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This  paper  describes  a  vectorizing  Fortran 
compiler  for  the IBM 3090 Vector  Facility. 
Opportunities  for  vectorization are investigated 
for  eight levels of DO-loop  nesting.  Recurrences 
in  inner  loops  do  not  prevent  vectorization  of 
outer  loops. A least-cost  analysis  determines 
from  the  opportunities  identified  which  specific 
vectorization  will  result  in  the  fastest  execution. 
The  normal  optimization  phases  of  the  compiler 
produce  much  of  the  information needed for the 
vectorization  analysis. 

Introduction 
Many programs  written for computers  contain loops, and 
nests  of loops, for  performing repetitive operations  on 
sequences of data. These  programs  direct that operations be 
done  in a well-defined order. Because scalar machines have 
historically been the most widely available type of machines, 
the  order is one  that is readily executable on a  scalar 
machine. On a vector machine, however, where successive 
elements in the  order  are processed in parallel, this very 
same  order  may  not  be valid. There may exist other orders 
in which the  elements may be processed correctly,  but 
analysis is required to discover both the valid orders and  the 
parts  of  programs for which the vector machine may be 
used. This analysis and its result is commonly known  as 
vectorization. The purpose is to begin with a  program 
written  for  a scalar machine  and  make it  execute on a vector 
machine. 

Vectorization  is of interest  for at least three reasons. First 
is the large existing body of programming  written  for scalar 
machines. An automatic vectorizer makes  it possible for an 
existing program to  be executed on a vector machine 
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without  requiring that it be inspected or rewritten.  Second is 
portability. An automatic vectorizer makes  it possible to 
execute  a  program  without  change on both  a scalar and a 
vector machine. Third is speed. An automatic vectorizer 
makes  it possible for a  program to be optimized  for scalar 
when  it is run  on a scalar machine  and  to be optimized  for 
vector when it  is run  on a vector machine. 

The objectives of the vectorizing compiler, then, are these: 

0 To identify as  many  as possible of the source  program 
statements which may be vectorized. 

0 To identify which of the loops surrounding these 
statements  may be used to vectorize them. 

0 To select, from all of the resulting possible choices for 
vectorization, the  one which will result in the fastest 
execution of the program. 

0 To compile highly optimized vector object  code  for the 
statements chosen to  be  run in vector hardware. 

0 To leave the rest of the program  undisturbed in highly 

0 To do  the above  without  requiring  changes to  the original 
optimized  scalar  object  code. 

source  program. 

In this  paper  vectorization is discussed throughout in 
terms of the  Fortran language. Fortran is the language of 
interest.  However, the vectorization  algorithms and 
techniques  may be applied to  other languages as well. 

The  remaining sections of this  paper  contain 

0 A review of program dependence theory, which underlies 

0 A review of some work done  at Rice University which 

0 A  description of the  structure of the vectorizing compiler. 
0 A  description of the compiler  algorithms which determine 

what statements  are vectorizable at what levels. 
0 A  description of  the compiler  algorithms which determine 

what statements  are chosen  for vector execution at what 
levels. 

the vectorization  algorithms. 

provided the  foundation for this work. 

0 Some examples of vectorization. 103 
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Program dependence 
Vectorization is based on program  dependence  theory. The 
base for this vectorizer is the work of Kennedy [ 11 and Allen 
et  al. [2-51. Their work in turn builds on earlier work of 
Kuck et al. [6] and Banerjee [7, 81. These references should 
be consulted  for a precise discussion of program  dependence. 
In  this  paper  the  topic is summarized  at  an intuitive level. 

In general, a statement in  a nest of DO-loops may be 
vectorized if it  does  not require,  as an  input  on  one iteration 
of a  loop,  a value it computed  on  an earlier  iteration of the 
loop.  When  a value computed  in  one iteration of a DO-loop 
is not used in  a  later  iteration, all of the  data values can be 
computed in parallel. This independence  of data values from 
one DO-loop  iteration to  the next is a key factor  in allowing 
execution  of the  statement  on a vector machine. 

The  fundamental vectorization  algorithm is to  determine 
the dependences between the  statements in  a  program and  to 
construct a  graph  representing  these  dependences. Those 
statements  not in strongly connected regions of this  graph 
are vectorizable. Those  statements which do lie in strongly 
connected regions are  not vectorizable because they depend, 
possibly via some sequence  of intermediate statements, on 
values they  themselves compute. 

Data dependence 
The dependence that may  arise  when  two statements 
reference the  same storage location is called data 
dependence. Data dependences  arise  in one of three ways: 

A statement T depends upon  a statement S when S 
defines a  value and T references it. This is called true 
dependence. 

s: x= 
T: =X 

Clearly, S must execute before T  can  execute because S 
defines a value used by T. 
A statement T depends upon  a statement S when S 
references a value and T defines it. This is called anti- 
dependence. 

s: =x 
T: X= 

Again, S must execute before T because otherwise T 
would store the variable X and S would use the wrong 
value. 
A statement T depends  upon a statement S when S stores 
a value which T also stores. This is called output 
dependence. 

s: x= 
T: X= 

S must execute before T or else the wrong value will be 
left behind  in the variable X. 164 
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Control dependence 
A dependence may arise when one  statement  determines 
whether  a  second statement will be executed. This is called 
control dependence: 

DO 3 I=I,N 
1 IF (A(I).GT.O.O) G O T 0  3 
2 A(I)=B(I)+l.O 
3 CONTINUE 

Clearly, statement 1 must execute before statement 2 can 
execute. Statement 2 depends  upon  statement 1. 

dependences with  a technique called IF-conversion. The 
following example is equivalent to  the preceding  example: 

Control dependences  may be changed into  data 

DO 3 I=I,N 
I L=A(I).LE.O.O 
2 IF (L) A(I)=B(I)+I.O 
3 CONTINUE 

Statement 2 still depends  on  statement I ,  but now the 
dependence arises because of  a true  data dependence 
involving the variable L. More complex transformations  are 
required to  handle  more general control structures. (The 
compiler described here processes only forward branches 
which do  not cross  loop  boundaries.) The  transformations 
permit  the vectorizer to operate by evaluating data 
dependences  only. 

Dependence level 
Dependences attach  to particular  DO-loop levels in  the loops 
surrounding a group of  statements. Some dependences are 
always present: 

DO  J= 
DO I= 

S: V(I,J)=A(I,J)*B(I,J) 
T: Z(I,J)=V(I,J) 

T always depends  upon S because, on every iteration  of 
every loop, there is a true dependence  involving the variable 
V. These  dependences are called loop-independent 
dependences:  they are  independent of the  operation of the 
loops surrounding  them. 

Some dependences are present at  one loop level but  not 
another: 

DO J= 
DO I= 

S: A(I+l,J)=A(I,J) 

There is a true  dependence  at  the level of the loop with 
index I; an  element stored on iteration 2, for  example, will 
be fetched on iteration 3 .  But there is no dependence at level 
J ,  since no element stored on  one iteration of the  loop is 
referenced on  any  other iteration. 
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Dependence  interchange 
When  a given loop in a nest of DO-loops is chosen  for 
execution  in  vector  hardware,  each vector instruction will 
operate on successive data elements selected by that given 
DO-loop index. For example, if the J-loop  (the  loop with 
index J) were vectorized in the nest 

DO 1 K=I,N 
DO 1 J=l,N 
DO I I=I,N 

1 A(I,J,K)=A(I+l,J+2,K+3) 

then vector instructions would fetch the elements of A in the 
order (2,3,4),  (2,4,4), . . . , (2,N+2,4)  and store them  in  the 
order (1.1, l), (1,2, I ) ,  . . . , (1,N, 1). This is a different order 
from that which would be used in scalar mode, where the 
innermost DO-loop, with index I, would cycle most rapidly. 

In fact, the vector order is exactly what  would be seen in 
scalar mode if the J-loop were interchanged with its inner 
neighbors until  it  became the  innermost loop: 

DO 1 K=l,N 
DO I I=l,N 
DO 1 J=I,N 

1 A(I, J,K)=A(I+I,J+2,K+3) 

In  order for a given loop  to be chosen  for  execution in vector 
hardware, this interchange must be valid. That is, it must 
preserve the  semantics of the program. 

For the K-loop in the original example to be vectorizable, 
the  loop ordering 

DO I J=I,N 
DO 1 I=I,N 
DO 1 K=I,N 

1 A(I,J,K)=A(I+ 1 ,J+2,K+3) 

would have to generate the  same program results as  the 
original. Note that  the  other loops are  not  permuted. It is 
necessary to ask only if the  loop of  interest may be moved 
inside all of the others. 

Sometimes  this loop  interchange is not possible. In the 
nest 

DO 1 J=I,N 
DO 1 I=I,N 

1 A(1-I,J+I)=A(I,J) 

there is a dependence  at  the level of the J-loop. A value 
stored on  one iteration of J  is fetched on  the next.  Many 
dependences do  not affect the results of the program when 
loops  are  interchanged. But this one does, and  the J-loop 
cannot be interchanged with the I-loop because the answers 
would change. This is an interchange  preventing 
dependence, and it  prevents  vectorization  of the J-loop. 

In a multi-level nest, a dependence for a loop  at  some 
level might be interchangeable  part of the way into  the 

innermost level, but then be blocked. Such  a  dependence is 
called “innermost preventing” because the loop at  that level 
cannot be moved to  the  innermost level (or be 
“innermosted”). If the  loop cannot be innermosted then it 
cannot be vectorized. Innermosting will be described in 
more detail  later. 

Parallel  Fortran  converter 
The prototype  for the present work was a  program  known  as 
the Parallel Fortran  Converter written at Rice University [2]. 
This program, under  continuous  improvement over the 
years 1980- 1984, was an evolving project of Professor 
Kenneth W. Kennedy and his students.  The goal of the 
program was to translate statements written  in scalar Fortran 
77 into equivalent statements written in  a vector Fortran 
language known generically as Fortran 8x. The dependence 
theory was developed and elaborated  in  pursuit of this goal. 
Among the significant innovations were the characterization 
of dependence by DO-loop nesting level and  the 
development of techniques  for  IF-conversion. 

Our compiler work was strongly directed by a version of 
the Converter current in 1982. Many  parts of the compiler 
still show  direct connections  to this valuable work at Rice. 
For  this  reason  a summary of the Parallel Fortran Converter 
is useful. 

The  Converter vectorized programs through a three-stage 
process. In the first stage, called subscript  standardization, 
the program was placed into a standard form for dependence 
testing. DO-loops were normalized to  run  from 1 in 
increments of 1 to  some  upper limit. User-written induction 
variables were replaced by equivalent references to  the 
DO-loop variables. Subscripts were simplified. 

The second stage was dependence testing. Every pair of 
statements which might have  a dependence was examined by 
several algorithms designed to prove, if possible, that  the 
statements were independent.  The most important of these 
tests was the Banerjee test [7] as  elaborated by Kennedy [I].  
The tests all required  as input  the normalized  DO-loop 
parameters  surrounding  the  statements  and  the normalized 
subscript components for the variables which might give rise 
to a  dependence. The tests all returned  as output a decision 
for each DO-loop level that  the  statements were provably 
independent or not  at  that level. When the  statements could 
not be proved to be independent  then they were assumed to 
be dependent. As the dependence testing was performed  a 
directed  graph was constructed. Each statement was a  node 
in the graph. Each dependence  became  an edge, marked 
with the level of the dependence,  from the source to the 
target of the dependence. 

dependence  graph was partitioned into strongly connected 
regions. There is by definition  a  path (but  not necessarily a 
direct path) from every node  to every other node in a 
strongly connected region. Since the nodes represented 

The third and final stage was parallel code  generation. The 
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statements  and  the path was formed from edges which 
represented  dependences, this implied that every statement 
in the region depended directly or indirectly upon itself. 
Such  a  dependence of a statement upon itself is known as a 
recurrence.  Those statements which were not in strongly 
connected regions and therefore not in  recurrences  could be 
vectorized, and parallel Fortran  statements were generated 
for them.  Those  statements which were in strongly 
connected regions could not be vectorized since they 
depended  upon values that they  themselves computed. 
Instead,  a  scalar  DO-statement was generated for the 
outermost  DO-loop represented in  the graph, the edges in 
the graph  representing  dependences at this level were 
deleted, and  the  statements  in  the region were then 
recursively partitioned  at  inner levels in  this  same  manner. 

One refinement  occurred at  the next-to-innermost level. 
When  statements were strongly connected at this level, the 
Converter interchanged the  inner two  loops to determine 
what statements were strongly connected with the revised 
loop order. It then picked for its final loop  order  the  one of 
these  two cases which produced more vectorized statements. 

For our purposes, however, this process posed some 
problems.  First, scalar DO-loops were placed around 
statements  containing recurrences regardless of the level at 
which the dependences  causing the recurrences arose. A 
recurrence at  an  inner level caused all outer levels to become 
not vectorizable. Second,  decisions about  the final state of 
the code were made incrementally as  the analysis moved 
from outer  to  inner levels. No exploration  of  alternatives was 
performed (except for the  innermost two levels) before a 
level was committed  to scalar or vector code. There was no 
provision for  evaluating  alternatives, when alternatives 
existed, to decide which was best. Finally, these  decisions 
and  the program  normalization which preceded them were 
performed by irrevocably transforming the program being 
analyzed.  IF-conversion in particular  could introduce 
staggering overhead into code which failed to vectorize. 

Structure of the vectoring compiler 
Our objective was to  imbed  the vectorizer analysis into a 
production compiler rather  than a source-to-source 
converter. This implied that  the vectorizer had  to be fast. If 
it were very slow, then a  separate source-to-source converter 
might make sense, since in  that case the cost of vectorization 
would be paid  only once. But then a user would be left with 
two  programs, one scalar and  one vector, and  the benefits of 
portability would be lost. 

The fact that speed was critical to success was obvious 
from  the beginning. A very early example by Kennedy, using 
vectorization  code obtained elsewhere, required 10 CPU 
minutes  on  an IBM Model 168 to vectorize a  300-statement 
program. The Parallel Fortran  Converter required 20 
seconds for this  program [2]. A  simple  compile, however, 
took less than a  second. Thus it  seemed likely that 16s 
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vectorization  might  increase compilation  times by a  factor of 
25. To achieve the objective of integrating  vectorization and 
compilation would therefore  require dramatic increases in 
performance. 

Fortran (although  a prototype was built on  the base of the 
Fortran H Extended Optimization  Enhancement).  The VS 
Fortran compiler, which is IBM’s System/370 Fortran 
compiler, supports both Fortran 66 and  Fortran 77 and 
produces highly optimized scalar object  code. For a  detailed 
description of the  optimizations see our earlier paper [9]. 

compiler and  to achieve a great increase in speed. 

new phase between text and register optimization. This 
seemed  intuitively to be the  natural position for the 
vectorizer, and it has worked well in practice. One reason is 
that  the vectorizer operates on  much smaller quantities of 
code  after optimization.  Many expressions have been 
eliminated by common expression elimination;  many have 
been moved  outside of loops by backward movement.  What 
remains is usually the  unique, necessary, nearly minimum 
computation. 

The compiler  chosen to  contain  the vectorization  was VS 

Three things were done  to integrate the vectorizer into this 

First,  vectorization was put  into  the optimizer,  making it a 

A more  important reason is that  the process of 
optimization in the compiler nearly duplicates that of 
normalizing the subscripts  in  preparation  for  vectorization. 
The Parallel Fortran Converter,  as mentioned above, had a 
first phase whose task was standardizing  subscript 
information. While the identities between its operations  and 
the compiler optimizations were not exact, the optimizer 
could be modified to make  them very similar.  Most of the 
overhead  of  preparing to analyze the program was 
eliminated  in  this way. 

A final reason  for  placing  vectorization  after optimization 
was that vectorization would then  not affect the optimization 
of programs or portions of programs found  to be not 
vectorizable. 

The second thing  done while integrating the vectorizer 
into  the  compiler was to reengineer the algorithms in  the 
Parallel Fortran Converter.  These  algorithms, which were the 
result of original research, had been written to make them 
clear, easily modifiable, and programmable by different 
people working at different times. One  improvement, 
therefore, was simply to rewrite them with a new focus on 
speed. Another was to replace inefficient algorithms with 
much  more efficient versions. We call this work 
reengineering because the algorithms, old and new, compute 
the  same results from the  same  input. Since we were seeing 
the algorithms with fresher eyes, and since we were trying 
not to discover  what was needed but to find an efficient way 
to  compute  something which was already known  to be 
needed, shortcuts became apparent. 

The third major thing done  during integration of the 
vectorizer and  the  compiler was to change the 
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implementation language from PL/I (used in the Converter) 
to  Fortran.  (The language has  subsequently been changed to 
PL/S. The  Fortran version is perhaps 20-25% faster than  the 
PL/S version while running in the converted  modules. Both 
are  much faster than  the PL/I version.) 

As a result of  this work, vectorization is now fast enough 
to be incorporated into a production compiler. Table 1 
shows  compile times for  various  programs with three sets of 
options:  no optimization,  maximum optimization, and 
maximum  optimization  and vectorization. The programs  are 
a collection of scientific applications collected over time; 
some vectorize well and others do  not. These  measurements 
indicate that vectorization is costing on  the average a 23% 
increase in the compile time for optimized  programs, less 
than  the  time required by optimization itself. 

Vectorization  analysis-Eligibility for 
vectorization 
The goal of the vectorizing compiler is to compile vector 
object  programs  from scalar source  programs. This is a 
different goal from  that of the Parallel Fortran Converter, 
which was to compile vector source  from scalar source. This 
latter goal leads into  at least two  blind alleys. First, some 
loops, such  as 

DO 1 I= l ,N 
1 A(U=B(J(I)JW) 

are  not expressible in vector language even though they are 
recognizable as vectorizable by the dependence analysis and 
are readily executable  on  a vector machine. The Converter is 
forced to generate  scalar  source  code  for  such loops. Second, 
the dependence analysis intended  for  source-to-source 
conversion does  not recognize many cases where vector 
hardware may be used but, because of an interaction 
between the  semantics of the proposed vector language 
assignment statement  and  the dependence  algorithm, vector 
source language may  not be used. For example, the loop 

DO 1 K=1,32 
DO 1 J=1,32 
DO 1 I=1,32 
A(K+I,J+I,I+I)=B(K+I,J,I+I)+B(K+I,J+I,I) 

I B(K+I,J+I,I+I)=A(K+I,J,I+l)+A(K+I,J+I,I)+A(K,J,I) 

contains a  recurrence at level J and  at level I and so the 
Converter, finding a  recurrence  when  it looks at level K, at 
level J, and  at level I, is forced to leave the loop in scalar 
code. But there is no reason why the vector hardware cannot 
be used to execute level K. The dependence  algorithm, 
however, could not generate  a vector assignment  for level K, 
and so opportunities for vectorization were being obscured. 

Recall for  a moment  the basic algorithm of the Parallel 
Fortran Converter. After standardizing the program,  it  forms 
a dependence  graph, it partitions the graph into strongly 

Table 1 Normalized compile times for various programs. 

O P m  O~r(3) Vecror 

AIRFLOW 0.39 I .oo 1.35 
AIRMESH 0.58 I .oo 1.15 
DAMTESTA 0.48 I .oo 1.29 
DAMTESTB 0.62 I .oo 1.09 ~~ 

DEBDASDI 
DEBEEEEE 
DEBEIGEN 
DEBEIGER 
DEBFFTXX 
DEBGRAPH 
DEBHORNE 
DEBLLSQE 
DEBLSQEE 
DEBMINIV 
DEBODEER 
DEBPFITS 
DEBPIEEE 
DEBSORTS 
GASCOAL 
GAZEXEC 
GAZINIT 
GAZTEST 
GFDMARK 
GSITESTA 
GSITESTB 
HHWTEST 
KGNVATD 
LFPTEST 
NASAVA3D 
PFHTEST 
PPLTEST 
RGETEST 
SAWTEST 
TAHTEST 

Average 

0.94 
0.7 I 
0.35 
0.42 
0.64 
0.55 
0.70 
0.54 
0.55 
0.55 
0.56 
0.6 1 
0.7 I 
0.69 
0.58 
0.48 
0.60 
0.52 
0.72 
0.56 
0.34 
0.44 
0.35 
0.77 
0.40 
0.73 
0.48 
0.58 
0.75 
0.52 

0.57 

1 .oo 
1 .oo 
I .oo 
1 .oo 
1 .oo 
1 .oo 
I .oo 
I .oo 
I .oo 
I .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
I .oo 
I .oo 
I .oo 
I .oo 
I .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
I .oo 
1 .oo 
I .oo 
I .oo 

1.05 
1.06 
1.49 
I .63 
I .25 
1.10 
I .05 
1.35 
I .29 
1.27 
1.20 
1.34 
1.06 
1.04 
1.09 
1.73 
I .06 
I .32 
1.18 
1.17 
1.17 
1.22 
1.42 
1.05 
I .67 
I .05 
I .43 
I .08 
1.15 
1.1 I 

1.23 

connected regions, and  then it generates either, for those 
statements not  in strongly connected regions, vector code for 
all remaining  DO-loop levels or, for those statements in 
strongly connected regions, a scalar DO-loop at  the level 
defining the region, after which it recursively executes this 
same procedure for the remaining inner DO-loop levels. In 
other words, whenever the region contains a  recurrence,  a 
scalar DO  statement, which is not executable  in vector, is 
always generated for the level defining the region, and 
attention is shifted to  opportunities  at  any remaining inner 
levels. The problem is that  any  inner recurrence affects all 
outer levels, whether or not those outer levels carry  a 
dependence which contributes  to  the recurrence. 

It  is with the discovery of what we have called 
innermosting and its implications for vectorization that our 
contribution  to vectorization began. Our dependence 
algorithm  forms  a  dependence  graph essentially equivalent 
to  the one in the Converter, and it likewise partitions the 
program into strongly connected regions, level by level, using 
this  graph. But for each of these strongly connected regions it 
asks one additional  question. In spite of the fact that  the 
region is strongly connected, and therefore contains a 
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recurrence, is it possible nonetheless to use the vector 
hardware to execute the DO-loop at  the level which defines 
the region? 

The algorithm to  determine whether a strongly  connected 
region may nonetheless be executed  in vector hardware for 
the DO-loop defining the region has two phases. In  the first 
phase, the algorithm  examines  each  dependence camed by 
the DO-loop  defining the region. It  attempts  to interchange 
this DO-loop with each successive inner DO-loop  until  it  has 
become the  innermost loop. If an interchange is not possible, 
because it  would violate the dependence, then  the region 
may not be executed in vector mode  at  the level defining the 
region and  the  method  terminates for this region for  this 
level. If interchange is possible, but  the dependence itself 
disappears because it is absorbed by a dependence at  an 
intervening loop,  then  the  dependence is  ignored  since it will 
not affect the vector execution of the level defining the 
region. Otherwise the dependence  is  recorded as  an 
“innermost sensitive” dependence for the region. 

The earlier  example may be modified to illustrate  these 
dependences: 

DO 1 K=1,32 
DO I J=1,32 
DO 1 I=1,32 
A(K+I,J+I,I+I)=B(K+ 

1 B(K+l,J+I,I+l)=A(K+ 
1 ,J,I+ I)+B(K+ 
I,J,I+I)+A(Kt 

1 ,J+ I ,I)+B(K,J,I) 
.I,J+l,I)+A(K,J,I) 

There  are  true dependences at level K from A(K+ 1 ,J+ I ,I+ 1) 
to A(K,J,I) and from B(K+I,J+l,I+l) to B(K,J,I). When, 
however, the DO-loop  ordering is changed  from K,J,I to 
J,I,K in order  to test whether level K may be innermosted, 
these  dependences  disappear. In  the new ordering they are 
dependences at level J, not level K, and therefore they are 
not  innermost sensitive dependences  for level K. In contrast, 
the  true dependences at level J from A(K+ 1 ,J+ 1 ,I+ 1) to 
A(K+I,J,I+I) and  from B(K+l,J+I,I+l) to B(K+I,J,I+l) 
remain  at level J as level J is innermosted,  and they are 
therefore innermost sensitive dependences  for level J. 

In  the second phase, the algorithm  constructs a graph 
using only the loop-independent  dependences in  the region 
and  the  innermost sensitive dependences  for the DO-loop 
level defining the region. Other dependences,  notably  those 
for other  DO-loop levels, are excluded. If this  graph  has a 
cycle then  the region may  not be executed in vector mode  at 
the level defining the region. Otherwise the region is eligible 
for vector execution even though other loops  inside the  loop 
defining the region may have recurrences. Because many 
edges have been excluded from  the graph,  it  becomes much 
more likely that  the graph will not be strongly connected and 
therefore that  the region will be found eligible for  execution 
on  the vector hardware. The algorithm marks  the region if it 
may be executed  in vector mode  and  then it recursively 
considers inner regions, marking thereby each region found 
to be vectorizable. 168 

RANDOLPH G. SCARBOROUGH P 

The foregoing ignores some special cases of recurrences 
which can be vectorized. These special cases are handled by 
both vectorizers. For example,  reduction  operations,  such  as 
S=S+A(I,J,K), can be vectorized if reduction  hardware exists 
on a machine. Likewise, techniques  such  as scalar expansion 
are used by both vectorizers to reduce or eliminate some 
recurrences. 

Vectorization  analysis-Economics of 
vectorization 
In all of the foregoing analysis the vectorizer has made  no 
irrevocable  decisions as  to  the final form of the object 
program. In particular,  it  has not written  scalar DO-loops, 
and it has  not partitioned  code originally from  one nest of 
DO-loops into separate nests, some vector and  some scalar. 
It  has  done  nothing except investigate possibilities, 
identifying possible choices  for use of the vector hardware. 
Some of  these will be the choices identified by the Converter, 
but others will be new ones, outer loops containing  inner 
loops with recurrences. The vectorizer now seeks to find the 
fastest possible execution  of the program, using vector or 
scalar hardware as appropriate. 

A nest of loops may in general be executed  either by scalar 
instructions  or by vector instructions with the vector 
hardware  applied to  any of, but only one of, the loops in  the 
nest. For example,  in the nest 

DO 1 K=l ,N  
DO 1 J=I,N 
DO I I=l ,N 
A(I,J,K)=B(I,J,K)+P(J,K)*Q(J,K) 

I E(K,J,I)=F(K,J,I)+X(I,J)*Y(I,J) 

four possibilities exist for  each statement (vectorize on K, J, 
I, or  none)  and sixteen possibilities therefore exist for the 
combination of the two  statements. The vectorizer attempts 
to find the fastest among these possibilities. 

The  main factors  considered in estimating the cost of 
execution are  the cost of loop overhead, the cost of  hardware 
instructions, and  the cost of fetching and storing  operands. 
These  costs will vary for the  same  statement  as each 
enclosing loop is  considered as  the  candidate for execution 
in the vector  hardware. The costs will vary because 
statements will be scalar at  some levels but vector at  other 
levels, and because array operands will be fetched and stored 
in different dimensions  as different levels are considered  for 
vectorization. 

The possibilities for scalar and vector execution are treated 
as a graph. Using a modified least-cost graph traversal 
algorithm, the vectorizer attempts  to find the cheapest path 
through the graph of possibilities. Since some heuristics are 
employed the traversal is not exact. Heuristics are necessary 
because, for  example, two  statements from the  same original 
nest of loops  may have been  partitioned into different 
regions when vector execution  candidates were identified 
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(because  they were in different strongly connected regions of 
the program), but when the least-cost object  program is 
constructed  for  these statements it  is desirable (but  not 
always possible) to merge them back into  the  same set of 
loop  controls. 

when each was marked as eligible or not for vector 
execution, are sorted into topological order based on 
program  dependence  as  part  of that process. The least-cost 
graph traversal considers these regions in topological order 
beginning with a  null first region and  ending with a null final 
region. The algorithm  produces and  maintains a list of the 
execution costs, in units of processor time,  required to 
execute the  statements  in subsets  of  these regions, the subsets 
always beginning with the  null first region in  the topological 
ordering, always ending with some  other region in  the 
topological ordering, and always including all regions 
between the two. 

The regions identified in the earlier  part of the algorithm, 

Each element  on  the list represents the execution of the 
regions on  the path  from the null first region through  the last 
region on  the  path, with each region executed in a  particular 
mode, vector or scalar. The algorithm  estimates the cost for 
executing  this entire collection of regions in  these  particular 
modes, attempting heuristically to minimize the  number of 
loop  control  statements which must be inserted. This 
requires merging the  statements  on  the path into  common 
enclosing loops while preserving the dependences between 
the statements. 

Once  the cost has  been determined,  the next possible 
candidate regions for  execution  along  this path  are identified. 
These  candidates will be the next region in the topological 
ordering  executed in scalar and, if valid for the region, 
vector. These  candidates, and  the just-estimated cost of 
execution to reach them,  are  then posted onto  the list of 
pending possible execution  paths.  When a candidate region 
is marked  as  a  scalar  candidate, inner regions of that 
candidate subsequently  are  considered as candidates,  either 
scalar or vector. When  a candidate region is marked as a 
vector candidate, by implication all inner regions are scalar 
and they are bypassed to expedite processing. 

list the  one with the next candidate which is most cheaply 
reachable  along its particular path of execution possibilities, 
by computing  the cost  of  including  it in execution with its 
predecessors, by locating its possible successors, and by 
posting them  on  the list of pending  candidates. The 
algorithm terminates when the null final region is selected as 
the cheapest candidate  to  include  on a path, since  this  path 
represents the cheapest  execution which includes all regions 
in the program. 

The selected path  represents  a decision for each region 
whether that region is to be executed  in  scalar or vector 
mode  and indicates how the regions are  to be merged into 
fewer regions for the purposes  of  minimizing the loop 

The algorithm  iterates by picking from all elements  on  the 
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3 
4 
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D O  I K=1,32 
D O  1 J=1,32 
D O  1 I = 1  32 
A E ( K  I J ~ = B E ( K  I J ) + C E ( K , I , J ) / D E ( K , I , J )  
AF(K:J : I )=BF(K:J : I )+CFIK,J , I ) /DF(K,J , I )  

- D O  I K=1,32 
D O  I J=1,32 
D O  1 I = 1  3 2  
A A ( I  J K / = B A ( I  J K ) + C A ( I  J K ) / O A ( I  J K )  
AB(  I :K:J)=BB( I :K:J)+CB(I :K:J) /DB( I :K:J) 
DO 1 J=1,32 

AC(J I K / = B C ( J  I K ) + C C ( J  I K ) / D C ( J  I K )  
D O  1 I = 1  32 

AD(J:K:I)=BD(J:K:I)+CO(J:K:I) /OD(J:K:I)  

control statements. The intermediate language for the 
program is then transcribed to  implement these decisions. 

Note that scalar code is unaffected by this  vectorization 
algorithm. Optimized scalar  code remains optimized scalar 
code. No changes to  the code are  made until  it  has been 
determined  that  the changes are  not only an  improvement 
but also the best improvement  the vectorizer can find. 

Examples of vectorization 
The compiler  reports how it vectorizes a  source  program by 
reprinting the original source statements  and enclosing them 
in  bracketed  loops which show the final object  program 
form. The loops are marked  as vector or scalar. Any 
reordering of statements or replication of loops is indicated 
in  this vector report. 

The report is only  approximate. Statements which have 
been optimized away, or moved backward outside loops, 
may not be seen. Statements  manipulating user-written 
induction variables are especially likely to disappear  as  a 
result of optimization. 

The vector report is used in the examples to illustrate the 

Figure 1 shows how statements from the  same loop  can be 
vectorization. 

vectorized along different dimensions  as a result of the 
economic analysis. Storage is accessed most efficiently, 
because it is accessed consecutively, when the leftmost 
subscript  of an array is varied most rapidly. This is reflected 
in the economics. In the original scalar example, which 
shows the  same subscripts permuted six ways, the storage 
used by four of the six statements is not accessed 
consecutively. In vector mode, however, the storage for all 169 
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( 4  
Figure 3 shows how the vectorization  for  a nest of  loops 

D O  I K=1,32 
DO I J = l , 3 2  

can change  as the loops vary in the  number of  iterations. 
DO I 1 - 1  3 2  Three examples are given; the code is the  same in  each case 
A ( I + l  J i ) = I / A ( I  J K )  
B(I+I'J;I K)=B(I'J;I K)+B(I+I J K )  except for the loop  counts.  Note that this  loop  includes  a 

1 C(I+I:J+I:K+I)=C~I,J;I,K+I)+CII;I,J,K+I)+C(I+I,J+I,K) 
reduction. The reduction is performed  individually and 
explicitly when the  innermost  loop is selected for 
vectorization, and  the value of S at  the  end of  each 

dimension. When an  outer  loop is selected, however, the 
reduction is performed  in parallel. A vector register is used 

different iterations of either  the J or the K  loop, and  the 

(b) 

DO I 1 = 1 , 3 2  execution of the  inner  loop reflects a sum along the I 
C ~ i + l , J + 1 , K + 1 ~ = C ~ I , J + l , K + 1 ~ + C ~ 1 + 1 , J , K + I ~ + C ~ 1 + 1 , J + l , K )  

4 to hold up  to 128 different values of S, reflecting 128 

~ ~ " ~ ~ * ~ ~ ~ ~ ~  values fetched by the I loop  are  accumulated  into  the 
~~~*~~~~~~~ 
i Vectorization of loop with recurrences: (a) original source program; 
Z (b) vectorized program. S are  stored. 

register. When the 1 loop is completed then all 128 values of 

Dubrulle et al. [lo]  contains  an extended discussion and 
additional  examples  of the use of the compiler. 

Concluding  remarks 

(a) 
This paper  has described an optimizing vectorizing 
production  compiler. It identifies many new vectorization DO 2 K-1,kk 

DO 2 J=l 

DO 1 I= l , i l  recurrences. It selects from  these possibilities the  one which s = A ( I , J , ~ ~ ~ ( ~ , J , K )  possibilities, particularly  those involving inner-loop 
I S=S+C(l ,J,K)/D( I ,J,K) 
2 E(I,J,K)=S will result in the fastest execution  of the program, and it 

compiles highly optimized  object  code for both the scalar 
(b) and  the vector parts  of the program. It does all of  this 

VECT I ------ DO 2 K=1,64 
SCAL 2 ----- DO 2 J=I 32 

SCAL 1 1  ---- DO 1 1-1,32 This project would never have been possible without the s=A( I ,J ,~ ) *B( I ,J ,K)  quickly. 
4 i S=S+C(I J K ) / D ( I , J , K )  
3 E(I.J,Kj=i fundamental research of Professor Kenneth W. Kennedy 

or and  Dr. J. Randal Allen of Rice University. They in turn 
SCAL 1 - - - - - -  DO 2 K=l ,32  
VECT 2 D O  2 J = l  64 credit the earlier work of Professor David J. Kuck and Dr. 
SCAL < 1 1  DO 1 1=1.32 Uptal Banerjee of the University of Illinois. But it is to Ken s=A(I,J,~)"B(I,J,K) 

4 I"" s=s+c( I ,J,K)/D( I ,J,K) 
3 E ( l , J , K ) = S  Kennedy and  Randy Allen that we acknowledge our debts. 

or Throughout  our project they offered clarity and support. 
SCAL DO 2 K=1,32 Their initial  programs were lucid and elegant statements of 
SCAL 2 ----- DO 2 J=l 2 

VECT 3 DO I l = l  64 
s = n (  1 , J , i j *B (  1 ,J,K) dependence  theory and source-to-source  vectorization. 

Without their  initial  push and  continuing help  this compiler 
would not have been produced. 

4 I"" s = s + c ( I  ,;,K)/D( I ,J,K) 
3 E ( I , J , K ) = S  

six statements is accessed consecutively, and  the  statements 
have been merged as much  as possible into  common loops. 

Figure 2 shows how recurrences can affect vectorization. 
The three statements in  this  example  have  recurrences at  the 
inner  one, two, and three  loops respectively. Since there  are 
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