine cycle. It is shown
that the performance of Algorithm 2 is much better than
that of Algorithm 1. This sort of loop reordering is common
to many problems of linear algebra on vector processors.
Problems of this kind are discussed, for example, by
Dongarra et al. [10].

Algorithm 1
We now describe two implementations of the first algorithm
using the vector instructions.

Fori=1,2,---,m,

Zero-partial-sums.
Fork=1,129,..-,n,

Vector length / = min(128, 1 + n — k).

Load | elements of u to a vector register starting from u,.

Mudtiply and accumulate for ! elements over u and x
starting from x,,,,_, with stride —1.

Sum-partial-sums.
Store result into y,.

Assuming a startup time of 35 cycles for each vector
instruction, the timing equation for this algorithm can be
approximated as

7, = 2mn + m[90 + 1058(n)], (22)

where S(n) is the number of sections in a vector of length n
as defined by (19). The first term accounts for the load of u
and the multiply and accumulate, which are performed m
times. The second term accounts for the zero-partial-sums,
the sum-partial-sums, and the store of y,. The third term in
the equation accounts for the startup time for the three
vector instructions in the main loop. This first
implementation of Algorithm 1 is rather inefficient due to
the repeated loading of vector u into the vector register.

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

When this shortcoming is corrected, the performance
increases significantly. A second implementation of
Algorithm 1 is based on loading one section of # and
forming its scalar product with all the sections of x.
Repeating this procedure for all the sections of u and
summing the partial results yields the desired result. Each
section of u is loaded only once, in exchange for doing a
zero-partial-sums, a sum-partial-sums, a load, a sum, and a
store of y,, m times for each section of u. The timing
equation of this second implementation is

7, = mn + m[l + 1205(n)]

+ n+ 708(n) + 35S(m). (23)
Algorithm 2

The vector implementation of Algorithm 2 can be
summarized as follows:

Fori=1,129,---, m,

Vector length / = min(128, 1 + m — i).
Clear VRO for ! elements.
Fork=1,2,--,n,

Load u, to FPR.
VRO = VRO + FPR X [elements of x starting from
X, With stride 1.

n+i—,

Store [elements of VRO starting from y,.

This algorithm is based on the multiply-add instruction.
Note that no vector load instruction is ever used, and the
sectioning is performed with respect to the index i. Overhead
is minimized by performing the sectioning on the outermost
loop. Assuming a startup time of 35 cycles for all the vector
instructions, the timing equation for this algorithm is

T, = mn + 45n8(m) + 2m + 105S(m). (24)

The first two terms account for the inner loop; the last two
terms account for the clearing of the accumulation register,
the store of vector y, and the computation of the vector
length.

Comparison of performance

In order to illustrate performance improvements resulting
from careful coding, the performance curves for the three
implementations of the convolution operation above are
shown in Figure 5. These plots represent floating-point
operations per machine cycle versus m for n = 64 [Eq. (21)].
These curves were obtained by dividing 2nm, the total
number of floating-point operations in the algorithm, by the
estimated execution time given in (22), (23), and (24). The
cost of the multiple loads of vector u in Eq. (22) is obvious.
For vectors with large m, Algorithm 2 is significantly better
than Algorithm 1. The crossover point depends on ». In the

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

Algorithm 2—Eq. (24)

Algorithm 1—Eq. (23)

FLOPs per cycle

0.5 Algorithm 1—Egq. (22)

0.0 i i | | I I

Number of floating-point operations per machine cycle as a function
;5 of m for convolution.

case of n = 64, Algorithm 2 is more efficient for vectors with
m > 25, Even for large n, Algorithm 2 is always more
efficient if m > 50. The lower performance of Algorithm 1 is
attributable to the loading of vector ¥ and the performing of
sum-partial-sums several times for each y,. The effect caused
by the sectioning of vector operations in Algorithm 2 is
evident. The performance drops very sharply just after m
reaches values that are integer multiples of 128. This is due
to the overhead associated with the additional section
containing only a few elements. Note that because of the
startup time for vector instructions and the loads of u, to
floating-point registers, the asymptotic performance is 1.5
operations per cycle, rather than 2. The performance of
Algorithm 1, shown in Fig. 5 for #n = 64, increases
monotonically with # up to 128. However, its maximum
performance is about one floating-point operation per
machine cycle. These curves illustrate the importance of
tailoring the algorithm to the architecture of the computer.

To illustrate the scalar-to-vector speedup for convolution,
we consider Algorithm 2. First we measured 7, the
execution time for a scalar convolution algorithm. The
speedup 7_/7, is shown in Figure 6 (solid curve), where 7, is
given by Eq. (24). To verify these predictions, we also
measured the actual vector execution time corresponding to
5. The measured speedup figures are depicted by the symbol
+ in Fig. 6. There is a good agreement between the predicted
and the measured speedup values.

o Fast Fourier Transform
The FFT algorithm plays a very important role in signal

processing. The motivation for this is twofold: convenience 179

J. GAZDAG ET AL.

180

+4

Speedup
k)
T

0 I 1 |] ! | 1 1 1 |
0 100 200 300 400 500

Scalar-to-vector speedup for convolution on the 3090 as a function of
m. The vector algorithm is an implementation of Algorithm 2. The
symbol + represents measured values; the continuous line is an
estimate based on (24).

1o
9._
@
8...
®
7_.
@ ®
6 @ ®
g- @
i oo :
n 4k)
3¢
2_
0 i { 1 1 H 1 1 1 |
64 256 1024 4096 16384

Transform length N

Speedup of the vector vs the scalar FFT.

and economy. The first category includes applications in
which the operations on the data are more easily formulated
and/or these operations are performed more accurately in
the frequency or wavenumber domain. One example is
directional or fan filtering of two- or three-dimensional data.
Another example is migration by phase shift. Equations (1)
and (2) are exact statements of wave extrapolation in the
wavenumber-frequency domain, which cannot be expressed
in the space-time domain. The second category comprises
operations defined in the space and/or time domain, but the

J. GAZDAG ET AL.

execution of which is carried out more economically by
means of Fourier Transform techniques. Filtering of one-,
two-, or three-dimensional data and numerical methods
involving long linear operators serve as representative
examples. Here one takes advantage of the convolution
theorem (Brigham [11]) and the speed of the FFT algorithm.

For the FFT algorithm, our only objective was to measure
the speedup from scalar to vector operations. For the scalar
case we used the FFT routine by Singleton [12], the
performance of which is comparable to that of the well-
known HARM routine [13]. The vector FFT algorithm is
described by Agarwal [14] and by Agarwal and Cooley [15]
and is part of ESSL. The speedup curve (Figure 7) is based
on timings of these routines performed on the 3090 VF.
Note that the speedup decreases when passing from
transforms of complex arrays of 2048 elements to 4096
elements. This problem is caused by the limited size of the
cache [16]. For transforms of length 4096 and beyond, the
data and the associated working and coefficient arrays do not
fit in cache. Therefore, the problem is broken into pieces
which fit in the cache; this requires multiple access of data
and an intermediate two-dimensional array transposition.
This degrades the performance by about 10%, but this drop
in performance is not as much as in the case of a
conventional scalar FFT for transforms which do not fit in
cache (16 384 and beyond).

o Tridiagonal solvers

The solution of a tridiagonal system of linear equations lies
at the heart of many scientific programs. The usual method
for solving such a system on a serial computer is based on
Gaussian elimination, which is entirely recursive and does
not lend itself to vectorization. In the past dozen years,
several new algorithms have been proposed for solving
tridiagonal systems on paralliel and vector computers [17,
18]. The most commonly used vector algorithms are based
on a method originally proposed by Gene Golub and Roger
Hockney and known as cyclic reduction [19, 20]. The
vectorization is achieved at a cost of approximately twice the
arithmetic operations required by Gaussian elimination. In
what follows, we briefly describe the scalar and the vector
algorithms and the speedup curves we measured.

Gaussian elimination
Consider the tridiagonal system of » linear equations
Ax =7, (25)

where A is a tridiagonal matrix with its ith row denoted by
(-, ¢, a;, by, +++). The solution of (25) can be accomplished
in the following two steps:

1. Forward step:

d, =1/a,, (26)

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

V=1, (27)
d,=1/(a;= ¢d_,b,_)), i=2,m, (28)
yi=r—cd_ Vi, i=2,n (29

2. Backward step:
(30)
i=n=1,1. (31)

x,=y,d

n

X = (¥ = X,b)d;,

In the actual implementation, array d can replace the main
diagonal a, while y and x can share the same space as . A
total of 9» arithmetic operations (including » divides) are
required to obtain the answers,

Cyclic reduction
The approach in cyclic reduction is to eliminate in the even-
numbered equations the coefficients associated with the odd-
numbered variables by elementary row transformations.
These transformations can be carried out simultaneously.
The transformed even-numbered equations again form a
tridiagonal system half the original size. This process can be
repeated on the reduced system. After p = log, n steps of
such elimination, there is only one equation left, which can
easily be solved. Other solutions can then be obtained by
back substitution.

As a vector algorithm to solve tridiagonal equations, cyclic
reduction as described above has two weaknesses, namely:

e The vector length changes by a factor of 2 in each step. In
the last steps, even for large », the vectors being processed
are short.

e The large memory requirements and the complicated
addressing scheme result in less than optimal use of the
cache when solving large systems.

Scalar-to-vector speedup

We have compared the performance on a 3090 with Vector
Facility of a Gaussian elimination code with that of an
assembly language cyclic reduction code based on the
algorithm described by Kershaw [20]. Note that neither the
cyclic reduction algorithm nor the Gaussian elimination
algorithm perform pivoting. Figure 8 shows the speedup
versus the order of the matrix, n. The speedup for this
problem is small because of the relatively small vector-to-
scalar speed ratio and because of the limited size of the
cache.

Performance measurements of the PSPI code

The PSPI method was developed [4] as a response to the
following shortcomings exhibited by finite-difference
migration methods: (1) an inaccurate dispersion relation for
steep dips, (2) errors due to difference approximations, and
(3) predisposition to numerical instability. To keep the

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

1.5[
1.0 A
N L
= -
=1
(3]
g‘ -
(2]
0.5
[J S N S TS TN T 1 T Y O I O I I O N N A e |
0 500 1000 1500 2000 2500

g Scalar-to-vector speedup for tridiagonal linear system solvers as a
function of n.

stability problem under control, implicit difference schemes
are used to solve the wave extrapolation equations, e.g., Eq.
(6). These implicit schemes call for the evaluation of
tridiagonal systems of equations for two-dimensional data.
However, Claerbout [6, p. 100] finds that “in space
dimensions higher than one the implicit method becomes
prohibitively costly.” The PSPI migration scheme, on the
other hand, has proved to be accurate, unconditionally
stable, and applicable to data of any dimension. One of the
aims of this study is to show that the PSPI algorithm is also
easily vectorizable and that the scalar-to-vector speedup is
significant.

The vectorizability and speedup characteristics of the PSPI
code were studied by running it and measuring execution
times on the 3090 computer in scalar and vector modes. The
problem under consideration consisted of a synthetic zero-
offset section of size 512 X 512. The vectorized version of
the code was developed from the original scalar code by
introducing relatively minor modifications, e.g., loop
reordering. The idea is to enable the VS FORTRAN Version
2 Compiler to recognize “independence” among a set of
operations and to convert them into vector object programs.
Only one subroutine was replaced by its vector counterpart:
All calls to HARM were replaced by calls to SCFT from
ESSL [8].

As one can see in Fig. 2, the PSPI algorithm consists of’
three major operations: Fourier transformation, complex
multiplication, and interpolation between the wave fields.
Table 1 summarizes the performance data of the PSPI
algorithm. The measurements do not include I/O, the initial
transformation from the time to the frequency domain,
parameter initialization, etc., operations that account for less

J. GAZDAG ET AL.

181

182

Table 1 Performance of the PSPI code.

Scalar code

Vector code Scalar-to-vector

speedup
CPU (s) % CPU (s) %
FFT 1181.1 61.8 180.6 39.1 6.5
Complex multiply 173.7 9.0 37.3 8.0 4.6
Interpolation 478.7 25.5 209.7 45.4 2.2
Other 67.5 3.9 34.4 7.4 1.9
Total 1910.0 462.0 4.1

than 1% of the total execution time in the scalar version of
the code. Table 1 summarizes the results of our
measurements by showing the CPU time, in seconds, for the
main part of the code, the relative importance of the
different portions of the code, and the scalar-to-vector
speedup for each part. The best speedup is observed for the
FFT, which does not come as a surprise, as SCFT is carefully
tuned to the 3090 VF. It may be possible to improve the
performance of the other parts. The overall speedup of 4 that
we measured is a rather impressive figure.

As we mentioned earlier, the data and the computations
associated with different frequencies w are independent. We
took advantage of this to run the loop over the frequencies
in parallel on the two CPUs of the 3090 VF. The software
tool we used to do this was the VS FORTRAN Version 2
Multitasking Facility [21]. This facility is a set of routines
that can be called by a FORTRAN program and allows
multiple MVS tasks to be started and synchronized. In the
case of PSPI, we started two identical tasks that processed
half of the frequencies each. We had only to make minor
changes to the original scalar code. The overhead involved in
this process is very small, particularly if compared to the
coarse granularity of the problem. We measured a twofold
speedup when running on a dedicated system using two
CPUs, which is equivalent to an effective speedup of about 8
compared to the scalar uniprocessor version.

Concluding remarks

We have presented an overview of wave-equation migration
of seismic data and analyzed the potential of their
vectorizability on the IBM 3090 Vector Facility. The
numerical solution of the one-directional wave equations
can be carried out by finite-difference methods or by spectral
methods based on Fourier Transform techniques. The finite-
difference approach requires the repeated solution of
tridiagonal systems of equations. In spectral methods Fourier
Transforms and convolution operations are used extensively.
The analysis of these representative kernels shows that the
speedup gained by vectorizing tridiagonal solvers is
practically nothing up to the order of 300, and very little
above that. On the other hand, Fourier Transforms with
SCFT of ESSL on the IBM 3090 VF are about six times
faster than in scalar mode using HARM for a sequence of

J. GAZDAG ET AL.

size 512 or greater, which is the range of interest in seismic
data processing. Speedup figures for convolution were even
more impressive. Compound vector instructions can be used
to make the vector code more than ten times faster than its
scalar counterpart.

The choice of finite-difference methods has always been
influenced by considerations related to cost-effectiveness,
and their development during the past three or four decades
has been centered around the scalar machine. The best scalar
algorithms were those that required the fewest operations.
This, however, is not the only consideration for vector
algorithms; their goodness depends also on how well they
take advantage of the particular vector architecture under
consideration. The relative speed of different migration
methods may be significantly different on scalar and vector
processors, and the effective adaptation of scalar algorithms
to vector computers remains a challenge for some time in
the future.

Spectral methods based on Fourier Transform techniques
are characterized by an intrinsically parallel structure. This
parallelism implies a certain degree of independence among
the elements of some data set and operations performed
thereon, and consequently the algorithm is more easily
adapted to vector architecture. The Phase-Shift Method and
the PSPI Method are excellent examples for demonstrating
this inherent parallelism. In addition to their vectorizability
with respect to the horizontal coordinate, x or k_, all
computations associated with different frequencies w can also
be performed independently of one another. This means that
Fourier domain migration based on the phase-shift concept
lends itself conveniently to multilevel parallelism on the
3090 VF: vectorization of the innermost loops and
concurrent processing in the outer loops, e.g., by means of
the VS FORTRAN Version 2 Multitasking Facility.

References

1. J. Gazdag, “Wave Equation Migration with the Phase-Shift
Method,” Geophys. 43, 1342-1351 (1978).

2. 1. F. Claerbout, “Coarse Grid Calculation of Waves in
Inhomogeneous Media with Application to the Delineation of
Complicated Seismic Structures,” Geophys. 35, 407-418 (1970).

3. R. Clayton and B. Engquist, “Absorbing Boundary Conditions
for Acoustic and Elastic Wave Equations,” Bull. Seis. Soc.
Amer. 67, 1529-1540 (1977).

4. J. Gazdag and P. Sguazzero, “Migration of Seismic Data by
Phase Shift Plus Interpolation,” Geophys. 49, 124-131 (1984).

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

. J. Gazdag and P. Sguazzero, “Migration of Seismic Data,” Proc.
IEEE 72, 1302-1315 (1984).

. J. F. Claerbout, Imaging the Earth’s Interior, Blackwell
Scientific Publications, Oxford, England, 1985.

. R. W, Hockney and C. R. Jesshope, Parallel Computers, Adam
Hilger Ltd., Bristol, England, 1981.

. Engineering and Scientific Subroutine Library, General
Description, Order No. GC23-0182, available through IBM
branch offices.

. System/370 Vector Operations, Order No. SA22-7125, available
through IBM branch offices.

. J. J. Dongarra, F. G. Gustavson, and A. Karp, “Implementing
Linear Algebra Algorithms for Dense Matrices on a Vector
Pipeline Machine,” SIAM Rev. 26, 91-112 (1984).

. E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1974.

. R. C. Singleton, “Mixed Radix Fast Fourier Transforms,”
Programs for Digital Signal Processing, Digital Signal Processing
Committee, Eds., IEEE Press, New York, NY, 1979.

. System/{360 Scientific Subroutine Package Version I11, Order
No. H20-0205, available through IBM branch offices.

. R. C. Agarwal, “An Efficient Formulation of the Mixed-Radix
FFT Algorithm,” presented at the International Conference on
Computers, Systems, and Signal Processing, Bangalore, India,
December 10-12, 1984.

. R. C. Agarwal and J. W. Cooley, “Fourier Transform and
Convolution Subroutines for the IBM 3090 Vector Facility,”
IBM J. Res. Develop. 30, No. 2, 145-162 (1986, this issue).

. R. C. Agarwal, IBM Research Division, Yorktown Heights, NY,
private communication, 1985.

. R. W. Hockney, “A Fast Direct Solution of Poisson’s Equation
Using Fourier Analysis,” J. ACM 12, 95-113 (1965).

. H. S. Stone, “Parallel Tridiagonal Equation Solvers,” ACM
Trans. Math. Software 1, 289-307 (1975).

. J.]. Lambiotte and R. G. Voigt, “The Solution of Tridiagonal
Linear Systems on the CDC Star-100 Computer,” ACM Trans.
Math. Software 1, 308-329 (1975).

. D. Kershaw, “Solution of Single Tridiagonal Linear Systems and
Vectorization of the ICCG Algorithm on the Cray-1,” Paralle!
Computations, G. Rodrigue, Ed., Academic Press, Inc., New
York, 1982, pp. 85-100.

. VS FORTRAN Version 2, General Description, Order No.
GC26-4219, available through IBM branch offices.

Received July 11, 1985; accepted for publication October 2,
1985

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

Jeno Gazdag [BM Scientific Center, 1530 Page Mill Road, Palo
Alto, California 94304. Dr. Gazdag received his B.E. from McGill
University, Montreal, Canada, in 1959, his M.A.Sc. from the
University of Toronto, Canada, in 1961, and his Ph.D. from the
University of Illinois, Urbana, in 1966, all in electrical engineering.
From 1961 to 1962 he was employed by the National Research
Council of Canada in Ottawa. In 1966, he joined IBM’s Research
Division. He is now manager of engineering and scientific
applications at the IBM Scientific Center in Palo Alto. His main
research interest is in the field of numerical solution methods for
partial differential equations with applications in seismic data
processing. Dr. Gazdag is a member of the European Association of
Exploration Geophysicists, the Institute of Electrical and Electronics
Engineers, the Society of Exploration Geophysicists, and the Society
of Industrial and Applied Mathematics.

Giuseppe Radicati di Brozolo /BM Iialy, Scientific Center/
European Center for Scientific and Engineering Computing, Via
Giorgione 159, 00147 Rome, Italy. Dr. Radicati received a doctorate
in mathematics from the University of Pisa in 1981. He joined IBM
in 1982 and since that time has been involved in seismic data
processing. In 1985 he participated in the design and development of
VPSS/VF, the simulator of the IBM 3838 Array Processor on the
IBM 3090 Vector Facility. His current research interests are seismic
data processing and algorithms for parallel and vector architectures.

Piero Sguazzero [BM lialy, Scientific Center/European Center

Jor Scientific and Engineering Computing, Via Giorgione 159, 00147

Rome, Italy. Dr. Sguazzero received his doctorate in mathematics
from the University of Trieste in 1969. He has held positions at the
University of Trieste and at the National Council of Research of
Italy. Since 1970 he has been with the IBM Italy Scientific Centers,
first in Venice (1970-1978), where he worked in the area of
numerical modeling in hydrodynamics and contributed to the
development of two numerical models of the Lagoon of Venice, and
then in Rome. His present interest is the development of algorithms
and software for geophysical problems, in particular seismic
migration and velocity analysis with special attention to the
algorithmic implications of parallel and vector architectures. In 1974
and 1978 he was a visiting staff member at the IBM Palo Alto
Scientific Center. Dr. Sguazzero is a member of the Society of
Exploration Geophysicists.

Hsuan-Heng Wang IBM Scientific Center, 1530 Page Mill Road,
Palo Alto, California 94304. Dr. Wang joined IBM in Poughkeepsie
after receiving a Ph.D. in mathematics from the University of Texas,
Austin, in 1964. He is currently a staff member at the Palo Alto
Scientific Center. After joining IBM, Dr. Wang worked in the area of
scientific computing and machine evaluation; more recently, he has
been active in vector processing. He has received an IBM
Outstanding Technical Achievement Award for his work on
developing numerical algorithms for vector machines. He is a
member of the Institute of Electrical and Electronics Engineers
Computer Society and the Society for Industrial and Applied
Mathematics.

J. GAZDAG ET AL.

