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A  set of  highly optimized  subroutines  for  digital 
signal  processing  has been included  in  the 
Engineering  and  Scientific  Subroutine  Library 
(ESSL)  for  the IBM 3090 Vector  Facility. These 
include  FORTRAN-callable  subroutines  for 
Fourier  transforms,  convolution,  and  correlation. 
The  subroutines are  carefully  designed  and 
tuned for  optimal  vector  and  cache  performance. 
Speedups  of  up  to 9% times  over  scalar 
performance on  the 3090 have  been obtained. 

1. Introduction 
In 1977, Carl  H. Savit, Vice President for Data Processing of 
Western  Geophysical Company of  America,  estimated [ 11 
that by 1985, seismic exploration  for oil and gas would 
require an increase  in computer  memory  and speed by a 
factor  of 3 X IO6. Furthermore, he  stated that  the  rate  of 
increase in computer power is much lower than  the rate  of 
increase  in computer requirements  for seismic exploration 
alone. The crossover point was placed by him  at  about 1972. 

referred to  as “digital signal processing” and is characterized 
Much of the  computation in seismic exploration is 
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by the fact that  the  data originate as analog signals which are 
converted into a digital representation. As far  as the 
computer is concerned,  the  important characteristics of this 
class of problems are  that  the  amount of data is huge and 
must be processed economically  within  a  certain  limited 
amount of time,  and  that  the  mathematical  and 
computational processes are  dominated by the calculation of 
Fourier  transforms,  correlations,  convolutions, and spectral 
analysis. Other areas of application of these  calculations 
which share many of these  characteristics  include 
geophysical research, crystallography, vibration analysis, 
radar  and  sonar signal processing, communications, speech 
recognition and synthesis, and  the processing of weather data 
for analysis and prediction. 

If the figures cited above are  compared with the  rate of 
increase in the raw speed of computer hardware,  it is 
inevitable that intensive work must be done in  producing 
parallel and vector processing capabilities  along with 
algorithmic  procedures for using them efficiently. The 
response to these demands has been that a large number of 
parallel and vector processors have come  upon  the  market 
and  are in use today. However, these fall far short of filling 
the requirements that Savit described. Experience with these 
machines and  the  demands  put  upon  them has given rise to 
many new problems  in  algorithm design and program 
generation and in the design and use of compilers and  other 
programming  tools. Typically, it is found  that  the problem 
of fully utilizing the facilities of a parallel or vector processor 
is many orders of magnitude greater than for  a serial 
machine. This  means  that  the difference between optimized 
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hand-coded  programs and programs  generated by compilers 
or mediocre  programming is far  greater than it  is in serial 
machines. 

In response to this situation,  the set of “signal processing” 
programs  included  in the Engineering and Scientific 
Subroutine Library (ESSL) package [2,3]  contain very 
efficient hand-coded inner  subroutines which do most of the 
computing.  The  innermost subroutines,  forming the core  of 
all of the  Fourier transform and  the large convolution  and 
correlation  calculations, use the  methods of Agarwal [4] to 
do all calculations  with full vector registers and  to  maintain 
high cache  performance.  Programs which do  the 
“controlling” and  take  up insignificant amounts of time  are 
written  in FORTRAN.  The program logic is designed and 
finely tuned  to yield the best vector and cache  performance. 
To  the user, these form  an integrated package of 
FORTRAN-callable  subroutines. It is expected that in the 
typical applications mentioned above, one will be able to 
write FORTRAN calling programs in such  a way that  the 
dominant  portions of  calculations will  be done by the 
optimized vector subroutines. 

referred to  Oppenheim  and Schafer [ 5 ] .  For general 
references on  the fast Fourier  transform (FFT) algorithm, see 
[6-1 I]. For applications of the FFT algorithm, see 
[7, 12- 141. Since there was very little written on  the finite 
discrete Fourier transform before the  advent of digital 
computers  and  the FFT algorithm, [IO] was written and is 
referred to here. Reference [ 131 describes the revisions of 
traditional power spectrum estimation methods which came 
about  as a result of the  advent of digital computers  and  the 
FIT algorithm. 

For a general text on digital signal processing, the reader is 

2. Contents of the  signal  processing package 
The signal processing package of ESSL consists of Fourier 
transform  subprograms and  convolution  and correlation 
subprograms. The Fourier  transform  subprograms discussed 
are 

SCFT: Single-precision complex  Fourier transform. 
DCFT: Double-precision complex  Fourier  transform. 
SRCFT: Single-precision real-to-complex Fourier 
transform. 
SCRFT: Single-precision complex-to-real Fourier 
transform. 
SRCFT2: Single-precision real-to-complex Fourier 
transform  in  two  dimensions. 
SCRFT2: Single-precision complex-to-real Fourier 
transform  in  two  dimensions. 

The convolution and correlation  subprograms discussed are 

SCON: Single-precision convolution of one sequence  with 
several sequences. 

SCOR: Single-precision correlation of one sequence with 

SACOR: Single-precision autocorrelation  of several 
many sequences. 

sequences. 

Fourier transforms-General discussion 
The  N-point discrete Fourier  transform (DFT) of  a  vector, 
x(n), n = 0, . . . , N - 1, is the vector defined by 

y ( k )  = x ( n ) W c  k = 0, . .  ., N - I .  (1) 
N- I 

“=O 

Here  and in  what follows, 

W N = e  , (2) 

in which we define i = f i .  The inverse transform, which 
gives back x(n) as a function of y (k ) ,  i s  

x ( n )  = ( I/N) y ( k )  w;?. (3) 

References [7- 10, 12,  I31 give important relationships 
satisfied by the  DFT pair which are used in  what follows. 

- 2 r t l N  

N- I 

k=O 

Fourier transform subprograms-Detailed description 

SCFT.  Complex single-precision discrete Fourier transform 
and DCFT:  Complex double-precision discrete Fourier 
transform 
The subprograms SCFT  and  DCFT  compute  the discrete 
Fourier transforms,  in single and  double precision, 
respectively, of  a set of M sequences. For a given complex 
input sequence, x(n) ,  n = 0, . . . , N - I ,  the subprograms 
compute  the complex  sequence  defined by 

y ( k )  = SCALE x ,x(n)w? 
N- 1 

n=O 

k = 0 ,  ..., N -  1, 

where SCALE and ISIGN = f 1 are  arguments  to  the 
subroutine. 

The internal components of the  SCFT subprogram are 
used in all of the  Fourier  transform programs. 

SRCFT: Real-to-complex single-precision discrete Fourier 
transform 
The subprogram SRCFT  computes  the complex discrete 
Fourier  transforms, in single precision,  of  a set of M real 
sequences. For a given real single-precision input sequence, 
x( n),  n = 0, . . . , N - 1, the subprograms compute  the 
complex  sequence defined by (4). Since the  input is real, the 
output will be complex  conjugate  even, meaning  that 

~ ( k )  = y*(N - k),  ( 5 )  

where * denotes  the complex  conjugate.  Therefore, results 
are given only  for k = 0, . . . , N/2. 
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SCRFT: Complex-to-real single-precision discrete Fourier 
transform 
The subprogram SCRFT  computes  the real discrete Fourier 
transforms,  in single precision, of a set of M complex 
sequences. For a given complex  conjugate  even single- 
precision input sequence, x( n), n = 0, . . . , N - I ,  the 
subprograms compute  the real sequence  defined by (4). Since 
the  input is assumed to be complex  conjugate  even,  meaning 
that 

x ( n )  = x*(N - n) ,  ( 6 )  

the  output will be real. Therefore, the  input is used only  for 
n = 0, . . ., N/2 .  With input  parameters  SCALE = I /N,  
ISIGN = - I ,  and with x( n )  a function of  frequency, one 
obtains what is generally referred to  as  the inverse Fourier 
transform, usually a  function  of time or distance. If the 
output of subprogram SRCFT described above is supplied as 
input  to  SCRFT with the  parameters cited, the original input 
to  SRCFT will be given as the  output of SCRFT. 

SRCFT2: Real-to-complex single-precision discrete Fourier 
transform in two dimensions 
The subprogram SRCFT2  computes  the two-dimensional 
discrete  Fourier transform,  in single precision, of an N ,  by 
N2 array. For a given real single-precision input array, 
x(n , ,  n,), n,  = 0, . . ., N ,  - I ,  n, = 0, . . ., N2 - I ,  the 
subprograms  compute  the complex  array defined by 

y ( k , ,  k,) = SCALE 

where k ,  = 0, . . ., N ,  - I ,  and k, = 0, . . ., N, - 1. With 
input parameters SCALE = 1 and ISIGN = + I ,  one  obtains 
what is generally referred to  as  the two-dimensional Fourier 
transform,  a  function  of  frequency.  Since the  input is real, 
the  output will  be complex  conjugate  even, meaning  that 

Therefore, results are given for all k, but only for k ,  = 0, . . . , 
N I P .  

SCRFTZ: Complex-to-real single-precision discrete Fourier 
transjorm in two  dimensions 
The subprogram SCRFT2  computes  the two-dimensional 
discrete  Fourier transform, in single precision, of an N ,  by 
N ,  complex  conjugate  array. For a given complex  conjugate 
even single-precision input array, x(n , ,  n,), n,  = 0, . . ., 
N ,  - I ,  n, = 0, . . . , N2 - 1, the subprograms compute  the 
real sequence  defined by (7). Since the  input is assumed 
complex  conjugate  even, meaning  that 

the  input is used for all n,, but only  for n, = 0, . . . , N,/2. 

With input parameters SCALE = I / (N ,  X N,),  ISIGN = - I ,  
and with x ( n , ,  n,) a  function  of  frequency, one  obtains what 
is generally referred to as the inverse Fourier  transform, 
usually a  function of distance. If the  output of subprogram 
SRCFT2, described above, is supplied as  input  to  SCRFT2 
with the  parameters cited, the original input  to  SRCFT2 will 
be given as  the  output of SCRFT2. 

Convolution and correlation subprograms-General 
discussion 
The relation between convolution  and correlation integrals 
and their discrete representation and  the use of the 
convolution theorem for Fourier transforms is described in 
Ref. [8]. In what follows, discrete, finite convolutions  and 
correlations are considered. 

The  convolution of a  sequence h ( j ) ,  j = 0, I ,  . . . , Nh - 1 
with another sequence x ( j ) ,  j = 0, I ,  . . ., N, - 1 is defined 

Defining the limits of summation is equivalent to saying that 
the  sum is over all j and  that  the  data outside the interval of 
definition are zero. The range of  indices of possibly nonzero 
values of y( k )  is k = 0, . . . , Nh + N, - 2. From  the 
definition, one  can easily show the symmetry 

Under  the  same  assumptions as  above, the 
crosscorrelation of two  sequences h( i )  and x( i )  is defined by 

y ( n )  = Z h x ( n )  = W x ( n  +A.  (12) 
min(Nh-I,Nx-l) 

,=max(O.-n) 

As in the previous  paragraphs, defining the limits of 
summation is equivalent to saying that  the  sum is over all j 
and  that  the  data outside the interval  of  definition are zero. 
The possible nonzero values of Fh,(n) are for n = -Nh + I ,  
. . . , N, - 1. Calling  sequences will give the lengths of the 
input  and  output sequences. If h(n) and x(n)  are  the same, 
(12) is known  as the autocorrelation function. The  symmetry 
condition is 

Therefore, the crosscorrelation  programs can give results for 
n < 0. 

An important class of problems consists in solving a set of 
normal equations 

In Linear  Predictive  Coding  (LPC)  models of speech [ 151, 
h( i )  and x( i )  are  the same;  in many system identification 
problems, they are different. The Levinson algorithm (see, 
for example, [ 151) is often used to solve for the a,’s in Eq. 
(14). 



SCON: Convolution of one h with many x's 
This  subroutine  computes  the convolutiorls 

y(k,  m)  = C J k ,  m)  (15) 

of one vector h( n )  with many vectors x( n, m), with all vector 
elements spaced in  memory with given strides. (The  term 
stride indicates the distance  in storage between elements of a 
sequence.) 

SCOR: Correlation of one h with many x's 
This  subroutine  computes  the correlations 

of one vector h( n )  with many vectors x( n, m), with all  vector 
elements spaced in  memory with given strides. 

SACOR: Autocorrelations of many sequences 
This  subroutine  computes  the  autocorrelations 

~ ( k ,  m)  = C,(k, m)  (16) 

of a set of  vectors x(n, m), m = 1, . . ., M. 

3. FFT  computing  using  the 3090 Vector  Facility 
One of the  approaches which could have  been  taken was to 
use a state-of-the-art scalar FlT program and vectorize it 
using the vectorizing  compiler. A preliminary analysis 
indicated that such an exercise would result in programs 
giving far less than  the peak expected  performance. It 
became  clear  that  to fully exploit  the  Vector  Facility, a 
restructuring  of the FFT algorithm was necessary so that  the 
algorithm  would match  the architecture. In  this section, we 
give justifications  for this decision. 

The 3090  Vector Facility has a vector  length or vector 
section size (VSS) of 128. Most vector instructions such as 
load,  store,  multiply, add, multiply-add,  etc.  produce one 
result every cycle, after the initial start-up delay, which could 
be as much as 30 cycles or more. Thus,  to efficiently utilize 
the Vector Facility we must work with long vector lengths, 
preferably with the full vector  length (128). Therefore, the 
FFT algorithm  needs to  be reformulated  such that we work 
with a vector length  of 128 as  far as possible. 

The above assumption of one result every cycle is valid 
only if all the  operands  are  in cache, which is of size 64K 
bytes for this machine. If any of the  operands  are  not  in 
cache, data  must be fetched from  the  main  memory  in  units 
of 128 bytes (a  line  of cache). This  introduces a sizable 
further delay. The cost of  bringing a line  into cache is fixed. 
Therefore, the algorithm must be restructured  such that if a 
line  (128 bytes = 8 double words = 16 single words) is 
brought into cache, all of  it gets utilized. Cache has a 
structure such that  only  four lines, with identical seven low- 
order address bits, can reside there  at  the  same  time. If one 
more line, with the  same seven low-order address bits, is 
needed. one of the previous  lines  has to  be cast out.  This 
implies that it  is very difficult to bring an  array  into cache 
with a power  of 2 stride. The  conventional FFT algorithm 148 
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requires  strides which are powers of 2 in  the  innermost loop. 
Therefore, a restructuring  of the FIT algorithm is necessary 
to avoid  this problem. 

The cache  considerations are  much  more  important for 
the Vector Facility vis h vis the scalar processor. In  the scalar 
processor, the  arithmetic is slow, and therefore the cost of 
bringing the  data  into cache is a small  fraction  of the total 
cost. But this is not the case for the Vector Facility, where 
the  arithmetic  unit is very fast and  the cost of data transfers 
between main  memory  and cache  becomes very important. 
To reduce this  data traffic, we have to restructure the 
algorithm in such a way that we break a large problem into 
many subproblems,  where each subproblem fits in cache. 
Most of our effort in this project  has  been  directed  towards 
these  two  problems: 

1. How  to achieve full vector  length  for all phases of the 

2. How  to work around  the cache. 
computation. 

We have restructured the  FFT algorithm with these two 
goals in mind,  and this  has resulted in many different cases 
depending on  the problem size. 

machine  to be very useful in this regard: 
We found  some of the architectural  features of the 

We used a long-precision load/store to load/store two 

The multiply-add instruction performs two floating-point 
short-precision vectors. 

operations per cycle. We have used this instruction 
wherever possible; sometimes this has  meant a slight 
restructuring of the algorithm. 

registers, and we have attempted  to utilize all of them in 
such a way that we do  as  much  computing  as possible in 
registers between load and store  operations. Thus, we have 
tried to reduce the  ratio of  load/store operations  to 
arithmetic operations. 
Making use of the three-operand architecture of the 
machine, we avoid  loads  as  far as possible. Now we try to 
pick up  one of the  operands from memory  as  part of the 
arithmetic instruction. Here is where (2) comes  into play, 
as we have  structured the algorithm to reference these 
operands repeatedly,  implying that they will become 
cache-resident. In effect, cache  becomes an extended 
memory of the vector registers. 

The vector processor has 16 short-precision vector 

4. Methodology  in  Fourier  transforms 
The radix-2 FFT algorithm  for  length N = 2" consists  of m 
radix-2 stages. At each stage, N/2 radix-2 butterflies 
[5, p.  2961 are  computed.  Thus, it appears  to be vectorizable, 
with a vector  length  of N/2. But, unfortunately,  data 
indexing  for  these butterflies is not  uniform, thereby 
requiring  indirect  addressing  of data, which on  the 3090 
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Vector Facility is somewhat slow. Scalar FFT algorithms do 
“in-place” computation, with each radix-2 stage broken  into 
two nested DO-LOOPS,  with uniform indexing  within these. 
Depending  on  the stage of the FFT computation,  the  inner 
DO-LOOP length varies from  N/2  to I ,  with an average 
length  of only O(log N). Thus a straightforward 
vectorization of a scalar FFT code  would give an average 
vector length  of only @log N), which is too small  for 
efficient implementation  on a vector  architecture. 

machine.  Korn  and  Lambiotte [ 171 adopted  the Pease 
algorithm  for implementation  on  the STAR- 100 vector 
computer.  Their algorithm  works with vectors of  length  N/2, 
which is the longest possible vector, but it  requires special 
vector operations generally referred to as GATHER  or 
COMPRESS performed under a bit-vector control. By using 
a bit-vector of  identical  length, the  data vector is 
compressed, selecting only  those elements which have a one 
bit  in the bit-vector. For  the  FFT, two GATHER 
instructions  are required to  form  one vector. This is repeated 
for every stage of the FFT computation.  The  COMPRESS 
instruction is available on  the 3090 Vector Facility, but an 
FFT implementation using it would be inefficient because it 
doubles  the  number of vector store instructions. 

The  CRAY- 1 computer  does  not have a COMPRESS 
instruction; therefore,  Swarztrauber [ 181 and Petersen [ 191 
adopted a variation  of the scalar  algorithm which increases 
the average vector length from @log N) to  0[(&/4) log N]. 
This is a considerable improvement  but it is still not  the best 
possible. 

fully vectorized and requires all loads/stores  with only a 
small  stride,  for all intermediate FFT stages. Indirect 
addressing  is used only  for the initial “index-reversal.” For 
the special case of the radix-2 FFT,  the vector  length is 
always N/2. In  addition  to  the basic arithmetic operations, 
the radix-2 stages require  load/store operations with a stride 
of 1 or 2. For a radix-r stage, the following steps are 
performed with a vector length  of N/r: 

Pease [ 161 had developed an FFT algorithm  for a parallel 

In [4], a mixed-radix FFT algorithm is presented which is 

Load r vector registers with stride r. 
Do r - 1 complex vector multiplications  using the r - 1 
pre-computed  (pre-permuted) twiddle-factor vectors 
(twiddle factor = multiplication by a complex number  to 
accomplish  phase shift). 
Compute  the radix-r vector DFT. 
Store r vectors with  stride one. 

The algorithm  works “in place”; i.e., the  output vectors 
replace the  input vectors in storage. 

Case A 
For  the 3090 Vector Facility, considering the  number of 
vector registers available (1 6 in  short precision or, 

equivalently, 8 in long precision), the radix-4 seems to  be  the 
best radix  for the vector FFT implementation.  Depending  on 
the  ratio of N and VSS, the FIT computation is done by 
one of the  four routines.  First, we describe Case A, which is 
for N 5 4 X VSS. For  this case, the vector  length  of the 
machine is sufficient to  accommodate all the  data  in vector 
registers. For  shorter transforms, the possibility of 
simultaneously computing several transforms exists. In  this 
implementation,  the first stage is always a radix-4 stage 
implemented by the F4F$ routine. All the  intermediate 
stages are also radix-4 stages implemented by the F4I$ 
routine. The last stage could be either a radix-4 stage (if N is 
an even power  of 2) implemented by the F4L$  routine, or a 
radix-2 stage (if N is an  odd power  of 2) implemented by the 
F2L$  routine. 

We consider the case where several transforms  are  to be 
computed simultaneously. In  computing m transforms 
simultaneously,  for a radix-4 stage, the required vector 
length is m X N/4. Therefore, in a vector block 
m = 4 X VSS/N transforms  could be computed 
simultaneously. This utilizes the full vector length  of the 
machine which, as discussed earlier,  is most efficient. This is 
the first level of  segmentation.  Additional implementation 
efficiency is  achieved by processing several vector  blocks 
simultaneously. For each FFT stage, the twiddle-factor 
vectors are  the  same  for all the vector blocks and therefore 
are loaded outside  the  loop  on vector blocks. They  remain  in 
vector registers throughout  the loop. Thus  the cost  of  loading 
the twiddle-factor vectors is  shared by many vector blocks, 
leading to  improved efficiency. The cache size limits the 
number of vector  blocks that  are processed simultaneously. 
The  aim is to  make sure that all  of the  data work area  (the 
number of  vector  blocks  being processed) and  the vector 
twiddle  factors  for all the stages remain  in cache with room 
to spare for  input  and  output arrays. This decides the 
number of  vector  blocks which can be most efficiently 
processed together. This collection of vector  blocks  is called 
a cache block. 

Case B 
A radix-r  step  of the FFT algorithm  requires  working with r 
vector registers of length N/r  each; when Nlr is longer than 
the vector  length  of the  machine,  the algorithm  of  [4]  creates 
many problems. In  that  situation, we cannot  do in-place 
computation,  and therefore two work  arrays  of size N each 
are required  for data. It also  leads to a large storage 
requirement for  twiddle-factor  arrays, which are separately 
pre-permuted for each FFT stage. Thus, even for moderate- 
size transforms, a straightforward  application  of  ideas  of  [4] 
may lead to a storage requirement which may  be larger than 
the cache size of the machine. This would  create  cache 
misses and thereby  degrade  performance. This leads us to 
Case B, which is for  transform lengths  of size 8 X VSS and 
16 X VSS. The algorithm  of [4] is  restructured so that all 149 
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FFT stages, except the last radix-4 stage, require working 
with vectors of  length  only VSS, and  thus require twiddle- 
factor vectors also of size VSS only. This leads to a 
significant reduction  in the storage space for twiddle-factor 
vectors. Except for the first radix-4 stage, all other stages do 
in-place computing; Le., the  output array overwrites the 
input array. This also reduces the working-array size, which 
has to be kept  in  cache. 

Cases C and D 
Yet another problem arises when the transform length N is 
so large that  the working array  and  the associated twiddle- 
factor  arrays do not fit in  cache. In that  situation,  the cache- 
miss ratio  increases significantly, leading to a significant 
degradation  in  performance. This brings us to Case C, where 
we do yet another reformulation  of the FFT algorithm  in 
which the  data  are blocked in  cache blocks which tit in 
cache. The algorithm is restructured  such that a fairly large 
amount of processing is done  on a cache block before the 
next one is processed. This keeps data in  cache for longer 
periods,  reducing the cache miss ratio. 

as a  two-dimensional  transform of size N, by N2 with a 
twiddle-factor multiplication stage between, where 
N = N,N,. By using this technique,  the  computation of the 
length-N DFT  can be done in the following four steps: 

We reformulate  a  one-dimensional  transform of length N 

1. Performing N2 row transforms  of length N , .  
2. Twiddle-factor multiplication by powers of W,. 
3. Performing N,  column  transforms of length N,. 
4. A final two-dimensional  array  transposition. 

For  the present ESSL design, considering the cache size 
(64K bytes) and  the vector section size of the 3090 Vector 
Facility (VSS = 128), N, was chosen  as 32 for the short- 
precision routine (SCFT) and 16 for the long-precision 
routine  (DCFT). Here we do not give the  implementation 
details  except to  point  out  some of the salient features. For 
both the row and  the  column transform computations, all 
the vectors are formed with stride one. An auxiliary array 
AUX2, of size slightly larger than N,  is used for processing. 
All the processing takes place in the AUX2 array, which can 
be thought of as a two-dimensional  array of size ( N ,  + 16) 
by N ,  (for the short-precision routine).  The last 16 rows of 
the A UX2 array  are  not used, but are provided to improve 
the cache  performance. In computing  the length-N, row 
transforms (Step l), the vectorization is done along the N2 
dimension. Therefore, during this  step, the vectors are 
formed with stride one,  and  the required twiddle factors are 
only scalars. All these  things  help  in  achieving  better  cache 
performance. Step 2 is incorporated with the last radix-4 
stage of Step 1. This eliminates  loads/stores  for Step 2. 
Column  transforms of length N, are  computed using the 
technique described earlier in Cases A and B. These, being 

RAMESH C. AGARWAL  AND  IAMES  W. COOLEY 

column transforms, are also computed with stride  one. In 
this approach,  the only additional cost is in the two- 
dimensional  array  transposition (Step 4), which is also 
implemented by blocking the  data in  cache blocks. This 
more  than pays for itself by improving the overall cache 
performance. 

by a  factor  of N,, with the full level of vectorization and 
efficient cache management.  The  technique  can be  used 
recursively (Case D) to  compute even longer  transforms. In 
ESSL, we have used it twice (Cases C and  D), resulting in 
the  maximum transform  length of 16 X VSS x N, X N,, 
which for the present design is 2097152 for SCFT  and 
524288  for DCFT. 

Summar-v of the one-dimensional complex Fourier 
transform 
The main computing kernels  for all short-precision Fourier 
transform  routines are  the complex-to-complex FFT routines 
described above. There  are  four cases, depending on  the 
transform length N: 

C a s e A : 8 s N 1 4 x  VSS. 
CaseB: 8 x VSSI N I  16 x VSS. 

* C a s e C : 3 2 x   V S S s N 1 5 1 2 x  VSS. 
Case D: 1024 x VSS I N I 16384 x VSS. 

Real-to-complex  and complex-to-real transforms 
For  the complex-to-real Fourier transform routine (SCRFT), 
we first do a special radix-2 routine. This is followed by 
a length-N/2 complex-to-complex Fourier transform, using 
the above kernels. This results in a  complex  sequence of 
length N/2, which, when interpreted as  an equivalent real 
sequence  of  length N, is the desired output. Similarly, for the 
real-to-complex Fourier transform routine (SRCFT), the 
above  two  steps are  done in the reverse order. First, a  length- 
N/2  complex-to-complex Fourier transform is computed, 
using the above kernels. For this  purpose, we treat the given 
input real sequence  of length N  as an equivalent  complex 
sequence of length N/2. This is followed by a special radix-2 
FFT  routine, which gives the final result as  N/2 + 1 complex 
values, of which the first and  the last values have  zero 
imaginary  parts. Because of this structure, the  maximum 
transform length for SRCFT  and  SCRFT is twice that for 
SCFT. 

Two-dimensional transforms 
For the two-dimensional real-to-complex Fourier  transform 
(SRCFT2) of dimension  N, by N,, N2 column  transforms of 
length N, each are first computed as real-to-complex 
transforms,  as  in SRCFT above. This results in  a  complex 
array of size (N,/2 + I )  by N,. Next, we compute  (N,/2 + 1) 
complex-to-complex Fourier transforms of length  N2  each, 
using the above kernels. For the two-dimensional  complex- 
to-real Fourier transform  (SCRFT2), the above  two steps are 
reversed. 

The above technique extends efficient FFT computation 
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5. Methodology  in  convolutions and correlations 

Direct methods 
The subroutines  SCOR,  SCON, and SACOR compute 
correlations,  convolutions, and autocorrelations, 
respectively, by essentially the  same methods.  When one of 
the convolved  sequences or the  output sequence is short,  one 
of several direct methods is used. These use vector 
operations  to  accumulate  sums of products. The products 
are computed  and accumulated  in double precision, 
meaning  that fairly high accuracy is obtained  in the final 
results. If input  data consist only of integers and if no 
numbers become too large (larger than 224 - I ) ,  the results 
will be exact. 

Fourier methods when all sequences ure long 
When all sequences are long, Fourier  methods  are used. This 
means that Fourier  transforms  of input  data  are  computed 
and multiplied  element-by-element  in single-precision 
arithmetic.  The inverse Fourier  transform is then computed. 
There  are internally  generated rounding  errors in the Fourier 
transforms. It has been shown [20] that in the case of white 
noise data,  the relative RMS (root-mean-square)  error is 
proportional to log, N with a very small  proportionality 
factor.  Therefore, while direct methods with integer data  are 
exact, the Fourier methods  are  not. In particular, when the 
input  data consist of integers, the results may be close but 
not equal to  the correct  integer results. However, the 
generated relative error is not great enough to cause 
difficulties in the type of calculations for which these 
subroutines will be used. In fact, these results show that  the 
RMS error for N = 1000 is only  a few units  in the last 
position, which is less than  the  error which may be expected 
to result from rounding of the  input  data. 

6.  Performance  measurements  with  Fourier 
transforms 
We ran all ESSL Fourier  transform  routines for various 
transform lengths. These  routines have an initialization 
phase, which needs to be done only  once for a set of 
parameters. During initialization, we set up all the twiddle- 
factor arrays, permutation indices, etc. In many applications, 
one typically initializes the  routine once and  then it is called 
many times for the actual FFT  computations. Therefore, our 
aim has been to minimize the  run time. For short-length 
transforms,  as mentioned in Section 4, significantly better 
performance is achieved by computing several transforms 
simultaneously. In this context, we have the concept of the 
vector block (implies that  the  number of transforms is such 
that all the  computing is done with the full vector length of 
the machine) and  the cache block (implies that  the  number 
of transforms fill up  the cache  block). The full cache size of 
the  machine is 64K bytes (8K double words), but only a  part 
of it is utilized for  data: the rest of it is used to store the 

twiddle-factor vectors, permutation indices, other constants. 
and  the programs. Thus,  depending on the routine, the 
actual cache-block size is a tuned  parameter in the range 2K 
to 4K double words. Compared  to a single transform 
computation, better  performance is achieved at  the vector- 
block level, and  the best performance is achieved at  the 
cache-block level. We have run  the one-dimensional  Fourier 
transform  routines for one transform, for the  number of 
transforms needed to fill a vector block, and for the  number 
of transforms needed to fill a  cache block. Below, we give 
detailed performance results for various FFT routines. All 
timings are  the virtual CPU timings in microseconds. 
Depending on  the actual computing  environment,  the 
timings  may vary to  some extent. 

SCFT 
Table 1 gives SCFT performance on the 3090 Vector Facility 
for various values of N and M .  For short-length  transforms, 
we have performance numbers for M = 1, M = 5 I2/N 
(vector block), and M = 4096/N (cache block). Columns 6 
and 7 give normalized run time  and total time (including the 
initialization time), respectively. These  are  normalized by 
M X N X log, (N),  to reflect the relative performance level. 
For the  applications  requiring repeated calls to SCFT. 
Column 6 numbers  are meaningful numbers  (as the 
initialization is done only once) for comparison with other 
programs. The initialization time is not significant for long 
transforms or when many transforms  are being computed 
simultaneously. As mentioned before, for short-length 
transforms, the best performance is achieved for a full cache 
block. There is no particular  advantage to be gained by using 
a larger M value. And for the  same reason, for longer 
transforms ( N  > 2048) no advantage is to be gained by using 
A4 > I .  Examination  of Columns 6 and 7 reveals a slight 
jump in times  at N = 4096 and I3 1072, which reflects the 
additional computing cost for the array  transposition 
required  in Cases C and D, as discussed in Section 4. 

We have compared  SCFT against two scalar FFT routines 
which are considered to be among the best available. Table 2 
gives performance numbers (similar to  Columns 6 and 7 of 
Table I ) ,  for Singleton’s mixed-radix FFT  routine [21], and 
for Bergland’s radix 8-4-2 FFT routine [22]. Note that 
Bergland’s routine works only for N up  to 32768. For these 
scalar FFT programs, there is no advantage to be gained by 
computing several transforms.  These also do not  have an 
initialization phase. A comparison of Columns 2 and 3 
reveals that Bergland’s program runs faster, for N up  to 
16384, on  the 3090. Also note  the effect of cache for 
N > 8 192. In the  same table, we compare these against 
SCFT performance. In Column 4, we give low ratio, which is 
the ratio of the worst vector performance  (values from 
Column 7 of Table I ,  for M = I ,  which include the 
initialization  time) to  the best scalar performance  (better of 
Columns 2 and 3). In Column 5 ,  we give the high ratio, 151 
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Transform No. o f  Initialization Run Total Run time Total time 
length transforms time 

M (PS) N 
time 
(CIS) 

64 
64 
64 

I28 
128 
128 

256 
256 
256 

512 
512 

1024 
1024 

2048 
2048 

4096 
8 I92 
16384 
32768 
65536 
131072 
262 I44 
524288 
1048576 

1 
8 
64 

1 
4 
32 

I 
2 
16 

1 
8 

1 
4 

1 
2 

1 
1 
1 
1 
1 
1 
1 
1 
1 

169 
353 
382 

227 
385 
416 

288 
370 
42 I 

528 
532 

41 I 
505 

634 
704 

1360 
2225 
4049 
7264 
14187 
28417 
56637 

I 14969 
2241  12 

136 
373 
2329 

198 
449 
284 1 

296 
474 
3 IO4 

549 
3608 

1084 
4054 

2357 
4678 

5746 
12122 
25973 
54565 
120187 
271681 
575  150 
1203786 
2487562 

305 
726 
271 I 

425 
834 
3257 

584 
844 
3525 

1077 
4140 

1495 
4559 

2991 
5382 

7 IO6 
14347 
30022 
61829 
I34374 
300098 
631787 
1318755 
271  I674 

0.354 
0.121 
0.095 

0.22 I 
0.125 
0.099 

0.145 
0.1 I6 
0.095 

0.1 19 
0.098 

0. IO6 
0.099 

0. IO5 
0. IO4 

0.117 
0.1 14 
0.113 
0.1 1 1  
0.115 
0.122 
0.122 
0.121 
0.1 I9 

0.794 
0.236 
0.1 I O  

0.474 
0.233 
0.1 I4 

0.285 
0.206 
0. IO8 

0.234 
0.1 12 

0. I46 
0.111 

0.133 
0.1 19 

0.145 
0.135 
0.131 
0. I26 
0. I28 
0. I35 
0. I34 
0.132 
0. I29 

Table 2 Performance  for “best” scalar FFT and comparison results are self-explanatory. Also note  the effect of better 
against SCFT. cache management (in SCFT) for longer  transforms. 

Transform . . ~~ Singleton time Bergland time Vector-scalar , DCFT 
length N comparison 

DCFT  performance  on  the 3090  Vector Facility for  various 
LOW ratio High ratio values of N and M is found in Table 3. For short-length 

transforms. we have Derformance numbers for M = 1 and 
64  1.002  0.914 1.15 
I28  0.94 I 0.770  1.62 9h2 M = 5 12/N (vector block). It turns  out  that for DCFT  no 
256 

7.77 
0.780  0.670  2.35  7.05 advantage is to be gained by processing more  than  one 

512  0.754  0.633  2.70 
1024  0.710  0.6 14 

6.45 vector block at a  time. Columns 6 and 7 give normalized 
4.20 

2048 6.20 run time  and total time (including the initialization  time), 0.722  0.586  4.40 
4096 

5.63 
0.667  0.580  4.00  4.95 respectively. These are normalized by M X N X log, ( N )  to 

8192  0.692  0.600  4.44  5.26 reflect the relative Derformance level. For the aDDlications 
16384  0.876 0.714  5.45 
32768  0.97 1 1.012  7.70  8.74 
65536  0.888 6.93  7.72 meaningful numbers (as the initialization  is done only once) 

_ _  
6.31 requiring  repeated calls to XFT, Column 6 numbers  are 

131072  0.9  12  6.75  7.47 for comparison with other Drograms. The initialization time 
262  144 0.928 
524288 1.052 
1048576 0.996 

6.92 
7.96  8.69 
7.72  8.36 transforms are being computed simultaneously. For short- 

” 

7.60 is not significant for  long  transforms or when many 

length transforms, the best performance is achieved for  a full 
vector block. There is no particular  advantage to be gained 
by using a larger M value. And  for the  same reason, for 

which is the  ratio of the best vector performance (best values longer transforms ( N  > 2048) no advantage is to be gained 
from  Column 6  of  Table 1, which do  not  include  the by using M > 1. Examination of Columns 6 and 7 reveals a 

152 initialization time)  to  the best scalar performance. The slight jump in times  at N = 4096 and 65536, which reflects 
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Table 3 Performance of the D C n  routine. 

Transfirm No. cf Initialization Run 
time length transforms time 

N M ( I 4  ( l . 4  

Total Run  time Total t ihe 
time M x N x log , (N)  M x N x log,(N) 
(CIS) 

64 1 I87  161 348  0.419 0.906 
64 8 463  52 I 984  0.170 0.320 

I28 1 237  240 477  0.268 0.532 
128 4 523  585 I IO8 0. I63 0.309 

256 I 325  372 697  0.182 0.340 
256 2 627  635 1262  0.155 0.308 

512 
1024 
2048 
4096 
8192 
16384 
32768 
65536 
13 IO72 
262  I44 
524288 

1 
I 
I 
I 
I 
1 
1 
I 
I 
1 
I 

762 
727 
1058 
3095 
5433 
9847 
19072 
39  122 
76668 
151 135 
301  734 

72 1 
1563 
3513 
8515 
I8442 
40302 
90683 
20494 1 
4426 I5 
936279 
2031161 

1483 
2290 
451 I 
I1610 
23875 
50149 
109755 
244063 
5 I9283 
1087414 
2332895 

0.156 
0.153 
0. I56 
0.173 
0.173 
0.176 
0.184 
0.195 
0. I99 
0.198 
0.204 

0.322 
0.224 
0.203 
0.236 
0.224 
0.219 
0.223 
0.233 
0.233 
0.230 
0.234 

the additional computing cost  for the  array transposition 
required in Cases C and D, as discussed in Section 4. 

SRCFT and SCRFT 
Tables 4 and 5, respectively, give SRCFT and SCRFT 
performance on  the 3090 Vector Facility for various values 
of N and M. For short-length  transforms, we have 
performance numbers for M = 1, M = 1024/N (vector 
block), and M = 4096/N (cache block). Columns 6 and 7 
give normalized run  time  and total time (including the 
initialization time), respectively. These  are  normalized by 
M X N X log, ( N )  to reflect the relative performance level. 
For the applications  requiring  repeated calls to 
SRCFT/SCRFT, Column 6 numbers  are meaningful 
numbers  (as  the initialization is done only once) for 
comparison with other programs. The initialization time is 
not significant for long  transforms or when many transforms 
are being computed simultaneously. As mentioned before, 
for short-length  transforms, the best performance is achieved 
for a full cache block. There is no particular  advantage to be 
gained by using a larger M value. And  for the  same reason, 
for longer transforms ( N  > 2048), no advantage is to be 
gained by using M > 1. Examination of Columns 6 and 7 
reveals a slight jump in  times at N = 8192 and 262144, 
which reflects the additional computing cost for the array 
transposition  required  in Cases C and D, as discussed in 
Section 4. 

SRCFTZ and SCRFTZ 
For square  arrays  of  various sizes, SRCFT2 and SCRFT2 
performance on the 3090 Vector Facility is shown 
respectively in Tables 6 and 7. Column 7 gives normalized 
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run  time  and  Column 8 gives total time (including the 
initialization  time).  These are normalized by 
M x N x log, ( N )  to reflect the relative performance level. 
For large transforms, the initialization time is a very small 
fraction  of the total  time, and therefore values of Columns 7 
and 8 are  almost identical. For large transforms,  timings also 
depend on INC2Y (stride between first elements of the 
columns or, equivalently, the leading dimension of the 
output array). If N, > 128, the recommended values of 
INC2Y are N ,  + 32 for SCRF"2 and N,/2 + 16 for 
SRCFT2. The  minimum required values of INC2Y are 
N ,  + 2 for SCRFT2 and N,/2 + 1 for SRCF"2. In Tables 6 
and 7 we have given performance numbers for  both of these 
choices of INC2Y. It can be observed that, for N, > 128, 
better  performance is obtained with the values of INC2Y 
recommended  above. For N2 > 256, to  improve  the cache 
performance  in computing  the row transforms, we transfer 
the  data  into a  temporary  array, where row transforms are 
computed. After the  computation, the data  are transferred 
back to  the  output array. Because of this  additional cost of 
the two data transfers, we note a slight drop  in performance 
for N, > 256. 

7. Performance of convolution and correlation 
subroutines 

The direct-method  subroutines 
Two assembly language subroutines, CORSH and CORSY, 
compute  the correlation  function 

.v(j) = 2 hji)x(i + j )  (17) 
min(Nh-l.Nx-l-~) 

,=0 153 
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Table 4 Performance of the SRCFT routine. 

Transjorm No. of Initialization Run Total Run time Total time 
length 

N 
transforms 

M 
time time time 
(PS)  

M x N x l o g , ( N )   M x N x l o g , ( N )  
(PS) (PSI 

64 
64 
64 

128 
128 
128 

256 
256 
256 

512 
512 
512 

1024 
1024 

2048 
2048 

4096 
8192 

16384 
32768 
65536 

131072 
262 I44 
524288 

1048576 
2097 152 

I 
16 
64 

1 
8 

32 

1 
4 

16 

1 
2 
8 

1 
4 

I 
2 

1 
1 
1 
1 
I 
1 
I 
1 
1 
1 

161 
550 
558 

I92 
537 
523 

285 
578 
570 

323 
490 
486 

559 
603 

544 
593 

1064 
1703 
2733 
4924 
904 I 

I7543 
34422 
69834 

135693 
2684 10 

134 
467 

1589 

165 
497 

I747 

240 
579 

1966 

37 1 
604 

2066 

670 
2329 

1329 
2484 

278 1 
6523 

I3744 
29692 
62213 

134845 
30 1498 
626547 

I325572 
2729993 

295 
1017 
2147 

357 
1034 
2270 

525 
1157 
2536 

694 
1094 
2552 

1229 
2932 

1873 
3077 

3845 
8226 

16477 
346 I6 
71254 

152388 
335920 
69638 I 

1461265 
2998403 

0.349 
0.076 
0.065 

0.184 
0.069 
0.06 I 

0.117 
0.07 1 
0.060 

0.08 I 
0.066 
0.056 

0.065 
0.057 

0.059 
0.055 

0.057 
0.06 1 
0.060 
0.060 
0.059 
0.061 
0.064 
0.063 
0.063 
0.062 

0.768 
0.166 
0.087 

0.398 
0.144 
0.079 

0.256 
0.141 
0.077 

0.151 
0.1 19 
0.069 

0.120 
0.072 

0.083 
0.068 

0.078 
0.077 
0.072 
0.070 
0.068 
0.068 
0.07 1 
0.070 
0.070 
0.068 

f o r j  = 0, 1, . . ., N,, - 1. The lengths ofthe h, x, and y 
sequences are N,, N,, and N,, respectively. For negative j 
and for convolution,  CORSH  and  CORSY  are called with 
reversed and  truncated sequences. The  subroutine  CORSH 
uses an algorithm which is designed for efficiency when the h 
sequence is short;  CORSY is designed for use when y is 
short. Before the  subroutines  are called, the sequences are 
shortened, if possible, to  the  number of elements of h and x 
which will actually enter  the calculation, and y is reduced to 
those elements which can  have nonzero values. For this, the 
subroutines  make  the replacements 

N h  + min (Nh, N,), 

N, c min (N,,  Nh + N,), 

N, c min (N,,,  N,). (18) 

In what follows, we use these new definitions of sequence 
lengths so that within the  subroutines we have 

N,, N, 5 N, 5 Nh + N,. (19) 

The  subroutines  are written so that no arithmetic is done 
with elements beyond  those  defined by the length N, of x. 
Therefore, the  formula for the  number of  multiply-adds  in 

154 (17) has  two parts: If N, 5 N, - Nh, 

M(Nh, Nx>  N,)  = NyNh, (20) 

and, for the “tail” of the correlation, where N,, > N, - N,, 

M ( N h 3  N x ,  N y )  

= (N ,  - N,)Nh + ( N ,  - N, + N,)(N, + N, - N, + 1)/2. (21) 

The direct method with scalar operations 
For comparing  methods we use data with N, 2 Nh + N,,. As 
a basis of comparison. timing was done for the simple 
FORTRAN program 

DO 10 J=O,NY-1 
Y(J)=O 
DO I O  I=O,NH-1 

10 Y(J)=Y(J)+H(I)*X(I+J) 

for computing  the correlation  defined in (17). The  timing for 
this program can be expressed in the form 

Ts(Nh, N,) = ANhN, + BN, + D. (22) 

Actual timing of this as  an in-line  program yielded the 
following values, in  microseconds,  for the coefficients in (22): 
A = 0.2375, B = 0.4555, and D = 34.9598, which may be 
taken  as  a basis of comparison with the vector subroutines 
described below. 
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Table 5 Performance of the S C R R  routine. 

Transform 
length 
N 

64 
64 
64 

I28 
I28 
128 

256 
256 
256 

512 
512 
512 

1024 
1024 

2048 
2048 

4096 
8192 

16384 
32768 
65536 

I3 IO72 
262 I44 
524288 

1048576 
2097 I52 

No. of 
transforms 

M 

I 
16 
64 

1 
8 

32 

1 
4 

16 

I 
2 
8 

I 
4 

I 
2 

1 
1 
1 
1 
1 
I 
I 
I 
1 
1 

Initialization 
time 
(PSI 

I64 
48 1 
485 

I75 
418 
427 

243 
445 
462 

298 
448 
482 

604 
618 

545 
515 

916 
1709 
2750 
4918 
8902 

I732 I 
3458 I 
68282 

135737 
268970 

Run 
time 
(PS) 

141 
609 

2144 

169 
560 

1886 

239 
596 

2017 

368 
61 1 

2 103 

670 
2298 

1303 
245 I 

2749 
6490 

13612 
29 142 
61035 

133314 
298955 
62 1029 

1311152 
2708759 

Total 
time 
(PSI 

305 
1090 
2629 

344 
978 

2313 

482 
1041 
2479 

666 
1059 
2585 

1274 
2916 

I848 
2966 

3665 
8 I99 

16362 
34060 
69937 

150635 
333536 
6893 I 1 

1446889 
2977729 

Run lime Total time 
M X N X log,(N) M X N X log,(N) 

0.367 0.794 
0.099 0.177 
0.087 0. IO7 

0.189 0.384 
0.078 0. I36 
0.066 0.08 I 

0.1 17 0.235 
0.073 0. I27 
0.062 0.076 

0.080 0.145 
0.066 0.115 
0.057 0.070 

0.065 0.124 
0.056 0.07 I 

0.058 0.082 
0.054 0.066 

0.056 0.075 
0.06 I 0.077 
0.059 0.07 1 
0.059 0.069 
0.058 0.067 
0.060 0.068 
0.063 0.07 1 
0.062 0.069 
0.063 0.069 
0.062 0.068 

Timing of CORSH 
The basic algorithm is as described by Gazdag  et  al. [23] in 
this issue as Algorithm 2. Let AM(N,,  Nx, N,) be the  time 
taken  for  performing the multiplications and additions. 
Since CORSH does a  multiplication and  an  addition with 
the single-cycle multiply-add  instruction (VMAE), one may 
expect A to be close to  the cycle time of the machine. The 
time for all other  operations is derived  as follows: The 
innermost loop  divides the y and x sequences into vector- 
length segments. For each segment of y ,  it loops over the 
elements of h, multiplying  each scalar h( i )  by a  segment of x 
starting at x( i + J )  and  adding it to  an  accumulated segment 
of the sequence y. Using notation from [23], let the  number 
of  segments of y be denoted by 

S(N,) = [(N, - 1)/128] + 1, 

where [ .] denotes  the integer  part  of the bracketed 
expression. The  time for the loop  over the h’s plus the  time 
for clearing and storing the vector register for accumulating a 
segment of y is of the form 

BN, + C. (24) 

The  time for clearing and storing the vector register for 

segments  of y has a component of the form EN,. Allowing 
an overall start-up  time D, the  formula for the  time of the 
calculation is 

T,(N,, Nx, N,) 

= AM(N,, N,, N,) + (BN,  + C)S(N,) + D + EN,. (25) 

A good fit to  the actual running  time in  microseconds  for the 
program was obtained with A = 0.0 19 I ,  B = 0.8 16, C = 
2.6 I ,  D = 22.49, and E = 0.022. This may be compared 
with [23, Eq. (24)], where the  same formula is given in terms 
of estimates of machine cycles. The coefficient A comes out 
just  a little over the cycle time of the machine. The 
incremental start-up time, for each additional h( i) within 
each vector segment is B = 0.816, which is 34% of the time, 
128A = 2.44, for doing  the 128 multiply-additions of the 
vector of x’s times h( i). Hockney and Jesshope [24] define 
their n,/* parameter  as  the  number of vector elements which 
can be processed in the  start-up  time for the vector. In this 
case, we get 

n, = BfA = 43.5. (26) 

This  means  that if the vector length were about 43, the 
machine  would process the vector operation at half of full 
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Table 6 Performance of the SRCFT2 routine for two-dimensional square  arrays. 

N,, N2 INC2Y Total array size Initialization Run Total Run time Total time iV= N, X N2 time rime time N X log, ( N )  N x log, ( N )  
(PS)  (PS) (PSI 

64 

128 
I28 

256 
256 

512 
512 

1024 
I024 

2048 
2048 

33 

80 
65 

144 
I29 

272 
257 

528 
513 

1040 
1025 

4096 

16384 
16384 

65536 
65536 

262 144 
262 I44 

1048576 
1048576 

4 194304 
4 194304 

789 

1 I45 
1059 

1 I76 
I I69 

1056 
1052 

1161 
1167 

1350 
I390 

2862 

12905 
12925 

57922 
60775 

283555 
290695 

1237136 
13296 I 1 

5434 1 15 
6730500 

365 1 

14050 
I3984 

59098 
6 1944 

2846 1 I 
29 1747 

1238297 
I330778 

5435465 
6731890 

0.058 

0.056 
0.056 

0.055 
0.058 

0.060 
0.062 

0.059 
0.063 

0.059 
0.073 

0.074 

0.06 1 
0.06 I 

0.056 
0.059 

0.060 
0.062 

0.059 
0.063 

0.059 
0.073 

Table 7 Performance of the SCRFT2 routine  for two-dimensional square  arrays. 

N,, N2 INCZY Total array size Initialization Run Total Run time Total time 
N = N, X N2 time time time N X log, ( N )  N X log, ( N )  

(PS)  (PS) (PSI 

64 

128 
128 

256 
256 

512 
512 

1024 
1024 

2048 
2048 

66 

130 
160 

288 
258 

544 
514 

1056 
1026 

2080 
2050 

4096 

16384 
16384 

65536 
65536 

262 144 
262 144 

1048576 
1048576 

4 194304 
4194304 

88 1 

943 
I020 

1050 
1032 

1012 
I010 

1 I23 
I141 

1287 
1396 

3317 

I3493 
13614 

58245 
60466 

28096 1 
288087 

1226252 
13 19782 

542 1507 
6804578 

4198 

14436 
14634 

59295 
61498 

28 I973 
289097 

1227375 
1320923 

5422794 
6805974 

0.067 

0.059 
0.059 

0.056 
0.058 

0.060 
0.06 I 

0.058 
0.063 

0.059 
0.074 

0.085 

0.063 
0.064 

0.057 
0.059 

0.060 
0.06 1 

0.059 
0.063 

0.059 
0.074 

speed, the speed at which operations  are processed after 
vector start-up. The value 43.5 obtained here for the VMAE 
instruction is fairly good, being well below the vector length 
of 128. There is a  rather large amount of time, C = 2.6 1, for 
starting the loop  over the h’s. It is almost the  same  as  the 
time 128A = 2.44 for doing  an  entire vector of 128 multiply- 
adds. Finally, the call statement  and overall start-up  time 
amount  to D = 22.5, about  nine  times as  long  as the 128 
multiply-adds. 

Timing ofCORSY 
The algorithm  for CORSY is designed for efficiency when N, 
is small. It is as described by Gazdag  et al. [ 2 3 ]  in this issue 
as Algorithm 1. However, the  timing  formula for CORSY 
differs from the  one  in [23, Eq. (23)] in  that  the last term I 

156 there, containing a start-up  time for  segmenting the y 

sequence, is missing here. CORSY does not have  this term, 
since it does not have to clear storage for y.  Again, let 
AM(Nh,  N x ,  N J  be the  time taken for performing the 
multiplications and additions. For each output y(i), CORSY 
does  a  multiply and  accumulate (VMCE) with a  segment of 
h’s, which is kept in a vector register for all subsequent 
operations which use it. The loop  over the y(  i)’s is 
performed for each segment of h taking an  amount of time 
given by a term of the form 

( B N ~ ,  + c) x s(Nh). (27) 

When the VMCE instruction  multiplies  this  segment of h by 
a  segment of x, it accumulates  the products, in  double 
precision, in four partial  sums. Then, in a separate 
operation, it accumulates  the  four partial sums of these 
products. The  time for  this is proportional to N ,  and  the 
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Table 8 Time (ps) for convolution  and  correlation by the 
Fourier  method in terms of N ,  the  Fourier  transform size. 

N Initiul Run Total 

32 
64 

128 
256 
512 

I024 
2048 
4096 

477  23 1 
555 300 
675 364 
997 525 

I204 796 
1610 I490 
2855  2900 
5679 6095 

708 
855 

1039 
1522 
2000 
3700 
5755 

I I774 

number of segments  of h and will therefore contribute  to  the 
term (27). Since full speed for the VMCE  instruction is one 
cycle, one may  expect  the value of A for CORSY  to be 
approximately  equal to  the cycle time of the machine. 
Forming each resulting y( j )  requires time for clearing a 
storage location, adding its contents  to  the partial  sums, and 
storing the result. This produces  a term EN, in the  timing 
formula. As mentioned above, a  segment of h is loaded only 
once in  a vector register. This is done outside the loop  over 
y (  i)’s, so it makes  a contribution  to C in (27). This also takes 
a  small amount of time which depends  on  the  number  of 
elements in h, which we designate by FN,,. Allowing for an 
overall subroutine call and  start-up time, D, the  formula for 
the  time of the calculation is given by 

Ty(Nh, N,, N,) = AM(Nh.  Nx> NJ 

+ ( B N ,  + C)S(Nh) + D + E N ,  + FN,,. (28) 

A very good fit to  the actual running  time in  microseconds 
for the program was obtained with A = 0.0 189, B = 1.84, C 
= 1.97, D = 22.43, E = 0.02, and F = 0.0157. This may be 
compared with [23, Eq. (23)], where the  same formula is 
given in terms of estimated  machine cycles. The coefficient A 
comes out  to be about the same as the A for CORSH.  The 
time for the loop  over  the y(i)’s is seen in terms of B to be 
more  than twice as large as the corresponding terms for 
CORSH  due to the  accumulation of partial sums  and  some 
clerical operations. If the n,,2 of [24] is evaluated  as for 
CORSH, above, one  obtains 

nh = BJA = 97.3, (29) 

which is quite close to the vector length for the machine. 
This result indicates that  the  amount of parallelism for the 
VMCE  instruction is too small, or, in other words, that  the 
vector register should be longer to use the VMCE instruction 
efficiently. 

0 Timing  qfthe Fourier method 
The  timing of the Fourier method  depends entirely  on the 
size N of  the  Fourier transform which must be computed. 
For  the simple  parameters  considered above, N will  be the 

x0 t 
60 1 w CORSH 

Scalar 

n 40 80 I20 I60 200 

:; For Nh = 64 and 0 < N, < 220, plot of computational speed = 
2NhN,,/time for  the  in-line FORTRAN scalar  program, CORSH, 
CORSY, and the Fourier method as functions of N,.. ( N ,  = N, + Nh.) 

next higher power of  2  above N,, + N,. - 1. Formally,  this 
may be expressed 
N = ~ ~ l o g ~ C N ~ + N v - l ) l  (30) 

where r .  1 denotes  the ceiling of the expression-ix., the next 
higher integer. All of the vector subroutines  require an 
initialization time which is negligible for CORSH  and 
CORSY  but is large enough  in the Fourier  method 
subroutines to require some consideration.  Therefore, the 
initialization time is given with the run and total time in 
Table 8 as functions of N .  

Discussion oftiming,for convolutionJcorrelation 
In this  section,  performance is described in terms of 
computing speed by dividing the  number of multiplications 
and additions, M(N,,,  NA, NJ in Eq. (20) by the  time 
required for the calculation. For  the direct  methods,  this 
gives the rate at which the machine actually performs  FLOPs 
(floating-point  multiplications and additions),  but  this is not 
the case for the Fourier  methods, where the  number of 
FLOPs is in general lower. 

assume,  as in the above discussions, that  the  input x 
sequence is indefinitely long. The effect is that N, = N, + N,, 
and  the  number of operations is NAN,.. The plots in Figure 1 
show the  MFLOP rates for N,, = 64 as functions of N ,  for 

In the  comparisons of timing which follow, we continue  to 
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!>, 

I For Nh = 128 and 0 < N < 220, plot of computational speed = 

1. The in-line  scalar  program  for the direct method. 
2. CORSH, which uses the best strategy for short h. 
3. CORSY, which uses the best strategy for short y .  
4. The  Fourier transform  method which is used in the 

subroutines SCON, SCOR,  and SACOR. 

Small glitches appear in some plots, showing  a drop  in speed 
at isolated points.  These  result from  interrupts caused by 
multitask  operation of the machine.  They are left in the 
plots to show  their relative effect on performance  in actual 
calculations. 

For a very small range of  parameters which is of little 
interest here, the direct  in-line method is best. In Fig. 1, 
showing  rates  for Nh = 64, CORSY shows the best 
performance up  to  about N, = 30. Increasing Nh to 96 (as 
shown in Figure 2), which for CORSY increases the  number 
of  elements  in the vector register, increases CORSY’s speed. 
(The  Fourier method  shows an expected improvement in 
performance also.) 

Results for Nh = 128 are shown in Figure 3. Here, h just 
fills a vector register, giving CORSY  the greatest advantage 
and increasing its range to N, = 55. In general, since 
CORSH uses the better strategy for small Nh,  we expect to 
see this crossover point  at a higher N, for higher Nh, as 
shown in Fig. 2. In the plots  for CORSH,  one sees the 
discontinuity at multiples of N, = 128 where the  time 
increases by the  start-up  time for  a new vector segment 
(divided by NhN,). 

Figures 4-6 show the performance  plots  for  a wider range 
of N, (up to 2200) with the MFLOPS going twice as high, up 
to 180. In Fig. 4, the Nh = 64 plot demonstrates  that 
CORSH is better for most  of the range shown. 

Figure 5 displays an unexpected result: There are many 
crossings between the performance  curves for the Fourier 
method  and  CORSH.  In Fig. 6, the Nh = 128 plot shows the 
Fourier method  to be best above N, = 2 10. For N, < 2 10, 
there are many crossings between the performance curves. 

The locations  of the crossover points in the  timing curves 
are  important in choosing which of the programs to use. For 
the sake of comparing CORSY and  CORSH, Figure 7 shows 
a plot giving the value of Ny at  the crossover point for each 
N A .  Thus, for all N,,, N ,  below the graph, CORSY is faster 
than  CORSH.  For changes  in Nh within  a  segment  length, 
the graph is a  straight  line  which, for the first segment,  has  a 
slope of 0.42. It is interesting to  note  that  the observation 
made above that n,,> is too high for CORSY is supported by 
the  data plotted  in Fig. 7. The  drop in the performance 
curve caused each time a  segment of h is filled causes the 
equal-performance  graph to stay below N, = 57; thus, 
CORSY will never be better for more  than 57. 

8. Conclusions 
The general methods for scheduling the FFT algorithm 
described by Agarwal [4] offered great advantages in 
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vectorizing the FFT algorithm  for the IBM 3090 Vector 
Facility. However, further details of the structuring, 
depending on  the  number of vectors and their size, had to be 
devised. The radix-4  algorithm gave some savings in the 
number of  multiplications and  permitted a large number of 
operations within vector registers between accesses to 
storage. The relation between vector and cache sizes made it 
necessary to schedule the algorithm  in  such  a way as  to keep 
as  much  computing within  a  cache block as possible. Where 
the algorithm called for accessing data with strides  equal to 
powers of 2, redimensioning  of data arrays was shown to 
make great improvements  in cache  performance. In Tables  6 
and 7 ,  it  is  shown  how run  times vary considerably by 
changing the INC2Y parameter. This is an example where 
the user may, by simply  altering  a  stride,  reduce  repeated 
accesses to  the  same cache lines, with a  consequent 
improvement  in  running  time.  Programming experience  has 
shown that special formulation of the algorithms can be very 
important  and has led to  some fairly general programming 
principles and techniques which have yielded significant 
improvements in  performance. 

To  achieve high performance,  it was very important  to 
divide the calculations into vector-block and cache-block 
units. In large arrays special techniques had  to be used to 
transpose data without  producing too  many “cache misses.” 

To  do  the above and  maintain efficiency, it was necessary 
to have the  subroutines  do preprocessing, and when 
sequences were short it was efficient to have them  compute 
several transforms at once. 

Comparisons with the best scalar  programs, run on the 
IBM 3090, showed the vector program to  run from 1.2 to 
8.0 times as fast, allowing for initialization (see Table 2). 
However, for full-speed operation, i.e, not  counting 
initialization,  speedups  of from 5 to  9%  times were achieved. 

The  formulation of the FFT algorithm and  the design of 
the programs made it possible to keep all vector registers 
filled at every iteration. The  number of vector registers and 
the three-address  operation  code made it possible to use the 
radix-4 FFT algorithm so that large amounts of computing 
could be done within registers with relatively few storage 
references. The  permutations of data in the FFT algorithm 
could be performed  economically by the efficient use of 
strides and  the indexed  load/store  operations. 

During  the  planning stages of  these  programs, it was 
expected that for the majority  of  problem  parameters, it 
would be most efficient to  compute convolutions with 
Fourier transforms. In fact, estimates of the  numbers of 
arithmetic  operations  and results on conventional scalar 
machines showed that  the  Fourier  methods were better  for 
sequence  lengths of more  than 16 to 32. The Fourier 
transform methods require fewer arithmetic operations than 
the direct  methods. Nevertheless, the crossover points for 
direct methods  are higher than those  for  scalar  machines. 
Each of these methods  depends  upon a vector operation 160 
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which does a  multiplication and  an  addition in  a single 
instruction-that is, in  a single cycle. 

One direct method uses an operation (VMAES) which 
multiplies  a scalar by a vector and  adds  the result to a 
vector. This was used in  the  internal  subroutine  CORSH, 
which was designed to be efficient when one of the  input 
sequences is short. Here we have found  out  that  “short” may 
be as  long  as  2 IO. This  subroutine will be very useful in 
many large problems  where one is doing digital filtering on a 
digitized signal or, in  other words, computing a  moving 
average over  a long signal with a fixed short sequence  of 
weights. 

The second vector operation referred to above  multiplies  a 
vector by a vector and  accumulates  the products (VMCE). It 
only accumulates partial sums so that  additional overhead is 
required. The result is that it is never superior for an  output 
sequence  length  greater than 57. However, there  are  many 
situations where long input sequences  of  samples  of 
stochastic variables are used and relatively few values of the 
computed covariance function  are desired. 

It may be seen in Fig. 7 that  examining  the  computing 
speed of these two direct methods  as a function of input 
sequence length Nh and  output sequence  length N, shows 
that  the Nh, N, plane is divided into  two disjoint regions 
where one or the  other  method is  superior. Thus,  it is 
important  that both be available. 

Data in the figures and in  Table 8 show that for large 
ranges of parameters, the performance  curves  for the  three 
methods  make  many crossings. This is caused by the vector 
segmentation and by the fact that  the present Fourier 
transform subroutines apply  only to lengths  equal to powers 
of 2. Therefore, there is no simple test of  parameters to 
determine  the best method. Instead, timing formulas must 
be used. 

It is well known  that vector  machines make  the task of 
program planning  and writing  far more critical than  do 
scalar machines.  Therefore, the problem of making the full 
capabilities  of vector machines available can, in  part, be 
solved by identifying computational kernels and making an 
intensive effort to plan and program subroutines for them. 
This paper describes a contribution towards that goal. 
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