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A set of highly optimized subroutines for digital
signal processing has been included in the
Engineering and Scientific Subroutine Library
(ESSL) for the IBM 3090 Vector Facility. These
include FORTRAN-callable subroutines for
Fourier transforms, convolution, and correlation.
The subroutines are carefully designed and
tuned for optimal vector and cache performance.
Speedups of up to 912 times over scalar
performance on the 3090 have been obtained.

1. Introduction
In 1977, Carl H. Savit, Vice President for Data Processing of
Western Geophysical Company of America, estimated {1]
that by 1985, seismic exploration for oil and gas would
require an increase in computer memory and speed by a
factor of 3 x 10°. Furthermore, he stated that the rate of
increase in computer power is much lower than the rate of
increase in computer requirements for seismic exploration
alone. The crossover point was placed by him at about 1972,
Much of the computation in seismic exploration is
referred to as “digital signal processing” and is characterized
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by the fact that the data originate as analog signals which are
converted into a digital representation. As far as the
computer is concerned, the important characteristics of this
class of problems are that the amount of data is huge and
must be processed economically within a certain limited
amount of time, and that the mathematical and
computational processes are dominated by the calculation of
Fourier transforms, correlations, convolutions, and spectral
analysis. Other areas of application of these calculations
which share many of these characteristics include
geophysical research, crystallography, vibration analysis,
radar and sonar signal processing, communications, speech
recognition and synthesis, and the processing of weather data
for analysis and prediction.

If the figures cited above are compared with the rate of
increase in the raw speed of computer hardware, it is
inevitable that intensive work must be done in producing
parallel and vector processing capabilities along with
algorithmic procedures for using them efficiently. The
response to these demands has been that a large number of
parallel and vector processors have come upon the market
and are in use today. However, these fall far short of filling
the requirements that Savit described. Experience with these
machines and the demands put upon them has given rise to
many new problems in algorithm design and program
generation and in the design and use of compilers and other
programming tools. Typically, it is found that the problem
of fully utilizing the facilities of a parallel or vector processor
1s many orders of magnitude greater than for a serial

machine. This means that the difference between optimized 145
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hand-coded programs and programs generated by compilers
or mediocre programming is far greater than it is in serial
machines.

In response to this situation, the set of “signal processing”
programs included in the Engineering and Scientific
Subroutine Library (ESSL) package [2, 3] contain very
efficient hand-coded inner subroutines which do most of the
computing. The innermost subroutines, forming the core of
all of the Fourier transform and the large convolution and
correlation calculations, use the methods of Agarwal [4] to
do all calculations with full vector registers and to maintain
high cache performance. Programs which do the
“controlling” and take up insignificant amounts of time are
written in FORTRAN. The program logic is designed and
finely tuned to yield the best vector and cache performance.
To the user, these form an integrated package of
FORTRAN-callable subroutines. It is expected that in the
typical applications mentioned above, one will be able to
write FORTRAN calling programs in such a way that the
dominant portions of calculations will be done by the
optimized vector subroutines.

For a general text on digital signal processing, the reader is
referred to Oppenheim and Schafer [S]. For general
references on the fast Fourier transform (FFT) algorithm, see
[6-11]. For applications of the FFT algorithm, see
[7, 12-14]. Since there was very little written on the finite
discrete Fourier transform before the advent of digital
computers and the FFT algorithm, [10] was written and is
referred to here. Reference [13] describes the revisions of
traditional power spectrum estimation methods which came
about as a result of the advent of digital computers and the
FFT algorithm.

2. Contents of the signal processing package
The signal processing package of ESSL consists of Fourier
transform subprograms and convolution and correlation
subprograms. The Fourier transform subprograms discussed
are

o SCFT: Single-precision complex Fourier transform.

e DCFT: Double-precision complex Fourier transform.

o SRCFT: Single-precision real-to-complex Fourier
transform.

o SCRFT: Single-precision complex-to-real Fourier
transform.

o SRCFT?2: Single-precision real-to-complex Fourier
transform in two dimensions.

e SCRFT2: Single-precision complex-to-real Fourier
transform in two dimensions.

The convolution and correlation subprograms discussed are

e SCON: Single-precision convolution of one sequence with
several sequences.
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e SCOR: Single-precision correlation of one sequence with
many sequences.

e SACOR: Single-precision autocorrelation of several
sequences.

o Fourier transforms—General discussion
The N-point discrete Fourier transform (DFT) of a vector,
x(n), n=0, ---, N— 1, is the vector defined by

N—1

wky= 3 x(myWy k=0, ,N-1. (1)
n=0

Here and in what follows,

WN - e—Zwi/N’ (2)

in which we define i = v—1. The inverse transform, which
gives back x(n) as a function of y(k), is

N-1

x(n) = (1/N) & yk)Wy™ 3)

k=0
References [7-10, 12, 13] give important relationships
satisfied by the DFT pair which are used in what follows,

o Fourier transform subprograms—Detailed description

SCFT: Complex single-precision discrete Fourier transform
and DCFT: Complex double-precision discrete Fourier
transform
The subprograms SCFT and DCFT compute the discrete
Fourier transforms, in single and double precision,
respectively, of a set of M sequences. For a given complex
input sequence, x(n), n =0, - .., N — 1, the subprograms
compute the complex sequence defined by

N—-1

y(k) = SCALE x Y, x(n)Wj\}S'lGNnk

n=0

k=03"'3N—15 (4)

where SCALFE and ISIGN = %=1 are arguments to the
subroutine.

The internal components of the SCFT subprogram are
used in all of the Fourier transform programs.

SRCFT: Real-to-complex single-precision discrete Fourier
transform

The subprogram SRCFT computes the complex discrete
Fourier transforms, in single precision, of a set of M real
sequences. For a given real single-precision input sequence,
x(n),n=0, ..., N—1, the subprograms compute the
complex sequence defined by (4). Since the input is real, the
output will be complex conjugate even, meaning that

k) = y*N = k), &)

where * denotes the complex conjugate. Therefore, results
are given only for k=0, ..., N/2.
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SCRFT: Complex-to-real single-precision discrete Fourier
transform

The subprogram SCRFT computes the real discrete Fourier
transforms, in single precision, of a set of M complex
sequences. For a given complex conjugate even single-
precision input sequence, x(n), n =0, ..., N— 1, the
subprograms compute the real sequence defined by (4). Since
the input is assumed to be complex conjugate even, meaning
that

x(n) = x*N — n), (6)

the output will be real. Therefore, the input is used only for
n=0, ..., N/2. With input parameters SCALE = 1/N,
ISIGN = —1, and with x(n) a function of frequency, one
obtains what is generally referred to as the inverse Fourier
transform, usually a function of time or distance. If the
output of subprogram SRCFT described above is supplied as
input to SCRFT with the parameters cited, the original input
to SRCFT will be given as the output of SCRFT.

SRCFT2: Real-to-complex single-precision discrete Fourier
transform in two dimensions

The subprogram SRCFT2 computes the two-dimensional
discrete Fourier transform, in single precision, of an N, by
N, array. For a given real single-precision input array,
x(n,, n),n,=0,---,N—1,n,=0,...,N,— 1, the
subprograms compute the complex array defined by

vk, k,) = SCALE

Ny~=1 Nyl

x 3 3 xn, n,) W;.]S;IGNk,nl W;Vszlcwkznz’ )

n=0 n,=0
where k, =0, ---,N, — l,and k, =0, ---, N, — 1. With
input parameters SCALE = 1 and ISIGN = +1, one obtains
what is generally referred to as the two-dimensional Fourier
transform, a function of frequency. Since the input is real,
the output will be complex conjugate even, meaning that

vk, k) = y¥N, = k,, N, — k,). (8)

Therefore, results are given for all &, but only for k, =0, - - -,
N,/2.

SCRFT?2: Complex-to-real single-precision discrete Fourier
transform in two dimensions

The subprogram SCRFT2 computes the two-dimensional
discrete Fourier transform, in single precision, of an N, by
N, complex conjugate array. For a given complex conjugate
even single-precision input array, x(n,, n,), n, =0, - -,

N, -1,n,=0,..., N, ~ |, the subprograms compute the
real sequence defined by (7). Since the input is assumed
complex conjugate even, meaning that

1), ®

the input is used for all n,, but only forn, =0, - - -, N,/2.

x(n, ny) = x*N, — n, N, —
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With input parameters SCALE = 1/(N, X N,), ISIGN = —1,
and with x(n,, n,) a function of frequency, one obtains what
is generally referred to as the inverse Fourier transform,
usually a function of distance. If the output of subprogram
SRCFT?2, described above, is supplied as input to SCRFT2
with the parameters cited, the original input to SRCFT2 will
be given as the output of SCRFT2.

o Convolution and correlation subprograms—General
discussion

The relation between convolution and correlation integrals
and their discrete representation and the use of the
convolution theorem for Fourier transforms is described in
Ref. [8]. In what follows, discrete, finite convolutions and
correlations are considered.

The convolution of a sequence A(j), j=0,1, ---, N, — 1
with another sequence x(j), =0, I, ---, N — 1 is defined
by

min(n,N,—1)
wn) = Cp(n) = ) h(j)x(n = Jj). (10)

J=max(0,n—N,+1)

Defining the limits of summation is equivalent to saying that
the sum is over all j and that the data outside the interval of
definition are zero. The range of indices of possibly nonzero
values of y(k)isk=0, ---, N, + N_— 2. From the
definition, one can easily show the symmetry

C,(n) = C,,(n). (11)

Under the same assumptions as above, the
crosscorrelation of two sequences A(i) and x(i) is defined by

min(Nh—l,Nx—l)

ymy=C(my= %

J=max(0,—n)

h()x(n + j). (12)
As in the previous paragraphs, defining the limits of
summation is equivalent to saying that the sum is over all j
and that the data outside the interval of definition are zero.
The possible nonzero values of C, (r) are for n = —N, + 1,

-+, N~ 1. Calling sequences will give the lengths of the
input and output sequences. If 4(n) and x(n) are the same,
(12) is known as the autocorrelation function. The symmetry
condition is

C,(n) = C(—n). (13)

Therefore, the crosscorrelation programs can give results for
n<0.

An important class of problems consists in solving a set of
normal equations

Y aC (n— i) = Cp(n). (14)
In Linear Predictive Coding (LPC) models of speech [15],
h(i) and x(/) are the same; in many system identification
problems, they are different. The Levinson algorithm (see,
for example, [15]) is often used to solve for the as in Eq.

(14). 147
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SCON: Convolution of one h with many x’s
This subroutine computes the convolutions

Wk, m) = C, (k, m) (15)

of one vector A(n) with many vectors x(n, m), with all vector
elements spaced in memory with given strides. (The term
stride indicates the distance in storage between elements of a
sequence.)

SCOR: Correlation of one h with many x's
This subroutine computes the correlations

y(k, m) = C, (k, m) (15"

of one vector 4(n) with many vectors x(n, m), with all vector
elements spaced in memory with given strides.

SACOR: Autocorrelations of many sequences
This subroutine computes the autocorrelations

vk, my = C,(k, m) (16)
of a set of vectors x(n, m), m=1, -.., M.

3. FFT computing using the 3090 Vector Facility
One of the approaches which could have been taken was to
use a state-of-the-art scalar FFT program and vectorize it
using the vectorizing compiler. A preliminary analysis
indicated that such an exercise would result in programs
giving far less than the peak expected performance. It
became clear that to fully exploit the Vector Facility, a
restructuring of the FFT algorithm was necessary so that the
algorithm would match the architecture. In this section, we
give justifications for this decision.

The 3090 Vector Facility has a vector length or vector
section size (VSS) of 128. Most vector instructions such as
load, store, multiply, add, multiply-add, etc. produce one
result every cycle, after the initial start-up delay, which could
be as much as 30 cycles or more. Thus, to efficiently utilize
the Vector Facility we must work with long vector lengths,
preferably with the full vector length (128). Therefore, the
FFT algorithm needs to be reformulated such that we work
with a vector length of 128 as far as possible.

The above assumption of one result every cycle is valid
only if all the operands are in cache, which is of size 64K
bytes for this machine. If any of the operands are not in
cache, data must be fetched from the main memory in units
of 128 bytes (a line of cache). This introduces a sizable
further delay. The cost of bringing a line into cache is fixed.
Therefore, the algorithm must be restructured such that if a
line (128 bytes = 8 double words = 16 single words) is
brought into cache, all of it gets utilized. Cache has a
structure such that only four lines, with identical seven low-
order address bits, can reside there at the same time. If one
more line, with the same seven low-order address bits, is
needed. one of the previous lines has to be cast out. This
implies that it is very difficult to bring an array into cache
with a power of 2 stride. The conventional FFT algorithm
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requires strides which are powers of 2 in the innermost loop.
Therefore, a restructuring of the FFT algorithm is necessary
to avoid this problem.

The cache considerations are much more important for
the Vector Facility vis & vis the scalar processor. In the scalar
processor, the arithmetic is slow, and therefore the cost of
bringing the data into cache is a small fraction of the total
cost. But this is not the case for the Vector Facility, where
the arithmetic unit is very fast and the cost of data transfers
between main memory and cache becomes very important.
To reduce this data traffic, we have to restructure the
algorithm in such a way that we break a large problem into
many subproblems, where each subproblem fits in cache.
Most of our effort in this project has been directed towards
these two problems:

1. How to achieve full vector length for all phases of the
computation.
2. How to work around the cache.

We have restructured the FFT algorithm with these two
goals in mind, and this has resulted in many different cases
depending on the problem size.

We found some of the architectural features of the
machine to be very useful in this regard:

o We used a long-precision load/store to load/store two
short-precision vectors.

& The multiply-add instruction performs two floating-point
operations per cycle. We have used this instruction
wherever possible; sometimes this has meant a slight
restructuring of the algorithm.

o The vector processor has 16 short-precision vector
registers, and we have attempted to utilize all of them in
such a way that we do as much computing as possible in
registers between load and store operations. Thus, we have
tried to reduce the ratio of load/store operations to
arithmetic operations.

e Making use of the three-operand architecture of the
machine, we avoid loads as far as possible. Now we try to
pick up one of the operands from memory as part of the
arithmetic instruction. Here is where (2) comes into play,
as we have structured the algorithm to reference these
operands repeatedly, implying that they will become
cache-resident. In effect, cache becomes an extended
memory of the vector registers.

4. Methodology in Fourier transforms

The radix-2 FFT algorithm for length N = 2™ consists of m
radix-2 stages. At each stage, N/2 radix-2 butterflies

[5, p. 296] are computed. Thus, it appears to be vectorizable,
with a vector length of N/2. But, unfortunately, data
indexing for these butterflies is not uniform, thereby
requiring indirect addressing of data, which on the 3090
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Vector Facility is somewhat slow. Scalar FFT algorithms do
“in-place” computation, with each radix-2 stage broken into
two nested DO-LOOPS, with uniform indexing within these.
Depending on the stage of the FFT computation, the inner
DO-LOOP length varies from N/2 to 1, with an average
length of only O(log N). Thus a straightforward
vectorization of a scalar FFT code would give an average
vector length of only O(log N), which is too small for
efficient implementation on a vector architecture.

Pease [16] had developed an FFT algorithm for a parallel
machine. Korn and Lambiotte [17] adopted the Pease
algorithm for implementation on the STAR-100 vector
computer. Their algorithm works with vectors of length N/2,
which is the longest possible vector, but it requires special
vector operations generally referred to as GATHER or
COMPRESS performed under a bit-vector control. By using
a bit-vector of identical length, the data vector is
compressed, selecting only those elements which have a one
bit in the bit-vector. For the FFT, two GATHER
instructions are required to form one vector. This is repeated
for every stage of the FFT computation. The COMPRESS
instruction is available on the 3090 Vector Facility, but an
FFT implementation using it would be inefficient because it
doubles the number of vector store instructions.

The CRAY-1 computer does not have a COMPRESS
instruction; therefore, Swarztrauber [18] and Petersen [19]
adopted a variation of the scalar algorithm which increases
the average vector length from O(log N) to 0[(«/]?//4) log N].
This is a considerable improvement but it is still not the best
possible.

In [4], a mixed-radix FFT algorithm is presented which is
fully vectorized and requires all loads/stores with only a
small stride, for all intermediate FFT stages. Indirect
addressing is used only for the initial “index-reversal.” For
the special case of the radix-2 FFT, the vector length is
always N/2. In addition to the basic arithmetic operations,
the radix-2 stages require load/store operations with a stride
of 1 or 2. For a radix-r stage, the following steps are
performed with a vector length of N/r:

e Load r vector registers with stride r.

e Do r — 1 complex vector multiplications using the » — 1
pre-computed (pre-permuted) twiddle-factor vectors
(twiddle factor = multiplication by a complex number to
accomplish phase shift).

¢ Compute the radix-r vector DFT.

o Store r vectors with stride one.

The algorithm works “in place”; i.e., the output vectors
replace the input vectors in storage.

o Case A
For the 3090 Vector Facility, considering the number of
vector registers available (16 in short precision or,
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equivalently, 8 in long precision), the radix-4 seems to be the
best radix for the vector FFT implementation. Depending on
the ratio of N and VSS, the FFT computation is done by
one of the four routines. First, we describe Case A, which is
for N < 4 X VSS. For this case, the vector length of the
machine is sufficient to accommodate all the data in vector
registers. For shorter transforms, the possibility of
simultaneously computing several transforms exists. In this
implementation, the first stage is always a radix-4 stage
implemented by the F4F$ routine. All the intermediate
stages are also radix-4 stages implemented by the F4I$
routine. The last stage could be either a radix-4 stage (if N is
an even power of 2) implemented by the F4L$ routine, or a
radix-2 stage (if N is an odd power of 2) implemented by the
F2L$ routine.

We consider the case where several transforms are to be
computed simultaneously. In computing m transforms
simultaneously, for a radix-4 stage, the required vector
length is m X N/4. Therefore, in a vector block
m = 4 X VSS/N transforms could be computed
simultaneously. This utilizes the full vector length of the
machine which, as discussed earlier, is most efficient. This is
the first level of segmentation. Additional implementation
efficiency is achieved by processing several vector blocks
simultaneously. For each FFT stage, the twiddle-factor
vectors are the same for all the vector blocks and therefore
are loaded outside the loop on vector blocks. They remain in
vector registers throughout the loop. Thus the cost of loading
the twiddle-factor vectors is shared by many vector blocks,
leading to improved efficiency. The cache size limits the
number of vector blocks that are processed simultaneously.
The aim is to make sure that all of the data work area (the
number of vector blocks being processed) and the vector
twiddle factors for all the stages remain in cache with room
to spare for input and output arrays. This decides the
number of vector blocks which can be most efficiently
processed together. This collection of vector blocks is called
a cache block.

e Case B

A radix-r step of the FFT algorithm requires working with r
vector registers of length N/r each; when N/r is longer than
the vector length of the machine, the aigorithm of [4] creates
many problems. In that situation, we cannot do in-place
computation, and therefore two work arrays of size N each
are required for data. It also leads to a large storage
requirement for twiddle-factor arrays, which are separately
pre-permuted for each FFT stage. Thus, even for moderate-
size transforms, a straightforward application of ideas of [4]
may lead to a storage requirement which may be larger than
the cache size of the machine. This would create cache
misses and thereby degrade performance. This leads us to
Case B, which is for transform lengths of size 8 X VSS and

16 X VSS. The algorithm of [4] is restructured so that all 149
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FFT stages, except the last radix-4 stage, require working
with vectors of length only VSS, and thus require twiddle-
factor vectors also of size V.SS only. This leads to a
significant reduction in the storage space for twiddle-factor
vectors. Except for the first radix-4 stage, all other stages do
in-place computing; i.e., the output array overwrites the
input array. This also reduces the working-array size, which
has to be kept in cache.

e Cases C and D

Yet another problem arises when the transform length N is
so large that the working array and the associated twiddle-
factor arrays do not fit in cache. In that situation, the cache-
miss ratio increases significantly, leading to a significant
degradation in performance. This brings us to Case C, where
we do yet another reformulation of the FFT algorithm in
which the data are blocked in cache blocks which fit in
cache. The algorithm is restructured such that a fairly large
amount of processing is done on a cache block before the
next one is processed. This keeps data in cache for longer
periods, reducing the cache miss ratio.

We reformulate a one-dimensional transform of length N
as a two-dimensional transform of size N, by N, with a
twiddle-factor multiplication stage between, where
N = N,N,. By using this technique, the computation of the
length-N DFT can be done in the following four steps:

1. Performing N, row transforms of length ¥,.
2. Twiddle-factor multiplication by powers of W,,.
3. Performing N, column transforms of length N,.
4. A final two-dimensional array transposition.

For the present ESSL design, considering the cache size
(64K bytes) and the vector section size of the 3090 Vector
Facility (VVSS = 128), N, was chosen as 32 for the short-
precision routine (SCFT) and 16 for the long-precision
routine (DCFT). Here we do not give the implementation
details except to point out some of the salient features. For
both the row and the column transform computations, all
the vectors are formed with stride one. An auxiliary array
AUX2, of size slightly larger than V, is used for processing.
All the processing takes place in the AUX2 array, which can
be thought of as a two-dimensional array of size (N, + 16)
by N, (for the short-precision routine). The last 16 rows of
the AUX2 array are not used, but are provided to improve
the cache performance. In computing the length-N, row
transforms (Step 1), the vectorization is done along the N,
dimension. Therefore, during this step, the vectors are
formed with stride one, and the required twiddle factors are
only scalars. All these things help in achieving better cache
performance. Step 2 is incorporated with the last radix-4
stage of Step 1. This eliminates loads/stores for Step 2.
Column transforms of length N, are computed using the
technique described earlier in Cases A and B. These, being
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column transforms, are also computed with stride one. In
this approach, the only additional cost is in the two-
dimensional array transposition (Step 4), which is also
implemented by blocking the data in cache blocks. This
more than pays for itself by improving the overall cache
performance.

The above technique extends efficient FFT computation
by a factor of N, with the full level of vectorization and
efficient cache management. The technique can be used
recursively (Case D) to compute even longer transforms. In
ESSL, we have used it twice (Cases C and D), resulting in
the maximum transform length of 16 X VSS X N, X N,,
which for the present design is 2097152 for SCFT and
524288 for DCFT.

o Summary of the one-dimensional complex Fourier
transform

The main computing kernels for all short-precision Fourier
transform routines are the complex-to-complex FFT routines
described above. There are four cases, depending on the
transform length N:

e Case A: 8= N=4Xx VSS.

e Case B: 8 X VSS <N <16 x VSS.

e Case C: 32 X VSS < N =512 x VSS.

e Case D: 1024 X VSS = N < 16384 x VSS.

e Real-to-complex and complex-to-real transforms

For the complex-to-real Fourier transform routine (SCRFT),
we first do a special radix-2 FFT routine. This is followed by
a length-N/2 complex-to-complex Fourier transform, using
the above kernels. This results in a complex sequence of
length N/2, which, when interpreted as an equivalent real
sequence of length N, is the desired output. Similarly, for the
real-to-complex Fourier transform routine (SRCFT), the
above two steps are done in the reverse order. First, a length-
N/2 complex-to-complex Fourier transform is computed,
using the above kernels. For this purpose, we treat the given
input real sequence of length NV as an equivalent complex
sequence of length N/2. This is followed by a special radix-2
FFT routine, which gives the final result as N/2 + 1 complex
values, of which the first and the last values have zero
imaginary parts. Because of this structure, the maximum
transform length for SRCFT and SCRFT is twice that for
SCFT.

o Two-dimensional transforms

For the two-dimensional real-to-complex Fourier transform
(SRCFT?2) of dimension N, by N,, N, column transforms of
length NV, each are first computed as real-to-complex
transforms, as in SRCFT above. This results in a complex
array of size (N,/2 + 1) by N,. Next, we compute (V,/2 + 1)
complex-to-complex Fourier transforms of length N, each,
using the above kernels. For the two-dimensional complex-
to-real Fourier transform (SCRFT2), the above two steps are
reversed.
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5. Methodology in convolutions and correlations

e Direct methods

The subroutines SCOR, SCON, and SACOR compute
correlations, convolutions, and autocorrelations,
respectively, by essentially the same methods. When one of
the convolved sequences or the output sequence is short, one
of several direct methods is used. These use vector
operations to accumulate sums of products. The products
are computed and accumulated in double precision,
meaning that fairly high accuracy is obtained in the final
results. If input data consist only of integers and if no
numbers become too large (larger than . 1), the results
will be exact.

o Fourier methods when all sequences are long

When all sequences are long, Fourier methods are used. This
means that Fourier transforms of input data are computed
and multiplied element-by-element in single-precision
arithmetic. The inverse Fourier transform is then computed.
There are internally generated rounding errors in the Fourier
transforms. It has been shown [20] that in the case of white
noise data, the relative RMS (root-mean-square) error is
proportional to log, N with a very small proportionality
factor. Therefore, while direct methods with integer data are
exact, the Fourier methods are not. In particular, when the
input data consist of integers, the results may be close but
not equal to the correct integer results. However, the
generated relative error is not great enough to cause
difficulties in the type of calculations for which these
subroutines will be used. In fact, these results show that the
RMS error for N = 1000 is only a few units in the last
position, which is less than the error which may be expected
to result from rounding of the input data.

6. Performance measurements with Fourier
transforms

We ran all ESSL Fourier transform routines for various
transform lengths. These routines have an initialization
phase, which needs to be done only once for a set of
parameters. During initialization, we set up all the twiddle-
factor arrays, permutation indices, etc. In many applications,
one typically initializes the routine once and then it is called
many times for the actual FFT computations. Therefore, our
aim has been to minimize the run time. For short-length
transforms, as mentioned in Section 4, significantly better
performance is achieved by computing several transforms
simultaneously. In this context, we have the concept of the
vector block (implies that the number of transforms is such
that all the computing is done with the full vector length of
the machine) and the cache block (implies that the number
of transforms fill up the cache block). The full cache size of
the machine is 64K bytes (8K double words), but only a part
of it is utilized for data; the rest of it is used to store the
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twiddle-factor vectors, permutation indices, other constants,
and the programs. Thus, depending on the routine, the
actual cache-block size is a tuned parameter in the range 2K
to 4K double words. Compared to a single transform
computation, better performance is achieved at the vector-
block level, and the best performance is achieved at the
cache-block level. We have run the one-dimensional Fourier
transform routines for one transform, for the number of
transforms needed to fill a vector block, and for the number
of transforms needed to fill a cache block. Below, we give
detailed performance results for various FFT routines. All
timings are the virtual CPU timings in microseconds.
Depending on the actual computing environment, the
timings may vary to some extent.

o SCFT

Table 1 gives SCFT performance on the 3090 Vector Facility
for various values of N and M. For short-length transforms,
we have performance numbers for M = 1, M = 512/N
(vector block), and M = 4096/N (cache block). Columns 6
and 7 give normalized run time and total time (including the
initialization time), respectively. These are normalized by

M X N X log, (), to reflect the relative performance level.
For the applications requiring repeated calls to SCFT,
Column 6 numbers are meaningful numbers (as the
initialization is done only once) for comparison with other
programs. The initialization time is not significant for long
transforms or when many transforms are being computed
simultaneously. As mentioned before, for short-length
transforms, the best performance is achieved for a full cache
block. There is no particular advantage to be gained by using
a larger M value. And for the same reason, for longer
transforms (N > 2048) no advantage is to be gained by using
M > 1. Examination of Columns 6 and 7 reveals a slight
jump in times at N = 4096 and 131072, which reflects the
additional computing cost for the array transposition
required in Cases C and D, as discussed in Section 4.

We have compared SCFT against two scalar FFT routines
which are considered to be among the best available. Table 2
gives performance numbers (similar to Columns 6 and 7 of
Table 1), for Singleton’s mixed-radix FFT routine [21], and
for Bergland’s radix 8-4-2 FFT routine [22]. Note that
Bergland’s routine works only for N up to 32768. For these
scalar FFT programs, there is no advantage to be gained by
computing several transforms. These also do not have an
initialization phase. A comparison of Columns 2 and 3
reveals that Bergland’s program runs faster, for N up to
16384, on the 3090. Also note the effect of cache for
N > 8192. In the same table, we compare these against
SCFT performance. In Column 4, we give low ratio, which is
the ratio of the worst vector performance (values from
Column 7 of Table 1. for M = I, which include the
initialization time) to the best scalar performance (better of
Columns 2 and 3). In Column 5, we give the high ratio,
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Table 1 Performance of the SCFT routine.

Transform No. of Initialization Run Total Run time Total time
length transforms time time time M X N x log,(N) M x N x log,(N)
N M (us) (us) (us)
64 1 169 136 305 0.354 0.794
64 8 353 373 726 0.121 0.236
64 64 382 2329 2711 0.095 0.110
128 1 227 198 425 0.221 0.474
128 4 385 449 834 0.125 0.233
128 32 416 2841 3257 0.099 0.114
256 1 288 296 584 0.145 0.285
256 2 370 474 844 0.116 0.206
256 16 421 3104 3525 0.095 0.108
512 1 528 549 1077 0.119 0.234
512 8 532 3608 4140 0.098 0.112
1024 1 411 1084 1495 0.106 0.146
1024 4 505 4054 4559 0.099 0.111
2048 1 634 2357 2991 0.105 0.133
2048 2 704 4678 5382 0.104 0.119
4096 1 1360 5746 7106 0.117 0.145
8192 1 2225 12122 14347 0.114 0.135
16384 1 4049 25973 30022 0.113 0.131
32768 1 7264 54565 61829 0.111 0.126
65536 1 14187 120187 134374 0.115 0.128
131072 1 28417 271681 300098 0.122 0.135
262144 1 56637 575150 631787 0.122 0.134
524288 1 114969 1203786 1318755 0.121 0.132
1048576 1 224112 2487562 2711674 0.119 0.129
Table 2 Performance for “best” scalar FFT and comparison results are self-explanatory. Also note the effect of better
against SCFT. cache management (in SCFT) for longer transforms.
Transform Singleton time Bergland time Vector-scalar e DCFT
length N N x'log,(N) N x log, (N) comparison

DCFT performance on the 3090 Vector Facility for various
Low ratio High ratio  values of N and M is found in Table 3. For short-length
transforms, we have performance numbers for M = 1 and

lgg (l)ggf g?,,l]g iég 3% M = 512/N (vector block). It turns out that for DCFT no
256 0.780 0.670 2.35 7.05 advantage is to be gained by processing more than one
512 0.754 0.633 2.70 6.45 vector block at a time. Columns 6 and 7 give normalized
;gig 8; ég (O)g ég :'ig ggg run time and total time (including the initialization time),
4096 0.667 0.580 400 495 respectively. These are normalized by M X N X log, (N) to
8192 0.692 0.600 4.44 5.26 reflect the relative performance level. For the applications
;g;gg 85;;? ?Z){; ,5/‘,;3 g;; requiring repeated calls to DCFT, Column 6 numbers are
65536 0.888 693 772 meaningful numbers (as the initialization is done only once)
131072 0.912 6.75 7.47 for comparison with other programs. The initialization time
ggi;gg (1)(9)23 ggé ;28 is not significant for long transforms or when many
1048576 0.99 772 8.36 transforms are being computed simultaneously. For short-

length transforms, the best performance is achieved for a full
vector block. There is no particular advantage to be gained
by using a larger M value. And for the same reason, for
which is the ratio of the best vector performance (best values  longer transforms (N > 2048) no advantage is to be gained
from Column 6 of Table 1, which do not include the by using M > 1. Examination of Columns 6 and 7 reveals a
152 initialization time) to the best scalar performance. The slight jump in times at N = 4096 and 65536, which reflects
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Table 3 Performance of the DCFT routine.

Transform No. of Initialization Run Total Run time Total time
length transforms time time time M x N x log,(N) M x N x log, (N)
N M (ns) (18} (us)
64 1 187 161 348 0.419 0.906
64 8 463 521 984 0.170 0.320
128 1 237 240 477 0.268 0.532
128 4 523 585 1108 0.163 0.309
256 1 325 372 697 0.182 0.340
256 2 627 635 1262 0.155 0.308
512 1 762 721 1483 0.156 0.322
1024 1 727 1563 2290 0.153 0.224
2048 1 1058 3513 4571 0.156 0.203
4096 1 3095 8515 11610 0.173 0.236
8192 1 5433 18442 23875 0.173 0.224
16384 1 9847 40302 50149 0.176 0.219
32768 1 19072 90683 109755 0.184 0.223
65536 1 39122 204941 244063 0.195 0.233
131072 1 76668 442615 519283 0.199 0.233
262144 1 151135 936279 1087414 0.198 0.230
524288 1 301734 2031161 2332895 0.204 0.234

the additional computing cost for the array transposition
required in Cases C and D, as discussed in Section 4.

® SRCFT and SCRFT

Tables 4 and 5, respectively, give SRCFT and SCRFT
performance on the 3090 Vector Facility for various values
of N and M. For short-length transforms, we have
performance numbers for M = 1, M = 1024/N (vector
block), and M = 4096/N (cache block). Columns 6 and 7
give normalized run time and total time (including the
initialization time), respectively. These are normalized by
M X N x log, (N) to reflect the relative performance level.
For the applications requiring repeated calls to
SRCFT/SCRFT, Column 6 numbers are meaningful
numbers (as the initialization is done only once) for
comparison with other programs. The initialization time is
not significant for long transforms or when many transforms
are being computed simultaneously. As mentioned before,
for short-length transforms, the best performance is achieved
for a full cache block. There is no particular advantage to be
gained by using a larger M value. And for the same reason,
for longer transforms (N > 2048), no advantage is to be
gained by using M > 1. Examination of Columns 6 and 7
reveals a slight jump in times at N = 8192 and 262144,
which reflects the additional computing cost for the array
transposition required in Cases C and D, as discussed in
Section 4,

e SRCFT2 and SCRFT2

For square arrays of various sizes, SRCFT2 and SCRFT2
performance on the 3090 Vector Facility is shown
respectively in Tables 6 and 7. Column 7 gives normalized
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run time and Column 8 gives total time (including the
initialization time). These are normalized by

M X N x log, (N) to reflect the relative performance level.
For large transforms, the initialization time is a very small
fraction of the total time, and therefore values of Columns 7
and 8 are almost identical. For large transforms, timings also
depend on INC2Y (stride between first elements of the
columns or, equivalently, the leading dimension of the
output array). If N, > 128, the recommended values of
INC2Y are N, + 32 for SCRFT2 and N,/2 + 16 for
SRCFT2. The minimum required values of INC2Y are

N, + 2 for SCRFT2 and N,/2 + 1 for SRCFT2. In Tables 6
and 7 we have given performance numbers for both of these
choices of INC2Y. It can be observed that, for N, > 128,
better performance is obtained with the values of INC2Y
recommended above. For N, > 256, to improve the cache
performance in computing the row transforms, we transfer
the data into a temporary array, where row transforms are
computed. After the computation, the data are transferred
back to the output array. Because of this additional cost of
the two data transfers, we note a slight drop in performance
for N, > 256.

7. Performance of convolution and correlation
subroutines

o The direct-method subroutines
Two assembly language subroutines, CORSH and CORSY,
compute the correlation function

min(N,~ LN, ~1~j)

) = z

=0

A(Dx(i + j) (17)
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Table 4 Performance of the SRCFT routine.

Transform No. of Initialization Run Total Run time Total time
length transforms time time time M x N x log, (N) M x N X log, (N)
N M {ns) (us) (1)

64 1 161 134 295 0.349 0.768

64 16 550 467 1017 0.076 0.166

64 64 558 1589 2147 0.065 0.087

128 1 192 165 357 0.184 0.398

128 8 537 497 1034 0.069 0.144

128 32 523 1747 2270 0.061 0.079

256 1 285 240 525 0.117 0.256

256 4 578 579 1157 0.071 0.141

256 16 570 1966 2536 0.060 0.077

512 1 323 371 694 0.081 0.151

512 2 490 604 1094 0.066 0.119

512 8 486 2066 2552 0.056 0.069

1024 1 559 670 1229 0.065 0.120

1024 4 603 2329 2932 0.057 0.072

2048 1 544 1329 1873 0.059 0.083

2048 2 593 2484 3077 0.055 0.068

4096 1 1064 2781 3845 0.057 0.078

8192 1 1703 6523 8226 0.061 0.077

16384 1 2733 13744 16477 0.060 0.072

32768 1 4924 29692 34616 0.060 0.070

65536 1 9041 62213 71254 0.059 0.068

131072 1 17543 134845 152388 0.061 0.068

262144 1 34422 301498 335920 0.064 0.071

524288 1 69834 626547 696381 0.063 0.070

1048576 1 135693 1325572 1461265 0.063 0.070

2097152 1 268410 2729993 2998403 0.062 0.068
forj=0,1, ..., N,— 1. The lengths of the A, x, and y M(N,, N, N)=NN,, Q0

sequences are N,, N, and N, respectively. For negative j
and for convolution, CORSH and CORSY are called with
reversed and truncated sequences. The subroutine CORSH M(N,, N, N)
uses an algorithm which is designed for efficiency when the £
sequence is short; CORSY is designed for use when y is
short. Before the subroutines are called, the sequences are
sh().nenefl, if possible, to the number‘of element.s of hand x For comparing methods we use data with N, = N, + N, As
which will actuall){ enter the calculation, and y is redu.ced 10 . basis of comparison, timing was done for the simple
those elements which can have nonzero values. For this, the FORTRAN program

subroutines make the replacements

and, for the “tail” of the correlation, where N, > N, — N,,

=(N,~ NN, + (N, = N,+ N)N,+ N,— N, + /2. (2])

o The direct method with scalar operations

DO 10 J=0,NY—-1
Y({J)=0
N < min (N, N, + N), DO 10 I=0,NH-1

10 YA)=Y()+HA*X{I+J)

N, < min (N, N),

N, « min (N,, N). (18)
for computing the correlation defined in (17). The timing for

In what follows, we use these new definitions of sequence this program can be expressed in the form

lengths so that within the subroutines we have

T(N,, N,)=AN,N, + BN, + D. 22)
N,.N <N <N, +N,. (19) - . o .
y 7 Actual timing of this as an in-line program yielded the
The subroutines are written so that no arithmetic is done following values, in microseconds, for the coefficients in (22):
with elements beyond those defined by the length N_of x. A =0.2375, B =0.4555, and D = 34.9598, which may be
Therefore, the formula for the number of multiply-adds in taken as a basis of comparison with the vector subroutines
154 (17) has two parts: If N, < N, — N, described below.

RAMESH C. AGARWAL AND JAMES W. COOLEY IBM J. RES. DEVELOP. VOL. 30 NO. 2 MARCH 1986




Table 5 Performance of the SCRFT routine.

Transform No. of Initialization Run Total Run time Total time
length transforms time time time M X N xlog,(N) M X N X log,(N)
N M (us) (us) (1s)

64 1 164 141 305 0.367 0.794

64 16 481 609 1090 0.099 0.177

64 64 485 2144 2629 0.087 0.107

128 1 175 169 344 0.189 0.384

128 8 418 560 978 0.078 0.136

128 32 427 1886 2313 0.066 0.081

256 1 243 239 482 0.117 0.235

256 4 445 596 1041 0.073 0.127

256 16 462 2017 2479 0.062 0.076

512 1 298 368 666 0.080 0.145

512 2 448 611 1059 0.066 0.115

512 8 482 2103 2585 0.057 0.070

1024 1 604 670 1274 0.065 0.124

1024 4 618 2298 2916 0.056 0.071

2048 1 545 1303 1848 0.058 0.082

2048 2 515 2451 2966 0.054 0.066

4096 1 916 2749 3665 0.056 0.075

8192 1 1709 6490 8199 0.061 0.077

16384 1 2750 13612 16362 0.059 0.071

32768 1 4918 29142 34060 0.059 0.069

65536 1 8902 61035 69937 0.058 0.067

131072 1 17321 133314 150635 0.060 0.068

262144 i 34581 298955 333536 0.063 0.071

524288 1 68282 621029 689311 0.062 0.069

1048576 1 135737 1311152 1446889 0.063 0.069

2097152 1 268970 2708759 2977729 0.062 0.068

o Timing of CORSH

The basic algorithm is as described by Gazdag et al. [23] in
this issue as Algorithm 2. Let AM(N,, N, N) be the time
taken for performing the multiplications and additions.
Since CORSH does a multiplication and an addition with
the single-cycle multiply-add instruction (VMAE), one may
expect A to be close to the cycle time of the machine. The
time for all other operations is derived as follows: The
innermost loop divides the y and x sequences into vector-
length segments. For each segment of y, it loops over the
elements of 4, multiplying each scalar A(i) by a segment of x
starting at x(/ + j) and adding it to an accumulated segment
of the sequence y. Using notation from [23], let the number
of segments of y be denoted by

S(N,)) = [(N, = 1)/128] + 1, (23)

where [-] denotes the integer part of the bracketed
expression. The time for the loop over the #’s plus the time
for clearing and storing the vector register for accumulating a

segment of y is of the form
BN, + C. (24)

The time for clearing and storing the vector register for
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segments of y has a component of the form EN . Allowing
an overall start-up time D, the formula for the time of the
calculation is

T(N,, N, N,)

= AM(N,, N, N) + (BN, + OS\N)+ D+ EN,.  (25)

A good fit to the actual running time in microseconds for the
program was obtained with 4 = 0.0191, B = 0.816, C =
2.61, D =22.49 and E = 0.022. This may be compared
with [23, Eq. (24)], where the same formula is given in terms
of estimates of machine cycles. The coefficient 4 comes out
just a little over the cycle time of the machine. The
incremental start-up time, for each additional /(i) within
each vector segment is B = 0.816, which is 34% of the time,
1284 = 2.44, for doing the 128 multiply-additions of the
vector of x’s times A(7). Hockney and Jesshope [24] define
their n,, parameter as the number of vector elements which
can be processed in the start-up time for the vector. In this

case, we get
n, = B/A = 43.5. (26)

This means that if the vector length were about 43, the
machine would process the vector operation at half of full
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Table 6 Performance of the SRCFT? routine for two-dimensional square arrays.

N, N, INC2Y Total array size  Initialization Run Total Run time Total time
N=N, XN, time time time N x log, (N) N X log, (N)
(us) (us) (us)

64 33 4096 789 2862 3651 0.058 0.074
128 80 16384 1145 12905 14050 0.056 0.061
128 65 16384 1059 12925 13984 0.056 0.061
256 144 65536 1176 57922 59098 0.055 0.056
256 129 65536 1169 60775 61944 0.058 0.059
512 272 262144 1056 283555 284611 0.060 0.060
512 257 262144 1052 290695 291747 0.062 0.062

1024 528 1048576 1161 1237136 1238297 0.059 0.059
1024 513 1048576 1167 1329611 1330778 0.063 0.063
2048 1040 4194304 1350 5434115 5435465 0.059 0.059
2048 1025 4194304 1390 6730500 6731890 0.073 0.073

Table 7 Performance of the SCRFT2 routine for two-dimensional square arrays.

N, N, INC2Y Total array size  Initialization Run Total Run time Total time
N=N, XN, time time time N X log,(N) N X log, (N)
(us) {us) (us)

64 66 4096 881 3317 4198 0.067 0.085
128 130 16384 943 13493 14436 0.059 0.063
128 160 16384 1020 13614 14634 0.059 0.064
256 288 65536 1050 58245 59295 0.056 0.057
256 258 65536 1032 60466 61498 0.058 0.059
512 544 262144 1012 280961 281973 0.060 0.060
512 514 262144 1010 288087 289097 0.061 0.061

1024 1056 1048576 1123 1226252 1227375 0.058 0.05%9
1024 1026 1048576 1141 1319782 1320923 0.063 0.063
2048 2080 4194304 1287 5421507 5422794 0.059 0.059
2048 2050 4194304 1396 6804578 6805974 0.074 0.074

speed, the speed at which operations are processed after
vector start-up. The value 43.5 obtained here for the VMAE
instruction is fairly good, being well below the vector length
of 128. There is a rather large amount of time, C = 2.61, for
starting the loop over the #’s. It is almost the same as the
time 1284 = 2.44 for doing an entire vector of 128 multiply-
adds. Finally, the call statement and overall start-up time
amount to D = 22.5, about nine times as long as the 128
multiply-adds.

o Timing of CORSY

The algorithm for CORSY is designed for efficiency when N,

is small. It is as described by Gazdag et al. {23] in this issue
as Algorithm 1. However, the timing formula for CORSY
differs from the one in [23, Eq. (23)] in that the last term
there, containing a start-up time for segmenting the y
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sequence, is missing here. CORSY does not have this term,
since it does not have to clear storage for y. Again, let
AM(N,, N, N)) be the time taken for performing the
multiplications and additions. For each output y(i), CORSY
does a multiply and accumulate (VMCE) with a segment of
h’s, which is kept in a vector register for all subsequent
operations which use it. The loop over the y(i)’s is
performed for each segment of /4 taking an amount of time
given by a term of the form

(BN, + C) X S(N,). @7)

When the VMCE instruction multiplies this segment of 4 by
a segment of X, it accumulates the products, in double
precision, in four partial sums. Then, in a separate
operation, it accumulates the four partial sums of these
products. The time for this is proportional to NV, and the
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Table 8 Time (us) for convolution and correlation by the
Fourier method in terms of , the Fourier transform size.

N Initial Run Total
32 477 231 708
64 555 300 855
128 675 364 1039
256 997 525 1522
512 1204 796 2000
1024 1610 1490 3700
2048 2855 2900 5755
4096 5679 6095 11774

number of segments of # and will therefore contribute to the
term (27). Since full speed for the VMCE instruction is one
cycle, one may expect the value of A for CORSY to be
approximately equal to the cycle time of the machine.
Forming each resulting y(;) requires time for clearing a
storage location, adding its contents to the partial sums, and
storing the result. This produces a term EN in the timing
formula. As mentioned above, a segment of / is loaded only
once in a vector register. This is done outside the loop over
Y(i)’s, so it makes a contribution to C in (27). This also takes
a small amount of time which depends on the number of
elements in 4, which we designate by FN,. Allowing for an
overall subroutine call and start-up time, D, the formula for
the time of the calculation is given by

TN, N, N)=AM(N, N, N,)
+ (BN, + CO)S(N,) + D+ EN,+ FN,.  (28)

A very good fit to the actual running time in microseconds
for the program was obtained with 4 = 0.0189, B = 1.84, C
=1.97, D =22.43, E=0.02, and F = 0.0157. This may be
compared with {23, Eq. (23)], where the same formula is
given in terms of estimated machine cycles. The coeflicient 4
comes out to be about the same as the 4 for CORSH. The
time for the loop over the y(i)’s is seen in terms of B to be
more than twice as large as the corresponding terms for
CORSH due to the accumulation of partial sums and some
clerical operations. If the n,, of {24] is evaluated as for
CORSH, above, one obtains

n, = B/d =973, (29)

which is quite close to the vector length for the machine.
This result indicates that the amount of parallelism for the
VMCE instruction is too small, or, in other words, that the
vector register should be longer to use the VMCE instruction
efficiently.

o Timing of the Fourier method

The timing of the Fourier method depends entirely on the
size N of the Fourier transform which must be computed.
For the simple parameters considered above, N will be the
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For N, = 64 and 0 < N, < 220, plot of computational speed =
2N,N,/time for the in-line FORTRAN scalar program, CORSH,
CORSY, and the Fourier method as functions of N. (N. = N, + N,)

gt

next higher power of 2 above N, + N, — 1. Formally, this
may be expressed

N = 2lome NI (30)

where I-1 denotes the ceiling of the expression—i.e., the next
higher integer. All of the vector subroutines require an
initialization time which is negligible for CORSH and
CORSY but is large enough in the Fourier method
subroutines to require some consideration. Therefore, the
initialization time is given with the run and total time in
Table 8 as functions of V.

& Discussion of timing for convolution/correlation

In this section, performance is described in terms of
computing speed by dividing the number of multiplications
and additions, M(N,, N, N,) in Eq. (20) by the time
required for the calculation. For the direct methods, this
gives the rate at which the machine actually performs FLOPs
(floating-point multiplications and additions), but this is not
the case for the Fourier methods, where the number of
FLOPs is in general lower.

In the comparisons of timing which follow, we continue to
assume, as in the above discussions, that the input x
sequence is indefinitely long. The effect is that N, = N + N,
and the number of operations is N,N,. The plots in Figure 1
show the MFLOP rates for N, = 64 as functions of N, for
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2N, N, /time for the in-line FORTRAN scalar program, CORSH,
COR§Y, and the Fourier method as functions of N.(N. =N, +N,)
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. The in-line scalar program for the direct method.

. CORSH, which uses the best strategy for short A.

. CORSY, which uses the best strategy for short y.

. The Fourier transform method which is used in the
subroutines SCON, SCOR, and SACOR.

R N

Small glitches appear in some plots, showing a drop in speed -
at isolated points. These result from interrupts caused by
multitask operation of the machine. They are left in the

plots to show their relative effect on performance in actual
calculations.

For a very small range of parameters which is of little
interest here, the direct in-line method is best. In Fig. 1,
showing rates for N, = 64, CORSY shows the best
performance up to about N, = 30. Increasing N, to 96 (as
shown in Figure 2), which for CORSY increases the number
of elements in the vector register, increases CORSY’s speed.
(The Fourier method shows an expected improvement in
performance also.)

Resuits for N, = 128 are shown in Figure 3. Here, 4 just
fills a vector register, giving CORSY the greatest advantage
and increasing its range to N, = 55. In general, since
CORSH uses the better strategy for small N,, we expect to
see this crossover point at a higher N, for higher ¥, as
shown in Fig. 2. In the plots for CORSH, one sees the
discontinuity at multiples of N, = 128 where the time
increases by the start-up time for a new vector segment
(divided by N,N)).

Figures 4-6 show the performance plots for a wider range
of N, (up to 2200} with the MFLOPS going twice as high, up
to 180. In Fig. 4, the N, = 64 plot demonstrates that
CORSH is better for most of the range shown.

Figure 5 displays an unexpected result: There are many
crossings between the performance curves for the Fourier
method and CORSH. In Fig. 6, the N, = 128 plot shows the
Fourier method to be best above N, = 210. For N, < 210,
there are many crossings between the performance curves.

The locations of the crossover points in the timing curves
are important in choosing which of the programs to use. For
the sake of comparing CORSY and CORSH, Figure 7 shows
a plot giving the value of N, at the crossover point for each
N,. Thus, for all N,, N, below the graph, CORSY is faster
than CORSH. For changes in N, within a segment length,
the graph is a straight line which, for the first ssgment, has a
slope of 0.42. 1t is interesting to note that the observation
made above that n,, is too high for CORSY is supported by
the data plotted in Fig. 7. The drop in the performance
curve caused each time a segment of 4 is filled causes the
equal-performance graph to stay below N, = 57; thus,
CORSY will never be better for more than 57.

8. Conclusions
The general methods for scheduling the FFT algorithm
described by Agarwal [4] offered great advantages in
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vectorizing the FFT algorithm for the IBM 3090 Vector
Facility. However, further details of the structuring,
depending on the number of vectors and their size, had to be
devised. The radix-4 algorithm gave some savings in the
number of multiplications and permitted a large number of
operations within vector registers between accesses to
storage. The relation between vector and cache sizes made it
necessary to schedule the algorithm in such a way as to keep
as much computing within a cache block as possible. Where
the algorithm called for accessing data with strides equal to
powers of 2, redimensioning of data arrays was shown to
make great improvements in cache performance. In Tables 6
and 7, it is shown how run times vary considerably by
changing the INC2Y parameter. This is an example where
the user may, by simply altering a stride, reduce repeated
accesses to the same cache lines, with a consequent
improvement in running time. Programming experience has
shown that special formulation of the algorithms can be very
important and has led to some fairly general programming
principles and techniques which have yielded significant
improvements in performance.

To achieve high performance, it was very important to
divide the calculations into vector-block and cache-block
units. In large arrays special techniques had to be used to
transpose data without producing too many “cache misses.”

To do the above and maintain efficiency, it was necessary
to have the subroutines do preprocessing, and when
sequences were short it was efficient to have them compute
several transforms at once.

Comparisons with the best scalar programs, run on the
IBM 3090, showed the vector program to run from 1.2 to
8.0 times as fast, allowing for initialization (see Table 2).
However, for full-speed operation, i.e, not counting
initialization, speedups of from 5 to 9% times were achieved.

The formulation of the FFT algorithm and the design of
the programs made it possible to keep all vector registers
filled at every iteration. The number of vector registers and
the three-address operation code made it possible to use the
radix-4 FFT algorithm so that large amounts of computing
could be done within registers with relatively few storage
references. The permutations of data in the FFT algorithm
could be performed economically by the efficient use of
strides and the indexed load/store operations.

During the planning stages of these programs, it was
expected that for the majority of problem parameters, it
would be most efficient to compute convolutions with
Fourier transforms. In fact, estimates of the numbers of
arithmetic operations and results on conventional scalar
machines showed that the Fourier methods were better for
sequence lengths of more than 16 to 32. The Fourier
transform methods require fewer arithmetic operations than
the direct methods. Nevertheless, the crossover points for
direct methods are higher than those for scalar machines.
Each of these methods depends upon a vector operation
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which does a multiplication and an addition in a single
instruction—that is, in a single cycle.

One direct method uses an operation (VMAES) which
multiplies a scalar by a vector and adds the result to a
vector. This was used in the internal subroutine CORSH,
which was designed to be efficient when one of the input
sequences is short. Here we have found out that “short” may
be as long as 210. This subroutine will be very useful in
many large problems where one is doing digital filtering on a
digitized signal or, in other words, computing a moving
average over a long signal with a fixed short sequence of
weights.

The second vector operation referred to above multiplies a
vector by a vector and accumulates the products (VMCE). It
only accumulates partial sums so that additional overhead is
required. The result is that it is never superior for an output
sequence length greater than 57. However, there are many
situations where long input sequences of samples of
stochastic variables are used and relatively few values of the
computed covariance function are desired.

It may be seen in Fig. 7 that examining the computing
speed of these two direct methods as a function of input
sequence length N, and output sequence length N, shows
that the N,, N, plane is divided into two disjoint regions
where one or the other method is superior. Thus, it is
important that both be available.

Data in the figures and in Table 8 show that for large
ranges of parameters, the performance curves for the three
methods make many crossings. This is caused by the vector
segmentation and by the fact that the present Fourier
transform subroutines apply only to lengths equal to powers
of 2. Therefore, there is no simple test of parameters to
determine the best method. Instead, timing formulas must
be used.

It is well known that vector machines make the task of
program planning and writing far more critical than do
scalar machines. Therefore, the problem of making the full
capabilities of vector machines available can, in part, be
solved by identifying computational kernels and making an
intensive effort to plan and program subroutines for them.
This paper describes a contribution towards that goal.
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