
Fourier transform James w. Cooley
by Ramesh C. Agarwal

and convolution
subroutines
for the IBM 3090
Vector Facility

A set of highly optimized subroutines for digital
signal processing has been included in the
Engineering and Scientific Subroutine Library
(ESSL) for the IBM 3090 Vector Facility. These
include FORTRAN-callable subroutines for
Fourier transforms, convolution, and correlation.
The subroutines are carefully designed and
tuned for optimal vector and cache performance.
Speedups of up to 9% times over scalar
performance on the 3090 have been obtained.

1. Introduction
In 1977, Carl H. Savit, Vice President for Data Processing of
Western Geophysical Company of America, estimated [11
that by 1985, seismic exploration for oil and gas would
require an increase in computer memory and speed by a
factor of 3 X IO6. Furthermore, he stated that the rate of
increase in computer power is much lower than the rate of
increase in computer requirements for seismic exploration
alone. The crossover point was placed by him at about 1972.

referred to as “digital signal processing” and is characterized
Much of the computation in seismic exploration is

@Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

by the fact that the data originate as analog signals which are
converted into a digital representation. As far as the
computer is concerned, the important characteristics of this
class of problems are that the amount of data is huge and
must be processed economically within a certain limited
amount of time, and that the mathematical and
computational processes are dominated by the calculation of
Fourier transforms, correlations, convolutions, and spectral
analysis. Other areas of application of these calculations
which share many of these characteristics include
geophysical research, crystallography, vibration analysis,
radar and sonar signal processing, communications, speech
recognition and synthesis, and the processing of weather data
for analysis and prediction.

If the figures cited above are compared with the rate of
increase in the raw speed of computer hardware, it is
inevitable that intensive work must be done in producing
parallel and vector processing capabilities along with
algorithmic procedures for using them efficiently. The
response to these demands has been that a large number of
parallel and vector processors have come upon the market
and are in use today. However, these fall far short of filling
the requirements that Savit described. Experience with these
machines and the demands put upon them has given rise to
many new problems in algorithm design and program
generation and in the design and use of compilers and other
programming tools. Typically, it is found that the problem
of fully utilizing the facilities of a parallel or vector processor
is many orders of magnitude greater than for a serial
machine. This means that the difference between optimized

RAMESH C. AGARWAL AND JAMES W. COOLEY

1 140

hand-coded programs and programs generated by compilers
or mediocre programming is far greater than it is in serial
machines.

In response to this situation, the set of “signal processing”
programs included in the Engineering and Scientific
Subroutine Library (ESSL) package [2,3] contain very
efficient hand-coded inner subroutines which do most of the
computing. The innermost subroutines, forming the core of
all of the Fourier transform and the large convolution and
correlation calculations, use the methods of Agarwal [4] to
do all calculations with full vector registers and to maintain
high cache performance. Programs which do the
“controlling” and take up insignificant amounts of time are
written in FORTRAN. The program logic is designed and
finely tuned to yield the best vector and cache performance.
To the user, these form an integrated package of
FORTRAN-callable subroutines. It is expected that in the
typical applications mentioned above, one will be able to
write FORTRAN calling programs in such a way that the
dominant portions of calculations will be done by the
optimized vector subroutines.

referred to Oppenheim and Schafer [5] . For general
references on the fast Fourier transform (FFT) algorithm, see
[6-1 I]. For applications of the FFT algorithm, see
[7, 12- 141. Since there was very little written on the finite
discrete Fourier transform before the advent of digital
computers and the FFT algorithm, [IO] was written and is
referred to here. Reference [131 describes the revisions of
traditional power spectrum estimation methods which came
about as a result of the advent of digital computers and the
FIT algorithm.

For a general text on digital signal processing, the reader is

2. Contents of the signal processing package
The signal processing package of ESSL consists of Fourier
transform subprograms and convolution and correlation
subprograms. The Fourier transform subprograms discussed
are

SCFT: Single-precision complex Fourier transform.
DCFT: Double-precision complex Fourier transform.
SRCFT: Single-precision real-to-complex Fourier
transform.
SCRFT: Single-precision complex-to-real Fourier
transform.
SRCFT2: Single-precision real-to-complex Fourier
transform in two dimensions.
SCRFT2: Single-precision complex-to-real Fourier
transform in two dimensions.

The convolution and correlation subprograms discussed are

SCON: Single-precision convolution of one sequence with
several sequences.

SCOR: Single-precision correlation of one sequence with

SACOR: Single-precision autocorrelation of several
many sequences.

sequences.

Fourier transforms-General discussion
The N-point discrete Fourier transform (DFT) of a vector,
x(n), n = 0, . . . , N - 1, is the vector defined by

y (k) = x (n) W c k = 0, . . ., N - I . (1)
N- I

“=O

Here and in what follows,

W N = e , (2)

in which we define i = f i . The inverse transform, which
gives back x(n) as a function of y (k) , i s

x (n) = (I/N) y (k) w;?. (3)

References [7- 10, 12, I31 give important relationships
satisfied by the DFT pair which are used in what follows.

- 2 r t l N

N- I

k=O

Fourier transform subprograms-Detailed description

SCFT. Complex single-precision discrete Fourier transform
and DCFT: Complex double-precision discrete Fourier
transform
The subprograms SCFT and DCFT compute the discrete
Fourier transforms, in single and double precision,
respectively, of a set of M sequences. For a given complex
input sequence, x(n) , n = 0, . . . , N - I , the subprograms
compute the complex sequence defined by

y (k) = SCALE x ,x(n)w?
N- 1

n=O

k = 0 , ..., N - 1,

where SCALE and ISIGN = f 1 are arguments to the
subroutine.

The internal components of the SCFT subprogram are
used in all of the Fourier transform programs.

SRCFT: Real-to-complex single-precision discrete Fourier
transform
The subprogram SRCFT computes the complex discrete
Fourier transforms, in single precision, of a set of M real
sequences. For a given real single-precision input sequence,
x(n), n = 0, . . . , N - 1, the subprograms compute the
complex sequence defined by (4). Since the input is real, the
output will be complex conjugate even, meaning that

~ (k) = y*(N - k), (5)

where * denotes the complex conjugate. Therefore, results
are given only for k = 0, . . . , N/2.

RAMESH C. ACARWAL A .ND J AMES W. (ZOOLEY IBM J RES. DEVELOP. \ rOL. 30 NO. 2 MARCH 1986

147

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986 RAMESH C. AGARWAL AND JAMES W. COOLEY

SCRFT: Complex-to-real single-precision discrete Fourier
transform
The subprogram SCRFT computes the real discrete Fourier
transforms, in single precision, of a set of M complex
sequences. For a given complex conjugate even single-
precision input sequence, x(n), n = 0, . . . , N - I , the
subprograms compute the real sequence defined by (4). Since
the input is assumed to be complex conjugate even, meaning
that

x (n) = x*(N - n) , (6)

the output will be real. Therefore, the input is used only for
n = 0, . . ., N/2 . With input parameters SCALE = I /N,
ISIGN = - I , and with x(n) a function of frequency, one
obtains what is generally referred to as the inverse Fourier
transform, usually a function of time or distance. If the
output of subprogram SRCFT described above is supplied as
input to SCRFT with the parameters cited, the original input
to SRCFT will be given as the output of SCRFT.

SRCFT2: Real-to-complex single-precision discrete Fourier
transform in two dimensions
The subprogram SRCFT2 computes the two-dimensional
discrete Fourier transform, in single precision, of an N , by
N2 array. For a given real single-precision input array,
x(n , , n,), n, = 0, . . ., N , - I , n, = 0, . . ., N2 - I , the
subprograms compute the complex array defined by

y (k , , k,) = SCALE

where k , = 0, . . ., N , - I , and k, = 0, . . ., N, - 1. With
input parameters SCALE = 1 and ISIGN = + I , one obtains
what is generally referred to as the two-dimensional Fourier
transform, a function of frequency. Since the input is real,
the output will be complex conjugate even, meaning that

Therefore, results are given for all k, but only for k , = 0, . . . ,
N I P .

SCRFTZ: Complex-to-real single-precision discrete Fourier
transjorm in two dimensions
The subprogram SCRFT2 computes the two-dimensional
discrete Fourier transform, in single precision, of an N , by
N , complex conjugate array. For a given complex conjugate
even single-precision input array, x(n , , n,), n, = 0, . . .,
N , - I , n, = 0, . . . , N2 - 1, the subprograms compute the
real sequence defined by (7). Since the input is assumed
complex conjugate even, meaning that

the input is used for all n,, but only for n, = 0, . . . , N,/2.

With input parameters SCALE = I / (N , X N,), ISIGN = - I ,
and with x (n , , n,) a function of frequency, one obtains what
is generally referred to as the inverse Fourier transform,
usually a function of distance. If the output of subprogram
SRCFT2, described above, is supplied as input to SCRFT2
with the parameters cited, the original input to SRCFT2 will
be given as the output of SCRFT2.

Convolution and correlation subprograms-General
discussion
The relation between convolution and correlation integrals
and their discrete representation and the use of the
convolution theorem for Fourier transforms is described in
Ref. [8]. In what follows, discrete, finite convolutions and
correlations are considered.

The convolution of a sequence h (j) , j = 0, I , . . . , Nh - 1
with another sequence x (j) , j = 0, I , . . ., N, - 1 is defined

Defining the limits of summation is equivalent to saying that
the sum is over all j and that the data outside the interval of
definition are zero. The range of indices of possibly nonzero
values of y(k) is k = 0, . . . , Nh + N, - 2. From the
definition, one can easily show the symmetry

Under the same assumptions as above, the
crosscorrelation of two sequences h(i) and x(i) is defined by

y (n) = Z h x (n) = W x (n +A. (12)
min(Nh-I,Nx-l)

,=max(O.-n)

As in the previous paragraphs, defining the limits of
summation is equivalent to saying that the sum is over all j
and that the data outside the interval of definition are zero.
The possible nonzero values of Fh,(n) are for n = -Nh + I ,
. . . , N, - 1. Calling sequences will give the lengths of the
input and output sequences. If h(n) and x(n) are the same,
(12) is known as the autocorrelation function. The symmetry
condition is

Therefore, the crosscorrelation programs can give results for
n < 0.

An important class of problems consists in solving a set of
normal equations

In Linear Predictive Coding (LPC) models of speech [151,
h(i) and x(i) are the same; in many system identification
problems, they are different. The Levinson algorithm (see,
for example, [151) is often used to solve for the a,’s in Eq.
(14).

SCON: Convolution of one h with many x's
This subroutine computes the convolutiorls

y(k, m) = C J k , m) (15)

of one vector h(n) with many vectors x(n, m), with all vector
elements spaced in memory with given strides. (The term
stride indicates the distance in storage between elements of a
sequence.)

SCOR: Correlation of one h with many x's
This subroutine computes the correlations

of one vector h(n) with many vectors x(n, m), with all vector
elements spaced in memory with given strides.

SACOR: Autocorrelations of many sequences
This subroutine computes the autocorrelations

~ (k , m) = C,(k, m) (16)

of a set of vectors x(n, m), m = 1, . . ., M.

3. FFT computing using the 3090 Vector Facility
One of the approaches which could have been taken was to
use a state-of-the-art scalar FlT program and vectorize it
using the vectorizing compiler. A preliminary analysis
indicated that such an exercise would result in programs
giving far less than the peak expected performance. It
became clear that to fully exploit the Vector Facility, a
restructuring of the FFT algorithm was necessary so that the
algorithm would match the architecture. In this section, we
give justifications for this decision.

The 3090 Vector Facility has a vector length or vector
section size (VSS) of 128. Most vector instructions such as
load, store, multiply, add, multiply-add, etc. produce one
result every cycle, after the initial start-up delay, which could
be as much as 30 cycles or more. Thus, to efficiently utilize
the Vector Facility we must work with long vector lengths,
preferably with the full vector length (128). Therefore, the
FFT algorithm needs to be reformulated such that we work
with a vector length of 128 as far as possible.

The above assumption of one result every cycle is valid
only if all the operands are in cache, which is of size 64K
bytes for this machine. If any of the operands are not in
cache, data must be fetched from the main memory in units
of 128 bytes (a line of cache). This introduces a sizable
further delay. The cost of bringing a line into cache is fixed.
Therefore, the algorithm must be restructured such that if a
line (128 bytes = 8 double words = 16 single words) is
brought into cache, all of it gets utilized. Cache has a
structure such that only four lines, with identical seven low-
order address bits, can reside there at the same time. If one
more line, with the same seven low-order address bits, is
needed. one of the previous lines has to be cast out. This
implies that it is very difficult to bring an array into cache
with a power of 2 stride. The conventional FFT algorithm 148

RAMESH C. AGARWAL A

requires strides which are powers of 2 in the innermost loop.
Therefore, a restructuring of the FIT algorithm is necessary
to avoid this problem.

The cache considerations are much more important for
the Vector Facility vis h vis the scalar processor. In the scalar
processor, the arithmetic is slow, and therefore the cost of
bringing the data into cache is a small fraction of the total
cost. But this is not the case for the Vector Facility, where
the arithmetic unit is very fast and the cost of data transfers
between main memory and cache becomes very important.
To reduce this data traffic, we have to restructure the
algorithm in such a way that we break a large problem into
many subproblems, where each subproblem fits in cache.
Most of our effort in this project has been directed towards
these two problems:

1. How to achieve full vector length for all phases of the

2. How to work around the cache.
computation.

We have restructured the FFT algorithm with these two
goals in mind, and this has resulted in many different cases
depending on the problem size.

machine to be very useful in this regard:
We found some of the architectural features of the

We used a long-precision load/store to load/store two

The multiply-add instruction performs two floating-point
short-precision vectors.

operations per cycle. We have used this instruction
wherever possible; sometimes this has meant a slight
restructuring of the algorithm.

registers, and we have attempted to utilize all of them in
such a way that we do as much computing as possible in
registers between load and store operations. Thus, we have
tried to reduce the ratio of load/store operations to
arithmetic operations.
Making use of the three-operand architecture of the
machine, we avoid loads as far as possible. Now we try to
pick up one of the operands from memory as part of the
arithmetic instruction. Here is where (2) comes into play,
as we have structured the algorithm to reference these
operands repeatedly, implying that they will become
cache-resident. In effect, cache becomes an extended
memory of the vector registers.

The vector processor has 16 short-precision vector

4. Methodology in Fourier transforms
The radix-2 FFT algorithm for length N = 2" consists of m
radix-2 stages. At each stage, N/2 radix-2 butterflies
[5, p. 2961 are computed. Thus, it appears to be vectorizable,
with a vector length of N/2. But, unfortunately, data
indexing for these butterflies is not uniform, thereby
requiring indirect addressing of data, which on the 3090

.ND J AMES W. (300LEY IBM J. RES. DEVELOP. 1 iOL. 30 NO. 2 MARCH 1986

Vector Facility is somewhat slow. Scalar FFT algorithms do
“in-place” computation, with each radix-2 stage broken into
two nested DO-LOOPS, with uniform indexing within these.
Depending on the stage of the FFT computation, the inner
DO-LOOP length varies from N/2 to I , with an average
length of only O(log N). Thus a straightforward
vectorization of a scalar FFT code would give an average
vector length of only @log N), which is too small for
efficient implementation on a vector architecture.

machine. Korn and Lambiotte [171 adopted the Pease
algorithm for implementation on the STAR- 100 vector
computer. Their algorithm works with vectors of length N/2,
which is the longest possible vector, but it requires special
vector operations generally referred to as GATHER or
COMPRESS performed under a bit-vector control. By using
a bit-vector of identical length, the data vector is
compressed, selecting only those elements which have a one
bit in the bit-vector. For the FFT, two GATHER
instructions are required to form one vector. This is repeated
for every stage of the FFT computation. The COMPRESS
instruction is available on the 3090 Vector Facility, but an
FFT implementation using it would be inefficient because it
doubles the number of vector store instructions.

The CRAY- 1 computer does not have a COMPRESS
instruction; therefore, Swarztrauber [181 and Petersen [191
adopted a variation of the scalar algorithm which increases
the average vector length from @log N) to 0[(&/4) log N].
This is a considerable improvement but it is still not the best
possible.

fully vectorized and requires all loads/stores with only a
small stride, for all intermediate FFT stages. Indirect
addressing is used only for the initial “index-reversal.” For
the special case of the radix-2 FFT, the vector length is
always N/2. In addition to the basic arithmetic operations,
the radix-2 stages require load/store operations with a stride
of 1 or 2. For a radix-r stage, the following steps are
performed with a vector length of N/r:

Pease [161 had developed an FFT algorithm for a parallel

In [4], a mixed-radix FFT algorithm is presented which is

Load r vector registers with stride r.
Do r - 1 complex vector multiplications using the r - 1
pre-computed (pre-permuted) twiddle-factor vectors
(twiddle factor = multiplication by a complex number to
accomplish phase shift).
Compute the radix-r vector DFT.
Store r vectors with stride one.

The algorithm works “in place”; i.e., the output vectors
replace the input vectors in storage.

Case A
For the 3090 Vector Facility, considering the number of
vector registers available (1 6 in short precision or,

equivalently, 8 in long precision), the radix-4 seems to be the
best radix for the vector FFT implementation. Depending on
the ratio of N and VSS, the FIT computation is done by
one of the four routines. First, we describe Case A, which is
for N 5 4 X VSS. For this case, the vector length of the
machine is sufficient to accommodate all the data in vector
registers. For shorter transforms, the possibility of
simultaneously computing several transforms exists. In this
implementation, the first stage is always a radix-4 stage
implemented by the F4F$ routine. All the intermediate
stages are also radix-4 stages implemented by the F4I$
routine. The last stage could be either a radix-4 stage (if N is
an even power of 2) implemented by the F4L$ routine, or a
radix-2 stage (if N is an odd power of 2) implemented by the
F2L$ routine.

We consider the case where several transforms are to be
computed simultaneously. In computing m transforms
simultaneously, for a radix-4 stage, the required vector
length is m X N/4. Therefore, in a vector block
m = 4 X VSS/N transforms could be computed
simultaneously. This utilizes the full vector length of the
machine which, as discussed earlier, is most efficient. This is
the first level of segmentation. Additional implementation
efficiency is achieved by processing several vector blocks
simultaneously. For each FFT stage, the twiddle-factor
vectors are the same for all the vector blocks and therefore
are loaded outside the loop on vector blocks. They remain in
vector registers throughout the loop. Thus the cost of loading
the twiddle-factor vectors is shared by many vector blocks,
leading to improved efficiency. The cache size limits the
number of vector blocks that are processed simultaneously.
The aim is to make sure that all of the data work area (the
number of vector blocks being processed) and the vector
twiddle factors for all the stages remain in cache with room
to spare for input and output arrays. This decides the
number of vector blocks which can be most efficiently
processed together. This collection of vector blocks is called
a cache block.

Case B
A radix-r step of the FFT algorithm requires working with r
vector registers of length N/r each; when Nlr is longer than
the vector length of the machine, the algorithm of [4] creates
many problems. In that situation, we cannot do in-place
computation, and therefore two work arrays of size N each
are required for data. It also leads to a large storage
requirement for twiddle-factor arrays, which are separately
pre-permuted for each FFT stage. Thus, even for moderate-
size transforms, a straightforward application of ideas of [4]
may lead to a storage requirement which may be larger than
the cache size of the machine. This would create cache
misses and thereby degrade performance. This leads us to
Case B, which is for transform lengths of size 8 X VSS and
16 X VSS. The algorithm of [4] is restructured so that all 149

DOLEY IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986 RAMESH C. AGARWAL AND JAMES W.

FFT stages, except the last radix-4 stage, require working
with vectors of length only VSS, and thus require twiddle-
factor vectors also of size VSS only. This leads to a
significant reduction in the storage space for twiddle-factor
vectors. Except for the first radix-4 stage, all other stages do
in-place computing; Le., the output array overwrites the
input array. This also reduces the working-array size, which
has to be kept in cache.

Cases C and D
Yet another problem arises when the transform length N is
so large that the working array and the associated twiddle-
factor arrays do not fit in cache. In that situation, the cache-
miss ratio increases significantly, leading to a significant
degradation in performance. This brings us to Case C, where
we do yet another reformulation of the FFT algorithm in
which the data are blocked in cache blocks which tit in
cache. The algorithm is restructured such that a fairly large
amount of processing is done on a cache block before the
next one is processed. This keeps data in cache for longer
periods, reducing the cache miss ratio.

as a two-dimensional transform of size N, by N2 with a
twiddle-factor multiplication stage between, where
N = N,N,. By using this technique, the computation of the
length-N DFT can be done in the following four steps:

We reformulate a one-dimensional transform of length N

1. Performing N2 row transforms of length N , .
2. Twiddle-factor multiplication by powers of W,.
3. Performing N, column transforms of length N,.
4. A final two-dimensional array transposition.

For the present ESSL design, considering the cache size
(64K bytes) and the vector section size of the 3090 Vector
Facility (VSS = 128), N, was chosen as 32 for the short-
precision routine (SCFT) and 16 for the long-precision
routine (DCFT). Here we do not give the implementation
details except to point out some of the salient features. For
both the row and the column transform computations, all
the vectors are formed with stride one. An auxiliary array
AUX2, of size slightly larger than N, is used for processing.
All the processing takes place in the AUX2 array, which can
be thought of as a two-dimensional array of size (N , + 16)
by N , (for the short-precision routine). The last 16 rows of
the A UX2 array are not used, but are provided to improve
the cache performance. In computing the length-N, row
transforms (Step l), the vectorization is done along the N2
dimension. Therefore, during this step, the vectors are
formed with stride one, and the required twiddle factors are
only scalars. All these things help in achieving better cache
performance. Step 2 is incorporated with the last radix-4
stage of Step 1. This eliminates loads/stores for Step 2.
Column transforms of length N, are computed using the
technique described earlier in Cases A and B. These, being

RAMESH C. AGARWAL AND IAMES W. COOLEY

column transforms, are also computed with stride one. In
this approach, the only additional cost is in the two-
dimensional array transposition (Step 4), which is also
implemented by blocking the data in cache blocks. This
more than pays for itself by improving the overall cache
performance.

by a factor of N,, with the full level of vectorization and
efficient cache management. The technique can be used
recursively (Case D) to compute even longer transforms. In
ESSL, we have used it twice (Cases C and D), resulting in
the maximum transform length of 16 X VSS x N, X N,,
which for the present design is 2097152 for SCFT and
524288 for DCFT.

Summar-v of the one-dimensional complex Fourier
transform
The main computing kernels for all short-precision Fourier
transform routines are the complex-to-complex FFT routines
described above. There are four cases, depending on the
transform length N:

C a s e A : 8 s N 1 4 x VSS.
CaseB: 8 x VSSI N I 16 x VSS.

* C a s e C : 3 2 x V S S s N 1 5 1 2 x VSS.
Case D: 1024 x VSS I N I 16384 x VSS.

Real-to-complex and complex-to-real transforms
For the complex-to-real Fourier transform routine (SCRFT),
we first do a special radix-2 routine. This is followed by
a length-N/2 complex-to-complex Fourier transform, using
the above kernels. This results in a complex sequence of
length N/2, which, when interpreted as an equivalent real
sequence of length N, is the desired output. Similarly, for the
real-to-complex Fourier transform routine (SRCFT), the
above two steps are done in the reverse order. First, a length-
N/2 complex-to-complex Fourier transform is computed,
using the above kernels. For this purpose, we treat the given
input real sequence of length N as an equivalent complex
sequence of length N/2. This is followed by a special radix-2
FFT routine, which gives the final result as N/2 + 1 complex
values, of which the first and the last values have zero
imaginary parts. Because of this structure, the maximum
transform length for SRCFT and SCRFT is twice that for
SCFT.

Two-dimensional transforms
For the two-dimensional real-to-complex Fourier transform
(SRCFT2) of dimension N, by N,, N2 column transforms of
length N, each are first computed as real-to-complex
transforms, as in SRCFT above. This results in a complex
array of size (N,/2 + I) by N,. Next, we compute (N,/2 + 1)
complex-to-complex Fourier transforms of length N2 each,
using the above kernels. For the two-dimensional complex-
to-real Fourier transform (SCRFT2), the above two steps are
reversed.

The above technique extends efficient FFT computation

IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

5. Methodology in convolutions and correlations

Direct methods
The subroutines SCOR, SCON, and SACOR compute
correlations, convolutions, and autocorrelations,
respectively, by essentially the same methods. When one of
the convolved sequences or the output sequence is short, one
of several direct methods is used. These use vector
operations to accumulate sums of products. The products
are computed and accumulated in double precision,
meaning that fairly high accuracy is obtained in the final
results. If input data consist only of integers and if no
numbers become too large (larger than 224 - I) , the results
will be exact.

Fourier methods when all sequences ure long
When all sequences are long, Fourier methods are used. This
means that Fourier transforms of input data are computed
and multiplied element-by-element in single-precision
arithmetic. The inverse Fourier transform is then computed.
There are internally generated rounding errors in the Fourier
transforms. It has been shown [20] that in the case of white
noise data, the relative RMS (root-mean-square) error is
proportional to log, N with a very small proportionality
factor. Therefore, while direct methods with integer data are
exact, the Fourier methods are not. In particular, when the
input data consist of integers, the results may be close but
not equal to the correct integer results. However, the
generated relative error is not great enough to cause
difficulties in the type of calculations for which these
subroutines will be used. In fact, these results show that the
RMS error for N = 1000 is only a few units in the last
position, which is less than the error which may be expected
to result from rounding of the input data.

6. Performance measurements with Fourier
transforms
We ran all ESSL Fourier transform routines for various
transform lengths. These routines have an initialization
phase, which needs to be done only once for a set of
parameters. During initialization, we set up all the twiddle-
factor arrays, permutation indices, etc. In many applications,
one typically initializes the routine once and then it is called
many times for the actual FFT computations. Therefore, our
aim has been to minimize the run time. For short-length
transforms, as mentioned in Section 4, significantly better
performance is achieved by computing several transforms
simultaneously. In this context, we have the concept of the
vector block (implies that the number of transforms is such
that all the computing is done with the full vector length of
the machine) and the cache block (implies that the number
of transforms fill up the cache block). The full cache size of
the machine is 64K bytes (8K double words), but only a part
of it is utilized for data: the rest of it is used to store the

twiddle-factor vectors, permutation indices, other constants.
and the programs. Thus, depending on the routine, the
actual cache-block size is a tuned parameter in the range 2K
to 4K double words. Compared to a single transform
computation, better performance is achieved at the vector-
block level, and the best performance is achieved at the
cache-block level. We have run the one-dimensional Fourier
transform routines for one transform, for the number of
transforms needed to fill a vector block, and for the number
of transforms needed to fill a cache block. Below, we give
detailed performance results for various FFT routines. All
timings are the virtual CPU timings in microseconds.
Depending on the actual computing environment, the
timings may vary to some extent.

SCFT
Table 1 gives SCFT performance on the 3090 Vector Facility
for various values of N and M . For short-length transforms,
we have performance numbers for M = 1, M = 5 I2/N
(vector block), and M = 4096/N (cache block). Columns 6
and 7 give normalized run time and total time (including the
initialization time), respectively. These are normalized by
M X N X log, (N), to reflect the relative performance level.
For the applications requiring repeated calls to SCFT.
Column 6 numbers are meaningful numbers (as the
initialization is done only once) for comparison with other
programs. The initialization time is not significant for long
transforms or when many transforms are being computed
simultaneously. As mentioned before, for short-length
transforms, the best performance is achieved for a full cache
block. There is no particular advantage to be gained by using
a larger M value. And for the same reason, for longer
transforms (N > 2048) no advantage is to be gained by using
A4 > I . Examination of Columns 6 and 7 reveals a slight
jump in times at N = 4096 and I3 1072, which reflects the
additional computing cost for the array transposition
required in Cases C and D, as discussed in Section 4.

We have compared SCFT against two scalar FFT routines
which are considered to be among the best available. Table 2
gives performance numbers (similar to Columns 6 and 7 of
Table I) , for Singleton’s mixed-radix FFT routine [21], and
for Bergland’s radix 8-4-2 FFT routine [22]. Note that
Bergland’s routine works only for N up to 32768. For these
scalar FFT programs, there is no advantage to be gained by
computing several transforms. These also do not have an
initialization phase. A comparison of Columns 2 and 3
reveals that Bergland’s program runs faster, for N up to
16384, on the 3090. Also note the effect of cache for
N > 8 192. In the same table, we compare these against
SCFT performance. In Column 4, we give low ratio, which is
the ratio of the worst vector performance (values from
Column 7 of Table I , for M = I , which include the
initialization time) to the best scalar performance (better of
Columns 2 and 3). In Column 5 , we give the high ratio, 151

’OOLEY IBM J. RES DEVELOP. VOL. 30 NO 2 MARCH 1986 RAMESH C AGARWAL AND JAMES W. C

Transform No. o f Initialization Run Total Run time Total time
length transforms time

M (PS) N
time
(CIS)

64
64
64

I28
128
128

256
256
256

512
512

1024
1024

2048
2048

4096
8 I92
16384
32768
65536
131072
262 I44
524288
1048576

1
8
64

1
4
32

I
2
16

1
8

1
4

1
2

1
1
1
1
1
1
1
1
1

169
353
382

227
385
416

288
370
42 I

528
532

41 I
505

634
704

1360
2225
4049
7264
14187
28417
56637

I 14969
2241 12

136
373
2329

198
449
284 1

296
474
3 IO4

549
3608

1084
4054

2357
4678

5746
12122
25973
54565
120187
271681
575 150
1203786
2487562

305
726
271 I

425
834
3257

584
844
3525

1077
4140

1495
4559

2991
5382

7 IO6
14347
30022
61829
I34374
300098
631787
1318755
271 I674

0.354
0.121
0.095

0.22 I
0.125
0.099

0.145
0.1 I6
0.095

0.1 19
0.098

0. IO6
0.099

0. IO5
0. IO4

0.117
0.1 14
0.113
0.1 1 1
0.115
0.122
0.122
0.121
0.1 I9

0.794
0.236
0.1 I O

0.474
0.233
0.1 I4

0.285
0.206
0. IO8

0.234
0.1 12

0. I46
0.111

0.133
0.1 19

0.145
0.135
0.131
0. I26
0. I28
0. I35
0. I34
0.132
0. I29

Table 2 Performance for “best” scalar FFT and comparison results are self-explanatory. Also note the effect of better
against SCFT. cache management (in SCFT) for longer transforms.

Transform . . ~~ Singleton time Bergland time Vector-scalar , DCFT
length N comparison

DCFT performance on the 3090 Vector Facility for various
LOW ratio High ratio values of N and M is found in Table 3. For short-length

transforms. we have Derformance numbers for M = 1 and
64 1.002 0.914 1.15
I28 0.94 I 0.770 1.62 9h2 M = 5 12/N (vector block). It turns out that for DCFT no
256

7.77
0.780 0.670 2.35 7.05 advantage is to be gained by processing more than one

512 0.754 0.633 2.70
1024 0.710 0.6 14

6.45 vector block at a time. Columns 6 and 7 give normalized
4.20

2048 6.20 run time and total time (including the initialization time), 0.722 0.586 4.40
4096

5.63
0.667 0.580 4.00 4.95 respectively. These are normalized by M X N X log, (N) to

8192 0.692 0.600 4.44 5.26 reflect the relative Derformance level. For the aDDlications
16384 0.876 0.714 5.45
32768 0.97 1 1.012 7.70 8.74
65536 0.888 6.93 7.72 meaningful numbers (as the initialization is done only once)

_ _
6.31 requiring repeated calls to XFT, Column 6 numbers are

131072 0.9 12 6.75 7.47 for comparison with other Drograms. The initialization time
262 144 0.928
524288 1.052
1048576 0.996

6.92
7.96 8.69
7.72 8.36 transforms are being computed simultaneously. For short-

”

7.60 is not significant for long transforms or when many

length transforms, the best performance is achieved for a full
vector block. There is no particular advantage to be gained
by using a larger M value. And for the same reason, for

which is the ratio of the best vector performance (best values longer transforms (N > 2048) no advantage is to be gained
from Column 6 of Table 1, which do not include the by using M > 1. Examination of Columns 6 and 7 reveals a

152 initialization time) to the best scalar performance. The slight jump in times at N = 4096 and 65536, which reflects

RAMESH C . AGARWAL AND JAMES W. COOLEY IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

Table 3 Performance of the D C n routine.

Transfirm No. cf Initialization Run
time length transforms time

N M (I 4 (l . 4

Total Run time Total t ihe
time M x N x log , (N) M x N x log,(N)
(CIS)

64 1 I87 161 348 0.419 0.906
64 8 463 52 I 984 0.170 0.320

I28 1 237 240 477 0.268 0.532
128 4 523 585 I IO8 0. I63 0.309

256 I 325 372 697 0.182 0.340
256 2 627 635 1262 0.155 0.308

512
1024
2048
4096
8192
16384
32768
65536
13 IO72
262 I44
524288

1
I
I
I
I
1
1
I
I
1
I

762
727
1058
3095
5433
9847
19072
39 122
76668
151 135
301 734

72 1
1563
3513
8515
I8442
40302
90683
20494 1
4426 I5
936279
2031161

1483
2290
451 I
I1610
23875
50149
109755
244063
5 I9283
1087414
2332895

0.156
0.153
0. I56
0.173
0.173
0.176
0.184
0.195
0. I99
0.198
0.204

0.322
0.224
0.203
0.236
0.224
0.219
0.223
0.233
0.233
0.230
0.234

the additional computing cost for the array transposition
required in Cases C and D, as discussed in Section 4.

SRCFT and SCRFT
Tables 4 and 5, respectively, give SRCFT and SCRFT
performance on the 3090 Vector Facility for various values
of N and M. For short-length transforms, we have
performance numbers for M = 1, M = 1024/N (vector
block), and M = 4096/N (cache block). Columns 6 and 7
give normalized run time and total time (including the
initialization time), respectively. These are normalized by
M X N X log, (N) to reflect the relative performance level.
For the applications requiring repeated calls to
SRCFT/SCRFT, Column 6 numbers are meaningful
numbers (as the initialization is done only once) for
comparison with other programs. The initialization time is
not significant for long transforms or when many transforms
are being computed simultaneously. As mentioned before,
for short-length transforms, the best performance is achieved
for a full cache block. There is no particular advantage to be
gained by using a larger M value. And for the same reason,
for longer transforms (N > 2048), no advantage is to be
gained by using M > 1. Examination of Columns 6 and 7
reveals a slight jump in times at N = 8192 and 262144,
which reflects the additional computing cost for the array
transposition required in Cases C and D, as discussed in
Section 4.

SRCFTZ and SCRFTZ
For square arrays of various sizes, SRCFT2 and SCRFT2
performance on the 3090 Vector Facility is shown
respectively in Tables 6 and 7. Column 7 gives normalized

IBM J . RES. DEVELOP. VOL. 30 N O 2 MARCH 1986

run time and Column 8 gives total time (including the
initialization time). These are normalized by
M x N x log, (N) to reflect the relative performance level.
For large transforms, the initialization time is a very small
fraction of the total time, and therefore values of Columns 7
and 8 are almost identical. For large transforms, timings also
depend on INC2Y (stride between first elements of the
columns or, equivalently, the leading dimension of the
output array). If N, > 128, the recommended values of
INC2Y are N , + 32 for SCRF"2 and N,/2 + 16 for
SRCFT2. The minimum required values of INC2Y are
N , + 2 for SCRFT2 and N,/2 + 1 for SRCF"2. In Tables 6
and 7 we have given performance numbers for both of these
choices of INC2Y. It can be observed that, for N, > 128,
better performance is obtained with the values of INC2Y
recommended above. For N2 > 256, to improve the cache
performance in computing the row transforms, we transfer
the data into a temporary array, where row transforms are
computed. After the computation, the data are transferred
back to the output array. Because of this additional cost of
the two data transfers, we note a slight drop in performance
for N, > 256.

7. Performance of convolution and correlation
subroutines

The direct-method subroutines
Two assembly language subroutines, CORSH and CORSY,
compute the correlation function

.v(j) = 2 hji)x(i + j) (17)
min(Nh-l.Nx-l-~)

,=0 153

RAMESH C AGARWAL AND JAMES W. COOLEY

Table 4 Performance of the SRCFT routine.

Transjorm No. of Initialization Run Total Run time Total time
length

N
transforms

M
time time time
(PS)

M x N x l o g , (N) M x N x l o g , (N)
(PS) (PSI

64
64
64

128
128
128

256
256
256

512
512
512

1024
1024

2048
2048

4096
8192

16384
32768
65536

131072
262 I44
524288

1048576
2097 152

I
16
64

1
8

32

1
4

16

1
2
8

1
4

I
2

1
1
1
1
I
1
I
1
1
1

161
550
558

I92
537
523

285
578
570

323
490
486

559
603

544
593

1064
1703
2733
4924
904 I

I7543
34422
69834

135693
2684 10

134
467

1589

165
497

I747

240
579

1966

37 1
604

2066

670
2329

1329
2484

278 1
6523

I3744
29692
62213

134845
30 1498
626547

I325572
2729993

295
1017
2147

357
1034
2270

525
1157
2536

694
1094
2552

1229
2932

1873
3077

3845
8226

16477
346 I6
71254

152388
335920
69638 I

1461265
2998403

0.349
0.076
0.065

0.184
0.069
0.06 I

0.117
0.07 1
0.060

0.08 I
0.066
0.056

0.065
0.057

0.059
0.055

0.057
0.06 1
0.060
0.060
0.059
0.061
0.064
0.063
0.063
0.062

0.768
0.166
0.087

0.398
0.144
0.079

0.256
0.141
0.077

0.151
0.1 19
0.069

0.120
0.072

0.083
0.068

0.078
0.077
0.072
0.070
0.068
0.068
0.07 1
0.070
0.070
0.068

f o r j = 0, 1, . . ., N,, - 1. The lengths ofthe h, x, and y
sequences are N,, N,, and N,, respectively. For negative j
and for convolution, CORSH and CORSY are called with
reversed and truncated sequences. The subroutine CORSH
uses an algorithm which is designed for efficiency when the h
sequence is short; CORSY is designed for use when y is
short. Before the subroutines are called, the sequences are
shortened, if possible, to the number of elements of h and x
which will actually enter the calculation, and y is reduced to
those elements which can have nonzero values. For this, the
subroutines make the replacements

N h + min (Nh, N,),

N, c min (N,, Nh + N,),

N, c min (N,,, N,). (18)

In what follows, we use these new definitions of sequence
lengths so that within the subroutines we have

N,, N, 5 N, 5 Nh + N,. (19)

The subroutines are written so that no arithmetic is done
with elements beyond those defined by the length N, of x.
Therefore, the formula for the number of multiply-adds in

154 (17) has two parts: If N, 5 N, - Nh,

M(Nh, Nx> N,) = NyNh, (20)

and, for the “tail” of the correlation, where N,, > N, - N,,

M (N h 3 N x , N y)

= (N , - N,)Nh + (N , - N, + N,)(N, + N, - N, + 1)/2. (21)

The direct method with scalar operations
For comparing methods we use data with N, 2 Nh + N,,. As
a basis of comparison. timing was done for the simple
FORTRAN program

DO 10 J=O,NY-1
Y(J)=O
DO I O I=O,NH-1

10 Y(J)=Y(J)+H(I)*X(I+J)

for computing the correlation defined in (17). The timing for
this program can be expressed in the form

Ts(Nh, N,) = ANhN, + BN, + D. (22)

Actual timing of this as an in-line program yielded the
following values, in microseconds, for the coefficients in (22):
A = 0.2375, B = 0.4555, and D = 34.9598, which may be
taken as a basis of comparison with the vector subroutines
described below.

RAMESH C. AGARWAL AND JAMES W. COOLEY IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

Table 5 Performance of the S C R R routine.

Transform
length
N

64
64
64

I28
I28
128

256
256
256

512
512
512

1024
1024

2048
2048

4096
8192

16384
32768
65536

I3 IO72
262 I44
524288

1048576
2097 I52

No. of
transforms

M

I
16
64

1
8

32

1
4

16

I
2
8

I
4

I
2

1
1
1
1
1
I
I
I
1
1

Initialization
time
(PSI

I64
48 1
485

I75
418
427

243
445
462

298
448
482

604
618

545
515

916
1709
2750
4918
8902

I732 I
3458 I
68282

135737
268970

Run
time
(PS)

141
609

2144

169
560

1886

239
596

2017

368
61 1

2 103

670
2298

1303
245 I

2749
6490

13612
29 142
61035

133314
298955
62 1029

1311152
2708759

Total
time
(PSI

305
1090
2629

344
978

2313

482
1041
2479

666
1059
2585

1274
2916

I848
2966

3665
8 I99

16362
34060
69937

150635
333536
6893 I 1

1446889
2977729

Run lime Total time
M X N X log,(N) M X N X log,(N)

0.367 0.794
0.099 0.177
0.087 0. IO7

0.189 0.384
0.078 0. I36
0.066 0.08 I

0.1 17 0.235
0.073 0. I27
0.062 0.076

0.080 0.145
0.066 0.115
0.057 0.070

0.065 0.124
0.056 0.07 I

0.058 0.082
0.054 0.066

0.056 0.075
0.06 I 0.077
0.059 0.07 1
0.059 0.069
0.058 0.067
0.060 0.068
0.063 0.07 1
0.062 0.069
0.063 0.069
0.062 0.068

Timing of CORSH
The basic algorithm is as described by Gazdag et al. [23] in
this issue as Algorithm 2. Let AM(N,, Nx, N,) be the time
taken for performing the multiplications and additions.
Since CORSH does a multiplication and an addition with
the single-cycle multiply-add instruction (VMAE), one may
expect A to be close to the cycle time of the machine. The
time for all other operations is derived as follows: The
innermost loop divides the y and x sequences into vector-
length segments. For each segment of y , it loops over the
elements of h, multiplying each scalar h(i) by a segment of x
starting at x(i + J) and adding it to an accumulated segment
of the sequence y. Using notation from [23], let the number
of segments of y be denoted by

S(N,) = [(N, - 1)/128] + 1,

where [.] denotes the integer part of the bracketed
expression. The time for the loop over the h’s plus the time
for clearing and storing the vector register for accumulating a
segment of y is of the form

BN, + C. (24)

The time for clearing and storing the vector register for

segments of y has a component of the form EN,. Allowing
an overall start-up time D, the formula for the time of the
calculation is

T,(N,, Nx, N,)

= AM(N,, N,, N,) + (BN, + C)S(N,) + D + EN,. (25)

A good fit to the actual running time in microseconds for the
program was obtained with A = 0.0 19 I , B = 0.8 16, C =
2.6 I , D = 22.49, and E = 0.022. This may be compared
with [23, Eq. (24)], where the same formula is given in terms
of estimates of machine cycles. The coefficient A comes out
just a little over the cycle time of the machine. The
incremental start-up time, for each additional h(i) within
each vector segment is B = 0.816, which is 34% of the time,
128A = 2.44, for doing the 128 multiply-additions of the
vector of x’s times h(i). Hockney and Jesshope [24] define
their n,/* parameter as the number of vector elements which
can be processed in the start-up time for the vector. In this
case, we get

n, = BfA = 43.5. (26)

This means that if the vector length were about 43, the
machine would process the vector operation at half of full

IBM J. RES, DEVELOP. VOL. 30 NO, 2 MARCH 1986 RAMESH C . AGARWAL AND JAMES W. COOLEY

Table 6 Performance of the SRCFT2 routine for two-dimensional square arrays.

N,, N2 INC2Y Total array size Initialization Run Total Run time Total time iV= N, X N2 time rime time N X log, (N) N x log, (N)
(PS) (PS) (PSI

64

128
I28

256
256

512
512

1024
I024

2048
2048

33

80
65

144
I29

272
257

528
513

1040
1025

4096

16384
16384

65536
65536

262 144
262 I44

1048576
1048576

4 194304
4 194304

789

1 I45
1059

1 I76
I I69

1056
1052

1161
1167

1350
I390

2862

12905
12925

57922
60775

283555
290695

1237136
13296 I 1

5434 1 15
6730500

365 1

14050
I3984

59098
6 1944

2846 1 I
29 1747

1238297
I330778

5435465
6731890

0.058

0.056
0.056

0.055
0.058

0.060
0.062

0.059
0.063

0.059
0.073

0.074

0.06 1
0.06 I

0.056
0.059

0.060
0.062

0.059
0.063

0.059
0.073

Table 7 Performance of the SCRFT2 routine for two-dimensional square arrays.

N,, N2 INCZY Total array size Initialization Run Total Run time Total time
N = N, X N2 time time time N X log, (N) N X log, (N)

(PS) (PS) (PSI

64

128
128

256
256

512
512

1024
1024

2048
2048

66

130
160

288
258

544
514

1056
1026

2080
2050

4096

16384
16384

65536
65536

262 144
262 144

1048576
1048576

4 194304
4194304

88 1

943
I020

1050
1032

1012
I010

1 I23
I141

1287
1396

3317

I3493
13614

58245
60466

28096 1
288087

1226252
13 19782

542 1507
6804578

4198

14436
14634

59295
61498

28 I973
289097

1227375
1320923

5422794
6805974

0.067

0.059
0.059

0.056
0.058

0.060
0.06 I

0.058
0.063

0.059
0.074

0.085

0.063
0.064

0.057
0.059

0.060
0.06 1

0.059
0.063

0.059
0.074

speed, the speed at which operations are processed after
vector start-up. The value 43.5 obtained here for the VMAE
instruction is fairly good, being well below the vector length
of 128. There is a rather large amount of time, C = 2.6 1, for
starting the loop over the h’s. It is almost the same as the
time 128A = 2.44 for doing an entire vector of 128 multiply-
adds. Finally, the call statement and overall start-up time
amount to D = 22.5, about nine times as long as the 128
multiply-adds.

Timing ofCORSY
The algorithm for CORSY is designed for efficiency when N,
is small. It is as described by Gazdag et al. [2 3] in this issue
as Algorithm 1. However, the timing formula for CORSY
differs from the one in [23, Eq. (23)] in that the last term I

156 there, containing a start-up time for segmenting the y

sequence, is missing here. CORSY does not have this term,
since it does not have to clear storage for y. Again, let
AM(Nh, N x , N J be the time taken for performing the
multiplications and additions. For each output y(i), CORSY
does a multiply and accumulate (VMCE) with a segment of
h’s, which is kept in a vector register for all subsequent
operations which use it. The loop over the y(i)’s is
performed for each segment of h taking an amount of time
given by a term of the form

(B N ~ , + c) x s(Nh). (27)

When the VMCE instruction multiplies this segment of h by
a segment of x, it accumulates the products, in double
precision, in four partial sums. Then, in a separate
operation, it accumulates the four partial sums of these
products. The time for this is proportional to N , and the

RAMESH C. AGARWAL AND JAMES W. COOLEY IBM J . RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986

L

Table 8 Time (ps) for convolution and correlation by the
Fourier method in terms of N , the Fourier transform size.

N Initiul Run Total

32
64

128
256
512

I024
2048
4096

477 23 1
555 300
675 364
997 525

I204 796
1610 I490
2855 2900
5679 6095

708
855

1039
1522
2000
3700
5755

I I774

number of segments of h and will therefore contribute to the
term (27). Since full speed for the VMCE instruction is one
cycle, one may expect the value of A for CORSY to be
approximately equal to the cycle time of the machine.
Forming each resulting y(j) requires time for clearing a
storage location, adding its contents to the partial sums, and
storing the result. This produces a term EN, in the timing
formula. As mentioned above, a segment of h is loaded only
once in a vector register. This is done outside the loop over
y (i)’s, so it makes a contribution to C in (27). This also takes
a small amount of time which depends on the number of
elements in h, which we designate by FN,,. Allowing for an
overall subroutine call and start-up time, D, the formula for
the time of the calculation is given by

Ty(Nh, N,, N,) = AM(Nh. Nx> NJ

+ (B N , + C)S(Nh) + D + E N , + FN,,. (28)

A very good fit to the actual running time in microseconds
for the program was obtained with A = 0.0 189, B = 1.84, C
= 1.97, D = 22.43, E = 0.02, and F = 0.0157. This may be
compared with [23, Eq. (23)], where the same formula is
given in terms of estimated machine cycles. The coefficient A
comes out to be about the same as the A for CORSH. The
time for the loop over the y(i)’s is seen in terms of B to be
more than twice as large as the corresponding terms for
CORSH due to the accumulation of partial sums and some
clerical operations. If the n,,2 of [24] is evaluated as for
CORSH, above, one obtains

nh = BJA = 97.3, (29)

which is quite close to the vector length for the machine.
This result indicates that the amount of parallelism for the
VMCE instruction is too small, or, in other words, that the
vector register should be longer to use the VMCE instruction
efficiently.

0 Timing qfthe Fourier method
The timing of the Fourier method depends entirely on the
size N of the Fourier transform which must be computed.
For the simple parameters considered above, N will be the

x0 t
60 1 w CORSH

Scalar

n 40 80 I20 I60 200

:; For Nh = 64 and 0 < N, < 220, plot of computational speed =
2NhN,,/time for the in-line FORTRAN scalar program, CORSH,
CORSY, and the Fourier method as functions of N,.. (N , = N, + Nh.)

next higher power of 2 above N,, + N,. - 1. Formally, this
may be expressed
N = ~ ~ l o g ~ C N ~ + N v - l) l (30)

where r . 1 denotes the ceiling of the expression-ix., the next
higher integer. All of the vector subroutines require an
initialization time which is negligible for CORSH and
CORSY but is large enough in the Fourier method
subroutines to require some consideration. Therefore, the
initialization time is given with the run and total time in
Table 8 as functions of N .

Discussion oftiming,for convolutionJcorrelation
In this section, performance is described in terms of
computing speed by dividing the number of multiplications
and additions, M(N,,, NA, NJ in Eq. (20) by the time
required for the calculation. For the direct methods, this
gives the rate at which the machine actually performs FLOPs
(floating-point multiplications and additions), but this is not
the case for the Fourier methods, where the number of
FLOPs is in general lower.

assume, as in the above discussions, that the input x
sequence is indefinitely long. The effect is that N, = N, + N,,
and the number of operations is NAN,.. The plots in Figure 1
show the MFLOP rates for N,, = 64 as functions of N , for

In the comparisons of timing which follow, we continue to

IBM J . RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986 RAMESH C. AGARWAL AND JAMES W. COOLEY

80 F
-

60 -

Scalar

I I I I I I I I l l l
0 40 80 I20 160 200

0 I I I I I I I I I I I
0 40 80 I20 160 200

!>,

I For Nh = 128 and 0 < N < 220, plot of computational speed =

1. The in-line scalar program for the direct method.
2. CORSH, which uses the best strategy for short h.
3. CORSY, which uses the best strategy for short y .
4. The Fourier transform method which is used in the

subroutines SCON, SCOR, and SACOR.

Small glitches appear in some plots, showing a drop in speed
at isolated points. These result from interrupts caused by
multitask operation of the machine. They are left in the
plots to show their relative effect on performance in actual
calculations.

For a very small range of parameters which is of little
interest here, the direct in-line method is best. In Fig. 1,
showing rates for Nh = 64, CORSY shows the best
performance up to about N, = 30. Increasing Nh to 96 (as
shown in Figure 2), which for CORSY increases the number
of elements in the vector register, increases CORSY’s speed.
(The Fourier method shows an expected improvement in
performance also.)

Results for Nh = 128 are shown in Figure 3. Here, h just
fills a vector register, giving CORSY the greatest advantage
and increasing its range to N, = 55. In general, since
CORSH uses the better strategy for small Nh, we expect to
see this crossover point at a higher N, for higher Nh, as
shown in Fig. 2. In the plots for CORSH, one sees the
discontinuity at multiples of N, = 128 where the time
increases by the start-up time for a new vector segment
(divided by NhN,).

Figures 4-6 show the performance plots for a wider range
of N, (up to 2200) with the MFLOPS going twice as high, up
to 180. In Fig. 4, the Nh = 64 plot demonstrates that
CORSH is better for most of the range shown.

Figure 5 displays an unexpected result: There are many
crossings between the performance curves for the Fourier
method and CORSH. In Fig. 6, the Nh = 128 plot shows the
Fourier method to be best above N, = 2 10. For N, < 2 10,
there are many crossings between the performance curves.

The locations of the crossover points in the timing curves
are important in choosing which of the programs to use. For
the sake of comparing CORSY and CORSH, Figure 7 shows
a plot giving the value of Ny at the crossover point for each
N A . Thus, for all N,,, N , below the graph, CORSY is faster
than CORSH. For changes in Nh within a segment length,
the graph is a straight line which, for the first segment, has a
slope of 0.42. It is interesting to note that the observation
made above that n,,> is too high for CORSY is supported by
the data plotted in Fig. 7. The drop in the performance
curve caused each time a segment of h is filled causes the
equal-performance graph to stay below N, = 57; thus,
CORSY will never be better for more than 57.

8. Conclusions
The general methods for scheduling the FFT algorithm
described by Agarwal [4] offered great advantages in

RAMESH C. AGARWAL AND JAMES W. COOLEY IBM J. RES. DEVELOP. VOL. 30 NO 2 MARCH 1986

B
4

0 100 200 300 400 500 600

IBM J . RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986 RAMESH C. AGARWAL AND JAMES W. COOLEY

vectorizing the FFT algorithm for the IBM 3090 Vector
Facility. However, further details of the structuring,
depending on the number of vectors and their size, had to be
devised. The radix-4 algorithm gave some savings in the
number of multiplications and permitted a large number of
operations within vector registers between accesses to
storage. The relation between vector and cache sizes made it
necessary to schedule the algorithm in such a way as to keep
as much computing within a cache block as possible. Where
the algorithm called for accessing data with strides equal to
powers of 2, redimensioning of data arrays was shown to
make great improvements in cache performance. In Tables 6
and 7 , it is shown how run times vary considerably by
changing the INC2Y parameter. This is an example where
the user may, by simply altering a stride, reduce repeated
accesses to the same cache lines, with a consequent
improvement in running time. Programming experience has
shown that special formulation of the algorithms can be very
important and has led to some fairly general programming
principles and techniques which have yielded significant
improvements in performance.

To achieve high performance, it was very important to
divide the calculations into vector-block and cache-block
units. In large arrays special techniques had to be used to
transpose data without producing too many “cache misses.”

To do the above and maintain efficiency, it was necessary
to have the subroutines do preprocessing, and when
sequences were short it was efficient to have them compute
several transforms at once.

Comparisons with the best scalar programs, run on the
IBM 3090, showed the vector program to run from 1.2 to
8.0 times as fast, allowing for initialization (see Table 2).
However, for full-speed operation, i.e, not counting
initialization, speedups of from 5 to 9% times were achieved.

The formulation of the FFT algorithm and the design of
the programs made it possible to keep all vector registers
filled at every iteration. The number of vector registers and
the three-address operation code made it possible to use the
radix-4 FFT algorithm so that large amounts of computing
could be done within registers with relatively few storage
references. The permutations of data in the FFT algorithm
could be performed economically by the efficient use of
strides and the indexed load/store operations.

During the planning stages of these programs, it was
expected that for the majority of problem parameters, it
would be most efficient to compute convolutions with
Fourier transforms. In fact, estimates of the numbers of
arithmetic operations and results on conventional scalar
machines showed that the Fourier methods were better for
sequence lengths of more than 16 to 32. The Fourier
transform methods require fewer arithmetic operations than
the direct methods. Nevertheless, the crossover points for
direct methods are higher than those for scalar machines.
Each of these methods depends upon a vector operation 160

RAMESH C. AGARWAL P

which does a multiplication and an addition in a single
instruction-that is, in a single cycle.

One direct method uses an operation (VMAES) which
multiplies a scalar by a vector and adds the result to a
vector. This was used in the internal subroutine CORSH,
which was designed to be efficient when one of the input
sequences is short. Here we have found out that “short” may
be as long as 2 IO. This subroutine will be very useful in
many large problems where one is doing digital filtering on a
digitized signal or, in other words, computing a moving
average over a long signal with a fixed short sequence of
weights.

The second vector operation referred to above multiplies a
vector by a vector and accumulates the products (VMCE). It
only accumulates partial sums so that additional overhead is
required. The result is that it is never superior for an output
sequence length greater than 57. However, there are many
situations where long input sequences of samples of
stochastic variables are used and relatively few values of the
computed covariance function are desired.

It may be seen in Fig. 7 that examining the computing
speed of these two direct methods as a function of input
sequence length Nh and output sequence length N, shows
that the Nh, N, plane is divided into two disjoint regions
where one or the other method is superior. Thus, it is
important that both be available.

Data in the figures and in Table 8 show that for large
ranges of parameters, the performance curves for the three
methods make many crossings. This is caused by the vector
segmentation and by the fact that the present Fourier
transform subroutines apply only to lengths equal to powers
of 2. Therefore, there is no simple test of parameters to
determine the best method. Instead, timing formulas must
be used.

It is well known that vector machines make the task of
program planning and writing far more critical than do
scalar machines. Therefore, the problem of making the full
capabilities of vector machines available can, in part, be
solved by identifying computational kernels and making an
intensive effort to plan and program subroutines for them.
This paper describes a contribution towards that goal.

Acknowledgments
R. C. A. would like to thank G. Paul of the IBM Thomas J.
Watson Research Center for familiarizing him with vector
architecture and for suggesting the study of the vectorization
of the FFT algorithm. Discussions with S. Winograd of the
Department of Mathematical Sciences at the Research
Center were informative and stimulating. F. Gustavson,
manager of the project, gave valuable support and
maintained close contact and interest in all phases of the
work. B. Tuckerman wrote and made available to us his
vector simulator, with its program debugging facilities, which
was indispensable in getting programs developed long before

rND JAMES W. (ZOOLEY IBM J . RES. I >EVELOP. VOL. 30 NO. 2 MARCH 1986

the machine was available. The authors wish to express their
gratitude to G. Radicati of the IBM Rome Scientific Center.
He graciously sent us an early version of the paper he
coauthored (Ref. [23]) and had previously given us the
program which became the basis for the subroutine CORSH.
He also performed the timing and testing of our programs
before the 3090 Vector Facility became available to us.
G. Slishman gave valuable system support which facilitated
the use of the machine in Kingston and, later, the machine
at the Research Center. We are also grateful to the ESSL
software development group at IBM Kingston under
S. Schmidt for performing final testing and for preparing the
programs for acceptance as IBM products.

References
I , Carl H. Savit, “Geophysical DP Requirements Could Exceed the

World’s GP Capacity by 1985.” AFIPS Conl: Proc. 47, 63-66
(1978).

Rc.fi.rc~ncc,, Order No. SC23-0184, available through IBM branch
offices.

I ~ / ~) n n a / / o n . Order No. SC23-0182, available through IBM
branch offices.

4. Ramesh C. Aganval. “An Efficient Formulation of the Mixed-
Radix FFT Algorithm,” Proccvdings of fhe Inlc.mutional
Confiwnce on Computcw, SvstcJrns, and Srgnal Proccwing,
Bangalore, India, December 10-12, 1984, pp. 769-772.

5. A. V. Oppenheim and R. W. Schafer, Digital Signal Procming,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.

6. J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine
Calculation of Complex Fourier Series,” Math. Comp. 19, 297-
301 (April 1965).

7. J. W. Cooley. P. A. W. Lewis, and P. D. Welch, “The Fast
Fourier Transform Algorithm and Its Applications,” IEEE
Trans Education E-I 2, No. 1, 27-34 (March 1969).

8. J. W. Cooley. P. A. W. Lewis, and P. D. Welch, “Application of
the Fast Fourier Transform to Computation of Fourier Integrals,
Fourier Series. and Convolution Integrals,” IEEE Truns. Audio
Elc~crroucorra. AU-15, No. 2, 79-84 (June 1967).

9. J. W. Cooley. P. A. W. Lewis, and P. D. Welch, “Historical
Notes on the Fast Fourier Transform,” IEEE Trans. Audio
Elrcrroucorrst. AU-15, No. 2. 76-79 (June 1967). See also Proc.
lEEli55, No. 10, 1675-1677 (October 1967).

2. Enginrering and Scientifrc Slrbroutinc, Library Glrrde and

3. Enginwring and Scien/(/ic Suhroutinc~ Library Grncwl

10. J. W. Cooley. P. A. W. Lewis. and P. D. Welch, “The Finite

I

I ‘

Fast Fourier Transform.” IEEE Trans. Afrdio Elrctroacoust.
AU-17, No. 2. 77-85 (June 1969).

Computcv S c i c w o s , A. Ralston, Ed., Mason Charter Publishers
Inc.. New York. 1976.

2. J. W. Cooley. P. A. W. Lewis, and P. D. Welch. “The Fast
Fourier Transform: Programming Considerations in the
Calculation of Sine, Cosine and Laplace Transforms.” .I. So~md

315-337 (July 1970).
b’ih Ana/. (University of Southampton, England) 12, No. 3,

Application of the Fast Fourier Transform Algorithm to the
Estimation of Spectra and Cross-Spectra,” J . Sozrnd Vihr. Anal.
(University of Southampton, England) 12, No. 3. 339-352 (July
1970).

Fourier Transform and Its Application to Time Series Analysis,”
Ch. 14 of Stati.c/it.ul .W(Mc?hod.s./hr D/gitul C‘omnpnfc~rs. Vol. 111 of
Aluthc~matical Mc~lrod.~ /or Digital Complrtcrs. K. Enslein. A.
Ralston. and H. Wilf. Eds.. Wilev-lnterscience. New York. 1977.

1. J. W. Cooley. “Fast Fourier Transform,” Enc)ulopcda of

3. J . W. Cooley. P. A. W. Lewis. and P. D. Welch, “The

1. J. W. Cooley. P. A. W. Lewis, and P. D. Welch, “The Fast

15. J. D. Markel and A. H. Gray. Lincwr Prediction ofSpcc~ch,
Springer-Verlag New York. 1976.

I B M J . RES. DEVELOP. VOL. 30 NO 2 MARCH 1986

16. M. C. Pease, “An Adaptation of the Fast Fourier Transform for

17. David G. Korn and J. Lambiotte, Jr., “Computing the Fast
Parallel Processing,” J . ACM 15, 253-264 (1968).

Fourier Transform on a Vector Computer,” Muth. Cornp. 33,
977-992 (July 1979).

Cornpfrtutions, G. Rodrique, Ed., Academic Press, Inc., New
York, 1982.

19. W. P. Petersen, “Vector Fortran for Numerical Problems on
CRAY-I,” Cornrnun. ACM 26, 1008-1021 (November 1983).

20. A. Oppenheim and C. Weinstein, “Effects of Finite Register
Length in Digital Filtering and the Fast Fourier Transform,”
Proc. IEEE 60, No. 8, 957-976 (August 1972).

2 1. R. C. Singleton, “An Algorithm for Computing the Mixed Radix
Fast Fourier Transform,” IEEE Trans. Audio Electroacoust.
AU-17, 93-103 (June 1969). See also Digital Signal Proce.wing,
L. Rabiner and C. Rader, Eds., IEEE Press, New York, 1975.

22. G. D. Bergland, “A Fast Fourier Transform Algorithm Using
Base 8 Iterations,” Marh. Comp. 22,275-279 (April 1968). See
also Digital Signal Proce.ssing, L. Rabiner and C. Rader, Eds.,
IEEE Press, New York, 1975.

23. J. Gazdag, G. Radicati, P. Sguazzero, and H. H. Wang, “Seismic
Migration on the IBM 3090 Vector Facility,” IBM J . Res. Develop
30, No, 2, 172-183 (1986, this issue).

Hilger Ltd., Bristol, England, I98 1 .

I 8. P. N. Swarztrauber, “Vectorizing the FFTs,” Parallt~l

24. R. W. Hockney and C. R. Jesshope. Purullt~l Computers Adam

Received Novcwher 5 , 1985; uccepkd.for puhlicution
November 20, 1985

Ramesh C. Agarwal IBM Rescurch Division, P.O. Box 218,
Yorktown HcJights, New York 10598. Dr. Aganval received his
B.Tcch. degree (with honors) from the Indian Institute of
Technology (IIT), Bombay, India, and the M.S. and Ph.D. degrees
from Rice University, Houston, Texas, all in electrical engineering,
in 1968. 1970, and 1974, respectively. During 1971-72, he was an
Associate Lecturer at the School of Radar Studies, IIT Delhi, India;
from 1974 to 1977 he was with the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York. He spent the period
1977-198 I as a Principal Scientific Officer at the Centre for Applied
Research in Electronics at IIT Delhi, India, and returned to IBM in
1982. His research interests have included network synthesis,
information theory and coding, number theoretic transforms, fast
algorithms for computing convolution and D m , application of
digital signal processing to structure refinement of large biological
molecules using X-ray diffraction data, sonar signal processing,
architecture for special-purpose signal processors, digital DTMF/MF
receivers, filter structures, analysis of Kennedy assassination tapes,
computation of elementary functions, and vectorization for
engineering/scientific computations. Dr. Aganval received the 1974
Acoustics. Speech, and Signal Processing Senior Award from the
Institute of Electrical and Electronics Engineers for papers on
number theoretic transforms, an IBM Outstanding Contribution
Award in 1979 for work on crystallographic refinement of biological
molecules, an IBM Outstanding Technical Achievement Award in
I984 for elementary functions work, and an IBM Outstanding
Innovation Award in 1985 for his work in vectorizing the FFT
algorithm.

James w. Cooky IBM Rcwurch Division, P 0. Box- 218,
Yorktown Hcights, N e ~ s York 10598. Dr. Cooley received his B.A.
from Manhattan College. New York City. in 1949 and his M.A. and
Ph.D. in applied mathematics from Columbia University. New 16

RAMESH C. AGARWAL AND JAMES W. COOLEY

162

RAMESH C. AGARWAL AND JAMES W. COOLEY

York, in 1951 and 1961, respectively. He was a programmer on
John von Neumann’s electronic computer at the Institute for
Advanced Study, Princeton, New Jersey, beginning in 1953; in 1956
he became a research assistant at the Computing Center of the
Courant Institute at New York University, where he worked on
numerical methods for quantum mechanical calculations. Since
1962, he has been on the Research staff of the Thomas J. Watson
Research Center in Yorktown Heights, except for a one-year
sabbatical, 1973-1974, which he spent at the Royal Institute of
Technology, Stockholm, Sweden. At IBM he has worked on
computational methods for solving diffusion and transport equations
in applications to transistor and ionic flow problems. He has assisted
in the development and use of mathematical models of the electrical
activity in nerve and muscle membranes and in assorted eigenvalue
problems and numerical methods for solving ordinary and partial
differential equations. Dr. Cooley has been involved in the
development of numerical methods for computers, including the fast
Fourier transform and convolution algorithms. In recent years, he
has participated in the development of software for elementary
functions and signal processing programs for the IBM 3090 Vector
Facility. He is a Fellow of the Institute of Electrical and Electronics
Engineers. Dr. Cooley holds five IBM awards and four IEEE awards.

1BM 1. RES. DEVELOP. \ IOL. 30 NO. 2 MARCH I986

