A vectorizing
Fortran compiler

by Randolph G. Scarborough
Harwood G. Kolsky

This paper describes a vectorizing Fortran
compiler for the IBM 3090 Vector Facility.
Opportunities for vectorization are investigated
for eight levels of DO-loop nesting. Recurrences
in inner loops do not prevent vectorization of
outer loops. A least-cost analysis determines
from the opportunities identified which specific
vectorization will result in the fastest execution.
The normal optimization phases of the compiler
produce much of the information needed for the
vectorization analysis.

introduction

Many programs written for computers contain loops, and
nests of loops, for performing repetitive operations on
sequences of data. These programs direct that operations be
done in a well-defined order. Because scalar machines have
historically been the most widely available type of machines,
the order is one that is readily executable on a scalar
machine. On a vector machine, however, where successive
elements in the order are processed in parallel, this very
same order may not be valid. There may exist other orders
in which the elements may be processed correctly, but
analysis is required to discover both the valid orders and the
parts of programs for which the vector machine may be
used. This analysis and its result is commonly known as
vectorization. The purpose is to begin with a program
written for a scalar machine and make it execute on a vector
machine.

Vectorization is of interest for at least three reasons. First
is the large existing body of programming written for scalar
machines. An automatic vectorizer makes it possible for an
existing program to be executed on a vector machine
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without requiring that it be inspected or rewritten. Second is
portability. An automatic vectorizer makes it possible to
execute a program without change on both a scalar and a
vector machine. Third is speed. An automatic vectorizer
makes it possible for a program to be optimized for scalar
when it is run on a scalar machine and to be optimized for
vector when it is run on a vector machine.

The objectives of the vectorizing compiler, then, are these:

¢ To identify as many as possible of the source program
statements which may be vectorized.

¢ To identify which of the loops surrounding these
statements may be used to vectorize them.

e To select, from all of the resulting possible choices for
vectorization, the one which will result in the fastest
execution of the program.

e To compile highly optimized vector object code for the
statements chosen to be run in vector hardware.

o To leave the rest of the program undisturbed in highly
optimized scalar object code.

¢ To do the above without requiring changes to the original
source program.

In this paper vectorization is discussed throughout in
terms of the Fortran language. Fortran is the language of
interest. However, the vectorization algorithms and
techniques may be applied to other languages as well.

The remaining sections of this paper contain

e A review of program dependence theory, which underlies
the vectorization algorithms.

A review of some work done at Rice University which
provided the foundation for this work.

o A description of the structure of the vectorizing compiler.
A description of the compiler algorithms which determine
what statements are vectorizable at what levels,

A description of the compiler algorithms which determine
what statements are chosen for vector execution at what
levels.

¢ Some examples of vectorization.
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Program dependence

Vectorization is based on program dependence theory. The
base for this vectorizer is the work of Kennedy [1] and Allen
et al. [2-5]). Their work in turn builds on earlier work of
Kuck et al. [6] and Banerjee [7, 8]. These references should
be consulted for a precise discussion of program dependence.
In this paper the topic is summarized at an intuitive level.

In general, a statement in a nest of DO-loops may be
vectorized if it does not require, as an input on one iteration
of a loop, a value it computed on an earlier iteration of the
loop. When a value computed in one iteration of a DO-loop
is not used in a later iteration, all of the data values can be
computed in parallel. This independence of data values from
one DO-loop iteration to the next is a key factor in allowing
execution of the statement on a vector machine.

The fundamental vectorization algorithm is to determine
the dependences between the statements in a program and to
construct a graph representing these dependences. Those
statements not in strongly connected regions of this graph
are vectorizable. Those statements which do lie in strongly
connected regions are not vectorizable because they depend,
possibly via some sequence of intermediate statements, on
values they themselves compute.

o Data dependence

The dependence that may arise when two statements
reference the same storage location is called data
dependence. Data dependences arise in one of three ways:

1. A statement T depends upon a statement S when S
defines a value and T references it. This is called true
dependence.

S: X=
T: =X

Clearly, S must execute before T can execute because S
defines a value used by T.

2. A statement T depends upon a statement S when S
references a value and T defines it. This is called anti-
dependence.

S: =X
T: X=

Again, S must execute before T because otherwise T
would store the variable X and S would use the wrong
value.

3. A statement T depends upon a statement S when S stores
a value which T also stores. This is called output
dependence.

S: X=
T:. X=

S must execute before T or else the wrong value will be
left behind in the variable X.

RANDOLPH G. SCARBOROUGH AND HARWOOD G. KOLSKY

e Control dependence

A dependence may arise when one statement determines
whether a second statement will be executed. This is called
control dependence:

DO 3 I=IN
I IF (A(I).GT.0.0) GOTO 3
2 A(I)=B(I)+1.0
3 CONTINUE

Clearly, statement 1 must execute before statement 2 can
execute. Statement 2 depends upon statement 1.

Control dependences may be changed into data
dependences with a technique called IF-conversion. The
following example is equivalent to the preceding example:

DO 3 I=I,N
| L=A(I).LE.0.0

2 IF (L) A()=B()+1.0
3 CONTINUE

Statement 2 still depends on statement 1, but now the
dependence arises because of a true data dependence
involving the variable L. More complex transformations are
required to handle more general control structures. (The
compiler described here processes only forward branches
which do not cross loop boundaries.) The transformations
permit the vectorizer to operate by evaluating data
dependences only.

e Dependence level

Dependences attach to particular DO-loop levels in the loops
surrounding a group of statements. Some dependences are
always present:

DO J=
DO I=

S V(ILN)=ALI*B(LJ)

T: Z(L)=V(LJ)

T always depends upon S because, on every iteration of
every loop, there is a true dependence involving the variable
V. These dependences are called loop-independent
dependences: they are independent of the operation of the
loops surrounding them.

Some dependences are present at one loop level but not
another:

DO J=
DO I=
S A+ LI)=AL))

There is a true dependence at the level of the loop with
index I; an element stored on iteration 2, for example, will
be fetched on iteration 3. But there is no dependence at level
J, since no element stored on one iteration of the loop is
referenced on any other iteration.
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o Dependence interchange

When a given loop in a nest of DO-loops is chosen for
execution in vector hardware, each vector instruction will
operate on successive data elements selected by that given
DO-loop index. For example, if the J-loop (the loop with
index J) were vectorized in the nest

DO | K=I,N
DOt J=I,N
DO 1 I=I,N
ALY K)=A(I+1,J+2,K+3)

—

then vector instructions would fetch the elements of A in the
order (2,3.4), (2,4,4), - - -, (2,N+2.4) and store them in the
order (1,1,1), (1,2,1), - -+, (1,N,1). This is a different order
from that which would be used in scalar mode, where the
innermost DO-loop, with index I, would cycle most rapidly.

In fact, the vector order is exactly what would be seen in
scalar mode if the J-loop were interchanged with its inner
neighbors until it became the innermost loop:

DO | K=1,N
DO I I=1,N
DO 1 J=I,N
AL, 1L K)=A(I+1,J+2,K+3)

—

In order for a given loop to be chosen for execution in vector
hardware, this interchange must be valid. That is, it must
preserve the semantics of the program.

For the K-loop in the original example to be vectorizable,
the loop ordering

DO 1 J=1N
DO | I=1,N
DO 1 K=1,N
AL K)}=AI+1,J+2,K+3)

—

would have to generate the same program results as the
original. Note that the other loops are not permuted. It is
necessary to ask only if the loop of interest may be moved
inside all of the others.

Sometimes this loop interchange is not possible. In the
nest

DO 1 J=I,N
DO | I=1,N
1 A(I=1,J+1)=A(L.J)

there is a dependence at the level of the J-loop. A value
stored on one iteration of J is fetched on the next. Many
dependences do not affect the resuits of the program when
loops are interchanged. But this one does, and the J-loop
cannot be interchanged with the I-loop because the answers
would change. This is an interchange preventing
dependence, and it prevents vectorization of the J-loop.

In a multi-level nest, a dependence for a loop at some
level might be interchangeable part of the way into the
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innermost level, but then be blocked. Such a dependence is
called “innermost preventing” because the loop at that level
cannot be moved to the innermost level (or be
“innermosted”). If the loop cannot be innermosted then it
cannot be vectorized. Innermosting will be described in
more detail later.

Parallel Fortran converter

The prototype for the present work was a program known as
the Parallel Fortran Converter written at Rice University {2].
This program, under continuous improvement over the
years 1980-1984, was an evolving project of Professor
Kenneth W. Kennedy and his students. The goal of the
program was to translate statements written in scalar Fortran
77 into equivalent statements written in a vector Fortran
language known generically as Fortran 8x. The dependence
theory was developed and elaborated in pursuit of this goal.
Among the significant innovations were the characterization
of dependence by DO-loop nesting level and the
development of techniques for IF-conversion.

Our compiler work was strongly directed by a version of
the Converter current in 1982. Many parts of the compiler
still show direct connections to this valuable work at Rice.
For this reason a summary of the Parallel Fortran Converter
is useful.

The Converter vectorized programs through a three-stage
process. In the first stage, called subscript standardization,
the program was placed into a standard form for dependence
testing. DO-loops were normalized to run from [ in
increments of 1 to some upper limit. User-written induction
variables were replaced by equivalent references to the
DO-loop variables. Subscripts were simplified.

The second stage was dependence testing. Every pair of
statements which might have a dependence was examined by
several algorithms designed to prove, if possible, that the
statements were independent. The most important of these
tests was the Banerjee test [7] as elaborated by Kennedy [1].
The tests all required as input the normalized DO-loop
parameters surrounding the statements and the normalized
subscript components for the variables which might give rise
to a dependence. The tests all returned as output a decision
for each DO-loop level that the statements were provably
independent or not at that level. When the statements could
not be proved to be independent then they were assumed to
be dependent. As the dependence testing was performed a
directed graph was constructed. Each statement was a node
in the graph. Each dependence became an edge, marked
with the level of the dependence, from the source to the
target of the dependence.

The third and final stage was parallel code generation. The
dependence graph was partitioned into strongly connected
regions. There is by definition a path (but not necessarily a
direct path) from every node to every other node in a
strongly connected region. Since the nodes represented
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statements and the path was formed from edges which
represented dependences, this implied that every statement
in the region depended directly or indirectly upon itself.
Such a dependence of a statement upon itself is known as a
recurrence. Those statements which were not in strongly
connected regions and therefore not in recurrences could be
vectorized, and parallel Fortran statements were generated
for them. Those statements which were in strongly
connected regions could not be vectorized since they
depended upon values that they themselves computed.
Instead, a scalar DO-statement was generated for the
outermost DO-loop represented in the graph, the edges in
the graph representing dependences at this level were
deleted, and the statements in the region were then
recursively partitioned at inner levels in this same manner.
One refinement occurred at the next-to-innermost level.
When statements were strongly connected at this level, the
Converter interchanged the inner two loops to determine
what statements were strongly connected with the revised
loop order. It then picked for its final loop order the one of
these two cases which produced more vectorized statements.
For our purposes, however, this process posed some
problems. First, scalar DO-loops were placed around
statements containing recurrences regardless of the level at
which the dependences causing the recurrences arose. A
recurrence at an inner level caused all outer levels to become
not vectorizable. Second, decisions about the final state of
the code were made incrementally as the analysis moved
from outer to inner levels. No exploration of alternatives was
performed (except for the innermost two levels) before a
level was committed to scalar or vector code. There was no
provision for evaluating alternatives, when alternatives
existed, to decide which was best. Finally, these decisions
and the program normalization which preceded them were
performed by irrevocably transforming the program being
analyzed. IF-conversion in particular could introduce
staggering overhead into code which failed to vectorize.

Structure of the vectorizing compiler

Our objective was to imbed the vectorizer analysis into a
production compiler rather than a source-to-source
converter. This implied that the vectorizer had to be fast. If
it were very slow, then a separate source-to-source converter
might make sense, since in that case the cost of vectorization
would be paid only once. But then a user would be left with
two programs, one scalar and one vector, and the benefits of
portability would be lost.

The fact that speed was critical to success was obvious
from the beginning. A very early example by Kennedy, using
vectorization code obtained elsewhere, required 10 CPU
minutes on an IBM Model 168 to vectorize a 300-statement
program. The Parallel Fortran Converter required 20
seconds for this program [2]. A simple compile, however,
took less than a second. Thus it seemed likely that
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vectorization might increase compilation times by a factor of
25. To achieve the objective of integrating vectorization and
compilation would therefore require dramatic increases in
performance.

The compiler chosen to contain the vectorization was VS
Fortran (although a prototype was built on the base of the
Fortran H Extended Optimization Enhancement). The VS
Fortran compiler, which is IBM’s System/370 Fortran
compiler, supports both Fortran 66 and Fortran 77 and
produces highly optimized scalar object code. For a detailed
description of the optimizations see our earlier paper [9].

Three things were done to integrate the vectorizer into this
compiler and to achieve a great increase in speed.

First, vectorization was put into the optimizer, making it a
new phase between text and register optimization. This
seemed intuitively to be the natural position for the
vectorizer, and it has worked well in practice. One reason is
that the vectorizer operates on much smaller quantities of
code after optimization. Many expressions have been
eliminated by common expression elimination; many have
been moved outside of loops by backward movement. What
remains is usually the unique, necessary, nearly minimum
computation,

A more important reason is that the process of
optimization in the compiler nearly duplicates that of
normalizing the subscripts in preparation for vectorization.
The Parallel Fortran Converter, as mentioned above, had a
first phase whose task was standardizing subscript
information. While the identities between its operations and
the compiler optimizations were not exact, the optimizer
could be modified to make them very similar. Most of the
overhead of preparing to analyze the program was
eliminated in this way.

A final reason for placing vectorization after optimization
was that vectorization would then not affect the optimization
of programs or portions of programs found to be not
vectorizable.

The second thing done while integrating the vectorizer
into the compiler was to reengineer the algorithms in the
Parallel Fortran Converter. These algorithms, which were the
result of original research, had been written to make them
clear, easily modifiable, and programmable by different
people working at different times. One improvement,
therefore, was simply to rewrite them with a new focus on
speed. Another was to replace inefficient algorithms with
much more efficient versions. We call this work
reengineering because the algorithms, old and new, compute
the same results from the same input. Since we were seeing
the algorithms with fresher eyes, and since we were trying
not to discover what was needed but to find an efficient way
to compute something which was already known to be
needed, shortcuts became apparent.

The third major thing done during integration of the
vectorizer and the compiler was to change the
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implementation language from PL/I (used in the Converter)

to Fortran. (The language has subsequently been changed to

PL/S. The Fortran version is perhaps 20-25% faster than the
PL/S version while running in the converted modules. Both

are much faster than the PL/I version.)

As a result of this work, vectorization is now fast enough
to be incorporated into a production compiler. Table 1
shows compile times for various programs with three sets of
options: no optimization, maximum optimization, and
maximum optimization and vectorization. The programs are
a collection of scientific applications collected over time;
some vectorize well and others do not. These measurements
indicate that vectorization is costing on the average a 23%
increase in the compile time for optimized programs, less
than the time required by optimization itself.

Vectorization analysis—Eligibility for
vectorization

The goal of the vectorizing compiler is to compile vector
object programs from scalar source programs. This is a
different goal from that of the Parallel Fortran Converter,
which was to compile vector source from scalar source. This
latter goal leads into at least two blind alleys. First, some
loops, such as

DO | I=I,N
1 AM=BJ1),K(D)

are not expressible in vector language even though they are
recognizable as vectorizable by the dependence analysis and
are readily executable on a vector machine. The Converter is
forced to generate scalar source code for such loops. Second,
the dependence analysis intended for source-to-source
conversion does not recognize many cases where vector
hardware may be used but, because of an interaction
between the semantics of the proposed vector language
assignment statement and the dependence algorithm, vector
source language may not be used. For example, the loop

DO 1 K=1,32
DO 1 J=1,32
DO | I=1,32
AK+1,J+1,]+D)=B(K+1,J,]+ )+BK+1J+1])
I B(K+1J+ 1,14+ D=AK+ 1,11+ DFAK+1,J+ LD+AKII)

contains a recurrence at level J and at level I and so the
Converter, finding a recurrence when it looks at level K, at
level J, and at level 1, is forced to leave the loop in scalar
code. But there is no reason why the vector hardware cannot
be used to execute level K. The dependence algorithm,
however, could not generate a vector assignment for level K,
and so opportunities for vectorization were being obscured.

Recall for a moment the basic algorithm of the Parallel
Fortran Converter. After standardizing the program. it forms
a dependence graph, it partitions the graph into strongly
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Table 1 Normalized compile times for various programs.

Opt(0) Opt(3) Vector
AIRFLOW 0.39 1.00 1.35
AIRMESH 0.58 1.00 1.15
DAMTESTA 0.48 1.00 1.29
DAMTESTB 0.62 1.00 1.09
DEBDASDI 0.94 1.00 1.05
DEBEEEEE 0.71 1.00 1.06
DEBEIGEN 0.35 1.00 1.49
DEBEIGER 0.42 1.00 1.63
DEBFFTXX 0.64 1.00 1.25
DEBGRAPH 0.55 1.00 1.10
DEBHORNE 0.70 1.00 1.05
DEBLLSQE 0.54 1.00 1.35
DEBLSQEE 0.55 1.00 1.29
DEBMINIV 0.55 1.00 1.27
DEBODEER 0.56 1.00 1.20
DEBPFITS 0.61 1.00 1.34
DEBPIEEE 0.71 1.00 1.06
DEBSORTS 0.69 1.00 1.04
GASCOAL 0.58 1.00 1.09
GAZEXEC 0.48 1.00 1.73
GAZINIT 0.60 1.00 1.06
GAZTEST 0.52 1.00 1.32
GFDMARK 0.72 1.00 1.18
GSITESTA 0.56 1.00 1.17
GSITESTB 0.34 1.00 1.17
HHWTEST 0.44 1.00 1.22
KGNVATD 0.35 1.00 1.42
LFPTEST 0.77 1.00 1.08
NASAVA3D 0.40 1.00 1.67
PFHTEST 0.73 1.00 1.05
PPLTEST 0.48 1.00 1.43
RGETEST 0.58 1.00 1.08
SAWTEST 0.75 1.00 1.15
TAHTEST 0.52 1.00 1.11
Average 0.57 — 1.23

connected regions, and then it generates either, for those
statements not in strongly connected regions, vector code for
all remaining DO-loop levels or, for those statements in
strongly connected regions, a scalar DO-loop at the level
defining the region, after which it recursively executes this
same procedure for the remaining inner DO-loop levels. In
other words, whenever the region contains a recurrence, a
scalar DO statement, which is not executable in vector, is
always generated for the level defining the region, and
attention is shifted to opportunities at any remaining inner
levels. The problem is that any inner recurrence affects ail
outer levels, whether or not those outer levels carry a
dependence which contributes to the recurrence.

It is with the discovery of what we have called
innermosting and its implications for vectorization that our
contribution to vectorization began. Our dependence
algorithm forms a dependence graph essentially equivalent
to the one in the Converter, and it likewise partitions the
program into strongly connected regions, level by level, using
this graph. But for each of these strongly connected regions it
asks one additional question. In spite of the fact that the
region is strongly connected, and therefore contains a 167
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recurrence, is it possible nonetheless to use the vector
hardware to execute the DO-loop at the level which defines
the region?

The algorithm to determine whether a strongly connected
region may nonetheless be executed in vector hardware for
the DO-loop defining the region has two phases. In the first
phase, the algorithm examines each dependence carried by
the DO-loop defining the region. It attempts to interchange
this DO-loop with each successive inner DO-loop until it has
become the innermost loop. If an interchange is not possible,
because it would violate the dependence, then the region
may not be executed in vector mode at the level defining the
region and the method terminates for this region for this
level. If interchange is possible, but the dependence itself
disappears because it is absorbed by a dependence at an
intervening loop, then the dependence is ignored since it will
not affect the vector execution of the level defining the
region. Otherwise the dependence is recorded as an
“innermost sensitive” dependence for the region.

The earlier example may be modified to illustrate these
dependences:

DO 1 K=1,32

DO 1 J=1,32

DO 1 1=1,32

A(K+1,J+ L1+ 1)=B(K+1,J I+ 1)+B(K+1,J+1,1)+B(K,J,I)
I BK+1LJ+ LI+ 1)=AK+1LLI+ D+AK+1,J+1,D+AK,JI)

There are true dependences at level K from A(K+1,J+1,1+1)
to A(K,J,I) and from B(K+1,J+1,I+1) to B(K,J,I). When,
however, the DO-loop ordering is changed from K.,J,I to
J,LK in order to test whether level K may be innermosted,
these dependences disappear. In the new ordering they are
dependences at level J, not level K, and therefore they are
not innermost sensitive dependences for level K. In contrast,
the true dependences at level J from A(K+1,J+1,I+1) to
A(K+1.J.I+1) and from B(K+1,J+1,1+1) to B(K+1,J,I1+1)
remain at level J as level J is innermosted, and they are
therefore innermost sensitive dependences for level J.

In the second phase, the algorithm constructs a graph
using only the loop-independent dependences in the region
and the innermost sensitive dependences for the DO-loop
level defining the region. Other dependences, notably those
for other DO-loop levels, are excluded. If this graph has a
cycle then the region may not be executed in vector mode at
the level defining the region. Otherwise the region is eligible
for vector execution even though other loops inside the loop
defining the region may have recurrences. Because many
edges have been excluded from the graph, it becomes much
more likely that the graph will not be strongly connected and
therefore that the region will be found eligible for execution
on the vector hardware. The algorithm marks the region if it
may be executed in vector mode and then it recursively
considers inner regions, marking thereby each region found
to be vectorizable.
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The foregoing ignores some special cases of recurrences
which can be vectorized. These special cases are handled by
both vectorizers. For example, reduction operations, such as
S=S+A(1LJ,K), can be vectorized if reduction hardware exists
on a machine. Likewise, techniques such as scalar expansion
are used by both vectorizers to reduce or eliminate some
recurrences.

Vectorization analysis—Economics of
vectorization

In all of the foregoing analysis the vectorizer has made no
irrevocable decisions as to the final form of the object
program. In particular, it has not written scalar DO-loops,
and it has not partitioned code originally from one nest of
DO-loops into separate nests, some vector and some scalar.
It has done nothing except investigate possibilities,
identifying possible choices for use of the vector hardware.
Some of these will be the choices identified by the Converter,
but others will be new ones, outer loops containing inner
loops with recurrences. The vectorizer now seeks to find the
fastest possible execution of the program, using vector or
scalar hardware as appropriate.

A nest of loops may in general be executed either by scalar
instructions or by vector instructions with the vector
hardware applied to any of, but only one of, the loops in the
nest. For example, in the nest

DO 1 K=I,N

DO 1 J=1,N

DO 1 I=1,N

A(LLJ,K)=B(LJ,K)+P(J,K)*Q(J,K)
1 E(K,J.)=F(K,J,D+X(LI)*Y(L]J)

four possibilities exist for each statement (vectorize on K, J,
I, or none) and sixteen possibilities therefore exist for the
combination of the two statements. The vectorizer attempts
to find the fastest among these possibilities.

The main factors considered in estimating the cost of
execution are the cost of loop overhead, the cost of hardware
instructions, and the cost of fetching and storing operands.
These costs will vary for the same statement as each
enclosing loop is considered as the candidate for execution
in the vector hardware. The costs will vary because
statements will be scalar at some levels but vector at other
levels, and because array operands will be fetched and stored
in different dimensions as different levels are considered for
vectorization.

The possibilities for scalar and vector execution are treated
as a graph. Using a modified least-cost graph traversal
algorithm, the vectorizer attempts to find the cheapest path
through the graph of possibilities. Since some heuristics are
employed the traversal is not exact. Heuristics are necessary
because, for example, two statements from the same original
nest of loops may have been partitioned into different
regions when vector execution candidates were identified
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(because they were in different strongly connected regions of
the program), but when the least-cost object program is
constructed for these statements it is desirable (but not
always possible) to merge them back into the same set of
loop controls.

The regions identified in the earlier part of the algorithm,
when each was marked as eligible or not for vector
execution, are sorted into topological order based on
program dependence as part of that process. The least-cost
graph traversal considers these regions in topological order
beginning with a null first region and ending with a null final
region. The algorithm produces and maintains a list of the
execution costs, in units of processor time, required to
execute the statements in subsets of these regions, the subsets
always beginning with the null first region in the topological
ordering, always ending with some other region in the
topological ordering, and always including all regions
between the two.

Each element on the list represents the execution of the
regions on the path from the null first region through the last
region on the path, with each region executed in a particular
mode, vector or scalar. The algorithm estimates the cost for
executing this entire collection of regions in these particular
modes, attempting heuristically to minimize the number of
loop control statements which must be inserted. This
requires merging the statements on the path into common
enclosing loops while preserving the dependences between
the statements.

Once the cost has been determined, the next possible
candidate regions for execution along this path are identified.
These candidates will be the next region in the topological
ordering executed in scalar and, if valid for the region,
vector. These candidates, and the just-estimated cost of
execution to reach them, are then posted onto the list of
pending possible execution paths. When a candidate region
is marked as a scalar candidate, inner regions of that
candidate subsequently are considered as candidates, either
scalar or vector. When a candidate region is marked as a
vector candidate, by implication all inner regions are scalar
and they are bypassed to expedite processing.

The algorithm iterates by picking from all elements on the
list the one with the next candidate which is most cheaply
reachable along its particular path of execution possibilities,
by computing the cost of including it in execution with its
predecessors, by locating its possible successors, and by
posting them on the list of pending candidates. The
algorithm terminates when the null final region is selected as
the cheapest candidate to include on a path, since this path
represents the cheapest execution which includes all regions
in the program.

The selected path represents a decision for each region
whether that region is to be executed in scalar or vector
mode and indicates how the regions are to be merged into
fewer regions for the purposes of minimizing the loop

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

(a)

D0 1 K=1,32

DO 1 J=1,32

D0 1 1=1,32
AA(E,J,K3ZBA(H,J,K)+CAL1,,K)/DA(T,d,K)
AB(1,K,d)=BB(1,K,J)+CB{(,K,J)/DB(1,K,J)
AC(J,1,K)=BC(J,1,K)+CC(J,t,K)/DC(J,1,K)
AD(J,K, 1)=BD(J,K, 1)+CD{J,K,1)}/DD(J,K,1)
AE (K, 1,d)=BE (K, 1,J)+CE(K, 1 ,J)/DE(K,,J)
1 AF(K,d,y 1)=BF (K,J, +CF{K,J, 1 )/DF(K,J,1)

(b)

VECT 1 —----- DO 1 K=1,32

SCAL 2 |.----- DG 1 J=1,32

SCAL 3 --== D0 1 1=1,32
1 | AE (K, 1 ,J)=BE(K, | ,J)+CE(K,1,J)/DE(K,1,J)
AF(K,d,1)=BF (K,J, 1 )+CF(K,J,1)/DF(K,J,1)

SCAL §  -m=---- DO 1 K=1,32

SCAL 2 |, =-=-~- DO 1 J4=1,32

VECT 3 ---- D0 1 [=1,32
i | AA(T, 4, KJ=BAC1,,K)+CA(1,,K)/DA(1,3,K)
4 AB(1,K,J)=BB(1,K,J)+CB(1,K,J)/DB(I,K,J4)

VECT 2 | --=-- DO 1 J=1,32

SCAL 3 ||,---- DO 1 I=1,32
i | AC(J, 1,KI=BC(d,1,K)+CC(d,1,K)/DC(J,1,K)
4 AD(J,K, 1 )}=BD{J,K, 1)+CD(J,K,1)/DD(J,K,1)

Vectorization along different dimensions: (a) original source pro-
gram; (b) vectorized program.

control statements. The intermediate language for the
program is then transcribed to implement these decisions.

Note that scalar code is unaffected by this vectorization
algorithm. Optimized scalar code remains optimized scalar
code. No changes to the code are made until it has been
determined that the changes are not only an improvement
but also the best improvement the vectorizer can find.

Examples of vectorization

The compiler reports how it vectorizes a source program by
reprinting the original source statements and enclosing them
in bracketed loops which show the final object program
form. The loops are marked as vector or scalar. Any
reordering of statements or replication of loops is indicated
in this vector report.

The report is only approximate. Statements which have
been optimized away, or moved backward outside loops,
may not be seen. Statements manipulating user-written
induction variables are especially likely to disappear as a
result of optimization.

The vector report is used in the examples to illustrate the
vectorization.

Figure 1 shows how statements from the same loop can be
vectorized along different dimensions as a result of the
economic analysis. Storage is accessed most efficiently,
because it is accessed consecutively, when the leftmost
subscript of an array is varied most rapidly. This is reflected
in the economics. In the original scalar example, which
shows the same subscripts permuted six ways, the storage
used by four of the six statements is not accessed
consecutively. In vector mode, however, the storage for all
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(a)
DO 1 K=1,32
DO 1 J=1,32
Do 1 1=1,32
ALY, ,K)=1/A01,4,K)
B{1+1,d41,K)=B{1,J+1,K)+B({+1,J,K)
1 C(\+3,J+1,K+1)=C(J,J+l,K+¥)+C(I+1,J,K+1)+C(‘+1,J+1,K)
(b)
SCAL DO 3 K=1,32
SCAL DO 2 .J=1,32
SCAL DO 1 1=1,32
COIHT, I+ T,Ke1)=CO1 041 K+ 1) 4C (14T, J K+ T)+C (141, J+T,K)
VECT DO 3 K=1,32
SCAL D0 2 J=1,32
SCAL 1=1,32
Al 1+1,J,K}=1/A(1,J,K)
B{I+1,J41,K)=B{ 1 ,d+1,K)+B{++1,J,K)

A s B

5

i Vectorization of loop with recurrences: (a) original source program;
¢ (b) vectorized program.

@
DO 2 K=1,kk
002 J=1,j}
s=A(1,J,K§"B<1,J,K)
DO 1 i=1,ii
19=8+C(4, 3, K)/001,4.K)
2 E(1,4,K)=8
®)
VECT 1 —oosee DO 2 K=1,64
SCAL 2 00 2 J=1,32
3 S=A{1,4,K)7B(1,4,K)
SCAL 3 [{,~--- DO 1 [=1,32
' S=S+C{1,J,K}/D(1,J,K)
3 E(1,4,K)=S
or
SCAL 1 ------ DO 2 K=1,32
VECT 27| ===m- D0 2 J=1,64
3 S=A(1,4,K)"B(1,d,K)
SCAL 37 [] ==-- DO 1 I=1,32
L $=5+C{1,3,K)/D(1,93K)
3 E(1,4,K)=S
or
SCAL
SCAL
VECT

Change in vectorization as loop size varies: (a) original source pro-
gram; (b) vectorized program.

- o -

six statements is accessed consecutively, and the statements
have been merged as much as possible into common loops.

Figure 2 shows how recurrences can affect vectorization.
The three statements in this example have recurrences at the
inner one, two, and three loops respectively. Since there are
only three loops surrounding these statements, the third
statement cannot be vectorized. The other two can be
vectorized on outer loops.
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Figure 3 shows how the vectorization for a nest of loops
can change as the loops vary in the number of iterations.
Three examples are given; the code is the same in each case
except for the loop counts. Note that this loop includes a
reduction. The reduction is performed individually and
explicitly when the innermost loop is selected for
vectorization, and the value of S at the end of each
execution of the inner loop reflects a sum along the |
dimension. When an outer loop is selected, however, the
reduction is performed in parallel. A vector register is used
to hold up to 128 different values of S, reflecting 128
different iterations of either the J or the K loop, and the
values fetched by the I loop are accumulated into the
register. When the I loop is completed then all 128 values of
S are stored.

Dubrulle et al. [10] contains an extended discussion and
additional examples of the use of the compiler.

Concluding remarks

This paper has described an optimizing vectorizing
production compiler. It identifies many new vectorization
possibilities, particularly those involving inner-loop
recurrences. It selects from these possibilities the one which
will result in the fastest execution of the program, and it
compiles highly optimized object code for both the scalar
and the vector parts of the program. It does all of this
quickly.

This project would never have been possible without the
fundamental research of Professor Kenneth W, Kennedy
and Dr. J. Randal Allen of Rice University. They in turn
credit the earlier work of Professor David J. Kuck and Dr.
Uptal Banerjee of the University of Illinois. But it is to Ken
Kennedy and Randy Allen that we acknowledge our debts.
Throughout our project they offered clarity and support.
Their initial programs were lucid and elegant statements of
dependence theory and source-to-source vectorization,
Without their initial push and continuing help this compiler
would not have been produced.
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