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Seismic prospecting aims at determining the 
structure of the earth from indirect 
measurements. Acoustic wave fields are 
generated at the surface, penetrate the earth, 
and are backscattered by the earth’s 
inhomogeneities. The data recorded at the 
surface are processed in a complex sequence 
of steps among which seismic migration plays 
an important role. This is a wave depropagation 
process that permits the localization in depth of 
the origin of the diffraction events measured (in 
time) at the surface.  This paper presents an 
overview of the major wave-equation migration 
methods.  The most frequently executed 
algorithms or kernels on which the execution 
speed depends most crucially are given 
particular attention. The speedup resulting from 
scalar-to-vector formulation is presented over 
wide ranges of dimensionality for linear 
tridiagonal equation solvers, Fourier Transforms, 
and convolution operations. The vectorizability 
and resulting speedup are also addressed in the 
case of migration schemes known as the Phase- 
Shift Method and the Phase Shift Plus 
Interpolation (PSPI) Method. It is shown that 
Fourier domain migration based on the phase- 
shift concept lends itself conveniently to 
multilevel parallelism on the 3090 Vector Facility 
(VF): vectorization of the innermost loops and 
concurrent processing in the outer loops by 
means  of the VS  FORTRAN Version 2 
Multitasking Facility. 
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Introduction 
The role of seismic signal processing is to render the 
recorded data  more easily interpretable by geologists. This 
discipline  represents one of the most important areas of 
scientific/engineering computations.  To meet “number- 
crunching”  requirements  dating back more  than a  decade, 
array processors (e.g., IBM 2938 and IBM 3838) were 
developed specifically for the seismic industry. In recent 
years, demands for more  computing power have transcended 
the capacity of array processors. At the  same time, general- 
purpose  vector processors are gaining  acceptance  in the 
seismic industry. This is particularly true for processing steps 
involving two-, three-, and even four-dimensional data 
volumes,  such as seismic migration, the analysis of which is 
the subject of  this  paper. The purpose of migration is to 
reconstruct the reflectivity map of the  earth from th,e seismic 
data recorded at  the surface. 

The  aim of  this  paper is to study the vectorizability of 
major migration  algorithms. The solution methods  under 
consideration fall into  three  major categories: 

Finite-difference methods in the space-time domain. 
Spectral methods  formulated in the space-frequency 

Spectral methods  formulated in the  wavenumber  domain. 

The numerically  most  intensive  algorithms  (executed  many 
thousands of times within  a  migration job), henceforth 
referred to as  “kernels,” are linear  tridiagonal equation 
solvers, Fourier  Transforms, and  convolution operations. 
The speed of migration depends crucially on  the 
performance of the corresponding  kernel.  Consequently, it is 
of considerable importance  to design, program, and use 
these  kernels  optimally for particular  applications. The 
organization of the  paper is as follows. First, the basic 
concepts  of seismic data representation are introduced. Next, 
the theory  of  migration  schemes is described. Then a general 

domain. 
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overview of performance and programming  considerations is 
presented. This is followed by performance analyses of the 
most important kernels and their vectorizability. Emphasis is 
laid on estimating and/or measuring the  speedup of the 
vector algorithm versus the scalar one  on  the IBM 3090 
Vector Facility. A summary of results and observations 
concludes the paper. 

Background 

e Acquisition and representation of seismic data 
Reflection seismology is an echo-ranging  technique. An 
acoustic  source (shot)  emits a short pulse and a set of 
recorders  (geophones) register the reflected waves at the 
surface. The  time series (sampled)  data associated with a 
single shot and receiver are  known  as  a  trace. In a typical 
marine exploration (Figure 1). a  boat tows a  source and a 
streamer of receivers. As it moves half a receiver interval 
along  a seismic line, it fires a shot  and records the pressure at 
each receiver location. A trace is associated with each shot 
and receiver point. Let r be the horizontal coordinate of the 
receiver and s be the horizontal coordinate of the source. 
Both are measured  along the seismic line. However, for 
mathematical reasoning, it is helpful to represent rand  s on 
orthogonal axes, as  shown  in Fig. 1. We also define the 
midpoint  coordinate between source and receiver as 
x = ( r  + s ) /2 ,  and  the source/receiver half-offset coordinate 
as h = ( r  - s)/2. From these equations we see that x and h 
are  another set of axes rotated 45" with respect to  the axes r 
and s. 

Seismic processing techniques have been developed for 
groups  of traces, called gathers, aligned parallel with one of 
the  four axes shown in Fig. I .  One such processing step 
preceding migration is known  as stacking. It consists of the 
summation of the traces of each common  midpoint (CMP) 
gather after correcting them  to compensate  for the offset 
between source and receiver. This is known  as the normal 
moveout (NMO) correction.  When the proper amount of 
time shift is applied to the  traces, apart from  a minor 
distortion effect, they appear  as if they were recorded with 
coincident  source and receiver, i.e., h = 0. The ensemble of 
summed traces is referred to  as  the  CMP stacked section. A 
very important benefit of this  operation is the significant 
improvement in the signal-to-noise ratio of the  CMP section 
in comparison with the unstacked data. 

Wave  p put ion migration 
Migration calls for the numerical  solution of partial 
differential equations which govern the propagation of the 
recorded signals from the surface to  the reflector locations, in 
reverse time.  These  methods, generally referred to as wave- 
equation migration, consist of two steps: wave extrapolation 
and imaging. Downward  extrapolation results in a wave  field 
that is an  approximation of the  one  that would have been 

Receivers Shot 

I c 
Receiver coordinate r 

Relationship among the horizontal coordinates r,s,x, and h. All axes 
represent distances measured along the seismic line. Each dot on the 
surface corresponds to a seismic trace. 

recorded if both  sources and recorders had been located at 
depth z .  Thus, events  appearing at I = 0 are at their  correct 
lateral position.  Therefore, the extrapolated zero-offset data 
at I = 0 are taken as being the correctly migrated data  at  the 
current  depth. These data ( t  = 0) are  then mapped onto  the 
depth section at :, the  depth of extrapolation. This mapping 
process is also referred to  as imaging. 

Let p = p(x .  :, t )  be the  CMP section (zero-offset pressure 
data), where x is the  midpoint variable, : is depth,  and t is 
two-way travel time.  The downward  extrapolation of zero- 
offset data is governed by the one-way wave  eqztation [ I]: 

where P is the Fourier  Transform of p. v is the velocity, k ,  is 
the  wavenumber with respect to x ,  and w is the temporal 
frequency. Equation ( 1 )  is expressed in the wavenumber- 
frequency domain (k,,,  W )  and  does not have an explicit 
representation  in the  midpoint-time  domain (x, 1). 

Migration in t h c  (k.,, W )  domain 
We shall assume that within one extrapolation  step, say from 
depth z to z + k ,  the velocity is constant.  Then  the solution 
of Eq. ( 1 ) can be expressed as 

P(k, ,  w, z + A:) 
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Computational diagram of the PSPI method, with two reference 
velocities. 

This analytic solution states that P is extrapolated from z to 
z + Az by simply rotating its phase by a specified amount. 
Therefore, migration schemes  based on this priciple are 
referred to as phase-shift methods [ I ] .  

The simple analytic solution expressed  by  Eq. ( 2 )  is not 
valid  for  velocity  fields  with lateral variations. In this case, 
the square-root expression in Eq. (1) must be approximated 
in some form-for example by a quadratic polynomial [2]. 
A second-order approximation of Eq. (1) can  be  written as 

az 

When u has lateral dependence, P needs to be  convolved 
with u or its inverse. To implement the migration algorithm 
efficiently, the mean velocity should be treated  separately 
from the perturbation thereon. With  regard to the mean 
velocity u, the wave extrapolation is accomplished by the 
phase-shift method, as expressed  by  Eq. (1) using u instead 
of u. The velocity perturbation about u is taken into account 
by what  may  be  called the correction term, expressed as 

- = 2iwP*F [t - t] - i c) P*F[u - u]. a p  
az 

In this expression F stands for the operation of Fourier 
Transform with  respect to x ,  and * denotes convolution with 
respect to k,. 174 

Migration in the (x, w) domain 
Another rational approximation of (1) is done by truncated 
continued fractions [ 31 and splitting, which  results in two 
extrapolators 

dp = (F) p ,  
az 

which  is  known as the thin lens term, and 

which  is the Fresnel dlyraction term. Advancing to greater 
depths is done by applying  Eqs. (5) and (6) alternately in 
small Az steps. To advance P with (6), for numerical stability 
considerations, an implicit Crank-Nicolson  difference 
scheme  is  most  often  used. 

An alternate approach to wave-field extrapolation in 
general  media is described in [4] and [5]. At each Az step the 
wave extrapolation is accomplished in two  stages.  In the first 
stage the wave  field P(x, W ,  z) given at depth z is 
extrapolated to z + Az by the phase-shift method using 
reference  velocities u,,  u2, . e . ,  ue spanning the velocity  range 
at depth z. This stage  generates L reference extrapolated 
wave  fields at z + Az, namely P,,  Pz, ..., P!. In the second 
stage the definitive wave  field P(x, w, z + Az) is constructed 
by interpolation of the L reference wave  fields. This Phase 
Shift Plus Interpolation (PSPI) method is unconditionally 
stable and has  good  dispersion relation properties worth its 
relatively  high computational cost (for each  frequency w, and 
for  each step in depth, L + 1 Fourier Transforms in the x 
direction are required). The computational diagram of the 
PSPI algorithm is  shown in Figure 2 for two  reference 
velocities (L = 2). 

Migration in the (x9  t)  domain 
Equations (5) and (6) can be expressed in the physical ( x ,   t )  
domain by Fourier-transforming both equations with  respect 
to W .  In order to ensure stability, an implicit  differencing 
scheme  is  used in extrapolating the wave  field to greater 
depths. A comprehensive description of ( x ,   t )  domain 
migration techniques is  given  by Claerbout [6, pp. 90-1021. 

solution of integral equations. The Kirchhoff  integral 
approximates the wave  field at an arbitrary point as a 
weighted  integral  of the wave  field recorded at the surface 
[5]. This approach to migration is not a wave-equation 
method, and its detailed  analysis is outside the scope of this 
paper. 

Migration in the ( x ,   t )  domain can also be formulated as a 

An example of migration of synthetic seismic data 
As  we have  discussed  earlier, migration is an inverse  process. 
To test a migration  scheme and evaluate its performance, we 
need a set of  seismic data, e.g., a zero-offset  section obtained 
from an idealized  model  with  known  reflectivity and 
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velocities. This is usually done by simulating the forward 
process using one of the  standard forward modeling  schemes 
[4, 51. An example  of  such  a  modeling approach representing 
a set of  dipping reflectors is shown  in Figure 3. On  the 
schematic of the model [Fig. 3(a)], the reflectors are 
indicated by thick  lines to distinguish them from interfaces 
of velocity regions depicted by thin lines. Figure 3(b) 
illustrates the synthetic zero-offset section. Figure 4 shows 
the migrated results obtained by a finite-difference method, 
based on Eqs. (5) and (6),  and  the PSPI method. Both 
migrated sections are of high quality, and they  represent  a 
good  reconstruction  of the reflectors of the model. An 
interesting  feature  superimposed on  the migrated results is a 
circular  pattern  extending  down to  the z = 5 level. These  are 
diffracted waves originating  from the neighborhood of 
(x = 8, z = 3), where the region in which v = 4 km/s 
narrows to a point. 

Vector  algorithms 

General  principles 
The  number of operations  within an algorithm that  can be 
executed independently and therefore can be performed in 
parallel is referred to as  the purullelism of the algurithm [ 7 ] .  
These independent operations can, in principle, be 
performed  concurrently, or simultaneously,  as one may wish 
to  do in certain parallel architectures  such as processor 
arrays. A pipelined computer is organized in  a way similar to 
an assembly line. Operations  are divided into subtasks that 
are executed by specialized hardware stages. Operands flow 
from one stage to  the next, so that  the various stages may 
concurrently process different operands. Successive tasks are 
executed  in the pipeline in an overlapped fashion. 

From  the programmer’s viewpoint, it makes little 
difference whether parallel operations  are executed 
simultaneously or in  a time sequence with considerable 
overlapping among  the operations. The  data  are defined as 
vectors, and  the  operations correspond to vector 
instructions.  Vector  instructions, which operate on arrays  of 
data rather than  on single data items, serve the purpose of 
feeding data  to  the pipelined units at  an  optimal rate. If 
properly used, vector instructions  can result in  a tremendous 
improvement of system throughput. 

To  obtain sustained high performance on a vector 
computer, it is essential that  the algorithms be designed 
specifically for the architecture of the  computer  under 
consideration. There  are  three approaches to implementing 
vector algorithms: ( 1 )  programming  in FORTRAN, ( 2 )  
programming in Assembler, and (3) using a set of routines 
optimized  for the vector architecture under consideration. In 
the first case, while the program  development is easier and 
more efficient, one needs to rely on the ability of the 
compiler to vectorize the  FORTRAN program. In the 
second case, at  the expense of working with a low-level 
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Depth  migration  sections  obtained from the  zero-offset  section 
f shown in Fig. 3(b) by means of (a) a finite-difference method and (b) 

the PSPI method. 
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language, one  can select an  optimal set of vector instructions 
to define the algorithm. A well-written assembler  code 
tailored to a particular system is likely to  outperform  the 
code  produced by any compiler. While this  has always been 
true for serial computers,  it is even more valid for vector 
computers.  The  ratio of  performance between good and bad 
programs is substantially higher on vector computers  than 
on serial computers.  For  the  third  approach a highly tuned 
subroutine library, the Engineering and Scientific Subroutine 
Library (ESSL) [8], has  been  developed for  the 3090 VF. It 
contains  routines for the solution of systems of linear 
equations,  eigenvalue  problems,  Fast Fourier Transforms, 
etc. 

Performance 
It is quite  customary  to measure the performance  of a 
computer in  millions  of instructions per second  (MIPS) or, 
in  the case of a scientific computer,  in millions of floating- 
point  operations per second  (MFLOPS). In this  paper we are 
not interested in measuring  hardware  performance and we 
do  not wish to  make  any  comparison with any  other 
hardware. Our primary  interest lies in  the relative 
performance  of the 3090 in vector and scalar mode, in order 
to have a reasonably  good  appreciation  for the  incremental 
performance due  to  the vector feature. We define the 
performance of a computer program  as the inverse ofthe 
CPU time required. This is not  the only definition that could 
have been given. We could  have  taken into  account  the use 
of the  memory  and  other storage devices. However, in the 
context of this  paper we cannot address  complicated 
performance  measures of this type. 

It should be noted that,  on vector  computers, minimum 
execution time is not necessarily synonymous with 
minimum  number of floating-point  operations. The gain in 
speed resulting from  executing the program in vector mode 
may outweigh the cost of extra  arithmetic operations. An 
example  of  this is the tridiagonal system solver, where the 
vector  algorithm  requires about twice as many operations  as 
the scalar algorithm but is faster than  the scalar version for 
sufficiently long vectors. Finally, the performance  of a vector 
code  may depend  to a great extent on  the average vector 
length, on  the  startup  time of the instructions, and  on such 
factors as how well the parallelism in  the algorithm  matches 
the parallelism of  the  computer. 

important kernels is to  estimate  the relative performance of 
the best available vector code versus its scalar counterpart. In 
the simpler  algorithms,  such  as the phase-shift operator, the 
vector code is obtained  from  the scalar FORTRAN by using 
the VS FORTRAN Version 2 compiler. In the  more 
complicated  situations, the scalar and vector programs are 
based on different algorithms,  as in  the case of Fast Fourier 
Transforms (FFT), where we compare  the performance  of 
Short-Precision  Complex-to-Complex Fast Fourier 

Our primary goal in  examining  some of the most 
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Transform (SCFT) from ESSL and a scalar  program based 
on a different algorithm. In  the case of convolution we 
compare  the performance  of different vector algorithms to 
underscore the  importance of  tailoring the code to  the 
architecture under consideration. Thus  our  comparisons 
refer to  the performance  of specific scalar and vector 
algorithms. The relative performance improvement is 
measured as  the ratio  of the scalar and vector execution 
time, which we refer to  as speedup. Speedup figures of 
different algorithms  show  considerable  variation. Thus, for 
example, the measured speedup for convolution was more 
than 10, and less than 1.5 for  tridiagonal system solvers. 

The 3090  VF: An overview 
The 3090 VF,  as seen by the  programmer, is essentially a 
370 machine with the  addition of vector instructions and 
vector registers [9]. The length  of the vector registers is 
model-dependent, and  in  the following discussion we assume 
the length to be 128, as  on  the  machine  on which we ran  our 
tests. The vector instructions process at most 128 elements 
at a time: vectors of length  greater than 128 must be 
sectioned,  in a process that is quite similar to what happens 
on machines like the  CRAY.  In general, to maximize the 
performance, data loaded into a vector register should be 
held there for  as many  arithmetic  operations as possible. 

what follows, FPR stands for a floating-point register, and 
VRn stands for Vector Register n. The  three basic floating- 
point vector  instructions  (multiplication, addition,  and 
subtraction) have four different formats: 

We now describe the  formats of the vector instructions. In 

VR1 = VR2 op memory, 

VRl  = FPR op memory, 

V R l  = FPR op VR2, 

VRl  = VR2 op VR3. (10) 

Floating-point division has  only format (7). An input register 
may also serve as an  output register. In (7) and (8) one of the 
vector operands comes directly from memory, without 
having to be loaded  in a vector register, and  may be accessed 
with stride (positive or negative). In all formats after a 
startup  time of approximately 20 cycles, the vector 
instructions deliver one result per machine cycle. After the 
first 128 elements of a vector have been processed, the 
operations must be reinitialized on  the next  section. 

There  are also two compound instructions, multiply  and 
accumulate (VMC)  and multiply-add (VMA), which perform 
a multiplication and  an  addition  at  the  same  time  and 
deserve special attention. 

(7) 

(8) 

(9) 

In  the multiply  and  accumulate, a vector register is 
multiplied by another vector and  the result is accumulated 
in another vector register, as shown below: 
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for k = 2, 6, IO, 14, ..., 126, (12) 

for k = 3, 7, 1 I ,  15, ..., 127, (13) 

VRO, = VRO, + vR2k w, 

~ 

k 

for k =  4, 8, 12, 16,..., 128 (14) 

In these equations,  Wrepresents  data residing either  in  a 
vector register or in  memory. Vector register VRO 
contains, in the first four positions, partial results. The 
final result is obtained by summing over the first four 
elements of VRO with the instruction sum-partial-sums 
(VSPSD). 
The multiply-add instruction  has the following formats: 

VRO = VRO + FPR X memory, (15) 

VRO = VRO + FPR X VR2, (16) 

VRO = VRO + VR2 X memory. (17) 

After some  startup  time, these compound  instructions 
deliver one result per machine cycle. This feature of the 
3090 VF  to perform  multiple  operations  within one machine 
cycle is similar to  the chaining  concept of the CRAY 
computers. 

When  the vector length n exceeds 128, the vector 
operation is partitioned into 

sections, where [. . .] signifies the integer  part of the bracketed 
expression. Each  section  requires some  startup  time p, 
typically 20 machine cycles, to set up  the pipeline. However, 
when considering  theoretical  performance models, it is more 
realistic to assume the  startup  time  to be approximately 35 
cycles, to include some auxiliary scalar instructions  (load 
address, etc.). After this overhead, the pipeline delivers one 
result every a cycles (a  is 1 for  most  instructions and is 
larger for the  more complicated  instructions).  Using  these 
definitions, the  time required  for  a vector operation is 

s ( n )  = an + PS(n), (19) 

expressed in  machine cycles. 

Performance  analysis of migration kernels 
Our aim is to give the reader an  estimate  of  the performance 
improvement  that  can reasonably be expected from the 
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Vector Facility on  the IBM 3090 system. The speedup 
curves we describe are derived from actual measurements of 
execution  times. We make  no effort to analyze  a  complete 
migration  program  in detail. Instead, we focus our  attention 
on  the most significant computational kernels of these 
programs, the  optimization of which plays a decisive role in 
the global performance of migration  algorithms. 

Representative kernels 
Seismic migration codes are characterized by one or two 
algorithms that  account for most of the floating-point 
operations or FLOPS. These  algorithms, which may be a 
relatively small subset of the  entire migration  program, are 
executed hundreds of thousands of times within  a job step. 
Consequently, their  implementation plays a key role in 
determining  the overall efficiency of the migration  code 
under consideration. In what follows, these  algorithms are 
referred to as  representative kernels. In the migration 
methods discussed above, one  can identify four such kernels, 
which are listed below. 

Kernel 1: the phase-shift operator involves the evaluation 
of the  exponent in Eq. (2) followed by a  complex 
multiplication. This kernel is implemented for data 
corresponding to a fixed w = wj and z = z,, Le., for the 
vector P(k,, oj, zn). The vector elements corresponding to 
different k, are independent  of  one  another;  thus they lend 
themselves  conveniently to vectorization. 

defined as 
Kernel 2: the convolution of  two functionsflx)  and g(x) is 

This is one of the most  often  executed  algorithms  in seismic 
data processing. While various  approaches to seismic 
migration, e.g. Eq. (4), can be expressed in terms of 
convolution, this  algorithm is used most often in 
deconvolution, a time filtering of seismic traces. 

Kernel 3: Fourier Transform. The widespread use of the 
Fast Fourier Transform algorithm is  well known  in signal 
processing, and  there is little need to emphasize  its 
importance further.  Its  intensive use is most apparent in the 
PSPI migration  algorithm, which is a spectral method 
requiring  repeated Fourier  Transforms of 1 D or 2 D  arrays at 
all depths z and all temporal frequencies w of interest. 

Kernel 4: tridiagunal systems of equations are very 
important since they occur  frequently  in finite-difference 
approximations  to differential equations, e.g., Helmholtz, 
Poisson, diffusion, and wave equations. The wave 
extrapolation equation ( 6 )  and (x, t )  domain migration 
techniques  are base$ on  the solution of tridiagonal systems. 

The phase-shift operator 
The  major  computation task in  migration by the phase-shift 
method is the evaluation of Eq. (2). Numerically,  this is 
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equivalent to multiplying  each  relevant  complex  Fourier 
coefficient by a complex number of unit modulus. The 
following FORTRAN DO-loop is the kernel of a phase-shift 
program: 

DO I O  IX = 2, LIM 
THETA = SQRT( 1.0 - VPWSQ*KXSQ(IX))*DZ*WPERV 
ROTATE = CMPLX(COS(THETA), SIN(THETA)) 

C APPLY  PHASE SHIFT TO POSITIVE WAVENUMBERS 
P(1X) = P(1X):ROTATE 

C APPLY PHASE SHIFT TO NEGATIVE WAVENUMBERS 
INX = NX - (IX - 2) 
Q(INX) = Q(INX)*ROTATE 

I O  CONTINUE 

The DO index  limit,  LIM,  corresponds to  the highest 
wavenumber k, and is bounded by NX/2, and  THETA is 
the  quantity inside the curved  brackets  of Eq. (2) .  The VS 
FORTRAN Version 2 compiler vectorizes this  DO-loop, 
generating  calls to vector-valued intrinsic  functions SQRT, 
COMPLX, SIN, and COS. We measured a scalar-to-vector 
speedup of 2.1 on  the phase-shift kernel of a migration 
program. 

Convolution 
Let u = (ul, u,, .+., un) and x = (xl, x,, ..., x,+,-I) be 
sequences  of  length n and n + m - 1, respectively. The 
convolution u*x of  these  sequences is a sequence  of  length 
rn, defined as 

( U * X ) ~  = 1 U,X, ,+~-~  for i = 1, ..., m. (21) 
n 

k= I 

This  operation plays a very important role in signal 
processing. When both  sequences are long, it is usually 
implemented by means of algorithms based on Fast  Fourier 
Transforms.  Here, we are  concerned with a straightforward 
implementation of Eq. (21). As we shall see, the  compound 
instructions discussed above are well suited to implementing 
(21) and result in very high vector performances. 

There  are two ways of implementing Eq. (2 I ) .  The first 
one is described by the following FORTRAN loops, referred 
to as  Algorithm 1 : 

DIMENSION U(N),  X(M + N - I), Y(M) 
D O 3 1 =  I , M  
Y(1) = 0. 

3 CONTINUE 
W 5 K = I , N  

D O 4 1 =   l , M  
Y(1) = Y(1) + U(K)*X(N + I - K) 

4  CONTINUE 
5 CONTINUE 

In this case the  inner loop,  over  index i, is  of the form 
VI = VI + s X V2, where VI and V2 are vectors and s = u, 
is a scalar. 

Both algorithms can be implemented  on  the 3090 VF by 
making use of high-performance  chained, or compound, 
instructions, which perform two floating-point operations 
per machine cycle. Using other vector instructions,  such  as 
addition, multiplication, etc., it is possible to perform only 
one floating-point operation per machine cycle. It is  shown 
that  the performance  of  Algorithm 2 is much better than 
that of Algorithm 1. This sort of loop reordering is common 
to  many problems of linear algebra on vector processors. 
Problems  of  this  kind are discussed, for  example, by 
Dongarra et a]. [lo]. 

Algorithm 1 
We now  describe  two implementations of the first algorithm 
using the vector instructions. 

For i = 1, 2, ..., m, 

Zero-partial-sums. 
F o r k  = 1, 129, ..., n, 

Vector  length I = min( 128, 1 + n - k ) .  
Load I elements  of u to a vector register starting from uk. 
Multiply and  accumulate for 1 elements over u and x 

starting  from x,+,, with stride - 1. 

Sum-partial-sums. 
Store result into y,. 

Assuming a startup  time of 35 cycles for each vector 
instruction, the  timing  equation for this algorithm can be 
approximated  as 

‘ T ~  = 2mn + m[90 + 105S(n)], (22) 

where S ( n )  is the  number of sections in a vector of length n 
as defined by ( 1  9). The first term  accounts for the load of u 
and  the multiply  and  accumulate, which are performed m 
times. The second term  accounts for the zero-partial-sums, 
the sum-partial-sums, and  the store of yi. The third term  in 
the  equation  accounts for the  startup  time for the  three 
vector instructions in the  main loop. This first 
implementation of Algorithm 1 is rather inefficient due  to 
the repeated  loading  of vector u into  the vector register. 

>EVELOP. ! IOL. 30 NO. 2 MARCH I 986 

DIMENSION U(N), X(M + N - I ) ,  Y(M) 
W 2 I =  I , M  
Y(1) = 0. 

DO 1 K =   l , N  
Y(1) = Y(1) + U(K)*X(N + I - K) 

I CONTINUE 
2 CONTINUE 

The  inner loop,  over  index k, is a scalar product of  length n 
between u and sections  of vector x. One  can see that loops 1 
and 2 can be interchanged  without affecting the result. This 
second implementation is referred to  as Algorithm 2: 178 
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When this shortcoming is corrected, the performance 
increases significantly. A  second implementation of 
Algorithm I is based on loading one section  of u and 
forming its scalar product with all the sections  of x. 
Repeating this procedure  for all the sections  of u and 
summing  the partial results yields the desired result. Each 
section of u is  loaded  only  once,  in exchange for doing a 
zero-partial-sums, a sum-partial-sums, a load,  a sum,  and a 
store  of y,, m times for each section  of u.  The  timing 
equation of this second implementation is 

‘ T ~  = m n  + m[l + 120S(n)] 

+ n + 70S(n)  + 35S(m).  (23) 

Algorithm 2 
The vector implementation of Algorithm 2 can be 
summarized  as follows: 

Fori = 1, 129, ..., m, 

Vector length I = min( 128, 1 + m - i ) .  
Clear VRO for I elements. 
For k = I ,  2, ..., n, 

Load uk to FPR. 
VRO = VRO + FPR X 1 elements of x starting  from 

with stride 1. 

Store 1 elements of VRO starting  from y,. 

This algorithm  is based on  the multiply-add instruction. 
Note  that  no vector load instruction is ever used, and  the 
sectioning is performed with respect to  the index i. Overhead 
is minimized by performing the sectioning on  the  outermost 
loop. Assuming a startup  time of 35 cycles for all the vector 
instructions, the  timing  equation for  this  algorithm is 

T~ = mn + 45nS(m) + 2m + 105S(m).  (24) 

The first two terms  account for the  inner loop; the last two 
terms  account for the clearing of the  accumulation register, 
the store of vector y ,  and  the  computation of the vector 
length. 

Comparison of performance 
In order  to illustrate  performance improvements resulting 
from careful coding, the performance  curves  for the three 
implementations of the  convolution  operation above  are 
shown  in Figure 5. These  plots represent floating-point 
operations per machine cycle versus m for n = 64 [Eq. (21)]. 
These  curves were obtained by dividing 2nm, the total 
number of floating-point operations in the algorithm, by the 
estimated  execution time given in (22),  (23), and (24). The 
cost  of the multiple  loads of vector u in Eq. (22) is obvious. 
For vectors with large m, Algorithm 2 is significantly better 
than Algorithm 1. The crossover point  depends  on n. In the 
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case of n = 64, Algorithm 2 is more efficient for vectors with 
m > 25. Even for large n, Algorithm 2 is always more 
efficient if m > 50. The lower performance of Algorithm 1 is 
attributable  to  the loading of vector u and  the performing  of 
sum-partial-sums several times for each y,. The effect caused 
by the sectioning of vector operations in Algorithm 2 is 
evident. The performance drops very sharply just after m 
reaches values that  are integer  multiples  of 128. This is due 
to  the overhead associated with the additional  section 
containing only  a few elements. Note  that because of the 
startup  time for vector instructions  and  the loads of uk to 
floating-point registers, the asymptotic  performance is 1.5 
operations per cycle, rather  than 2. The performance  of 
Algorithm 1 ,  shown  in Fig. 5 for n = 64, increases 
monotonically with n up  to 128. However, its maximum 
performance is about  one floating-point  operation per 
machine cycle. These  curves  illustrate the  importance of 
tailoring the algorithm to  the architecture  of the  computer. 

we consider Algorithm 2. First we measured T ~ ,  the 
execution time for  a scalar convolution algorithm. The 
speedup T J T ~  is shown  in Figure 6 (solid curve), where T~ is 
given by Eq. (24). To verify these  predictions, we also 
measured the actual vector execution time corresponding to 
T ~ .  The measured  speedup figures are depicted by the symbol 
+ in Fig. 6. There is a  good  agreement between the predicted 
and  the measured speedup values. 

To illustrate the scalar-to-vector speedup for convolution, 

Fast Fourier Transform 
The FFT algorithm plays a very important role in signal 
processing. The motivation  for  this is twofold: convenience 
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execution of  which  is camed out more economically by 
means of Fourier Transform techniques. Filtering of one-, 
two-, or three-dimensional data  and numerical methods 
involving long linear operators serve as representative 
examples. Here one takes advantage of the convolution 
theorem (Brigham [ 1 I])  and  the speed of the algorithm. 

For the FFT algorithm, our only objective was to measure 
the speedup from scalar to vector operations. For the scalar 
case  we used the FFT routine by Singleton [ 121, the 
performance of which  is comparable to that of the well- or I I I I I I I I known HARM routine [ 131. The vector FFT algorithm is 

0 100 200 300 400 500 described by Aganval [ 141 and by Aganval and Cooley [ 151 

m 
and is part of  ESSL. The speedup curve (Figure 7) is  based 
on timings of these routines performed on the 3090 VF. 
Note that  the speedup decreases  when  passing from 
transforms of comdex arravs of 2048 elements to 4096 

Scalar-to-vector speedup for convolution on the 3090 as a function of elements. This problem is caused by the limited size of the 
M. The vector algorithm is an implementation of Algorithm 2. The 
svmbol + reDresents measured values: the  continuous  line is an cache 161* For transforms Of length 4096 and the 
&timate base; on (24). data  and  the associated  working and coefficient arrays do not 

fit in  cache. Therefore, the problem is broken into pieces 
which fit in the cache; this requires multiple access  of data 

3 
B m 
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Transform length N 

and  an intermediate two-dimensional array transposition. 
This degrades the performance by about lo%, but this drop 
in performance is not as much as in the case of a 
conventional scalar FFT for transforms which do not fit in 
cache ( 1  6 384 and beyond). 

e 

B) Tridiagonal solvers 
The solution of a tridiagonal system  of linear equations lies 
at the heart of many scientific  programs. The usual method 
for  solving such a system on a serial computer is  based on 
Gaussian elimination, which is entirely recursive and does 
not lend itself to vectorization. In the past dozen years, 
several new algorithms have been proposed for  solving 

181. The most commonly used  vector algorithms are based 
on a method originally proposed by Gene Golub and Roger 

u 
16 384 tridiagonal systems on parallel and vector computers [ 17, 

Hockney and known as cyclic reduction [ 19, 201. The 
vectorization is achieved at a cost of approximately twice the 
arithmetic operations required by Gaussian elimination. In 
what  follows, we  briefly describe the scalar and the vector 
algorithms and the speedup curves we measured. 

and economy. The first  category includes applications in 
which the operations on  the  data  are more easily formulated 

Gaussian elimination 
Consider the tridiagonal system  of n linear equations 

and/or these operations are performed more accurately in Ax = r, (25) 
the frequency or wavenumber domain. One example is 
directional or fan  filtering  of  two- or three-dimensional data. 
Another example is migration by phase  shift. Equations (1) 
and (2) are exact statements of  wave extrapolation in the 

where A is a tridiagonal matrix with its ith row denoted by 
(..., c,, ai, bi, ...). The solution of (25) can be accomplished 
in the following  two  steps: 

wavenumber-frequency domain, which cannot be expressed Fonvard step: 
in the space-time domain. The second category comprises 
operations defined in the space and/or time  domain,  but  the dl = l /al  180 
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In the actual implementation, array d can replace the main 
diagonal a, while y and x can share the same space  as r. A 
total of 9n arithmetic operations (including n divides) are 
required to obtain the answers. 

Cyclic reduction 
The approach in  cyclic reduction is to eliminate in the even- 
numbered equations the coefficients  associated  with the odd- 
numbered variables by elementary row transformations. 
These transformations can be carried out simultaneously. 
The transformed even-numbered equations again form a 
tridiagonal system  half the original size. This process can be 
repeated on the reduced  system.  After p = log, n steps of 
such elimination, there is only one equation left,  which can 
easily  be  solved. Other solutions can then be obtained by 
back substitution. 

As a vector algorithm to solve tridiagonal equations, cyclic 
reduction as  described  above  has two weaknesses,  namely: 

The vector length changes by a factor of 2 in each step. In 
the last steps, even  for  large n, the vectors  being  processed 
are short. 

addressing scheme result in less than optimal use  of the 
cache when  solving  large  systems. 

The large memory requirements and the complicated 

Scalar-to-vector speedup 
We have compared the performance on a 3090 with  Vector 
Facility of a Gaussian elimination code with that of an 
assembly  language  cyclic reduction code based on  the 
algorithm described by Kershaw [20]. Note that neither the 
cyclic reduction algorithm nor the Gaussian elimination 
algorithm perform pivoting. Figure 8 shows the speedup 
versus the order of the matrix, n. The speedup for this 
problem is small because of the relatively small vector-to- 
scalar speed ratio and because  of the limited size  of the 
cache. 

Performance measurements of the  PSPI code 
The PSPI method was developed  [4] as a response to the 
following shortcomings exhibited by finite-difference 
migration methods: (1)  an inaccurate dispersion relation for 
steep dips, (2) errors due  to difference approximations, and 
(3) predisposition to numerical instability. To keep the 

IBM J.  RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986 

LO!” 

0 
0 500 1000 1500  2000 2500 

n 

Scalar-to-vector speedup for tridiagonal linear system solvers as a 
function of n. 

stability problem under control, implicit difference schemes 
are used to solve the wave extrapolation equations, e.g.,  Eq. 
(6). These implicit schemes call  for the evaluation of 
tridiagonal systems  of equations for two-dimensional data. 
However, Claerbout [6, p.  1001 finds that “in space 
dimensions higher than  one  the implicit method becomes 
prohibitively costly.” The PSPI migration scheme, on  the 
other hand, has proved to be accurate, unconditionally 
stable, and applicable to data of any dimension. One of the 
aims of this study is to show that  the PSPI algorithm is also 
easily  vectorizable and  that  the scalar-to-vector speedup is 
significant. 

The vectorizability and speedup characteristics of the PSPI 
code were studied by running it and measuring execution 
times on  the 3090 computer in scalar and vector modes. The 
problem under consideration consisted of a synthetic zero- 
offset section of  size 5 12 x 5 12. The vectorized  version  of 
the code was developed from the original scalar code by 
introducing relatively minor modifications, e.g., loop 
reordering. The idea is to enable the VS FORTRAN Version 
2 Compiler to recognize “independence” among a set of 
operations and to convert them into vector object programs. 
Only one subroutine was  replaced by its vector counterpart: 
All calls to HARM were  replaced by calls to SCFT from 
ESSL [8]. 

As one can see in Fig. 2, the PSPI algorithm consists of 
three major operations: Fourier transformation, complex 
multiplication, and interpolation between the wave  fields. 
Table 1 summarizes the performance data of the PSPI 
algorithm. The measurements do not include I/O, the initial 
transformation from the  time to the frequency domain, 
parameter initialization, etc., operations that account for less 
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Table 1 Performance of the PSPI code. 

Scalar code Vector code Scalar-to-vector 
speedup 

CPU(s)  % CPU(s)  % 

m 1181.1 61.8 180.6 39. I 
173.7 Complex multiply 9.0  37.3 8.0 
478.7 Interpolation 25.5  209.7 

Other 67.5  3.9  34.4 
Total 

7.4 
1910.0 

6.5 
4.6 

45.4  2.2 
1.9 

462.0  4. I 

than 1 % of the total execution time in the scalar version  of 
the code. Table 1 summarizes the results  of our 
measurements by showing the  CPU time, in  seconds,  for the 
main part of the code, the relative importance of the 
different portions of the code, and  the scalar-to-vector 
speedup for  each part. The best speedup is observed  for the 
FFT,  which does not come as a surprise, as  SCFT  is  carefully 
tuned to the 3090  VF.  It  may be possible to improve the 
performance of the other parts. The overall speedup of 4 that 
we measured is a rather impressive figure. 

As  we mentioned earlier, the data  and  the computations 
associated  with  different frequencies w are independent. We 
took advantage of this to run the loop over the frequencies 
in parallel on the two CPUs of the 3090  VF. The software 
tool we  used to  do this was the VS FORTRAN Version 2 
Multitasking Facility [21]. This facility is a set of routines 
that can be called by a FORTRAN program and allows 
multiple MVS  tasks to be started and synchronized. In the 
case  of  PSPI, we started two identical tasks that processed 
half  of the frequencies each. We had  only to make minor 
changes to the original  scalar  code. The overhead involved in 
this process  is  very small, particularly if compared to the 
coarse granularity of the problem. We measured a twofold 
speedup when running on a dedicated system  using  two 
CPUs, which  is equivalent to an effective speedup of about 8 
compared to the scalar uniprocessor version. 

Concluding  remarks 
We have presented an overview  of  wave-equation migration 
of  seismic data  and analyzed the potential of their 
vectorizability on  the IBM 3090  Vector  Facility. The 
numerical solution of the one-directional wave equations 
can be camed out by finite-difference methods or by spectral 
methods based on Fourier Transform techniques. The finite- 
difference approach requires the repeated solution of 
tridiagonal systems  of equations. In spectral methods Fourier 
Transforms and convolution operations are used  extensively. 
The analysis of these representative kernels  shows that the 
speedup gained by vectorizing tridiagonal solvers is 
practically nothing up to  the order of 300, and very little 
above that. On the other hand, Fourier Transforms with 
SCFT of ESSL on the IBM 3090 VF are about six times 
faster than in scalar mode using  HARM  for a sequence of 

size 5 12 or greater, which is the range  of interest in seismic 
data processing. Speedup figures  for convolution were  even 
more impressive. Compound vector instructions can be  used 
to make the vector code more than ten times faster than its 
scalar counterpart. 

The choice of  finite-difference methods has  always  been 
influenced by considerations related to cost-effectiveness, 
and their development during the past three or four decades 
has been centered around  the scalar machine. The best scalar 
algorithms were those that required thefewest operations. 
This, however,  is not the only consideration for vector 
algorithms; their goodness depends also on how  well they 
take advantage of the particular vector architecture under 
consideration. The relative  speed  of  different migration 
methods may  be  significantly  different on scalar and vector 
processors, and  the effective adaptation of scalar algorithms 
to vector computers remains a challenge  for some time in 
the future. 

Spectral methods based on Fourier Transform techniques 
are characterized by an intrinsically parallel structure. This 
parallelism implies a certain degree  of independence among 
the elements of some data set and operations performed 
thereon, and consequently the algorithm is more easily 
adapted to vector architecture. The Phase-Shift  Method and 
the PSPI Method are excellent examples for demonstrating 
this inherent parallelism. In addition to their vectorizability 
with  respect to the horizontal coordinate, x or k,, all 
computations associated  with  different frequencies w can also 
be performed independently of one another. This means that 
Fourier domain migration based on the phase-shift concept 
lends itself conveniently to multilevel  parallelism on the 
3090  VF: vectorization of the innermost loops and 
concurrent processing  in the outer loops, e.g.,  by means of 
the VS FORTRAN Version 2 Multitasking Facility. 
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